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1. Introduction

There is an ongoing discussion regarding the performance of public-private-
partnerships (PPPs) vis-à-vis government delivery of infrastructure services
such as transportation, water and education. It used to be generally accepted
that PPP is the best organizational form for infrastructure projects (Brad-
ford, 2003; Vining and Boardman, 2008). However, recently there has been
considerable dissatisfaction with PPP projects (Boothe et al., 2015, Engel
et al., 2013; Spackman, 2002; Vining and Boardman, 2008). Governments
seem to find it difficult to reduce their risk exposure and often end up making
windfall payments to the private party (Alonso-Conde et al., 2007; Brown,
2005; Power et al., 2009), while private parties appear to suffer from insuf-
ficient or negative cash flows in some cases (Vining and Boardman, 2008).
Alonso-Conde et al. (2007) and Brown (2005) claim that proper real-option
valuation would reveal that government guarantees are often overly generous
to the private party, mainly because of flawed contract design. The major
problem seems to be the large exogenous demand risk, which is often not
properly priced and allocated in the contract design (Boothe et al., 2015,
Engel et al., 2013). Proper valuation of the embedded options, along with
appropriate contract terms to ensure correct risk allocation and compensa-
tion, would significantly reduce these problems. In this paper, we analyze
the optimal design of a PPP project within a real-options framework, taking
into account incentive mechanisms to ensure optimal investment timing.

The existing PPP literature has two strands focusing on “real options”
and “contract design”. The former values real options embedded in the
contract (revenue guarantee, revenue sharing, buyout clause, etc.), and de-
termines the optimal investment policy in a real-option setting.1 However,
this literature does not address contract design and performance incentives.2

1Chiara et al. (2007) and Huang and Chou (2006) examine revenue guarantees, Brandao
and Saraiva (2008) minimum traffic guarantees, Doan (2010) revenue and income guar-
antees, and Rose (1998) and Alonso-Conde et al. (2007) fee deferral and buyout options.
Bowe and Lee (2004) value the deferral, abandonment and expansion options, citePow-
eretal2009 value revenue guarantee, revenue sharing and buyout option, Takashima et al.
(2010) value investment subsidy, revenue guarantee and termination option, and Shan et al.
(2010) and Adkins and Paxson (2017) show how to use option combinations (collars) to
manage revenue risk.

2Sitruk (2009) models a high-speed rail PPP project identifying the optimal investment
trigger. Although he does not consider a proper mechanism design with the corresponding
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The “contract design” literature examines the optimality of the PPP organi-
zational form versus the traditional contract (building, operating and main-
taining are bundled in the former and unbundled in the latter).3 However,
this literature focuses on asymmetric information, principal-agent problems,
and the theory of incomplete contracts (Dewatripont and Legros, 2005), and
ignores the effect of the embedded real options which have a significant im-
pact on project valuation and risk allocation (Bowe and Lee, 2004; Huang
and Chou, 2006; Power et al., 2009).

This paper aims to combine the two strands of the literature mentioned
above, to identify the optimal contract specifications in a model that explic-
itly takes into account the commonly-observed real options in a PPP project.
This is of crucial importance since incorrect contract terms can be very ex-
pensive to the government and taxpayers, e.g., the governments of Mexico
and Spain recently had to pay $8.9 billion and $2.5 billion respectively to
their private partners because of inappropriate contract terms (Brandao and
Saraiva, 2008).

We build on Grenadier and Wang (2005)’s model of investment timing
by managers in a decentralized firm in the presence of asymmetric infor-
mation. While they consider both a hidden information and hidden action
problem, we focus on a hidden action problem for simplicity. In their model
the agency conflict is between the shareholder and the manager of the firm.
In our model, the agency problem is between the government and a private
firm. In particular, the private firm can exert an unobservable effort that
increases the probability of obtaining a high-quality investment project. In

optimization problem for the government, his study is the only real-option study to address
the issue of giving incentives to the operator to achieve an exogenous quality level.

3Hart (2003) argues that the choice between PPP and traditional contract turns on
whether it is easier to write contracts on service provision or on construction quality. For
the former, PPP is optimal; for the latter, the traditional (unbundled) contract is better.
Martimort and Pouyet (2008) show that bundling (unbundling) is optimal with positive
(negative) externalities, and Iossa and Martimort (2012) show that bundling of tasks is
generally the optimal organizational form. They also show that, if the productivity shock
is common knowledge and verifiable, the optimal contract would (i) ensure that the private
party is not exposed to negative cash flows, and (ii) require a revenue-sharing arrangement
independent of the productivity shock. Iossa and Martimort (2009) show that bundling
(or PPP) is optimal, while Iossa and Martimort (2008) show that PPP is suitable for
traditional infrastructure projects such as transportation and water, but less so for others
(e.g., schools).
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order to induce the private firm to exert effort and invest at the first-best
trigger, the government designs a contract to provide the firm with the ap-
propriate incentives. A contract consists of a pair of investment triggers and
a remuneration for the private firm. While in Grenadier and Wang (2005) the
manager receives a one-time wage at the time of the investment, we model
the remuneration of the private firm as a fraction of net revenues that the
firm receives starting from the time of the investment. This is in line with
the wide use of revenue-sharing contracts between the two parties in PPP
projects (Iossa and Martimort, 2012).

We show that the government can induce the firm to exercise at the first-
best investment trigger. Nevertheless, this comes at the cost of paying the
firm some informational rents. This will in turn distort the government’s
effort choice, which leads to a social loss. Furthermore, we extend the ba-
sic model to incorporate an exit option into the investment project (as in
Takashima et al., 2010). The firm then has the possibility of asking for a
bailout from the government when the situation deteriorates. We provide a
numerical analysis that illustrates the characteristics of the optimal contract,
the social loss and the impact of the bailout option.

To our knowledge, this is the first model to incorporate a moral hazard
problem into a real options PPP framework. In this way, our paper bridges
the rich contract theory literature on PPPs with the real options literature
on PPPs.

Most papers in the real options literature assume perfect, symmetric in-
formation. A notable exception is the paper by Soumare and Lai (2016).
They compare two forms of government support, loan guarantee and direct
investment through PPPs in a framework of asymmetric information: the
government knows less about project quality than do private partners (the
so-called plum problem). While their model is a model of hidden information,
our model is one of hidden action.

Takashima et al. (2010) is one of the few key analytical studies in the
real options literature. While they consider perfect, symmetric information
in their model, we introduce asymmetric information. Nevertheless, they
also derive a First-best and a second-best investment policy. In their First-
best benchmark the investment time is chosen to maximize the value of the
total project (the sum of firm and government values). This is similar to
our approach assuming that the project is run solely by the government.
However, their second-best investment policy is not a proper “second-best”
scenario in the sense used in agency theory. Namely, by second-best case
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they mean that the investment time is chosen to maximize the value of the
private firm only. Nevertheless, since there is no asymmetric information in
their framework, the government could design the concession contract such
that the private firm implements the First-best investment policy at no cost.
On the contrary, this would not be possible in our framework due to the
presence of asymmetric information.

The rest of the paper is organized as follows. Section 2 describes our
benchmark model including its setup, the first-best solution and the principal-
agent setting. In Section 3 we simplify the optimization program of the
government and we derive the optimal contracts, i.e., the second-best solu-
tion. The exit or bailout option for the private firm is introduced in Section
4. Section 5 provides a numerical sensitivity analysis. Finally, Section 6
concludes.

2. Model

We now start by describing the model setup. We will then derive the
first-best benchmark solutions assuming full symmetric information. Finally,
we will provide the optimal contracts that result from the principal-agent
maximization problem under asymmetric information.

2.1. Setup

The principal (government) owns an option to invest in a single project.
We assume that the principal delegates the exercise decision to an agent
(private firm). Once investment takes place, the project generates cash flows
x observable and contractible to both the government and the private firm.
The exercise price is given by I− θ. Here I can be interpreted as the “gross”
investment cost and θ as the amount by which the gross investment cost can
be reduced depending on the private firm’s unobservable effort. Let the cash
flows follow a geometric Brownian motion:

dx(t) = µx(t)dt+ σx(t)dz(t), (1)

where µ and σ represent the drift and standard deviation per unit time
respectively, and dz is the increment of a standard Wiener process. Let x0

equal the value of the cash flow at time zero. In addition, the operating
cost stream is c per unit time. For our base case model we will assume
c = 0 (Sections 2 and 3). In this case, it is optimal to operate the project

5



perpetually. In Section 4 we will extend the base case model in order to
introduce an exit option in the case of a positive operating cost c > 0. Thus,
for consistency we will develop all our expressions taking into account the
operating cost c ≥ 0.

Both the government and the private firm are risk-neutral, with the risk-
free rate denoted by r > µ. We assume that the firm is protected by limited
liability and other public guarantees. Unlike Adkins and Paxson (2017), we
rule out the upfront sale of the project by the government to the private firm.
This can be justified if the private firm is liquidity constrained.4

The variable θ can take on two possible values: θ1 or θ2, with θ1 > θ2,
and ∆θ = θ1 − θ2 > 0. We can interpret a draw of θ1 as a lower cost
project, or higher quality project, and a draw of θ2 as a higher cost project,
or lower quality project. The effort that the private firm exerts influences
the likelihood of obtaining a lower cost project. In particular, if the private
firm exerts a one-time effort at time zero, the probability of drawing a higher
quality project θ1 is qH . If no effort is exerted this probability is only qL < qH .
Effort is costly, when exerting effort the private firm incurs a cost ξ > 0.

Since effort is unobservable, the government cannot contract on the effort
of the private firm. However, it can contract on the observable cash flow of
the project, x(t). The firm’s compensation will be contingent on the level of
x(t) at exercise. In Grenadier and Wang (2005) the agent receives a one-time
payment at the time of exercise.5 However, in PPP contracts, revenue-sharing
agreements between the two parties are widely employed according to Iossa
and Martimort (2012) (p. 447). We therefore assume that the net revenue
from the PPP project is shared, with the private party getting a fraction b
and the public party getting the rest (with 0 ≤ b ≤ 1), as in Holmstrom
and Milgrom (1991), Iossa and Martimort (2012), and Sitruk (2009).6 The
investment cost is shared according to the exogenous cost sharing ratio, α,
with the private party investing αI and the government investing (1 − α)I.
Thus, the government provides an investment subsidy of (1− α)I.

4Nevertheless, the firm has enough liquidity to be able to co-finance the project, i.e.,
pay a fraction of the investment cost.

5This is also the case in Shibata (2009) and Shibata and Nishihara (2010).
6While in Iossa and Martimort (2012) the revenue-sharing coefficient is independent

of the state variable, in our case, this coefficient is contingent on the cash flow value at
exercise.
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2.2. First-best benchmark

We first analyze the First-best benchmark, in which there is no agency
problem. Suppose that there is no delegation of the exercise decision. Let
W (x, θ) denote the government’s option. As standard in the real options
literature, W will solve the following ordinary differential equation (ODE):

1

2
σ2x2Wxx + µxWx − rW = 0 (2)

The boundary conditions are:

W (x∗(θ), θ) =
x∗

r − µ
− c

r
− (I − θ);

Wx(x
∗(θ), θ) =

1

r − µ
;

W (0, θ) = 0,

(3)

where x∗(θ) denotes the investment trigger. The first boundary condition
is the value matching condition, while the second one is the smooth pasting
condition. The third boundary condition reflects the fact that zero is an
absorbing barrier for x(t).

The government’s option value at time zero and the investment trigger
are given by:

W (x0, θ) =

(
x0

x∗(θ)

)β1 (x∗(θ)
r − µ

− c

r
− (I − θ)

)
, for x0 < x∗(θ)

(4)

and

x∗(θ) =
β1

β1 − 1

(c
r

+ I − θ
)

(r − µ) (5)

where

β1 =
1

2
− µ

σ2
+

√
(
1

2
− µ

σ2
)2 +

2r

σ2
> 1 (6)

The ex-ante value of the government’s option in the First-best bench-
mark conditional on exerting effort, V ∗(x0), is given by: qHW (x0, θ1) + (1−
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qH)W (x0, θ2). Substituting the expressions for W (x0, θ1) and W (x0, θ2) we
obtain:

V ∗(x0) = qH

(
x0

x∗1

)β1 ( x∗1
r − µ

− c

r
− (I − θ1)

)
+(1−qH)

(
x0

x∗2

)β1 ( x∗2
r − µ

− c

r
− (I − θ2)

)
(7)

Note that it is optimal for the government to exert effort if :

qHW (x0, θ1) + (1− qH)W (x0, θ2)− ξ ≥ V N(x0) ≡ qLW (x0, θ1) + (1− qL)W (x0, θ2) (8)

That is, the government exerts effort if ξ ≤ V ∗(x0)−V N(x0). Substituting
the expressions forW (x0, θ1) andW (x0, θ2) and simplifying, we get that effort
exertion is optimal if:

ξ

∆q
≤

[(
x0

x∗1

)β1 ( x∗1
r − µ

− c

r
− (I − θ1)

)
−
(
x0

x∗2

)β1 ( x∗2
r − µ

− c

r
− (I − θ2)

)]
(9)

Denoting by A the right hand side of the inequality, we have that effort
exertion is optimal if ξ

∆q
≤ A.7 Thus, it is worth exerting effort only when

the cost-benefit ratio ξ
∆q

is sufficiently low. To focus on the interesting case

we assume that indeed ξ
∆q
≤ A. We will see in the next section that when

we have a moral hazard problem, this decision is distorted. We will find
situations where even though it would be optimal for the government to
exert effort in the First-best case, the government will optimally choose not
to give incentives to the private firm to exert effort because it is too costly
to do so.

2.3. A principal-agent setting

In order to give the private firm incentives to exert effort, the government
offers a contract at time zero that commits the government to pay the firm a
fraction b of the net cash flows of the project continuously starting with the
time of exercise (investment).8 As in Grenadier and Wang (2005), this type
of contract is contingent on the value of the cash flows at the time of exercise,

7Note that A =
V ∗(x0)−V ∗

N (x0)
∆q .

8Following Grenadier and Wang (2005) we assume that renegotiation is not allowed.
Indeed, although commitment might be ex-post inefficient, it leads to a higher ex-ante
value.
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i.e., b is a function of the realized value of x(t) at the time of exercise, x̂.
However, it differs from the contracts in Grenadier and Wang (2005), Shibata
(2009) and Shibata and Nishihara (2010) since it is not a one-time payment
at the time of exercise, but a linear revenue-sharing contract. This is in
line with the contract theory literature on PPPs. Moreover, the firm pays a
fraction α of the investment cost I − θ.

Given a certain contract, the private firm chooses the exercise time in
order to maximize the value of its option. The government will thus select
the contract parameters such that it induces the private firm to exert effort
and choose an exercise policy that maximizes the value of the government’s
option.

Since θ can only take two values, the private firm will choose at most two
exercise triggers. Therefore, the contract offered by the government will be
(b1, x1), the firm receives a fraction b1 of the cash flows if it exercises at x1,
and (b2, x2), receiving a fraction b2 when exercising at x2.

The government’s payoff is: (1−b1)(x−c), if θ = θ1 and (1−b2)(x−c) if θ =
θ2. Then, conditional on the private firm exerting effort, the government’s
option value, ΠG(x0, b1, b2, x1, x2), is given by:

ΠG(x0, b1, b2, x1, x2) = qH

(
x0

x1

)β1
(G(x1, b1)− (1− α)(I − θ1))

+ (1− qH)

(
x0

x2

)β1
(G(x2, b2)− (1− α)(I − θ2)) ,

(10)

where

G(xi, bi) = (1− bi)
(

xi
r − µ

− c

r

)
(11)

Similarly, the private firm’s payoff is: b1(x − c), if θ = θ1 and b2(x − c)
if θ = θ2. Then, conditional on the private firm exerting effort, the private
firm’s option value, ΠF (x0, b1, b2, x1, x2), is given by:
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ΠF (x0, b1, b2, x1, x2) = qH

(
x0

x1

)β1
(F (x1, b1)− α(I − θ1))

+ (1− qH)

(
x0

x2

)β1
(F (x2, b2)− α(I − θ2)) ,

(12)

where

F (xi, bi) = bi

(
xi

r − µ
− c

r

)
(13)

The sum of the two option values simply equals the total value of the project.
The government wants to set the contract parameters b1, b2, x1, x2 in order

to maximize its objective function, i.e., its option value, subject to several
constraints. First, the government needs to give incentives to the firm to
exert effort (ex-ante incentive compatibility constraint, IC). Second, the con-
tract has to ensure that the total value to the firm of accepting the contract
is non-negative (ex-ante participation constraint, PC). Finally, we need to
ensure that the firm has incentives to invest ex-post (ex-post limited liability
constraints, LL). Therefore, the government’s maximization problem is the
following:

max
b1,b2,x1,x2

qH

(
x0

x1

)β1
(G(x1, b1)− (1− α)(I − θ1)) + (1− qH)

(
x0

x2

)β1
(G(x2, b2)− (1− α)(I − θ2))

(14)

s.t.

(
x0

x1

)β1
(F (x1, b1)− α(I − θ1))−

(
x0

x2

)β1
(F (x2, b2)− α(I − θ2)) ≥ ξ

∆q

(15)

qH

(
x0

x1

)β1
(F (x1, b1)− α(I − θ1)) + (1− qH)

(
x0

x2

)β1
(F (x2, b2)− α(I − θ2))− ξ ≥ 0

(16)

F (x1, b1)− α(I − θ1) ≥ 0, F (x2, b2)− α(I − θ2) ≥ 0

(17)
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The first constraint is the ex-ante IC constraint that ensures the firm
exerts effort. To see this, note that it is just a simplified version of the
following constraint:

qH

(
x0

x1

)β1
(F (x1, b1)− α(I − θ1)) + (1− qH)

(
x0

x2

)β1
(F (x2, b2)− α(I − θ2))− ξ ≥

≥ qL

(
x0

x1

)β1
(F (x1, b1)− α(I − θ1)) + (1− qL)

(
x0

x2

)β1
(F (x2, b2)− α(I − θ2))

(18)

The left hand side of this inequality represents the value of the firm’s
option if it exerts costly effort minus the cost of effort, while the right hand
side represents the value of the firm’s option if it does not exert effort.

The second constraint represents the ex-ante PC constraint. Finally, the
last two constraints are the LL constraints. This maximization problem can
be further simplified, as we will show in the next section that some of the
constraints do not bind at the optimum.

3. Model solution: optimal contracts

We now solve the government’s maximization problem. We provide in
the Appendix three propositions, Propositions 1-3 that will help us simplify
the maximization problem.

Proposition 1 shows that the limited liability of the firm for a θ1 project
does not bind, i.e., F (x1, b1) > α(I−θ1). Proposition 2 shows that the ex-ante
participation constraint does not bind either, while Proposition 3 shows that
the limited liability constraint for a θ2 type project binds, i.e. F (x2, b2) =
α(I−θ2). Given these results, we now have a reduced maximization problem:

max
b1,b2,x1,x2

qH

(
x0

x1

)β1
(G(x1, b1)− (1− α)(I − θ1))

+ (1− qH)

(
x0

x2

)β1
(G(x2, b2)− (1− α)(I − θ2))

s.t.

(
x0

x1

)β1
(F (x1, b1)− α(I − θ1)) ≥ ξ

∆q

F (x2, b2)− α(I − θ2) = 0

(19)

11



In the reduced optimization problem we have only two constraints, the
simplified IC constraint and the binding LL constraint for the θ2 type project.
We show in the Appendix that the IC constraint also binds at the optimum.
The solution to this problem is then the following:

x1 = x∗1, x2 = x∗2 (20)

and

b1 =

(
ξ

∆q

(
x∗1
x0

)β1
+ α(I − θ1)

)(
x∗1

r − µ
− c

r

)−1

, b2 =
α(β1 − 1)

β1 + c/r
I−θ2

.9 (21)

The investment triggers equal the first-best outcome, thus the private
firm invests at the same thresholds as the government would. Nevertheless,
in order to give incentives to the firm to invest at the optimal triggers, the
government needs to pay the firm some rents. To see the value of these
rents, note first that the government and firm’s option values evaluated at
the optimal contract parameters are given by:

ΠG(x0) = V ∗(x0)− qH
ξ

∆q
(22)

and

ΠF (x0) = qH
ξ

∆q
> ξ (23)

Now we can see that the firm is not only paid for the cost of effort, but
also captures some rents to induce her to exert effort. The rents of the private
firm are given by the difference between its option value and the effort cost:
ΠF (x0)− ξ = qL

ξ
∆q

> 0.

3.1. When is it optimal to induce effort?

The existence of rents distorts the government’s choice of effort. To see
this, we first need to compute the government’s value in case of no effort.
Since for the private firm not exerting effort is costless, the government can
offer a contract to the firm at no cost, as follows:

x1 = x∗1, x2 = x∗2 (24)

9Note that one can also write b2 = α(I − θ2)
(
x∗
2

r−µ −
c
r

)−1

.
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and

b1 =
α(β1 − 1)

β1 + c/r
I−θ1

, b2 =
α(β1 − 1)

β1 + c/r
I−θ2

, (25)

where b1 and b2 are derived from the binding limited liability constraints.
The government’s value under no effort is then simply given by ΠGN(x0) =

V N(x0), where V N(x0) was defined in equation (8).10

Therefore, under the second-best case with moral hazard, the government
will induce the firm to exert effort if ΠG ≥ ΠGN , that is, if:

V ∗(x0)− qH
ξ

∆q
≥ V N(x0) (26)

Thus, the government gives incentives to the firm to exert effort if:

ξ

∆q
≤ V ∗(x0)− V N(x0)

qH
<
V ∗(x0)− V N(x0)

∆q
= A (27)

This implies that for a cost-benefit ratio such that ξ
∆q

> (V ∗(x0)−V N (x0))
qH

,
the government’s decision is distorted. While the government would exert
effort under First-best, it does not induce the private firm to exert effort
because it is too costly to give incentives.

The total social value in the second-best case, V ∗∗(x0), is defined by the
sum of the government’s and private firm’s values. Thus, the total social
value at time zero is given by:

V ∗∗(x0) = ΠG(x0) + ΠF (x0) =

{
V ∗(x0), if ξ

∆q
< (V ∗(x0)−V N (x0))

qH

V N(x0), if ξ
∆q

> (V ∗(x0)−V N (x0))
qH

(28)

As a measure of the inefficiency caused by asymmetric information we
define the social loss as:

L(x0) =

{
(V ∗(x0)− ξ)− (V ∗∗(x0)− ξ), if ξ

∆q
< (V ∗(x0)−V N (x0))

qH

(V ∗(x0)− ξ)− V ∗∗(x0), if ξ
∆q

> (V ∗(x0)−V N (x0))
qH

(29)

10The reason for this is that the firm’s value is zero since effort is costless and the

participation constraint is binding: ΠFN (x0) = qL

(
x0

x1

)β1

(F (x1, b1)− (1− α)(I − θ1)) +

(1− qL)
(
x0

x2

)β1

(F (x2, b2)− (1− α)(I − θ2)) = 0.
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Substituting the total social value under the second-best case, V ∗∗, we
obtain:

L(x0) =

{
0, if ξ

∆q
< (V ∗(x0)−V N (x0))

qH

∆q(W (x0, θ1)−W (x0, θ2))− ξ, if ξ
∆q

> (V ∗(x0)−V N (x0))
qH

(30)

4. Optimal contracts with a bailout option

So far we have considered a zero operating cost and a perpetually operated
project. We now consider the more realistic case of a positive operating cost,
c > 0, and incorporate an exit option into the model. Indeed, the firm could
ask the government for a bailout if the project turns out to be unprofitable.
Following Takashima et al. (2010) and Adkins and Paxson (2017) we assume
that whenever the prospect of cash flows diminishes below a certain threshold,
xg, the firm has the right to transfer its ownership to the government in
exchange for an amount K.

We now need to adjust the expressions of G(x, b) and F (x, b) in order
to account for the exit option. Following standard arguments in real option
theory, we have the following 2 ODEs:

1

2
σ2x2Gxx + µxGx − rG+ (1− b)(x− c) = 0 (31)

1

2
σ2x2Fxx + µxFx − rF + b(x− c) = 0 (32)

The general solutions of equations (31) and (32) are given by:

G(x, b) = a1x
β2 + (1− b)

(
x

r − µ
− c

r

)
, (33)

and

F (x, b) = a2x
β2 + b

(
x

r − µ
− c

r

)
, (34)

where

β2 =
1

2
− µ

σ2
−
√

(
1

2
− µ

σ2
)2 +

2r

σ2
< 0 (35)

and a1, a2 and xg are constants to be determined using the following
boundary conditions:

F (xg, b) = K (36)
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F ′(xg, b) = 0 (37)

G(xg, b) =
xg

r − µ
− c

r
−K (38)

Equation (36) represents the value matching condition that requires the
value of the private firm at the transfer trigger to equal K. Equation (37) is
the smooth pasting condition that ensures optimality of the transfer trigger,
xg. Finally, equation (38) is the value matching condition that ensures the
value of the government at the transfer threshold is equal to the operating
value of the project after the transfer minus the transfer cost. The value of
the government and of the private firm are then given by:

G(x, b) = (1− b)
(

x

r − µ
− c

r

)
− 1

1− β2

(
K +

bc

r

)(
x

xg

)β2
(39)

and

F (x, b) = b

(
x

r − µ
− c

r

)
+

1

1− β2

(
K +

bc

r

)(
x

xg

)β2
(40)

and the threshold is

xg ≡ xg(b) =
β2

β2 − 1

(
K + bc

r

)
(r − µ)

b
(41)

The maximization problem of the government is expressed in equations
(14-17) and can be simplified to the reduced problem given by equation (19),
with G(x, b) and F (x, b) given by equations (39) and (40). The solution in
this case is the following:

x1 = x∗1, x2 = x∗2, (42)

and b1, b2 satisfy the following equations:

b1

(
x∗1

r − µ
− c

r

)
+

1

1− β2

(
K +

b1c

r

)(
x∗1

xg(b1)

)β2
=

ξ

∆q

(
x∗1
x0

)β1
+α(I − θ1)

(43)

b2

(
x∗2

r − µ
− c

r

)
+

1

1− β2

(
K +

b2c

r

)(
x∗2

xg(b2)

)β2
= α(I − θ2) (44)
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Equations (43) and (44) must be solved numerically for the firm’s fractions
of cash flows b1 and b2.

As in the base case model without an exit option, the investment trig-
gers equal the First-best outcome, thus the private firm invests at the same
thresholds as the government would. However, giving incentives to the firm
is costly, thus the government’s decision might be distorted by the rents paid
to the firm.

We end this section with a brief note on limited liability. In Grenadier and
Wang (2005) limited liability meant that the wages received by the manager
at the time of exercise, w1, w2 were positive. In their case there was a one-time
payment at the time of exercise. However, we have a continuous payment (a
fraction b of the net cash-flows) starting with the time of exercise. Limited
liability could then imply that the cash flows of the private firm have to be
positive at all times (similar to the minimum revenue guarantee, also called
floor in Adkins and Paxson, 2017, or risk share option in Takashima et al.,
2010). A simple way to guarantee positive cash flows at all times, without
having to introduce revenue subsidies from the government would be to set
K ≥ Kmin, where xg(b2, Kmin)− c = 0, Kmin = b2c(r−β2µ)

−β2r(r−µ)
.

5. Numerical analysis

In this section we illustrate the dependence of our results on the main
parameters of the model. In particular, we focus on the optimal contract
(investment thresholds and private firm’s fraction of the net revenue), the
first and second-best values, as well as the social loss due to moral hazard.
We will also look at how the bailout option affects the optimal contract.
Finally, since volatility is a key parameter in real options we will analyze
its impact separately. The base case parameters used in this analysis are as
follows: µ = 0.03, σ = 0.3, r = 0.06, c = 0.15, I = 10, θ1 = 9, θ2 = 3,
α = 0.7, qH = 0.7, qL = 0.5, ξ = 0.05, and K = 0.1.

5.1. Optimal contract

We plot in Figure 1 the comparative statics of the optimal contract (b1,
b2, x1, x2) with respect to the operating cost c. The fraction of net revenues
obtained by the private firm decreases with the operating cost. This is due
to the fact that the discounted value of future net revenues at the time of the
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investment increases with the operating cost.11 Therefore, a lower fraction of
the net revenues is needed to compensate the firm for its shared investment
and effort. Moreover, both investment triggers increase with the operating
cost. A higher cost thus implies a delayed investment. For relatively high
operating costs it is not optimal for the government to induce effort, and the
fraction of net revenue received by the firm of a high-type project decreases
substantially.

[Figure 1 about here.]

Figure 2 depicts the comparative statics of the optimal contract with
respect to the investment cost I. The fraction of net revenues obtained by
the private firm increases with the investment cost since the private firm
shares this investment cost with the government in a proportion equal to α.
Therefore, a larger investment cost implies that the firm requires a higher
fraction of the net revenues to participate in the project. As before, both
investment triggers increase with the investment cost. Thus an increased
investment cost delays investment. Again, for a relatively high investment
cost the government will not give incentives to the firm to exert effort, hence
the drop in b1.

[Figure 2 about here.]

Figures 3 and 4 present the comparative statics with respect to the θ1 and
θ2. In general the optimal contract of a θi-project depends only on θi, where
i ∈ {1, 2}. Both the fraction of net revenues obtained by the private firm
and the investment trigger decrease with θ. This is because θ represents the
amount by which the gross investment cost can be reduced. However, we can
see that b1 depends indirectly on θ1 since when the projects are very similar
(θ2 gets closer to θ1, and the difference ∆θ diminishes) the government will
decide not to induce effort.

[Figure 3 about here.]

[Figure 4 about here.]

11Note that the investment trigger increases with c.
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As expected, in Figure 5 we note that the fraction of net revenues obtained
by the private firm increases with the cost sharing ratio α. However, the
government’s effort choice does not depend on this parameter, nor does the
investment trigger.

[Figure 5 about here.]

Figure 6 shows that the fraction of net revenues received by the private
firm of a θ1 project increases with the effort cost ξ in order to provide the firm
with incentives to exert effort. Moreover, as expected, for a large effort cost
the government no longer wants to induce the private firm to exert effort.

[Figure 6 about here.]

Finally, in Figure 7 we can see that when ∆q (the benefit of exerting effort)
is relatively small, the government will not induce effort. For a relatively
large benefit of effort, when the government induces effort, the fraction of
net revenues obtained by the private firm decreases with ∆q. When the
benefit of exerting effort increases, it is less costly for the government to
provide incentives since the firm will naturally have more incentives to exert
effort.

[Figure 7 about here.]

5.2. Social loss

Figure 8 depicts the comparative statics of the social loss with respect
to the parameters of the model. As previously discussed, for relatively high
operating or investment costs the government’s choice of effort is distorted
under asymmetric information. Therefore, a social loss arises. This social loss
is decreasing with both costs. In the limit, for very high costs the government
would not exert effort under the first-best scenario either, thus the loss would
be null.

[Figure 8 about here.]

A social loss also arises either for a relatively low θ1 or for a relatively high
θ2. A lower θ1 quality keeping θ2 constant implies a lower difference in the
quality of the two projects. The government would then be less likely to
incentivize effort since the benefit of effort (a higher probability of obtaining
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a high quality project) is not so valuable when the difference in quality is
low. A similar argument holds for a larger θ2 keeping θ1 constant. Then the
higher the difference in quality of the two projects the higher the social loss.

Asymmetric information also generates a social loss either when the cost
of effort is relatively high, or when the benefit of effort is relatively low. The
higher the cost-benefit ratio of effort the more expensive it will be for the
government to give incentives to the form to exert effort, thus the more likely
it is that his effort choice is distorted.

Note that in all cases the highest losses are obtained not for extreme
project parameters, but for intermediate ones. Indeed, in the extreme (e.g.,
for very high operating costs) both under first-best and under second-best
the government will choose not to induce effort exertion. Therefore, losses are
particularly important for average projects, not for extreme/outlier projects.

5.3. The bailout option

[Figure 9 about here.]

We now analyze how the optimal contract changes when we add a bailout
option. As expected, the bailout triggers increase with the bailout price.
Thus a higher bailout price will lead to an earlier bailout (panel c) of Figure
9). Note that a firm with a low-type project will ask for a bailout later than a
firm with a high-type project (xg(b2) < xg(b1)). The fraction of net revenues
received by the private firm decreases with the bailout price. Naturally, since
now the firm has an exit option, the government does not need to offer such
a high fraction of revenues to induce effort.

5.4. The impact of volatility

Since volatility is one of key parameters in real options, we analyze it
separately. Regarding the investment triggers, as asymmetric information
does not distort the investment timing, we have the same comparative statics
as in standard real options. A higher volatility leads to a delay in investment
as we can note in panel c) of Figure 10. Moreover, the values of the options
to invest at time zero also increase with volatility (panel d)). Note that the
value of the option to invest in the lower quality project, θ2 increases at a
faster pace.

[Figure 10 about here.]
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The fraction of net revenue obtained by the private firm decreases with
volatility. This is due to the fact that this fraction is inversely related to the
investment trigger. The higher the investment trigger the lower the fraction
of revenues needed to compensate the private firm.

[Figure 11 about here.]

Since the values of the options to invest increase with volatility, the ex-
ante value of the government’s option (V ∗ under First-best and V ∗∗ under
second-best) also increases with volatility (see Figure 11). However, for large
volatilities the government will not provide incentives to the firm to exert
effort. This is because for large volatility values the difference in the values
of the option to invest in the two projects decreases. Thus the gain from effort
is smaller. Therefore we have that the social loss decreases with volatility.

[Figure 12 about here.]

Finally, we can see that the bailout triggers decrease with volatility (Fig-
ure 12). The larger the volatility the later will the private firm ask for a
bailout. For large levels of volatility it is not optimal for the government to
induce effort. This leads to a jump in the bailout trigger, the firm asks for a
bailout earlier.

6. Conclusions

In this paper, we present a real-option model for a PPP investment project
under moral hazard, thus combining the real-options literature on PPPs with
the contract theory literature on PPPs. We derive the optimal contract
that provides incentives to the private firm to exert effort. The first-best
investment timing is induced. However, the asymmetric information distorts
the government’s decision to induce effort with respect to the first-best policy.
This leads to a social welfare loss. Additionally, we have incorporated a
bailout option into the basic model, and analyzed its impact on the optimal
contract.

In the future, we will extend the model to introduce a revenue guarantee.
Such an option might alter the optimal investment timing chosen by the
private firm.
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Appendix: Solution to the optimal contracting problem

We provide a derivation of the optimal contracts presented in Section 3.
We start by proving three propositions that help us simplify the maximization
problem of the government. Proposition 1 shows that the limited liability
for the private firm with a θ1-type project does not bind.

Proposition 1. The limited-liability condition for a manager of a θ1-type
project does not bind. That is, F (x1, b1)− α(I − θ1) > 0.

Proof.(
x0

x1

)β1
(F (x1, b1)− α(I − θ1)) ≥ ξ

∆q
+

(
x0

x2

)β1
(F (x2, b2)− α(I − θ2)) ≥ ξ

∆q
> 0 (.1)

The first and second inequalities follow from the ex-ante IC and ex-post
LL constraints (equations 15 and 17), respectively.

Proposition 2 shows that the ex ante participation constraint in equation
(16) does not bind.

Proposition 2. The ex-ante participation constraint does not bind.
Proof.(
x0

x1

)β1
(F (x1, b1)− α(I − θ1)) +

1− qH
qH

(
x0

x2

)β1
(F (x2, b2)− α(I − θ2)) ≥ ξ

∆q
≥ ξ

qH
> 0 (.2)

where the first inequality follows from the ex ante incentive constraint
and the limited liability condition for the type-θ2 project (equations 15 and
17).

Given these two propositions, we can express the government’s maxi-
mization problem as maximizing his objective function subject only to two
constraints: the ex-ante IC constraint (equation 15) and the LL constraint for
the θ2 type project (the second equation in 17). We can form the Lagrangian,
using the Kuhn-Tucker method, with λ1 and λ2 denoting the Lagrange mul-
tipliers for the two constraints respectively:

L =

(
x0

x1

)β1
(G(x1, b1)− (1− α)(I − θ1)) +

1− qH
qH

(
x0

x2

)β1
(G(x2, b2)− (1− α)(I − θ2))

+ λ1

[(
x0

x1

)β1
(F (x1, b1)− α(I − θ1))−

(
x0

x2

)β1
(F (x2, b2)− α(I − θ2))− ξ

∆q

]
+ λ2 (F (x2, b2)− α(I − θ2)) ,

(.3)
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with corresponding complementary slackness conditions for the two con-
straints.

The first-order condition with respect to b1 gives: λ1 = 1 > 0. This
implies that the ex-ante IC constraint is binding.

The first-order condition with respect to b2 gives:(
−λ1 −

1− qH
qH

)(
x0

x2

)β1
+ λ2 = 0 (.4)

Since we have from above λ1 = 1, we obtain λ2 = (x0/x2)β1/qH > 0. This
implies that the LL constraint for the θ2-type is binding. Thus we have:

F (x2, b2) = α(I − θ2) (.5)

We summarize this in Proposition 3.
Proposition 3. The ex-post LL constraint for a θ2-type project binds.
The first-order condition with respect to x1 implies:

x1 =
β1

β1 − 1

(c
r

+ I − θ1

)
(r − µ) (.6)

Finally, the first-order condition with respect to x2 implies:

x2 =
β1 [(1− qH − b2)c/r + (1− qH − α)(I − θ2)]

β1(1− qH − b2)− (1− qH)
(r − µ) (.7)

We solve for b2 and x2 using equations (.5) and (.7), and we obtain:

b2 =
α(β1 − 1)

β1 + c/r
I−θ2

(.8)

and

x2 =
β1

β1 − 1

(c
r

+ I − θ2

)
(r − µ) (.9)

Since we have shown that the ex-ante IC constraint given by equation
(15) binds (λ1 = 1 > 0), we can obtain b1 given by equation (21).

The proof is similar for the case with a bailout option.
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Figure 1: Optimal contract as a function of the operating cost c.
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Figure 2: Optimal contract as a function of the investment cost I.
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Figure 3: Optimal contract as a function of the θ1.
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Figure 4: Optimal contract as a function of the θ2.
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Figure 5: Optimal contract as a function of the cost sharing rate α.
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Figure 9: Optimal contract and buyout thresholds as a function of the buyout price K.
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Figure 10: Optimal contract and option values as a function of the volatility σ.
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Figure 11: First and second-best values and social loss as a function of volatility σ.
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Figure 12: Optimal contract and buyout thresholds as a function of volatility σ.
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