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Investing in a Random Start American Option

Under Competition

1 Introduction

In this paper we develop a model capable of determining the value of the opportunity to

invest in a random start American (real) option. In contrast to a typical American option,

the random start option1 (RSO) only exists if some exogenous event occurs. The random

(exogenous) event is assumed to be outside of the investor’s control, and only after it

occurs the (true) American option to invest materializes.

Several examples fit with this setting. An investment opportunity that depends on

the authorization of a public entity, which may eventually arrive in the future (e.g., the

license to transform a rural land, with construction limitations, into an urban one); an

R&D race where the discovery arrives randomly (Lint and Pennings, 1998); or a project

that depends on a technology developed by a third-party firm (e.g., the iPad was dependent

on an efficient multi-touch screen technology, developed outside Apple).

Additionally, we introduce competition over the random start American option, which

means that, at the beginning, the firm has no proprietary rights on the RSO. The only

possibility the firm has to eliminate competition is to spend an initial irreversible invest-

ment.

In the context of our examples, the initial capital investment could correspond to the

acquisition of the rural land with the expectation that it will be later transformed into

urban by the authorities (by acquiring the land the investor becomes proprietary of the

random start option). Similarly, the firm can invest in patenting the potential discovery

that may randomly arrive during the R&D process (the alternative that does not eliminate

competition would be to patent the discover only if and when it occurs). Finally, for the

last example, the firm can pay a third-party to secure exclusive rights in the case the

technology arrives, ensuring monopolistic rents.

Our paper closely relates to Armerin (2017). The author also considers a similar

American option that can only be exercised after a random period of time has passed.

The value of this option is derived in detail, both for the case of a call (invest) and a

put (abandon). The author also determines the expected time for the random American

option be optimally exercised. We differ from Armerin (2017) in two major ways. Firstly,

in contrast to Armerin’s work, that considers that the firm already owns the random

start American option, we go one step back and consider the decision to acquire the

RSO. In other words, we depart from the assumption that the firm is, ex ante, endowed

with the random start option, modeling, instead, the decision to acquire it. Secondly, we

1We interchangeably use “random start American option”, “random start option”, or simply RSO.
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consider that the firm has no proprietary rights on the RSO, incorporating competition

for the acquisition of the option. By accounting for competition, we make the model more

complete and we allow it to fit important real world situations. For deriving the value

functions and the solutions we follow the contingent claims approach, as presented by

Dixit and Pindyck (1994).

The model unfolds as follows. Section 2 develops the model for investing in a random

start American options under competition. Section 3 presents a numerical example with

a comparative statics, highlighting the main insights of the model. Section 4 concludes.

2 The Model

Consider a real asset able to produce a stream of cash flows. The present value of these

cash flows, X, is assumed to follow a geometric Brownian motion:

dX(t) = αX(t)dt+ σX(t)dB (1)

where X(0) > 0, α < r is the risk-neutral expected drift, r is the risk-free rate, σ the

instantaneous volatility, and dB is the increment of a Wiener process.

The investment in this project has two stages. The first stage, in which K1 is invested,

allows the firm to become a monopolist over the second stage of the project, eliminating

any possible competitive damage. However, the investment in this second stage, depends

on some exogenous event without which the project is noneffective. In other words, it is

impossible to implement the second (and last) stage of the project unless the exogenous

event occurs. After this event, the firm is entitled with a perpetual American option to

invest, which requires a lump sum investment of K2. However, notice that if the exogenous

event happens to occur before the firm invests K1 (i.e., before securing monopolistic rights

over the second stage), the option to invest in the project is shared with competitors.

This model considers three types of uncertainty. First, the cash flows of the project

evolve randomly over time. Secondly, the effectiveness of the project depends on some

exogenous event. Lastly, competition is also considered by including the existence of

hidden rivals (Armada et al., 2011; Pereira and Armada, 2013; Lavrutich et al., 2016).

Figure 1 exhibits all possible states. In the beginning, the firm holds F (X). This is

a non-proprietary option to invest K1 and receive G(X), becoming a monopolist over the

next stage. Two possible events may occur while the firm holds F (X): the exogenous event

occurs (transforming F (X) into HC(X)) or a (hidden) competitor moves in and invests K1,

and F (X) becomes worthless for the company. After investing K1 the firm is entitled with

the monopolistic option G(X). This option ends-up to be H(X) if the exogenous event

occurs. H(X) is the perpetual American option to invest K2 and receive X. Additionally,

if the exogenous event occurs before the firm makes the first investment (before investing
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Figure 1: The solid lines represent the changes in the value functions as a result of
firm’s decisions (first stage and second stage investment). The dashed and
the dotted lines represent, respectively, the change in the value functions if
the exogenous event occurs or if the firm is preempted by a competitor.

K1), F (X) is transformed into HC(X), which corresponds to the non-monopolistic option

to invest in the second stage. Given that HC(X) can suddenly disappear if a competitor

preempts the firm, K1 can be paid in order to secure the position of monopolist of the

project (H(X)).

For solving the model we proceed backwards, starting with the last option H(X), and

then moving to the earlier stages.

2.1 The value of the project after the exogenous event

After the exogenous event that allows the firm to invest in the last stage, the firm can

either have secured the monopolistic option to invest (by having invested K1) or is still

waiting to secure the investment and faces the hidden competition.

The monopolistic right to invest in the last stage

Let H(X) be the value of the proprietary option to invest in the last stage, under which

the firm receives X in exchange for the sunk investment cost K2. Following the standard

procedures, H(X) is the solution to the following ordinary differential equation (ODE):

1

2
σ2X2H ′′(X) + αXH ′(X)− rH(X) = 0 (2)
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The solution is the well known option to invest value (McDonald and Siegel, 1986;

Dixit and Pindyck, 1994):

H(X) =

a1Xβ1 for X < X2

X −K2 for X > X2

(3)

where

a1 = (X2 −K2)

(
1

X2

)β1
=

K2

β1 − 1

(
1

X2

)β1
(4)

β1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2r

σ2
(5)

and X2 is the threshold for investment:

X2 =
β1

β1 − 1
K2 (6)

The shared option to invest in the last stage

Let HC(X) be the value function of the option to invest when the firm may be preempted

by a hidden competitor destroying the option value. That event is modeled as a Poisson

event with intensity λC . HC(X) is the solution to the following ODE (Dixit and Pindyck,

1994):
1

2
σ2X2H ′′C(X) + αXH ′C(X)− rHC(X) + λC(0−HC(X)) = 0 (7)

and, considering the boundary at X = 0, is given by:

HC(X) = bXη1 (8)

where

η1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2(r + λC)

σ2
(9)

The firm can choose between two alternative strategies to kill competition: (1) to

stage the investment, investing K1 to secure a monopolistic position over the project, or

(2) invest immediately in the last stage K2. The optimal strategy will be the most valuable

and not necessarily that with the earliest threshold.

Case 1 Staged investment

Under this strategy the firm will choose to secure the option to invest in the last stage

by paying K1 in the first stage and not pre-committing to the second stage investment. By

paying K1 the firm acquires the exclusive option to invest H(X). It only makes economic
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sense to stage the investment if the threshold of the second stage X2 has bot been reached.

Therefore, the value-matching and smooth-pasting boundary conditions, at the threshold

Xc
11 < X2, are:

b1X
c
11
η1 = a1X

c
11
β1 −K1 (10)

η1b1X
c
11
η1−1 = β1a1X

c
11
β1−1 (11)

These boundary conditions produce the following solution for the option value:

HC(X) =


b1X

η1 for X < Xc
11

a1X
β1 −K1 for Xc

11 6 X < X2

X −K2 −K1 for X > X2

(12)

where

b1 =
(
a1X

c
11
β1 −K1

)( 1

Xc
11

)η1
=

β1K1

η1 − β1

(
1

Xc
11

)η1
(13)

and Xc
11 is the threshold:

Xc
11 = X2

(
η1(β1 − 1)

η1 − β1
K1

K2

) 1
β1

(14)

The condition that the threshold X2 must be greater that Xc
11 implies that the initial

investment K1 must be sufficiently smaller that K2:

K1 <
η1 − β1
η1(β1 − 1)

K2 (15)

For the limiting cases where competition is absent (λC = 0) or is imminent (λC →∞),

the condition becomes K1 < 0 and K1 < K2/(β1 − 1), respectively. When there are

no potential competitors, staging the investment is excluded because the firm holds an

exclusive option on the second stage investment, while when the competitor is about to

make the investment, the firm can pay the maximum amount K2/(β1 − 1) to secure the

investment. A higher risk of competition (higher λC or equivalently a higher η1) induces

the firm to be available to pay a larger K1. Notice that the higher the market uncertainty

(lower β1), the larger the amount a firm is willing to pay to secure the exclusive right to

later invest in the second stage.

Case 2 Investment in a single stage

Under this strategy the firm will choose the two investments (K1 + K2) in a single

stage, eliminating competition.

The following value-matching and smooth-pasting boundary conditions, at the thresh-
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old Xc
12:

bXc
12
η1 = X − (K1 +K2) (16)

η1bX
c
12
η1−1 = 1 (17)

produce the following solution:

HC(X) =

b2Xη1 for X < Xc
12

X − (K1 +K2) for X > Xc
12

(18)

where

b2 = (Xc
12 − (K1 +K2))

(
1

Xc
12

)η1
=
K1 +K2

η1 − 1

(
1

Xc
12

)η1
(19)

and Xc
12 is the threshold:

Xc
12 =

η1
η1 − 1

(K1 +K2) (20)

A higher risk of competition (higher λC or higher η1) hastens investment (∂Xc
12/∂λC <

0). On the other hand, a higher market uncertainty (lower η1) deters investment.2

Optimal strategy

A firm will prefer to stage the investment if the value of that strategy is higher than

that of the alternative single stage investment (b1 > b2), even if the threshold of the latter

(Xc
12) is reached before the threshold of the former (Xc

11). The following condition must

hold for a staged investment to be preferred:(
Xc

12

Xc
11

)η1
>

η1 − β1
β1(η1 − 1)

(
K1 +K2

K1

)
(21)

Appendix A proves that this condition always holds. Therefore, we need only condition

(15) to define the optimal strategy. There is a value of K1 that separates the two regions,

in which one strategy is preferred over the other. K1 must be sufficiently small to make

the staged investment the preferred strategy.

2.2 The value of the project before the exogenous event

Before the exogenous event that allows the firm to invest in the last stage, the firm can

choose between securing the monopolistic option to invest or waiting and sharing the op-

tion with hidden competitors. It is reasonable to assume that securing the investment

before the exogenous event can be less costly. For instance, buying a piece of land with-

out a construction permit is less costly than if construction has been already permitted.

2Notice that ∂η1/∂σ < 0.
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Therefore, we assume that the cost is θK1 (0 < θ 6 1).

The value of the monopolistic option invest in the first stage

After paying θK1, the firm secures the investment opportunity H(X) killing competition

and waits for the occurrence of the exogenous event that will allow the investment in the

last stage. This event arrives according to a Poisson process with an intensity rate λE . Let

G(X) be the value of the monopolistic option, which must be the solution to the following

ODE:
1

2
σ2X2G′′(X) + αXG′(X)− rG(X) + λE(H(X)−G(X)) = 0 (22)

The exogenous event can occur either before or after the thresholdX2 has been reached.

The two regions of H(X) shown in Equation (18) produce the following solution to the

above ODE:3

G(X) =


c1X

γ1 + a1X
β1 for X < X2

c4X
γ2 + Λ1X − Λ2K2 for X > X2

(23)

where

Λ1 =
λE

r − α+ λE
(24)

Λ2 =
λE

r + λE
(25)

γ1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2(r + λE)

σ2
(26)

γ2 =
1

2
− α

σ2
−

√(
−1

2
+

α

σ2

)2

+
2(r + λE)

σ2
(27)

and a1 and X2 are as in Equations (4) and (6), respectively, and the constants a3 and a4

ensure that G(X) is continuous and differentiable along X:4

c1 =
(β1 − γ2)(X2 −K2) + Λ1(γ2 − 1)X2 − Λ2γ2K2

γ2 − γ1

(
1

X2

)γ1
(28)

c4 =
(β1 − γ1)(X2 −K2) + Λ1(γ1 − 1)X2 − Λ2γ1K2

γ2 − γ1

(
1

X2

)γ2
(29)

3After considering the boundary condition when X → 0 and X → ∞.
4Using the value-matching and smooth-pasting conditions at X2.

7



The value of the shared option to invest in the first stage

Let F (X) be the value of the shared option to invest prior to the exogenous event, whose

value must be the solution to the following ODE:

1

2
σ2X2F ′′(X) + αXF ′(X)− rF (X) + λE(HC(X)− F (X)) + λC(0− F (X)) = 0 (30)

where, λE is the arrival rate of the exogenous event, and λC corresponds to the arrival

rate of a competitor that preempts the firm, killing the option value.

Depending on condition (15), HC(X) is given by Equation (12) or Equation (18), each

of them with more than one branch. Let X1 be the threshold for investment in the first

stage. The following cases emerge:

Table 1: Investment strategy cases

1. Staged investment 2. Single stage investment
X1 < Xc

11 X1 > Xc
11 X1 < Xc

12 X1 > Xc
12

X1 < X2 A C E G

X1 > X2 B D F H

Case 1 Staged investment

Considering the boundary condition when X → 0, the solution to the ODE (30) has

three branches:

F (X) =


d1X

ψ1 + b1X
η1 for X < Xc

11

d3X
ψ1 + d4X

ψ2 + Λ4a1X
β1 − Λ3K1 for Xc

11 6 X < X2

d5X
ψ1 + d6X

ψ2 + Λ1 (X −K2 −K1) for X > X2

(31)

where

Λ3 =
λE

r + λC + λE
(32)

Λ4 =
λE

λC + λE
(33)

ψ1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2(r + λE + λC)

σ2
(34)

ψ2 =
1

2
− α

σ2
−

√(
−1

2
+

α

σ2

)2

+
2(r + λE + λC)

σ2
(35)

Let us now present the four sub-cases.

Case A Xc
11 < X2 and X1 < X2
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The following boundary conditions are used to find the solution:

d11X1
ψ1 + b1X1

η1 = c1X1
γ1 + a1X1

β1 − θK1 (36)

ψ1d11X1
ψ1−1 + η1b1X1

η1−1 = γ1c1X1
γ1−1 + β1a1X1

β1−1 (37)

Solving these two equations, we obtain the following value for the investment oppor-

tunity:

F (X) =

d11Xψ1 + b1X
η1 for X < X1

G(X)− θK1 for X > X1

(38)

where

d11 =
(
c1X1

γ1 + a1X1
β1 − θK1 − b1X1

η1
)( 1

X1

)ψ1

(39)

and the trigger, X1, is numerically obtained by solving the following equation:

(ψ1 − γ1)c1X1
γ1 − (ψ1 − η1)b1X1

η1 + (ψ1 − β1)a1X1
β1 − ψ1θK1 = 0 (40)

Case B X1 < Xc
11 and X1 > X2

The following boundary conditions apply:

d12X1
ψ1 + b1X1

η1 = c4X1
γ2 + Λ1X1 − Λ2K2 − θK1 (41)

ψ1d12X1
ψ1−1 + η1b1X1

η1−1 = γ2c4X1
γ2−1 + Λ1 (42)

producing the following solution for the option value:

F (X) =

d12Xψ1 + b1X
η1 for X < X1

G(X)− θK1 for X > X1

(43)

where

d12 = (c4X
γ2
1 + Λ1X1 − Λ2K2 − θK1 − b1X1

η1)

(
1

X1

)ψ1

(44)

and the trigger, X1, is numerically obtained by solving the following equation:

(ψ1 − γ2)c4X1
γ2 − (ψ1 − η1)b2X1

η1 + (ψ1 − 1)X1 − ψ1 (Λ2K2 + θK1) = 0 (45)

Case C X1 > Xc
11 and X1 < X2

The following value-matching and smooth-pasting conditions:

d33X1
ψ1 + d43X1

ψ2 + Λ3(X1 − (K1 +K2)) = c1X1
γ1 + a1X1

β1 − θK1 (46)

ψ1d33X1
ψ1−1 + ψ2d43X1

ψ2−1 + Λ3 = γ1c1X1
γ1−1 + β1a1X1

β1−1 (47)
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produce the following solution for the option value:

F (X) =


d13X

ψ1 + b1X
η1 for X < Xc

11

d33X
ψ1 + d43X

ψ2 + Λ4a1X
β1 − Λ3K1 for Xc

11 6 X < X1

G(X)− θK1 for X > X1

(48)

where

d13 = d33 +
(
d43X

c
11
ψ2 − (1− Λ4) a1X

c
11
β1 + (1− Λ3)K1

)( 1

Xc
11

)ψ1

(49)

d33 =
(
c1X1

γ1 + (1− Λ4) a1X1
β1 − (θ − Λ3)K1 − d41X1

ψ2

)( 1

X1

)ψ1

(50)

d43 =
(ψ1 − β1) (1− Λ4) a1X

c
11
β1 − ψ1 (1− Λ3)K1

ψ1 − ψ2

(
1

Xc
11

)ψ2

(51)

and the trigger, X1, is numerically obtained by solving the following equation:

−(ψ1−ψ2)d43X1
ψ2+(ψ1−γ1)c1X1

γ1+(ψ1−β1) (1− Λ4) a1X1
β1−ψ1 (θ − Λ3)K1 = 0 (52)

Case D X1 > Xc
11 and X1 > X2

The following boundary conditions:

d54X1
ψ1 + d64X1

ψ2 + Λ1 (X1 −K2) = c4X1
γ2 + Λ1X1 − Λ2K2 − θK1 (53)

ψ1d54X1
ψ1−1 + ψ2d64X1

ψ2−1 + Λ1 = γ2c4X1
γ2−1 + Λ1 (54)

produce the following solution for the option value:

F (X) =



d14X
ψ1 + b1X

η1 for X < Xc
11

d34X
ψ1 + d44X

ψ2 + Λ4a1X
β1 − Λ3K1 for Xc

11 6 X < X2

d54X
ψ1 + d64X

ψ2 + Λ1 (X −K2 −K1) for X2 6 X < X1

G(X)− θK1 for X > X1

(55)
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where

d14 = d34 +
(
d44X

c
11
ψ2 + (Λ4 − 1) a1X

c
11
β1 + (1− Λ3)K1

)( 1

Xc
11

)ψ1

(56)

d44 = d43 (57)

d34 = d54 +
(

(d64 − d44)X2
ψ2 − (Λ4 − Λ3) (X2 −K2)

)( 1

X2

)ψ1

(58)

d54 =
(
c4X1

γ2 + (Λ1 − Λ3)X1 − (Λ2 − Λ3)K2 − (θ − Λ3)K1 − d64X1
ψ2

)( 1

X1

)ψ1

(59)

d64 = d44 + (Λ4 − Λ3)
(ψ1 − 1)X2 − ψ1K2

ψ1 − ψ2

(
1

X2

)ψ2

(60)

and the trigger, X1, is numerically obtained by solving the following equation:

−(ψ1 − ψ2)d64X1
ψ2 + (ψ1 − γ2)c4X1

γ2 + (ψ1 − 1) (Λ1 − Λ3)X1

−ψ1 ((Λ2 − Λ3)K2 + (θ − Λ3)K1) = 0 (61)

Case 2 Single stage investment

For the case of a single stage investment Equation (18) is used to find the solution

for the the ODE (30). The solution with two branches and considering the boundary

condition when X → 0, is the following:

F (X) =

e1Xψ1 + b2X
η1 for X < Xc

12

e3X
ψ1 + e4X

ψ2 + Λ3(X − (K1 +K2)) for X > Xc
12

(62)

Case E X1 < Xc
12 and X1 < X2

The following value-matching and smooth-pasting boundary conditions apply:

e11X1
ψ1 + b2X1

η1 = c1X1
γ1 + a1X1

β1 − θK1 (63)

ψ1e11X1
ψ1−1 + η1b2X1

η1−1 = γ1c1X1
γ1−1 + β1a1X1

β1−1 (64)

producing the following solution for the investment opportunity:

F (X) =

e11Xψ1 + b2X
η1 for X < X1

G(X)− θK1 for X > X1

(65)

where

e11 =
(
c1X1

γ1 + a1X1
β1 − θK1 − b2X1

η1
)( 1

X1

)ψ1

(66)
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and the trigger, X1, is numerically obtained by solving the following equation:

(ψ1 − γ1)c1X1
γ1 − (ψ1 − η1)b2X1

η1 + (ψ1 − β1)a1X1
β1 − ψ1θK1 = 0 (67)

Case F X1 < Xc
12 and X1 > X2

For this case the following boundary conditions apply:

e12X1
ψ1 + b2X1

η1 = c4X1
γ2 + Λ1X1 − Λ2K2 − θK1 (68)

ψ1e12X1
ψ1−1 + η1b2X1

η1−1 = γ2c4X1
γ2−1 + Λ1 (69)

and produce the following solution for the option value:

F (X) =

e12Xψ1 + b2X
η1 for X < X1

G(X)− θK1 for X > X1

(70)

where

e12 = (c4X
γ2
1 + Λ1X1 − Λ2K2 − θK1 − b2X1

η1)

(
1

X1

)ψ1

(71)

and the trigger, X1, is numerically obtained by solving the following equation:

(ψ1 − γ2)c4X1
γ2 − (ψ1 − η1)b2X1

η1 + (ψ1 − 1)X1 − ψ1 (Λ2K2 + θK1) = 0 (72)

Case G X1 > Xc
12 and X1 < X2

The following boundary conditions:

e33X1
ψ1 + e43X1

ψ2 + Λ3(X1 − (K1 +K2)) = c1X1
γ1 + a1X1

β1 − θK1 (73)

ψ1e33X1
ψ1−1 + ψ2e43X1

ψ2−1 + Λ3 = γ1c1X1
γ1−1 + β1a1X1

β1−1 (74)

produce the following solution for the option value:

F (X) =


e13X

ψ1 + b2X
η1 for X < Xc

12

e33X
ψ1 + e43X

ψ2 + Λ1(X − (θK1 +K2)) for Xc
12 6 X < X1

G(X)− θK1 for X > X1

(75)

12



where

e13 = e33 +
(
e43X

c
12
ψ2 − (1− Λ3) (Xc

12 − (K1 +K2))
)( 1

Xc
12

)ψ1

(76)

e33 =
(
c1X1

γ1 + a1X1
β1 − Λ3(X1 − (K1 +K2))− θK1 − e43X1

ψ2

)( 1

X1

)ψ1

(77)

e43 = (1− Λ3)
(ψ1 − 1)Xc

12 − ψ1(K1 +K2)

ψ1 − ψ2

(
1

Xc
12

)ψ2

(78)

and the trigger, X1, is numerically obtained by solving the following equation:

−(ψ1 − ψ2)e43X1
ψ2 + (ψ1 − γ1)c1X1

γ1 + (ψ1 − β1)a1X1
β1 + (ψ1 − 1)Λ3X1

−ψ1 (θK1 − Λ3(K1 +K2)) = 0 (79)

Case H X1 > Xc
12 and X1 > X2

The following boundary conditions apply:

e34X1
ψ1 + e44X1

ψ2 + Λ3(X1 − (K1 +K2)) = c4X1
γ2 + Λ1X1 − Λ2K2 − θK1 (80)

ψ1e34X1
ψ1 + ψ2e44X1

ψ2 + Λ1X1 = γ2c4X1
γ2 + Λ1X1 (81)

producing the following solution:

F (X) =


e14X

ψ1 + b2X
η1 for X < Xc

12

e34X
ψ1 + e44X

ψ2 + Λ3(X − (K1 +K2)) for Xc
12 6 X < X1

G(X)− θK1 for X > X1

(82)

where

e14 = e34 +
(
e44X

c
12
ψ2 + (Λ3 − 1) (Xc

12 − (K1 +K2))
)( 1

Xc
12

)ψ1

(83)

e34 =
(
c4X1

γ2 + (Λ1 − Λ3)X1 − (Λ2 − Λ3)K2 − (θ − Λ3)K1 − e44X1
ψ2

)( 1

X1

)ψ1

(84)

e44 = e43 (85)

and the trigger, X1, is numerically obtained by solving the following equation:

−(ψ1 − ψ2)e44X1
ψ2 + (ψ1 − γ2)c4X1

γ2 + (ψ1 − 1)(Λ1 − Λ3)X1

−ψ1((Λ2 − Λ3)K2 + (θ − Λ3)K1) = 0 (86)

13



3 Numerical Example and Comparative Statics

Given that the the solution for the investment thresholds and option values are found

numerically for the six cases, we study the features of the solution using a numerical

example. Table 2 presents the base-case parameters for the comparative statics.

Table 2: The base case parameters

Parameter Description Value

σ Volatility 0.1
r Risk-free rate 0.04
α Risk-neutral drift 0.02
K1 Stage 1 investment cost 10
K2 Stage 2 investment cost 50
θ Stage 1 investment cost discount 1
λE Arrival rate of the exogenous event 0.05
λC Arrival rate of the competitor 0.1

Figure 2 shows that a higher risk of a competitor arrival (λC) or a higher likelihood

of the arrival of the exogenous event that allows the investment on the second stage (λE)

induce an earlier investment. When these events have a low probability of occurrence the

investment is delayed and can even occur later than when the second stage investment

would become optimal if it were allowed (X1 > X2). The figure also shows that a higher

discount (lower θ) on the first stage investment cost, when the second stage investment

is not yet permitted, accelerates investment. When we compare the thresholds for the

first stage investment before and after the exogenous event (X1 and Xc
1) it is possible to

conclude that the level of θ determines if the investment in the first stage occurs later or

sooner that it would occur after the exogenous event occurrence. In particular when there

is no discount (θ = 1) it is always optimal to invest later if the exogenous event has not

occurred (X1 > Xc
1).

The firm also faces another source of risk - the cash flows risk measured by the volatility

parameter σ. Figure 3 shows an unusual effect of uncertainty. Usually uncertainty deters

investment in real options models. In the current model, it first deters investment, then,

for intermediate levels of uncertainty, investment is hastened, and, finally, high levels

of uncertainty deter investment again. This effect seems to be channeled through the

threshold Xc
11 (Equations (14)). This is the threshold for investment in the first stage,

in a staged investment strategy, after the occurrence of the exogenous event. The effect

of uncertainty on Xc
11 is twofold: (i) on the one hand a higher uncertainty (lower η1)

increases the threshold and (ii) on the other hand it makes the option to invest in the

second stage more valuable (increasing a1X
β1), which promotes investment. These two

effects dominate for different levels of uncertainty. The figure also shows, as in the previous
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σ = 0.1, r = 0.04, α = 0.02, λC = 0.1, λE = 0.05, K1 = 10, K2 = 50, θ = 1

Figure 2: Sensitivity of the investment thresholds to λC and λE

figure, that a discount in the investment cost can induce investment sooner before than

after the allowance for the second stage investment is issued. This effect is higher for low

levels of uncertainty. A high uncertainty decreases the incentive to secure the investment

opportunity before the exogenous event occurrence.
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σ = 0.1, r = 0.04, α = 0.02, λC = 0.1, λE = 0.05, K1 = 10, K2 = 50

Figure 3: Sensitivity of the investment thresholds to σ

The effect of the investment costs are depicted in Figure 4. Higher investment costs

delay investment. When the investment cost of the first stage (K1) is not sufficiently

smaller than that of the second stage (K2), the firm invests in the first stage and waits

for the exogenous event that allows the investment of the second stage, that will occur

immediately after.

Finally, the effect of a discount in the first stage investment cost before the exogenous

event is shown is Figure 5. A higher discount hastens investment. For the limiting case

when there is no cost of investment, the firm invests immediately. A small discount induces

the firm to invest sooner before the exogenous event than it would invest after the event

(X1 < Xc
1).
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Figure 4: Sensitivity of the investment thresholds to K1 and K2
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Figure 5: Sensitivity of the investment thresholds to θ

4 Conclusion

This paper develops a model to determine the value and optimal timing of an opportunity

to invest in a random start American real option. A random start American option

materializes into an American option only after an exogenous event, such as a permit or

a discovery, occurs. While waiting to invest the firm faces the risk of a hidden competitor

destroying the value of the opportunity to invest.

Investment is assumed to take place in two stages: in the first stage the investor shares

with an hidden competitor the option to acquire the exclusive right to develop the second

stage. The second stage investment is contingent on an exogenous event that permits it.

A comparative statics shows that investment is deterred when the risk of competition

is low or the probability of arrival of a permission to invest in the development stage is

also low. Investment is also deterred for high investment costs in both stages. When both

investment costs are similar, investment, when permitted, takes places in a single stage.

The effect of uncertainty is shown to be non-monotonic. For low and high uncertainty

16



levels an increase in uncertainty deters investment, and for intermediate uncertainty levels

the effect is the reverse. When investment is optimally done in stages, a higher uncertainty

increases the investment thresholds delaying investment, but, simultaneously, increases the

option value of the the second stage, hastening investment.
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A Proof of Equation 21

We start by acknowledging that Xc
12 is always greater than X2 for any K1 > 0. If fact

using equations (20) and (6), the condition that Xc
12 > X2 is equivalent to K1 > −K2

η1
.

Since η1 > 1, K1 needs to be negative to make Xc
12 < X2.

Given that Xc
11 < X2 and Xc

12 > X2, X
c
12 > Xc

11. Given that η1 > β1,(
Xc

12

Xc
11

)η1
>

(
Xc

12

Xc
11

)β1
(87)

Using equations (14), (20) and (6), and simplifying:(
Xc

12

Xc
11

)β1
=

(
Xc

12

X2

)β1 η1 − β1
η1(β1 − 1)

K2

K1
(88)

Given that β1 > 1 and Xc
12 > X2,(
Xc

12

Xc
11

)β1
>
Xc

12

X2

η1 − β1
η1(β1 − 1)

K2

K1
(89)

Using equations (20) and (6), and simplifying:(
Xc

12

Xc
11

)η1
>

(
Xc

12

Xc
11

)β1
>

η1 − β1
β1(η1 − 1)

(
K1 +K2

K1

)
(90)
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