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1 Introduction

Real option analysis (ROA) is recognized as a superior method to quantify the value of real-world

investment opportunities where managerial flexibility can influence their worth, as compared to

standard discounted cash-flow methods typically used in industry. ROA stems from the work of

Black and Scholes (1973) on financial option valuation. Myers (1977) recognized that both finan-

cial options and project decisions are exercised after uncertainties are resolved. Early techniques

therefore applied the Black-Scholes equation directly to value put and call options on tangible assets

(see, for example, Brennan and Schwartz (1985)). Since then, ROA has gained significant attention

in academic and business publications, as well as textbooks (Copeland and Tufano (2004), Trige-

orgis (1996)). However, realistic models that try to account for a number of risk factors can be

mathematically complex, and in situations where many future outcomes are possible, many layers

of analysis may be required. The focus of this research is the development of a real options valuation

methodology geared towards practical use. A key innovation of the methodology to be presented

is the idea of fitting optimal decision making boundaries to optimize the expected value, based on

Monte Carlo simulated stochastic processes that represent important uncertain factors. We show

how the methodology can be used to value a simple Bermudan put option and discuss convergence

and accuracy issues. Then, we apply the methodology to a real options optimal build / abandon

problem for a single stochastic factor.

2 Relevant Literature

The academic literature is very rich in the field of mining valuation and we begin by making the case

that real option valuation is the best approach for the task at hand. Next, we provide a summary

of real option methods applied in mining valuation, followed by simulation based American option

valuation.

Mining projects are laced with uncertainty and many discounted cash-flow (DCF) methods have

been proposed in the literature (Bastante, Taboada, Alejano, and Alonso (2008), Dimitrakopoulos
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(2011), Everett (2013), Ugwuegbu (2013)). However, the ability for managers to react to uncertain-

ties at a future time adds value to projects, and since this value is not captured by standard DCF

methods, erroneous decision making may result (Trigeorgis (1996)). An excellent empirical review

of ex-post investment decisions made in copper mining showed that fewer than half of investment

timing decisions were made at the right time and 36 of the 51 projects analyzed should have chosen

an extraction capacity of 40% larger or smaller (Auger and Guzman (2010)). The authors were

unaware of any mining firm basing all or part of their decision making on the systematic use of

ROA and emphasize that the “failure to use ROA to assess investments runs against a basic as-

sumption of neoclassical theory: under uncertainty, firms ought to maximize their expected profits”.

They make the case that irrational decision making exists within the industry due to a lack of real

option tools available for better analysis. A number of surveys across industries have found that

the use of ROA is in the range of 10-15% of companies, and the main reason for lack of adoption

is model complexity (Hartmann and Hassan (2006), Block (2007), Truong, Partington, and Peat

(2008), Bennouna, Meredith, and Marchant (2010), Dimitrakopoulos and Abdel Sabour (2007)). As

mentioned, this work is focused on developing a practical Monte Carlo simulation-based real options

methodology as Monte Carlo simulation can be easily understood by managers and allows for the

modelling of multiple stochastic factors (Longstaff and Schwartz (2001)).

Several guidelines/codes have been developed to standardize mining valuation (CIMVAL (2003),

VALMIN (2015)). The main mining valuation approaches are income (i.e. cash-flows), market or

cost based and the focus of this paper is on income-based real option valuation, which resemble

American type financial options. Earlier real option works focused on modelling price uncertainty

only (Brennan and Schwartz (1985), Dixit and Pindyck (1994), Schwartz (1997)) however the com-

plexity in mining is significant and there are numerous risk factors. Simpler models based on lattice

and finite difference methods (FDM) are difficult to implement in a multi-factor setting (Longstaff

and Schwartz (2001)) and, also, it is extremely difficult to account for time dependant costs with

multiple decision making points (Dimitrakopoulos and Abdel Sabour (2007)). However, the simpler

models continue to merit attention (Haque, Topal, and Lilford (2014), Haque, Topal, and Lilford

(2016)). Dimitrakopoulos and Abdel Sabour (2007) utilize a multi-factor least squares Monte Carlo

(LSMC) approach to account for price, foreign exchange and ore body uncertainty under multiple

pre-defined operating scenarios (states). However, the model only allows for operation and irre-

versible abandonment - aspects such as optimal build time, expansion and mothballing are not

considered. Similarly, Mogi and Chen (2007) use ROA and the method developed by Barraquand

and Martineau (2007) to account for multiple stochastic factors in a four-stage gas field project.

Abdel Saboura and Poulin (2010) develop a multi-factor LSMC model for a single mine expansion.

A review of 92 academic works found that most real options research is focused on dealing with very

specific situations where usually no more than two real options are considered (Savolainen (2016)).

While the LSMC allows for a more realistic analysis, methods presented to date are applicable only

for the case where changes from one state to another does not change the fundamental stochastic

factors with time. For example, modular expansion would be difficult to implement in such a model

if the cost to expand was a function of time and impacts extracted ore quality due to the changing

rate of extraction – these issues were considered in Davison, Lawryshyn, and Zhang (2015) and

Kobari, Jaimungal, and Lawryshyn (2014). Also, modeling of multiple layers is still complex and

will not lead to a methodology that managers can readily utilize.

A somewhat recent review of the valuation of American options was provided by Barone-Adesi

(2005) where the LSMC of Longstaff and Schwartz (2001) was highlighted as the most innovative, but
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other similar Monte Carlo based approaches have been proposed (Barraquand and Martineau (2007))

and the literature is abundant on the utilization of simulation and dynamic programming to value

American options. While there are many articles providing numerical or analytical approximations

to an American exercise boundary (e.g. Barone-Adesi and Whaley (1987), Ju (1998), Tung (2016),

Del Moral, Remillard, and Rubenthaler (2012)), we only found the work of Del Moral, Remillard,

and Rubenthaler (2012) where a forward Monte Carlo valuation method was proposed, however the

exercise boundary was estimated using the analytical method of Barone-Adesi and Whaley (1987),

which negates the ability to develop a general model. One reason why our proposed approach may

not have been presented is that most works are focused on improving efficiency and accuracy of

the pricing models. In the real options context, where many assumptions are required to estimate

the cash-flows, accuracy is not as important – what is important is ease of implementation and

comprehension by decision makers.

3 Theory

We begin the theoretical discussion with a motivating example. Consider the case of a greenfield

site, where the life of the mine lease is 2 years, construction will take half a year, St, the ore

price follows geometric Brownian motion (GBM) and the per unit costs are K to construct, Cab
to abandon and Cop is the operating cost rate. For a given set of parameters, the scenarios are

depicted in Figure 1 in a binomial tree. The St process of the first panel is used to determine the

operating cash-flow, calculated as CFt = St −Cop. For this case, we assume that abandonment can

occur at year 2 only, with cost Cab. The real option can be valued in a recursive manner and the

different scenarios are presented in Figure 2. Since it takes half a year for construction, the latest

we would construct the mine is at year 1. In this case, only the cash-flows associated with the last

period are of value and these are discounted twice to year 1 (relevant probabilities and discounting

factor were used) to determine the expected value. At year 1, there are 3 possible values for St and

thus three possible valuations for the cash-flows. Clearly, we would only invest if the total expected

value of the cash-flows minus the investment cost, K, is greater than 0. As shown, only one of the

three scenarios has a positive value, the others are set to 0. We continue to discount these expected

values to reach a valuation of $1.0 at year 0. Similar valuations are done for the case of building

at years 0.5 and 0. Based on the analysis, we see that it is best to wait one period (half year)

before constructing and the overall project value is determined to be $2.9. Note that even for this

very simple problem, a separate binomial tree was required at each decision making time point.

If we allowed for early abandonment, many more trees would be required. If we added a second

stochastic factor, we would have another spatial dimension. Clearly, to value a complex real option

the model’s complexity increases substantially. This complexity leads us to the overall objective of

developing a practical simulation based real options methodology that can model realistic decision-

making scenarios encountered in industry. Our specific emphasis in this work will be to explore

theoretical / numerical aspects associated with the simulation methodology as they pertain to 1)

a Bermudan put option, 2) a Bermudan-like option with variable strike price K and 3) a build /

abandon real option example.
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Figure 1: Price process and resulting cash-flow.

Figure 2: Real option valuation based on different build options.
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3.1 Bermudan Put Option

For the Bermudan put option, we consider a GBM stock price process, St, as

dSt = rStdt+ σStdŴt, (1)

where r is the risk-free rate, σ is the volatility and Ŵt is a Wiener process in the risk-neutral measure.

We assume the payoff of the option to be max(K − St, 0) and can be exercised at times t = τ and

t = T where τ < T . The value of the put option can be written as

V0 = e−rτ
∫ ∞
0

max
(
K − x, PBSput(x, τ, T, r, σ,K)

)
fSτ (x|S0)dx, (2)

where PBSput(x, τ, T, r, σ,K) is the Black-Scholes formula for the value of a European put option

with current stock price x, maturity T − τ , risk-free rate r, volatility σ and strike K, and fSτ (x|S0)
is the density for Sτ given S0. As can be seen in equation (2), the optimal exercise occurs when

K − θ∗ = PBSput(θ
∗, τ, T, r, σ,K), (3)

where θ∗ is used to denote the exercise price at t = τ . Equation (3) can be solved using numerical

methods and thus the option value simplifies to

V0 = e−rτ

(∫ θ∗

0
(K − x)fSτ (x|S0)dx+

∫ ∞
θ∗

PBSput(x, τ, T, r, σ,K)fSτ (x|S0)dx

)
, (4)

which can be solved using standard numerical methods.

To explore numerical issues regarding the proposed boundary fitting methodology in the context

of the Bermudan put option, we simulate N risk-neutral paths for St. For a given exercise price θ

the value of the option for the i-th path is given by

V
(i)
0 (θ) = 1

S
(i)
τ ≤θ

(
K − S(i)

τ

)
e−rτ + 1

S
(i)
τ >θ

max
(
K − S(i)

T , 0
)
e−rT . (5)

where S
(i)
t represnets the value of St of the i-th simulated path. The optimal exercise price can then

be estimated as

θ∗ = arg max
θ

1

N

N∑
i=1

V
(i)
0 (θ), (6)

and the option value estimate becomes

V sim
0 =

1

N

N∑
i=1

V
(i)
0 (θ∗). (7)

Note that lim
N→∞

V sim
0 = V0, as required.

3.2 Bermudan Option with Variable Strike

Next, we consider a Bermudan-like option with a variable strike K. This scenario represents a

simplification of the idea of the optimal plant build size of a real option project valuation. We
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utilize the same stock price process as above (equation (1)). In this scenario, the option holder has

the opportunity to exercise the option at τ (τ < T ) at a cost of

CK = 1K>0(aK + b), (8)

where a > 0 and b > 0 are some constants, to receive a payoff of min(ST ,K) at time T .

The value of the option at t = τ if exercised is

V +
τ = e−r(T−τ)

∫ ∞
0

min(x,K)fST (x|Sτ )dx (9)

= SτΦ(A) + e−r(T−τ)K (1− Φ(B)) (10)

where Φ(·) is the standard normal distribution and

A ≡
ln K

Sτ
−
(
r + σ2

2

)
(T − τ)

σ
√
T − τ

, B ≡
ln K

Sτ
−
(
r − σ2

2

)
(T − τ)

σ
√
T − τ

. (11)

To find the optimal K we set
∂(V +

τ −CK)
∂K = 0 and solve for K

Kopt(Sτ ) = Sτe

(
r−σ

2

2
−
√
2σ erf−1(2aer(T−τ)−1)

)
(T−τ)

. (12)

Furthermore, if we assume a maximum capacity of Kmax then we can define

K∗(Sτ ) ≡ min(Kopt(Sτ ),Kmax) (13)

and substituting K = K∗(Sτ ) in equation (10),

V +∗
τ (Sτ ) ≡ SτΦ(A) + e−r(T−τ)K∗(Sτ ) (1− Φ(B)) (14)

The option value at t = 0 is thus

V0 = e−rτE
[
max

(
V +∗
τ (Sτ )− CK∗(Sτ ), 0

)]
(15)

= e−rτ
∫ ∞
0

max
(
V +∗
τ (x)− CK∗(x), 0

)
fSτ (x|S0)dx. (16)

To utilize simulation to estimate the option value, we assume a parametric function for K∗ as a

function of Sτ for the form g(Sτ |~θ), where ~θ = [θ1, θ2, ..., θn]′ is a vector of constants. For a given ~θ,

the option value of the i-th path is given by

V
(i)
0 (~θ) = e−rT min

(
S
(i)
T , g(S(i)

τ |~θ)
)
− e−rτCK

(
g(S(i)

τ |~θ)
)

(17)

and the optimal parameters can be determined by

~θ∗ = arg max
~θ

1

N

N∑
i=1

V
(i)
0 (~θ) (18)

from which the option value can be estimated as

V sim
0 =

1

N

N∑
i=1

V
(i)
0 (~θ∗). (19)
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3.3 Build / Abandon Real Option Example

In this subsection we develop our boundary fitting methodology for a build / abandon real option

example. As above, we simulate N risk-neutral paths for St. We assume parametric functions

fB(St, t; ~θB) for the construction (build) boundary and fA(St, t; ~θA) for the abandon boundary.

Defining λ
(i)
t = {0, 1, 2, 3} as the state variable of the i-th simulation such that λ

(i)
0 = 0, where 0

denotes the state where no construction has taken place, 1 denotes state where the plant is under

consturction, 2 denotes the state where the plant is in operation and 3 donotes the state where the

plant has been abandoned. We define the first passage of time when S
(i)
t hits the build boundary,

τ
(i)
B ≡ min{t > 0 ; S

(i)
t ≥ fB(S

(i)
t , t; ~θB)}. (20)

Similarly, the first passage of time when S
(i)
t hits the abandon boundary after construction has

begun can be defined as

τ
(i)
A ≡ min

{
t > 0 ; S

(i)
t ≥ fA(S

(i)
t , t; ~θA), λ

(i)
t ∈ {1, 2}

}
. (21)

Clearly, the state variable is set as follows,

λ
(i)
t =


0, for t < τ

(i)
B or τ

(i)
B ∈ Ø,

1 for τ
(i)
B ≤ t < τ

(i)
B + τc,

2 for
{
τ
(i)
B + τc ≤ t < τ

(i)
A

}
or
{
τ
(i)
B + τc ≤ t and τ

(i)
A ∈ Ø

}
,

3 for t ≥ τ (i)A ,

(22)

where τc is a constant representing the time required for construction.

The real option value of the i-th path can be written as

V
(i)
0 (~θ) = −1

λ
(i)
T ≥1

Ke−rτ (i)B + Cab e
−r

(
1
λ
(i)
T

=3
τ
(i)
A +1

λ
(i)
T
∈{1,2}

T

)+

∫ T

τ
(i)
B +τc

1
λ
(i)
t =2

e−rsγ
(
S(i)
s − Cop

)
ds

(23)

where, Cab is the cost to abandon or close the plant, Cop is the per unit operating cost and γ is the

rate of extraction of the mineral. Defining ~θ ≡ [~θB, ~θA]′, the optimal parameters defining the build

and abandon exercise boundaries can be determined as

~θ∗ = arg max
~θ

1

N

N∑
i=1

V
(i)
0 (~θ) (24)

from which the option value can be estimated as

V sim
0 =

1

N

N∑
i=1

V
(i)
0 (~θ∗). (25)

4 Results

In the following subsections we present some results of the simulation experiments that were per-

formed for 1) the Bermudan put option, 2) the Bermudan-like option with variable strike price K

and 3) the build / abandon real option example.
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Figure 3: Histograms of V sim
0 for the Bermudan put option (note that each case was simulated 200

times).

4.1 Bermudan Put Option

For the Bermudan option, we assume the following parameters:

• S0 = 5

• K = 5

• τ = 1

• T = 2

• r = 3%

• σ = 10%.

For these parameters the pseudo-analytical results, using equations (4) and (3) respectively, are:

• V0 = 0.1688

• θ∗ = 4.7571.

Histograms of V sim
0 of equation (7) resulting from the simulations are presented in Figure 3, where

the number of simulation paths was varied from N = 102 to N = 106. In each case, 200 simulations

were performed. In Figure 4 we present the standard deviation of the 200 simulations as a function

of N . As expected, the variance in the results reduces as N is increased and the converged values

for V0 and θ∗ approach those of the pseudo-analytical solution, as expected.

4.2 Bermudan Option with Variable Strike

In this subsection we present the results of the Bermudan-like option where the strike K is variable.

We use the same parameter values as in Subsection 4.1 with a = 0.5 and b = 1.0 of equation (8).



Bashiri, Davison & Lawryshyn 9

Figure 4: Simulation convergence for the Bermudan put option.

For the parametric function representing K∗ we use a second order polynomial,

g(x|~θ) = θ1x
2 + θ2x+ θ3. (26)

In Figure 5 we plot V +
τ −CK as a function of Sτ and K using equations (10) and (8), respectively.

Setting Kmax = 10, the resulting histograms of V sim
0 of equation (19) are plotted in Figure 6 and

those of ~θ∗ of equation (18) in Figure 7. Note the bi-modal distribution for θ∗3 is likely due to the

fact that we are using a second order polynomial where a line will likely suffice. In Figure 8 we

present the standard deviation of the option value using 200 simulations as a function of N . As

expected, the variance in the results reduces as N is increased and the converged values approach

those of the analytical solution. A plot of the simulated and actual K∗ as a function of Sτ in Figure

9 shows that as N is increased, the simulated results converge to the actual analytical ones.

4.3 Build / Abandon Real Option Example

For the build / abaondon real option example, we assume the following parameters:

• S0 = 100

• K = 5

• Cop = 100

• Cab = 1

• T = 2 years
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Figure 5: Vτ+ − CK as a function of Sτ and K.

Figure 6: Histograms of V sim
0 for the variable strike Bermudan-like option (note that each case was

simulated 200 times).
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Figure 7: Histograms of ~θ∗.

Figure 8: Simulation convergence for the variable strike Bermudan-like option.
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Figure 9: Simulated and actual K∗ as a function of Sτ for the variable strike Bermudan-like option

(note that the green line for the simulated case of N = 106 lies directly under the light blue (actual)

line).

• τc = 0.5 years

• γ = 1.0

• r = 3%

• σ = 10%.

In Figure 10 we plot the histograms for V sim
0 of equation (25) for varying N , using, as before 200

simulations. A few select build / abandon boundaries for varying N are plotted in Figure 11. Again,

we see convergence is achieved.

5 Conclusions

The focus of this research was to present of a real options valuation methodology geared towards

practical use. A key innovation of the methodology is the idea of fitting optimal decision making

boundaries to optimize the expected value, based on Monte Carlo simulated stochastic processes

that represent important uncertain factors. We showed how the methodology can be used to value

a simple Bermudan put option. Then, we presented a Bermudan-like option where the strike was

variable. This type of option is a simplification of the situation where managers have the option

to build an optimal sized plant. For both the Bermudan and the Bermudan-like variable strike

options convergence to the analytical values was achieved as the number of simulation paths were

increased. Finally, we presented a simple build / abandon real option. As mentioned, to value

a complex real option with multiple stochastic factors leads to model complexity that may make
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Figure 10: Histograms of V sim
0 for the build / abaondon real option (note that each case was

simulated 200 times).

Figure 11: Example build / abaondon real option boundaries.
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the analysis intractable. Our theoretical and numerical presentation of exercising boundary fitting

shows how the complexity can be overcome through the use of Monte Carlo simulation. We feel

that the methodology presented here is much more tractable in an industry setting for it is simple

enough for managers to understand, yet can account for important real world factors that make the

real options model suitable for valuation.

References

Abdel Saboura, S. and R. Poulin (2010). Mine expansion decisions under uncertainty. Interna-

tional Journal of Mining, Reclamation and Environment 24 (4), 340–349.

Auger, F. and J. Guzman (2010). How rational are investment decisions in the copper industry?

Resources Policy 35, 292–300.

Barone-Adesi, G. (2005). The saga of the american put. Journal of Banking & Finance 29,

2909?2918.

Barone-Adesi, G. and R. Whaley (1987). Efficient analytical approximation of american option

values. The Journal of Finance 42 (2), 301–320.

Barraquand, J. and D. Martineau (2007). Numerical valuation of high dimensional multivariate

american securities. JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS 30 (3),

383–405.

Bastante, F., J. Taboada, L. Alejano, and E. Alonso (2008). Optimization tools and simulation

methods for designing and evaluating a mining operation. Stochastic Environmental Research

and Risk Assessment 22, 727?735.

Bennouna, K., G. Meredith, and T. Marchant (2010). Improved capital budgeting decision making:

evidence from canada. Management Decision 48 (2), 225–247.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of

Political Economy 81, 637–659.

Block, S. (2007). Are real options actually used in the real world? Engineering Economist 52 (3),

255–267.

Brennan, M. J. and S. Schwartz (1985). Evaluating natural resource investments. Journal of

Business 58 (2), 135–157.

CIMVAL (2003). Standards and guidelines for valuation of mineral properties. Technical report,

Canadian Institute of Mining, Metallurgy and Petroleum.

Copeland, T. and P. Tufano (2004, March). A real-world way to manage real options. Harvard

Business Review 82 (3), 90–99.

Davison, M., Y. Lawryshyn, and B. Zhang (2015). Optimizing modular expansions in an industrial

setting using real options. In 19th Annual International Conference on Real Options.

Del Moral, P., B. Remillard, and S. Rubenthaler (2012). Monte carlo approximations of american

options that preserve monotonicity and convexity. In Numerical Methods in Finance, pp. 115–

143. Springer Berlin Heidelberg.

Dimitrakopoulos, R. (2011). Stochastic optimization for strategic mine planning: A decade of

developments. Journal of Mining Science 47 (2), 138–150.



Bashiri, Davison & Lawryshyn 15

Dimitrakopoulos, R. and S. Abdel Sabour (2007). Evaluating mine plans under uncertainty: Can

the real options make a difference? Resources Policy 32, 116?125.

Dixit, A. and R. Pindyck (1994). Investment under Uncertainty. Princeton University Press.

Everett, J. (2013). Planning an iron ore mine: From exploration data to informed mining decisions.

Issues in Informing Science and Information Technology 10, 145–162.

Haque, M. A., E. Topal, and E. Lilford (2014). A numerical study for a mining project using real

options valuation under commodity price uncertainty. Resources Policy 39, 115?123.

Haque, M. A., E. Topal, and E. Lilford (2016). Estimation of mining project values through real

option valuation using a combination of hedging strategy and a mean reversion commodity

price. Natural Resources Research 25 (4), 459–471.

Hartmann, M. and A. Hassan (2006). Application of real options analysis for pharmaceutical

R&D project valuation?empirical results from a survey. Research Policy 35, 343–354.

Ju, N. (1998). Pricing an american option by approximating its early exercise boundary as a

multipiece exponential function. The Review of Financial Studies 11 (3), 627–646.

Kobari, L., S. Jaimungal, and Y. A. Lawryshyn (2014). A real options model to evaluate the effect

of environmental policies on the oil sands rate of expansion. Energy Economics 45, 155–165.

Longstaff, F. and E. Schwartz (2001). Valuaing american options by simulation: A simple least-

squares approach. The Review of Financial Studies 14 (1), 113–147.

Mogi, G. and F. Chen (2007). Valuing a multi-product mining project by compound rainbow

option analysis. International Journal of Mining, Reclamation and Environment 21 (1), 50?64.

Myers, S. (1977). Determinants of corporate borrowing. Journal of Financial Economics 5, 147–

175.

Savolainen, J. (2016). Real options in metal mining project valuation: Review of literature. Re-

sources Policy 50, 49–65.

Schwartz, E. (1997). The stochastic behaviour of commodity prices: implications for valuation

and hedging. Journal of Finance 52 (3), 923?973.

Trigeorgis, L. (1996). Real Options: Managerial Flexibility and Strategy in Resource Allocation.

Cambridge, MA: The MIT Press.

Truong, G., G. Partington, and M. Peat (2008). Cost-of-capital estimation and capital-budgeting

practice in australia. Australian Journal of Management 33 (1), 95–122.

Tung, H. (2016). Pricing american put options using the mean value theorem. The Journal of

Futures Markets 36 (8), 793?815.

Ugwuegbu, C. (2013). Segilola gold mine valuation using monte carlo simulation approach. Mineral

Economics 26, 39–46.

VALMIN (2015). The valmin code. Technical report, Australasian Institute of Mining and Met-

allurgy and the Australian Institute of Geoscientists.


