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Abstract
This paper estimates costs associated with mothballing, restarting, abandoning and maintaining

peaking power plants. The paper develops a real options model to explain switching and maintenance be-
havior of plant managers. The constrained optimization approach to estimate crucial costs accommodates
non-parametric dynamics for the expectations of the plant managers regarding future profitability.

The empirical analysis is based on a database of the annually reported status of power plants to the
United States Energy Information Administration (EIA) during 2001-2009. We arrive at economically
meaningful estimates of maintenance costs and switching costs, and discuss these in light of rates used
in the Pennsylvania-New Jersey-Maryland capacity market.

Keywords: Dynamic discrete choice models, Real options, Dynamic programming, Irreversible
investment, Electricity markets.
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1 Introduction
We use nonparametric structural estimation to estimate the costs associated with shutting down, starting up,
and abandoning peaking power plants, specifically simple cycle combustion turbines (CTs). Estimates of
switching costs are surprisingly difficult to obtain in practice.

Our case study is made possible by the availability of detailed power plant data from the United
States. Each year the owners of existing power plants must file Form 860 with the Energy Information
Administration (EIA). From these data it is possible to determine whether an existing plant was shutdown,
started up, or abandoned. Our sample includes 8189 plant-year observations from the period 2001–2009.
These data are augmented with time series of electricity prices and fuel prices, available from electricity
market operators and the EIA.

We use the discrete decision process framework of Rust (1987). The papers by Gamba and Tesser (2009)
and Su and Judd (2012) also consider parametric stochastic processes – processes involving exponential
distributions or geometric Brownian motions – to model the underlying state variable. We employ the
estimator developed by Su and Judd (2012). Intrinsic to this framework is the use of a shock process,
reflecting the unobserved heterogeneity across plants and over time.
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We modify the Su and Judd (2012) approach by capturing the dynamics of the exogenous state variable
using a nonparametric kernel density estimator.1 The nonparametric kernel density estimator does not
require unrealistic assumptions about the data generating process. Instead, the time series of observed state
variable transitions are used directly to estimate managers’ expectations regarding future profitability.

In contrast to the existing literature on structural estimation, we do not normalize to unit value the
scaling parameter of the unobserved payoff shock process intrinsic to structural estimation. Instead, we
present an estimator for the scaling parameter.

Of key concern in empirical analysis of irreversible investment is the endogeneity of plant manager’s
decisions. The firm-specific value of the stream of future revenues and costs associated with being in an
operating state and possibly switching to another is not observable, and the decision to switch (or not) must
be regarded as endogenous. Another concern is that plant managers have a better view on the decisions at
hand than the analysts. They know more in detail the status of the profitability of the plant in question,
such as the technical condition, the behavior and efficiency of nearby competitors, relevant regulatory or
local market conditions, and firm policies.2

Understanding shutdown, startup, and abadonment decisions is important for designing efficient
mechanisms in electricity capacity markets. In an effort to provide incentive for firms to build and maintain
sufficient peaking capacity, Independent System Operators in the United States recently have introduced
capacity markets such as the Reliability Pricing Model (RPM) in the Pennsylvania–New Jersey–Maryland
(PJM) system. Capacity markets provide revenue to plants for maintaining availability and therefore help
to ensure system reliability.

Participants in RPM bid an Avoidable Cost Rate (ACR). Avoidable costs are the incremental costs of
being a capacity resource, i.e., the costs which could be avoided if a particular plant were shut down for a
year. Owners of power plants may either develop estimates of these costs for each individual plant or use
default rates provided by the market. From our switching and maintenance costs we estimate ACRs. Our
estimates of ACRs are less than the default values used in PJM’s capacity market, implying that consumers
may be paying too much for system reliability.

Outline of the paper. Section 2 provides motivation and institutional background. Section 3 describes
our data sample. Section 4 addresses our empirical strategy, including the nonparametric approach to
model the transitions. Resulting cost estimates are discussed in Section 5, with a comparison to standard
cost rates. In Section 6 we provide policy implications.

2 Motivation and background
Because electricity is not yet storable in meaningful quantities, supply and demand must balance in
real-time. For storable commodities such as gasoline, supply and demand shocks are at least partially
absorbed by inventory. Lack of inventory in electricity markets leads to high price volatility as shocks flow
directly through to prices. (Ullrich, 2012)

Non-storability also has important consequences for electric system reliability. System operators must
maintain reserve generators, i.e., peaking plants, which are able to produce electrical energy on short
notice. Non-storability combined with price inelasticity means that system operators also need generators

1An early attempt to establish nonparametric models in the context of structural estimation is Bansal et al. (1995), who nonetheless
approximate a nonparametric density by a parametric family. Newey et al. (1999) and Guerre et al. (2000) estimate a univariate
density nonparametrically; the density then serves as an input parameter for the structural model. Bontemps et al. (2000) and Li et al.
(2002) extend this approach to multivariate densities and provide convergence rates. In contrast Musalem et al. (2010) choose a
Bayesian approach.

2See Appendix B in Fleten et al. (2017) for a discussion of the real world problems associated with determining the costs of
shutting down and starting up a peaking power plant.
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which can vary output in real-time in order to match changing demand, i.e., generators which can follow
load. CTs are well suited for both roles and are in use worldwide.

Renewable Energy The penetration of renewable electricity sources such as solar and wind plants has
increased as many jurisdictions pursue policies to decrease reliance on fossil fuels. Solar and wind power
are intermittent, i.e., their availability and electrical output vary with ambient conditions. Real-time
variations in the output of intermittent plants can make it harder to maintain reliability of the electrical
grid. Smith and Cook (2015) explore the problems currently facing Hawaii, a state with a relatively large
amount of renewable generation. According to the authors, “... sudden swings in the output of solar and
wind ... force the state’s main utility to scramble to try to keep overall supply of power steady.”

As the amount of solar and wind capacity continues to increase, this problem is likely to worsen. PJM
addressed this issue in a recent white paper ( PJM Interconnection LLC (2017), p.5).

A marked decrease in operational reliability was observed for portfolios with significantly
increased amounts of wind and solar capacity ... Nevertheless, PJM could maintain reliability
with unprecedented levels of wind and solar resources, assuming a portfolio of other resources
that provides a sufficient amount of reliability services.

CTs can provide the reliability services needed at high levels of solar and wind penetration. But,
increased penetration of solar and wind plants also tends to reduce the value of CTs. Because solar and
wind plants have zero or near-zero variable operating costs, they displace plants with higher variable costs.3
As the value of a CT falls, the owner may exercise her option to shutdown the plant, i.e., put the plant into
standby mode, in order to reduce maintenance costs.4 The costs of maintaining a plant in standby mode
are less than the costs of maintaining an operational plant. The owner of a plant which was previously
shutdown holds the options to either restart the plant (if market conditions improve) or abandon the plant.5

Switching Costs Shutdown, startup, and abandonment entail one-time switching costs. These switching
costs influence switching decisions. All else equal, higher switching costs lead to less switching. In
practice, shutdown costs for CTs are near zero. Abandonment costs are negative as the owner can sell a
used CT in the secondary market. Startup costs are difficult to estimate even for industry professionals.6
There are few if any publicly available estimates of startup costs. Therefore one of the main goals of this
paper is to estimate switching costs for CTs.

2.1 Definition of Shutdown, Startup, and Abandonment
The owners of power plants in the United States must each year file Form 860 with the EIA. Included in
Form 860 is the status of each plant. For our purposes, the relevant statuses are Operating (OP), Standby
(SB), and, Retired (RE). A plant in state OP is available for operation. A plant in state SB has been shut
down and cannot be made ready for operation in the short term.7 A plant in state RE has been abandoned

3As detailed in Caldecott and McDaniels (2014), the value of CT-based power plants in Europe has dropped significantly.
4Note that we use the term shutdown to refer to what is sometimes called mothballing or laying up in the real options literature.

We do not use shutdown to refer to overnight cycling of plants.
5Brennan and Schwartz (1985) provides the basic framework for the real options to switch operating modes. Moel and Tufano

(2002) use the Brennan and Schwartz model to examine operational switching of gold mines within a real options framework. Fleten,
Haugom, and Ullrich (2017) use a reduced form model and find that regulatory uncertainty reduces the likelihood of shutdown and
startup for CTs. Fleten and Näsäkkälä (2010) examine the value of switching options for peaking plants and find, among other things,
that the option to abandon has relatively little value.

6We thank Steve Marshall of Lakeland Electric and Paul D. Clark II of the City of Tallahassee for sharing their insights and
experience.

7The EIA provides variable definitions in a Layout file accompanying the EIA 860 data. The 2000 Layout file defines SB as “Cold
Standby (Reserve): deactivated (mothballed), in long-term storage and cannot be made available for service in a short period of time,
usually requires three to six months to reactivate.”
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Figure 1: Transitions between the three states operating (OP), standby (SB) and retired (RE). Included is
the number of observed transitions.

and cannot return to service. These data allow us to infer status changes, as follows.

• We define a shutdown to occur when a plant moves from state OP to state SB and label this transition
OP→ SB.

• We define a startup to occur when a plant moves from state SB to state OP and label this transition
SB→ OP.

• We define an abandonment to occur when a plant moves from state SB to state RE and label this
transition SB→ RE .

Other possible (non)transitions include OP→ OP and SB→ SB. Figure 1 summarizes the status changes
in our dataset.

3 Data
The sample includes simple cycle combustion turbines in the northeastern part of the United States. The
sample period is 2001–2009. See Fleten, Haugom, and Ullrich (2017) for further details about the choice
of plants and geographic locations.

The cash flow for a power plant is determined by the spark spread, the difference between the price of
electricity and the cost of fuel used to produce it. A peaking plant consists of a series of daily call options
on the spark spread. The heat rate of a power plant is the amount of fuel, measured in millions of British
thermal units (MMBtu), required to generate one megawatt hour (MW h) of electricity. A lower number
indicates greater efficiency.

Our primary source of heat rate data is the Continuous Emissions Monitoring Systems (CEMS) data
from the U.S. Environmental Protection Agency. The CEMS include both generation (MWh) and fuel use
(MMBtu) data for individual generators, allowing us to calculate heat rates for individual generators.8

We use daily spot prices for New York Harbor No. 2 Oil and NYMEX Henry Hub natural gas. These
data are available from the EIA website. Electricity prices come from the Independent System Operator
(ISO) websites. Consistent with our focus on peaking plants, we use electricity prices for the peak period
of the day, defined as the industry standard 16 hour period beginning at 06:00 and ending at 22:00.

Each year the EIA publishes its Annual Energy Outlook document. The accompanying assumptions
document includes performance and cost estimates for new electric generating capacity. (See, for example,
Cost and Performance Characteristics of New Central Station Electricity Generating Technologies in
Energy Information Administration, page 89.) We use these data to estimate variable non-fuel generation
costs. Later we use these data as a point of comparison for our results.

8Heat rate data were included in Form 860 for 1990-1995. We use these data when CEMS data are unavailable. For plants which
neither appear in CEMS, nor have heat rate data in Form 860, we estimate heat rate based upon the age and size of the plant. See
Appendix A in Fleten, Haugom, and Ullrich (2017) for the details.
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Transition OP→OP OP→SB SB→OP SB→SB SB→RE Total

Average ($/kW/year) 12.6 5.4 17.7 12.3 2.1 12.5
Standard deviation 14.0 9.9 16.4 14.1 5.0 14.0
Observations 6539 76 184 1312 78 8189

Table 1: Summary statistics by transition for the profitability state variable X , in units of $/kW/year.

3.1 Profitability
Consider a plant which has heat rate H in units of MMBtu

MW h . We calculate the plant-specific spark spread (Sn)
expressed in units of dollars per megawatt hour ($/MWh), for day n as

Sn = Pe
n − H ∗ P f

n − V,

where Pe
n is the day n electricity price ($/MWh), P f

n is the day n fuel price ($/MMBtu), and V ($/MWh)
is the variable non-fuel generation cost.

Profitability per unit of capacity per year ($/kW/year) is the state variable X in our optimization. The
profitability for year t is given by

Xt =

Tt∑
n=1

max
(
Sn, 0

)
∗

(
16

1000 kW MW−1

)
,

where 16 is the number of peak hours in a day and Tt is the number of days in year t. The max function
captures the optionality of the plant. On days for which the spread is negative, the plant is assumed not
operate and the profit is zero.

Profitability Summary Statistics We calculate profitability for all plants in the sample, operational or
otherwise. For those plants which have status SB, the profitability is hypothetical. In this case Xt is the
profitability which would have obtained if the plant had been in state OP in year t. This counter-factual is a
signal of potential profitability.

Table 1 presents summary statistics for profitability. Plants which shut down (OP→ SB) have relatively
low profitability. Plants which start up (SB→ OP) have relatively high profitability. Plants which remain
shut down (SB→ SB) have similar profitability to plants which remain in the operating mode (OP→ OP).
Status changes – shut downs and start ups – happen only when there are large differences in profitability.
Only very profitable plants are started up and only very unprofitable plants are shut down. Plants which are
abandoned (SB→ RE) have lesser profitability still.

4 Empirical framework: Structural estimation
Structural estimation is a technique to uncover parameters hidden in a model of economic decision making.
The parameters we want to estimate in our case study are switching costs and maintenance costs of peaking
power plants, which are selected by the maximum likelihood approach. We refer to Table 2 for the economic
interpretation of the variables.

9The index i refers to the observation (i = 1, . . . , 8189) while the index t refers to the year. In what follows, Xt is the profitability
in year t and is a random variable. Xi is the realization of the random variable and is one component of a plant-year observation. The
other two components each observation are si , the state of the plant in the current year, and ui , the state of the plant in the upcoming
year. The state of the plant in the upcoming year, u ≡ st+1, therefore represents the decision of the plant manager.
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Symbol Description
t Time index; the unit time period is a year.

Xt The state process; in our specific case the state process is an indicator of profitability
per unit of capacity per unit of time expressed in units of dollars per kilowatt-year,
$/kW/year

(Xt, εt ) The augmented state process; the second process, εt , is not accessible to observation.

s, u ∈ S S := {operating, standby, retired} are operating states of the power plants and decided
by the plant manager.

(Xi, si, ui) An observation consists of a profitability Xi during the current year, the state si of the
system in the current year, and ui , the state of the system in the following year after
the managers decision.9

g(x, s; u) The payoff during a single period. The payoff function g(·) comprises the expected
cash flow for the next period and the costs associated with the transition from s to u.

V(x, s) Value function – the accumulated discounted future payoffs achieved from an optimal
policy.

v(x, s) Expected (or s-alternative-specific) value function. The function v is the average of
the different value functions V among all agents operating a power plant in the market.

β ∈ (0, 1) Discount factor β =
1

1 + interest rate
.

Table 2: Definition of variables

In what follows we develop the Bellman equation first, which we then extend to the s-alternative-specific
value function. This is essential, as we use these results to develop non-parametric structural estimation
(Section 4.3 below).

4.1 The real options problem
The value function of a dynamic decision problem satisfies a fixed-point equation, also known as Bellman
equation. Bellman’s equation is used to uncover the optimal policy, which depends on the current state st
solely. The Bellman equation for the value function V is

V(x, s) = max
st=st (Xt )

E

(
∞∑
t=0

βtg (Xt, st ; st+1)

����� X0 = x

)
(1)

= max
st=st (Xt )

E

(
g (X0, s0; s1) + β ·

∞∑
t=0

βtg (Xt+1, st+1; st+2)

����� X0 = x

)
= max

st=st (Xt )
E

(
g (X0, s0; s1) + β · E

(
∞∑
t=0

βtg (Xt+1, st+1; st+2)

����� X1 = x1

)����� X0 = x

)
= max

st=st (Xt )
E (g (X0, s0; s1) + β · V (X1, s1)| X0 = x)

= max
u∈S

g (x, s; u) + β · E (V (Xt+1, u)| Xt = x) ,

6



where the maximum is among all control sequences st with s0 = s and which depend on Xt only in
the present Markovian setting; this dependency is denoted st = st (Xt ) in the maximum in the previous
formula (1).

4.2 The s-alternative-specific value function
Every plant manager has additional understanding of his own operation, which is not known to the analyst.
Structural estimation models this additional knowledge by augmenting the state space process (Xt ) with the
parallel process (εt ) of additional information, a payoff shock. Every εt = (εt,u)u∈S is a vector carrying
the additional information which is associated with the actions u ∈ S. This information is hidden from the
researcher who observes only the state Xt .

In analogy to (1), the augmented value function is

V(x, ε, s) = max
u∈S

g(x, ε, s; u) + β · E
(∫

V(X1, ε1, u)E (dε1 |X1)

���� X0 = x
)
, (2)

and its Bellman function is similar to (1).
The transition of the payoff shock ε, which is described by the distribution E, is independent from

X by assumption and one may integrate on every fiber {X0 = x} separately (conditional independence,
cf. Rust (1987)).

The expected value function, or s-alternative-specific value function is defined as

v(x, s) := E
(∫

V (X1, ε1, s) E (dε1)

���� X0 = x
)
, (3)

it is the conditional expectation of the individual value functions. To apply structural estimation we deduce
a fixed-point equation for the expected value function v. To do so we rewrite the Bellman equation (2)

V(x, ε, s) = max
u∈S

g(x, ε, s; u) + β · v (x, u) (4)

and, by taking expectations of (4), we get

v(x, s) = E
(∫

V (X1, ε1, s) E (dε1)

���� X0 = x
)

= E

(∫
max
u∈S

g(X1, ε1, s; u) + β · v(X1, u)E (dε1)

���� X0 = x
)
. (5)

The latter equation is a fixed-point equation for v, but in contrast to (1) the maximization and expectation
are interchanged.

To manage the inner integral of a maximum one may specify the payoff function g by accounting for
the payoff shock in a linear way according to

g(x, ε, s, u) = g(x, s, u) + εu, (6)

and by specifying the distribution of E. Rust (1987) uses the term additive separability for the particular
decomposition (6).

The integrand in (5) is a maximum, and it is well-known from extreme value theory that the normalized
maximum, which is an extreme value, converges to an extreme value distribution (the Fisher–Tippett–
Gnedenko theorem identifies three types of limiting extreme value distributions, cf. Embrechts et al.
(1997)). The Gumbel variable is the only extreme value distribution with two-sided support. Given the
maximizations in (4) and (5) the process ε thus is a process of mutually independent Gumbel variables,
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which is independent from X . This observation allows an important simplification of formula (5).
Indeed, the Gumbel distribution is closed under maximization, and in this case a closed form formula for
expectations is available and given by∫

max
u∈S
(εu + cu) E(dεu) = b · log

(∑
u∈S

exp
cu
b

)
, (7)

where b is a scale parameter that controls the variance of the payoff shocks (cf. Remark 2); Equation (7) is
detailed in Proposition 7 in the Appendix A.

Specifying cu := g(X1, s; u) + β · v(X1, u) and applying (7) to

v(x, s) = E
(∫

max
u∈S

(
g(X1, s; u) + ε1,u + β · v (X1, u)

)
E

(
dε1,u

) ���� X0 = x
)

(8)

reduces the inner integral. The fixed point equation for the s-alternative specific value function (8) simplifies
to

v(x, s) = E

(
b · log

(∑
u∈S

exp
(
g(X1, s; u) + β · v(X1, u)

b

))����� X0 = x

)
. (9)

Remark 1. The Gumbel distribution was first incorporated in the model by Rust, while the Generalized
Extreme Value Models with conditional logit choice date back to a series of papers by McFadden (cf., for
example, McFadden (1973)). A particular advantage of the Gumbel distribution is the simple expression (9)
and the explicit formula for the conditional choice probability (Proposition 8 in Appendix A below),
exploited in the likelihood function.
Remark 2. The scale parameter b can be interpreted as a degree of uncertainty, as the standard deviation
of a Gumbel distribution is b π√

6
' 1.28 b. In particular, the choice b = 0 represents decisions without

deviations: this degenerate case describes the classical situation in which all managers decide in the same
way for a given state.

4.3 The estimation problem
Estimates are selected by a maximum likelihood approach (cf. Rust (1987), Su and Judd (2012)), that is, by
solving the problem

maximize L

(
g, vg, (Xi, si, ui)Ni=1

)
subject to vg = tg

(
vg

)
,

g ∈ G,

(10)

where N is the number of observations and L is the likelihood of observing data (Xi, si, ui)Ni=1 conditional
on the payoff function g(·) ∈ G = {gθ (·) : θ ∈ Θ}. The payoff function g ∈ G is chosen from a set G of
potential candidate functions. The constraints in equation (10) reflect optimality of the economic model.
The operator tg is for the specified payoff function g(·) and vg is the expected value function corresponding
to the payoff g(·) satisfying the constraint vg = tg(vg).

The constraint
vg = tg(vg) (11)

in (10) is the fixed-point equation for the expected, or s-alternative-specific value function v(·) derived
from the Bellman equation of the value function V(·) derived in Section 4.2 above, where tg is the operator

tg(v)(x, s) := E

(
b · log

∑
u∈S

exp
g(X1, s; u) + β · v(X1, u)

b

����� X0 = x

)
. (12)
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tg is a contraction with Lipschitz constant β < 1 and Banach’s fixed-point theorem ensures that (11) has a
unique solution (which we call vg) in the proper space.

Since the payoff shock is not observed by the analyst, the decision chosen for a given state (x, s) is not
deterministic but is given by the choice probability

Pv (u| x, s) =
exp

(
g(x,s;u)+β v(x,u)

b

)
∑

u′∈D exp
(
g(x,s;u′)+β v(x,u′)

b

) , (13)

which follows from the fact that the process ε follows a Gumbel distribution. Equation (13) is discussed,
justified and detailed in Proposition 8 in Appendix A. The likelihood function L is thus

L
(
g, v, (Xi, si, ui)ni=1

)
=

N∏
i=1

Pv (ui | Xi, si) ,

which is well-known to be a consistent and efficient estimator.
Remark 3. The first approach to solving (10) is the nested fixed point (NFXP) algorithm (cf. Rust (1987)).
In the NFXP, for every choice g ∈ G the fixed point equation vg = tg

(
vg

)
has to be solved, as the function

vg enters the objective in the maximization (10) (or its approximation (17) below). This is the most
expensive part of the computational problem in NFXP. In contrast, in the Su and Judd (2012) approach, the
solution vg maximizing (10) is found in a single optimization formulation.

Our approach described below introduces a direct estimator for tg which is free of parameters. The
method recovers vg as a by-product of the optimization. Moreover, the approach described ensures
convergence to the continuous solution vg. Approximations of the solution are constructed by fixing a grid
of supporting points on the positive real line for every s ∈ S and by linear interpolation of the functions
v(·, s), s ∈ S in between. The supporting points are refined successively to a dense set in R≥0 for every
s ∈ S, which ensures pointwise convergence of the approximations to vg.

Estimation of conditional expectation
The probability in the maximum likelihood estimator (10) involves the operator tg which is an expectation,
conditional on {X0 = x}. To evaluate tg(v)(x, ·) at a specified point x (cf. (12)) it is necessary to evaluate a
conditional expectation.

The nonparametric approach: employing kernel estimators. To estimate the conditional expectation
of f (Xt+1) relative to Xt , that is E( f (Xt+1) | Xt ) without an explicit assumption on the underlying process,
we pair subsequent observations and consider

(Xi, Xi+1) for i = 1, 2, . . . , N − 1. (14)

Then the Nadaraya–Watson estimator for the operator

tg(v) (x, s) = E

(
b · log

∑
u∈S

exp
g(Xt+1, s; u) + β · v(Xt+1, u)

b

����� Xt = x

)
is

t̂g(v)(x, s) :=
N−1∑
i=1

K
(
x−Xi

h

)
∑N−1

i′=1 K
(
x−Xi′

h

) · b · log
∑
u∈S

exp
g(Xi+1, s; u) + β · v(Xi+1, u)

b
, (15)
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where K(·) is an appropriate kernel function and h > 0 a suitable bandwidth. Uniform consistency of this
estimator is justified in Atuncar et al. (2008).

The estimator t̂g maintains all properties of the original operator tg, as the following Lemma reveals.
We provide a proof of the Lemma in Appendix A.

Lemma 4. For the choice β < 1 the mapping v 7→ t̂g(v) is a contraction on `∞ ([0,∞) × S) (the linear
space of bounded function on [0,∞) × S), and v = t̂g(v) has a unique fixed point.

The estimator t̂g maintains essential properties on functions which are piecewise linear. This observation
is important for numerical treatments as it allows us to consider linear spline functions in implementations.
The following corollary is immediate.

Corollary 5 (Interpolation). For d + 1 fixed numbers x0 < x1 < · · · < xd in R let I denote the linear
interpolation operator, such that

I (v0, . . . vd) (x) =


v0 if x ≤ x0,

vj
x j+1−x
x j+1−x j

+ vj+1
x−x j

x j+1−x j
if xj ≤ x ≤ xj+1,

vd if x ≥ xd .

Then

ˆ̂tg
( (
vs0, . . . v

s
d

)
s∈S

)
:=

©«
N−1∑
i=1

K
(
x j−Xi

h

)
∑N−1

i′=1 K
(
x j−Xi′

h

) ·b log
∑
u∈S

exp
g(Xi+1, s; u) + βI

(
vu0 , . . . v

u
d

)
(Xi+1)

b

ª®®¬
d

j=0
(16)

is a contraction on R(d+1)· |S | with a unique fixed point. (|S | is the cardinality of different state modes;
|S | = 3 in our case, cf. Table 2).

The choice of the kernel and bandwidth. For our set of data and our particular purposes we find the
logistic kernel

K (x) =
1
4

1(
cosh x

2
)2 =

1
ex + 2 + e−x

suitable because it allows for all moments and its tails are fat enough to include more distant observations
as well.

The choice of this particular logistic kernel is not restrictive. For the bandwidth h we chose Silverman’s
rule of thumb (cf. Silverman (1998)), that is

hN = std (Xi) ·

(
4

(m + 2) N

) 1
m+4

≈ std (Xi) · N−
1

m+4 ,

where std(·) is the standard deviation of the sample, m = 2 is the dimension of each individual pair of the
samples (cf. (14)) and N the sample size.

Augmented likelihood function. Following the literature (cf., for example, King and Zeng (2001)) it is
natural to adjust the likelihood to reflect the different sample sizes of the groups. This is accomplished by
the augmented likelihood

maximize
∑N

i=1
1
Ni

log Pvg (ui | Xi, si)
subject to vg = tg

(
vg

)
,

g ∈ G.

(17)
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Here,

Ni ∈ {6539; 76; 184; 1312; 78}

is the sample size of the group to which the observation (Xi, si, ui) belongs to as in Figure 1 (instead of
N = 8189 in (10)) (i ∈ {OP→ OP, OP→ SB, SB→ OP, SB→ SB, SB→ RE}).

Observation An observation in our estimation exercise is a triple (Xi, si, ui) consisting of the following
components:

• the profitability Xi for the current year,

• the operating state of the power plant si ∈ S in the current year, and,

• the decision of the manager regarding the operating state ui ∈ S of the power plant in the upcoming
year.

Note that this structure applies to switching problems more generally.
The nonparametric estimation exercise relies on pairs of observations (Xt, Xt+1), the profitability in the

current year t and in the coming year t + 1. At the time of the decision, the profitability for the coming
year is not yet known. It is reasonable to assume that decision makers have estimates of profitability for
the coming year. In practice the plant manager is likely to rely upon production costing software (e.g.,
PROSYM, UPLAN, EGEAS) to simulate the operation of the regional electric system and therefrom derive
an estimate of profitability for the upcoming year t + 1.

Figure 2 presents the evolution of profitability from one year to the next. The density in Figure 2 is
estimated based on the pairs (Xt, Xt+1) (cf. (14)), which are available from the observations: one ordinate
represents the profitability indicator of this year, Xt , the other ordinate the profitability indicator in the
subsequent year, Xt+1. The density thus describes the Markov kernel, which is used in the expectation to
compute the value function, for example in (12).
Remark 6. Figure 2 indicates that there is no common pattern of transitions of the profitability from a year
to the next. If the transitions were described by a geometric Brownian motion (GBM), then a slice of the
density plot would be lognormal.

4.4 Unobserved heterogeneity
Our model captures the difference between the (within-model) expected immediate payoff and the real
payoff observed by the decision maker, i.e., the payoff shock, by Gumbel variables with a common scale
parameter b. Corollary 9 in Appendix A (cf. particularly (25)) states that the difference of Gumbel variables
follows a logistic distribution.

To estimate unobserved heterogeneity we employ a logistic regression for binary classification with
parameters θ = (α, η) and the probabilities

P(OP | X) =
1

1 + exp
(
−X−α

η

) and P(SB | X) =
1

1 + exp
(
X−α
η

) (18)

(note, that P(OP | X) + P(SB | X) = 1). The purpose of this regression is to identify the managerial
decisions {OP, SB} given the status of the variable X , that is the profitability indicator.

The parameters α and η in (18) allow a natural interpretation. The location parameter α, the median of
the logistic distribution, divides the managers’ decisions into the two groups operating, that is {X > α} and
standby ({X < α}, respectively). The scale parameter η describes the standard deviation of these decisions:

11
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Figure 2: Bivariate density of the observed transition (Xt, Xt+1) of the annual profitability indicator.
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that is the uncertainty within these decisions, or the respective heterogeneity of all managerial decisions.
A comparison with (25) in Appendix A identifies the parameters b = η. Numerical computations of the
parameter η give evidence that b ≈ $5.3 /kW/year for our sample data. This parameter typically is set to
unity in the structural estimation literature. To the best of our knowledge we are the first to estimate this
parameter.

The parameter b captures the degree to which managers make different decisions even when the
observable (to the researcher) data are the same or similar. The magnitude of b determines the importance
of unobserved shocks in the decision making process. In our data, this effect is relatively large as the
estimate of b ≈ $5.3 /kW/year is approximately 42% of the mean value of the profitability state variable
($12.5 /kW/year from Table 1).

4.5 The payoff function g(·)

The payoff function g(·) describes the expected cash flow for the year. We include not only the profitability
indicator X but also two other costs, (i) the costs of continuing maintenance Mu given that the generator is
in state u, and, (ii) the switching costs associated with the transitions themselves, Ks→u .

In addition to the (limited) heterogeneity induced by the payoff shock we capture persistent unobservable
heterogeneity by allowing some of the payoff function parameters to be random variables (cf. Train (2002)).
Specifically, we let the maintenance cost in the standby state (MSB) and the start up cost (KSB→OP) be
(discretized versions of) Gaussian variables.10 We estimate the means (µSB, µSB→OP) and the standard
deviations (σSB, σSB→OP,) of these random variables. If start up costs are similar across plants, the
estimated standard deviation should be low.

The payoff function is given by

gj,θ (X, s; u)=



X − MOP s=OP, u=OP,
1
2
(
X − MOP − (µSB + yj ·σSB)

)
− KOP→SB s=OP, u=SB,

1
2
(
X − (µSB + yj ·σSB) − MOP

)
− (µSB→OP − yj ·σSB→OP) s=SB, u=OP,

−µSB − yj ·σSB s=SB, u=SB,
− 1

2 (µSB + yj ·σSB) − KSB→RE s=SB, u=RE,
−∞ otherwise,

(19)

where the parameter θ carries the parameters to be estimated, i.e.,

θ = (MOP, µSB, σSB,KOP→SB, µSB→OP, σSB→OP,KSB→RE ),

and yj are discretization points of a Gaussian random variable reflecting persistent unobservable types
among the plant owners. The discretization chosen employs the representative points (quantizers) of the
distribution with the corresponding optimal weights, such that the distance to the genuine distribution is
minimized (cf. Graf and Luschgy (2000, Section 5) who use the Wasserstein distance).

The value −∞ is included in the payoff function to exclude other transitions. Notice that for plants which
are either shut down or started up, we include only half of the profit, as well as half of the maintenance cost
for both the operational (OP) and shutdown (SB) states, 1

2
(
X − MOP − (µSB + yj ·σSB)

)
. Because our

data are observed at annual frequency, we do not know when status changes occur. We assume that shut
downs and start ups happen mid-year so that in both cases the plant is assumed operational for half of the
year. Similarly we include half of the maintenance cost for the SB state. The parameters of interest are the
switching costs KOP→SB, µSB→OP and KSB→RE .

10Computations were too burdensome when increasing the number of parameters affected by such heterogeneity from two to three.
We tried most combinations of parameters and settled upon cross-plant heterogeneity in MSB and KSB→OP .
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A generator which has been retired has no value beyond any potential salvage value as described above,
that is

v (·, retired) = 0.

What remains to be computed is

v (·, s) , for s ∈ {operating, standby} .

As justified in Corollary 5, it is possible to employ linear interpolation by fixing supporting points
x0 < x1 < . . . xd . The problem is

maximize
∑N

i=1
1
Ni

log
∑n

j=1 pjPI (vgj
) (ui | Xi, si)

subject to vg j =
ˆ̂tg j

(
vg j

)
,

gj ∈ G,

(20)

where gj ∈ G, in view of (19), means that θ contains the variables in the optimization procedure (20).
We impose the constraints MOP ≥ 0, KOP→SB ≥ 0, µSB→OP ≥ 0 and µSB ≥ 0 on our optimization
procedure, and this is reflected in the functions g ∈ G as well.

Irrespective of the supporting points x0 < · · · < xd this problem is always feasible for every choice of
θ. By augmenting the sequence x0 < · · · < xd by additional points a net is obtained, which converges
finally to the value function v, the solution of (10).

5 Results
Table 3 presents our results. We begin by discussing the estimated maintenance costs. Unlike switching
costs, estimates of ongoing maintenance costs are available from the EIA. In 2010 the EIA commissioned
a consultant to develop new estimates, see Energy Information Administration (2010).11 According
to that document, the annual fixed O&M costs for combustion turbines range from $6.70 /kW/year to
$6.98 /kW/year.

The first column of results Table 3 presents our estimated maintenance costs (MOP) for a plant which
is in the operating state. The estimates, approximately $8 /kW/year to $10 /kW/year, are greater than EIA
estimates. The EIA numbers are for new plants. Our estimates are based on existing plants which vary in
age and size. It is reasonable that the annual costs of maintenance for an old combustion turbine should be
greater than for new technology.

The second and third columns of Table 3 present estimated mean (µSB) and standard deviation (σSB)
of maintenance costs in the shutdown state (MSB). The estimated maintenance costs in the shutdown state
are approximately 20–40% of the maintenance costs in the operating state. This reduction in maintenance
costs relative to those in the operational state provides incentive for plant owners to shut down peaking
plants.

The fourth column contains estimates of shut down costs (KOP→SB). In every case these costs are
estimated to be zero. Near zero shut down costs are consistent with the reality that the owner of a peaking
plant can essentially turn the machine off and ignore it.

The fifth and sixth column present estimated mean (µSB→OP) standard deviation (σSB→OP) of start
up costs (KSB→OP). These numbers are relatively small in magnitude. During the optimization exercise

11These estimates are in as much as possible based on real world experience. From Energy Information Administration (2010,
p. 2):

Where possible, costs estimates were based on information regarding actual or planned projects available to the
consultant. When this information was not available, project costs were estimated by using costing models that
account for current labor and material rates that would be necessary to complete the construction of a generic facility.
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MOP µSB σSB KOP→SB µSB→OP σSB→OP KSB→RE

β = 0.91 8.50 2.45 0.16 0.00 0.79 0.46 −31.3
(1.22) (1.03) (0.18) (0.00) (1.32) (0.77) (11.0)

β = 0.95 9.32 3.23 0.05 0.00 0.56 0.32 −49.0
(1.28) (1.06) (0.10) (0.00) (1.36) (0.79) (22.5)

β = 0.97 10.0 3.87 0.02 0.00 0.46 0.27 −62.7
(1.15) (1.13) (0.08) (0.00) (1.41) (0.82) (39.5)

Table 3: Maintenance and switching cost estimates for peaking power plants, in units of $/kW/year. MOP

is the ongoing cost of maintenance for an operating plant. MSB is the ongoing cost of maintenance for a
plant which has been shut down. KOP→SB is the one-time cost of shut down. KSB→OP is the one-time
cost of start up. KSB→RE is the one-time cost of abandonment. The numbers in parentheses are standard
deviations of the estimates, calculated by (parametric) bootstrapping. Results are shown for three different
discount factors β = 0.91, β = 0.95, and β = 0.97.

we found that the algorithm essentially traded off (i) maintenance costs in the shutdown state, and, (ii) start
up costs. This trade off is also consistent with the real world. The owner of a peaking plant may chose to
spend very little on maintenance for a plant which is shut down. In that case, the cost of starting up will be
greater. However, if the plant owner invests in maintenance when the plant is shut down, starting up the
plant is less costly.

Finally, the switching costs associated with an abandonment (KSB→RE ) are negative. This result is
consistent with the existence of a secondary market for used CTs. Our estimated salvage values range
from approximately 3.2% to 7.4% of the cost of a brand new combustion turbine (Energy Information
Administration (2010)).12

5.1 Avoidable Cost Rates
From our estimates of switching and maintenance costs we can infer avoidable cost rates (ACR). In our
setting, avoidable costs are equal to the maintenance cost in the operating state less three things: (i) the cost
to shut down, (ii) the maintenance cost in the shutdown state, and (iii) the cost to start up one year later.

ACR = MOP − KOP→SB − µSB − µSB→OP . (21)

We find ACR = $14.41/MW-day, $15.15/MW-day, and $16.55/MW-day for β = 0.91, 0.95 and
0.97, respectively. These estimates are less than RPM default rates which range from $17/MW-day to
$30/MW-day and even higher in more recent years. We interpret this result to mean that the actual cash
flow differences associated with shutting down peaking plants are less than the defaults values used in PJM.

If default ACR values are too high, then RPM prices may be higher than is necessary to ensure system
reliability. The American Public Power Association and the Electric Power Research Institute published
a report in 2010 (American Public Power Association (2010)) which referred to RPM as “... a market
that is costing consumers more than needed to ensure reliability ...” Our results are consistent with this
conclusion.

The procedure for estimating avoidable costs, available from PJM, calls for a bottom-up approach in
which labor, materials, administrative and general costs, etc., are estimated separately and then summed.
While the bottom-up method is useful for attributing common costs amongst individual plants, it likely does

12Common practice in the literature is to model the exogenous state variable using a parametric approach. For comparison we
develop estimates based on the autoregressive model described in Appendix B. In general the estimates using the autoregressive setup
are similar to our nonparametric approach, though the standard deviations tend to be smaller. We prefer the nonparametric approach
as we believe that an autoregressive model is too simple to capture the data generation process.
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not capture the firm’s incremental cash flow caused by shutting down a particular plant. In contrast our
estimates of avoidable costs are based upon firm’s actual decisions, along with market prices of electricity
and fuel.

6 Conclusion and policy implications
We use structural estimation to obtain estimates of switching costs for peaking power plants, which
are difficult to obtain in practice. These estimates are implied from a time series of observed switches
across many plants and from assuming rational behavior on the part of the plant managers. That is, the
maintenance and switching costs are obtained by maximising the likelihood of observing the data, subject
to the assumption that the switches follow a real options model.

We develop nonparametric techniques for structural estimation, as the process observed does not follow
a known parametric process. As additional contribution to structural estimation we present an estimator for
the scaling parameter of the unobserved payoff shock process.

Our cost estimates have policy implications for electricity market regulators, who should note that a
real options lense is a useful way of viewing the availability of peaking power plants. For the PJM market
in particular, our estimates imply avoided costs which can be as low as half the default values used in PJM’s
RPM capacity market, consistent with the interpretation that consumers are paying more than necessary for
system reliability.

A Extreme value distributions – the Gumbel variable
It is shown that the Gumbel distribution is closed under maximization (indeed, this is the essential property
of any extreme value distribution). Further, a closed form formula for the probability of choice is provided
for the Gumbel distribution. A very comprehensive discussion of extreme value distributions can be found
in Embrechts et al. (1997).

The cumulative distribution function (cdf) of a Gumbel distribution is F(z) = exp
(
−e−

z−µ
b −γ

)
, where

γ = 0.577 215 66 . . . is the Euler–Mascheroni constant. Its mean is µ, and the variance is b2 π2

6 .

Proposition 7 (The extreme value distribution is closed under maximization). Let (εi)ni=1 be independent
random variables which are Gumbel distributed with mean µi and common scale parameter b > 0. Then
the maximum ε := max {εi + ci : i = 1, . . . n} of the shifted variables is again Gumbel distributed with
mean

E (ε) = µ := b · log

(
n∑
i=1

exp
( µi + ci

b

))
and the same scale parameter b, where ci ∈ R are arbitrary constants.

Proof of Proposition 7. From the cumulative distribution function of the Gumbel distributions with
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respective means it follows that

P
(

max
i∈{1,...n}

εi + ci ≤ z
)
= P

(
ε1 + c1 ≤ z, ε2 + c2 ≤ z, . . . , εn + cn ≤ z

)
=

n∏
i=1

P (εi ≤ z − ci) =
n∏
i=1

exp
(
−e−

z−ci−µi
b −γ

)
= exp

(
−

n∑
i=1

e−
z−ci−µi

b −γ

)
= exp

(
−e−

z
b −γ ·

n∑
i=1

e
µi+ci

b

)
= exp

(
−e−

z
b −γ · e

µ
b

)
= exp

(
−e−

z−µ
b −γ

)
,

because
∑n

i=1 e
µi+ci

b = e
µ
b . This reveals the assertion. �

The following proposition addresses the probability of choice. Again, an explicit formula is available
for shifted Gumbel variables.

Proposition 8 (Choice probabilities for shifted Gumbel variables). Let (εi)ni=1 be independent Gumbel
distributed random variables with individual mean µi and common scale parameter b > 0. Then the
probability of choice for the variables shifted by ci is

P
(
ε1 + c1 = max

i∈{1,2,...n}
εi + ci

)
=

exp
( c1+µ1

b

)
exp

( c1+µ1
b

)
+ · · · + exp

( cn+µn
b

) . (22)

Proof of Proposition 8. Without loss of generality one may consider a pair (ε1, ε2) of independent Gumbel
variables with location parameter 0, because the maximum in (22) itself is Gumbel distributed by
Proposition 7.

Thus

P (ε1 + c1 ≥ ε2 + c2) = P (ε2 ≤ ε1 + c1 − c2)

=

∫ ∞

−∞

f (x1)

∫ x1+c1−c2

−∞

f (x2) dx2dx1

=

∫ ∞

−∞

f (x1) exp
(
−e−

x1+c1−c2
b

)
dx1, (23)

where the cdf of the Gumbel distribution has been substituted. By substituting the probability density
function (pdf) f , (23) continues as

P (ε1 + c1 ≥ ε2 + c2) =

∫ ∞

−∞

1
b

exp
(
−

x1
b
− e−

x1
b

)
exp

(
−e−

x1+c1−c2
b

)
dx1

=

∫ ∞

−∞

1
b

e−
x1
b exp

(
−e−

x1
b

(
1 + e−

c1−c2
b

))
dx1

=


exp

(
−e−

x1
b

(
1 + e−

c1−c2
b

))
1 + e−

c1−c2
b


∞

x1=−∞

=
1

1 + e−
c1−c2

b

=
e

c1
b

e
c1
b + e

c2
b

. (24)

This completes the proof. �
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Finally we give provide a proof that the difference of Gumbel variables enjoys a logistic distribution (cf.
Nadarajah (2007)).

Corollary 9. If ε1 and ε2 are Gumbel distributed with mean µ1 and µ2 and common scale parameter b > 0.
Then the difference δ := ε2 − ε1 follows a logistic distribution with mean µ = µ2 − µ1 and cumulative
distribution function

Fδ(z) =
1

1 + exp
(
−

z−µ
b

) , (25)

which is the distribution function of a logistic variable.

Proof of Corollary 9. If follows from (24) in the proof of the preceding theorem that

Fε(z) = P (ε2 − ε1 ≤ z) = P (ε1 + z ≥ ε2) =
1

1 + e−
z−(µ2−µ1)

b

,

which completes the proof. �

We include a proof of Lemma 4.

Proof. Observe first that the sample (Xi)
N
i=1 and S are finite, such that g(Xi+1, s; u) is uniformly bounded.

Moreover the mapping

v 7→ b · log
∑
u∈S

exp
gu + β · v

b
= b · log

(
exp

(
β · v

b

)
·
∑
u∈S

exp
(gu

b

))
= β · v + b · log

∑
u∈S

exp
(gu

b

)
is an affine linear function in v with slope β < 1. Due to the construction of the operator t̂g in (15) with
nonnegative weights summing to 1 it follows that t̂g is a contraction with Lipschitz constant β < 1. Hence
Banach’s fixed-point theorem applies and guarantees a unique fixed-point vg in `∞([0,∞) × S), that is,
vg = t̂g(vg). �

B The parametric approach: employing a time series model.
For the purposes of comparison we estimate switching and maintenance costs using the parametric approach.
Assume that the time series of the state variable X follows an autoregressive scheme (AR)

X ′t+1 = µ + ρ X ′t + σNt (26)

with error termNt , whereNt are independent random variables. In this situation the conditional expectation
is given by the explicit formula

E
(
f (X ′t+1)| X

′
t = x

)
= E f (µ + ρx + σNt ) , (27)

reducing thus the conditional expectation to a simple expectation.
We estimate the parameters µ, ρ and σ of the underlying time process in (26) for normally distributed

random variables N . We then apply the expression (27) to the censored process Xt := max(0, X ′t ) to
evaluate expressions as (12) explicitly, conditionally on {Xt = x}. The censored process Xt reflects the
fact that the process we observe is zero with positive probability, but never negative.

The parameters for the time series (26) are estimated by a maximum likelihood approach, such that

Xt+1 = 2.3 + 0.45 · Xt + 9.2 · Nt,

where Nt are independent standard normal variables.
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