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Selling real assets: The impact of idiosyncratic project risk in an

auction environment

Abstract

Consider a seller auctioning a real asset among n agents. Each agent contemplates a speci�c

investment project and the asset is crucial for its activation. Project cash �ows and their

volatility are private information. We determine the optimal bid function and show that the

auction is e¢ cient. The asset is assigned to the project characterised by the highest volatility in

the associated cash �ows. Interestingly, the bid does not depend on the investment time or on

the changes in post-auction cash �ows. We also address concerns about the distribution of the

project value among the parties. Finally, we show that cash �ow volatility has an ambiguous

e¤ect on losses due to the information failure.

keywords: first-price auctions, procurement, idiosyncratic risk, adverse selec-
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1 Introduction

In this paper we study a �rst-price auction for a real asset whose control gives the option to

initiate several potential investment projects. There are several sound examples. Consider, for

instance, corporate restructuring of distressed state-owned and/or private companies, which may

involve a change of ownership and/or ownership structure and also a signi�cant reorganisation of

the company�s operations.1 Another example is concession to private agents of natural assets owned

by a government. These may include land that, once transferred, may be allocated by the private

agent to alternative uses such as agriculture or real estate, or forests and mines which may be

exploited on the basis of di¤erent management plans.2 A third example is technological innovation

with di¤erent potential commercial uses, the value of which may be magni�ed by granting the right

to develop it to another agent.3

Governments and private companies owning a speci�c real asset may want to auction the right

to use it simply owing to a need to generate revenue and/or to lack of the managerial and/or

technological ability necessary for managing it at its best.

Auctioning a real asset is a challenging task, however. Each potential use must in fact be care-

fully evaluated so that the asset is assigned to the project that, once developed, magni�es its value.

This already demanding task becomes even more complex when crucial information concerning the

current and future economic prospects associated with use of the asset is asymmetrically distrib-

uted. This asymmetry may concern information about the buyer type, such as their capability to

develop the project, the evolution of the process governing the project value or the expected value

and/or volatility of the project�s rate of return.

Two main issues immediately emerge: evaluation of the asset in light of the potential projects

that may be developed once its use is granted and the timing of actual exercise of any embedded

investment option.4 As the value of the project depends on investment timing, the two issues are

1See e.g. Hansen (2001), Dasgupta and Hansen (2007) and Boone and Mulherin (2007) on auctions of companies.

See Pennings (2008) on the privatisation of real options.
2See Quan (1994), Porter (1995), Levin and Athey (2001), Di Corato et al. (2015) for auctions on real estate, oil

and gas lease sales, timber and conservation contracts, respectively.
3Schwartz (2004) views patents as real options. See Sneed and Johnson (2009) and Gassmann et al. (2010) on

auctions for patents.
4See Dixit and Pindyck (1994) for an excellent overview of the literature on investment appraisal under a real
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surely related, but a trade-o¤ between revenue maximisation and investment timing can potentially

arise whenever the seller has di¤erent preferences concerning the exercise of the investment option

held by the selected buyer.

In dealing with these issues, the use of contingent payments has attracted considerable attention

in the literature on auctions.5 Studies worth mentioning in this regard include those by DeMarzo

et al. (2005) and Board (2007). By comparing the seller�s revenue when bids are in cash (i.e.

independent of future events) with those accruing when bids are securities whose value is contingent

on the future change in the asset�s value, DeMarzo et al. (2005) show that steeper securities yield

higher revenues for the seller.6 Board (2007) examines the seller�s optimal payment scheme when

auctioning real options from a mechanism design perspective and shows that the optimal mechanism

that maximises revenue is composed of an up-front fee and a contingent payment to be made at the

time of the investment.7 Notably, this latter payment does not depend on the value of the project,

but only on the private information of the buyer.8

In this paper, we examine the implications of using a contingent payment in terms of bidding

strategy and ex-post party payo¤s in the presence of information asymmetry about i) the state of

the process illustrating the investment project�s cash �ows and ii) the volatility of the project�s

cash �ows.

The novel aspect of this paper is its focus on the volatility of project cash �ows as an element of

ex ante information asymmetry. This is of interest since using a contingent payment when bidding

increases the strike price of the embedded (real) investment option. This in turn means delayed

execution. Similarly, as volatility increases, investment in expected terms is delayed. Furthermore,

option approach. See Décamps et al. (2006) for the problem of an investor who has to choose among two alternative

projects having di¤erent scales under price uncertainty.
5See Skrzypacz (2013) for an excellent survey of this literature.
6Canonical security bids are combinations of contingent payments from the cash �ow of the project and non-

contingent payments. Examples of such bids are royalty contracts (or equity in applications in corporate �nance),

debt and call option (or royalty rate combined with an advance). In a dynamic context, the non-contingent payments

can be viewed as an up-front fee usually representing the non-contingent component of the payment. See DeMarzo

et al. (2005) and Cong (2016) for a de�nition of security bids.
7A similar mechanism-design problem is examined by Schummer and Vohra (2003) in the context of electricity

markets.
8Cong (2016) shows that Board�s optimal mechanism can be generalised by using a standard security combining

cash and royalty payments.
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i) the payment is dependent on the realised project�s value and ii) the impact of volatility on

the project value is ambiguous and depends on the extent to which the project cash �ows are

characterised by systematic risk.9 Hence, in the light of the potential con�ict between project

value and investment timing considerations, investigating the impact on the bidding process and

ex-post party payo¤s of a privately known volatility level is de�nitely worth attention.

We examine this by developing our analysis in a continuous-time, �rst-price auction framework.

We consider i) an agent owning a speci�c asset and auctioning the right to use it and ii) n potential

buyers, each contemplating a speci�c investment project. The value of each project is stochastic and

here we characterise its speci�city through the volatility of the associated cash �ows. Information

about the current project�s cash �ows is known to all agents, while future cash �ows and their

volatility are private information of the potential buyer.

We derive the winner�s bid in closed form. We show that the auction is e¢ cient and assigns the

asset to the bidder contemplating the project with the most volatile cash �ows. This implies that

the winner is, in expected terms, the agent i) investing and, consequently, ii) paying the seller later

than everyone else in the pool.

We show that, in line with �ndings in Board (2007), the bid does not depend on either the time

at which the project is actually executed or on the change in post-auction cash �ows. Instead, a

novel and interesting result concerns the magnitude of the (winning) bid and auction participation.

We show in fact that they both depend on the evaluation of the project cash �ow at the time

of auction. As one can immediately see, these properties have important implications. First, the

seller does not need any speci�c information for holding the auction, i.e. she10 does not need to be

informed about current and future project cash �ows. Second, even if informed about the actual

realisations, not knowing the actual investment time threshold kills any incentive for renegotiating

the contract. Last, the seller may, by setting a cap on the highest acceptable bid, trade revenue o¤

against investment timing.

We address concerns concerning awarding of the asset and the distribution of the project value

among the parties in an uncertain economic environment. We show that the winner always holds

9More precisely, if the underlying risk is unsystematic, the relationship is positive, while, in the presence of

systematic risk, the sign is ambiguous. See e.g. Davis (2002) and Wong (2007).
10The asset owner is female in this paper, while other agents are male.
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the largest share of the project value when projects are characterized by su¢ ciently high volatility in

the cash �ows. In addition, we �nd that negative systematic risk reduces, ceteris paribus, the share

accruing to the seller. We then compare our �ndings with the case of a (hypothetical) fully informed

seller. We observe that, if the investment projects are characterised by a positive systematic risk

component, an informed seller would always opt for the project with the lowest possible volatility

level. Hence, since by auctioning the asset the opposite would occur, a notable distortion can be

associated with the auction process. Finally, by comparing auctioning the right to use the asset

with the case of a fully informed seller, we identify the value loss due to the information failure.

We observe that an increase in the level of volatility has an ambiguous e¤ect on the magnitude of

losses.

Last, it is worth mentioning that our paper is closely related to the literature examining optimal

contracts in a principal agent setting in the presence of private information concerning both the

state of the process governing the project value and some of the project�s features. DeMarzo and

Sannikov (2006), for instance, consider a continuous-time �nancial contracting model where the

state variable is the current cash �ow of the project and the agent may decide to divert part of this

cash �ow for personal gain. The moral hazard problem emerges as the principal does not observe

the cash �ow. Sung (2005) and Sannikov (2007) examine, in a continuous-time setting, a dynamic

agency problem in the presence of both moral hazard and adverse selection. In Sung (2005), an

optimal managerial compensation scheme must be set by a principal having imperfect knowledge

about the agent�s ability to control the project outcome. In Sannikov (2007), an optimal dynamic

�nancing contract is designed in the presence of adverse selection (the agent knows the initial quality

of the project) and moral hazard (the agent privately observes the stochastic project cash �ows and

can manipulate them using hidden savings). Cvitanic and Zhang (2007) develop a continuous-time

model where the private information concerns the drift of the underlying process governing the

project pay-o¤s and not the realisations of the process itself. Bergemann and Strack (2015) study

a revenue-maximising mechanism for repeatedly selling a non-durable good in a continuous time

setting. Each agent�s valuation is private information and changes over time. When contracting,

each agent privately observes his initial type, i.e. the initial state of the valuation process, the

drift or the volatility of the process. In the revenue-maximising mechanism, high initial types are
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favoured.11 Kruse and Strack (2015) restate the moral hazard problem of DeMarzo and Sannikov

as an adverse selection problem and show how the principal can induce truth telling about the

state of the process by setting appropriate transfers that do not depend on private information of

the agent. In the same vein, Arve and Zwart (2014) deal with the optimal choice of the supplier in

procurement auctions for new technologies when the auctioneer does not observe either the initial

value of the investment cost or its change over time.

The remainder of the paper is organised as follows. In section 2 we present the basic set-up

for our model. Section 3 identi�es the payo¤ associated with the use of the awarded asset and

characterises the auction frame and economic environment. In Section 4 we solve the bidding game

and discuss the properties of the solution. In Section 5 we present and discuss the implications

of our �ndings for ex-post project value and relative distribution between the parties. Section 6

presents some conclusions. Appendix A1-A7 contain proofs omitted from the text.

2 The basic set-up

Consider a risk-neutral agent owning a real asset, control of which gives the opportunity to activate

n > 1 potential investment projects. The asset is a close complement to each investment project,

so that projects cannot be developed without it. We assume that each potential investment project

is irreversible and has an in�nite life time. Furthermore, the speci�city of each investment project

passes through the associated cash �ows. In particular, we assume that, once the investment

decision has been undertaken, each project i generates a cash �ow stream xi(t) which evolves

according to the following di¤usion:

dxi(t)=xi(t) = (r � �i)dt+ �id!i(t); with xi(0) = xi > 0; for i = 1; :::; n (1)

where r is the constant risk-free interest rate, �i > 0 is the "rate-of-return shortfall" (i.e. a sort of

rate of dividend yield),12 �i is the constant instantaneous volatility, and !i(t) is a standard Wiener

process under a risk-neutral measure.13

11 It is also worth mentioning Kakade et al. (2013) and Pavan et al. (2014) considering, in a discrete time frame,

the problem of designing optimal mechanisms in environments where agents have dynamic private information.
12We require �i > 0 for securing, as it will become clearer later, a positive project value.
13The process (2) is quite standard in the literature (see e.g. McDonald and Siegel, 1984). However, for the

convenience of the reader, we provide a detailed derivation in Appendix A.1. We remind the reader also that a world
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In order to focus on the impact that project cash �ow volatility may have on the allocation of

the main asset, we introduce two simplifying assumptions. First, we refrain from considering the

presence of a drift for the cash �ows, and second, we assume that the project returns are equally

correlated to the expected return on the market portfolio. The �rst assumption can be justi�ed

considering that in many real projects the rate of expected change in the cash �ows does not

depend on the volatility of the underlying asset (see Davis, 2002). The second assumption implies

that, even if all project returns are perfectly correlated with respect to their systematic risk, the

associated market beta values, �i = � � (�i=�m), may di¤er.14

Then, by invoking the single-beta version of the Capital Asset Pricing Model,15 we are able to

write �i as:

�i = r + ���i (2.1)

where � is the market price of risk, � measures the correlation between the return of the project i

and the expected return on the market portfolio, rm, and:

d!i(t) = ��dt+ d i(t) (2.2)

where d i(t) is the increment of a standard Wiener process with E0 [d i(t)] = 0, E0
�
d i(t)

2
�
= dt.

In Eq. (2.1) the "rate-of-return shortfall", �i, results from adjusting the risk-free interest rate

for the systematic risk component,16 i.e. ���i. The rate responds to change in cash �ows volatility

and, depending on the sign of �, the rate can be increasing or decreasing in �i (� > 0 and � < 0;

respectively). Eq. (2.2) accounts for the evolution over time in both the systematic and idiosyncratic

risk components of the investment project i, i.e. ��t and  i(t); respectively.

Last, assuming that, for the sake of simplicity, none of the projects requires payment of invest-

where the expected growth rate is set equal to r � �i is referred to as a "risk-neutral" world (see e.g. Cox and Ross,

1976; Constantinides, 1978; Harrison and Kreps, 1979).
14More speci�cally, if �i 6= �j for any i and j (with i 6= j) in the considered set of projects, then �i = � � (�i=�m) 6=

� � (�j=�m) = �j , where �m is the volatility of the market portfolio.
15See Merton (1973).
16See for instance Davis (2002) and Wong (2007). Note that in our model if the systematic risk component is null,

the rate of dividend yield is constant, i.e., �i = r. On the analysis of investment decisions where �i does not depend

on �i; see McDonald and Siegel (1986), Teisberg (1994), Dixit and Pindyck (1994), Cappuccio and Moretto (2001)

and Lund (2005).
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ment costs to be activated,17 the current value of the generic investment project i is equal to the

expected present value of any future associated cash �ow, i.e.:

Ui(xi;�i) = E0[

Z 1

0
exp(�rt) � xi(t)] = xi=�i; for i = 1; :::; n (3)

where E0[:] is the expectation taken at time t = 0 with respect to Eq. (2) and for xi(0) = xi.18

3 The investment problem

Suppose now that the asset owner considers auctioning the right to use her asset to a speci�c

risk-neutral bidder (�rm) in exchange for a contingent payment to be made at the time of the

investment. For the sake of simplicity, we assume that for each project i there is only one potential

�rm (i) able to undertake it.

3.1 Information and auction format

We assume that each bidder has private information on both the cash �ow stream xi(t) and its

volatility �i: This means that, at every t > 0, the realisations of the process xi(t) are observed only

by bidder i. It is, however, public knowledge that �i is drawn from a common prior cumulative

distribution F (�) with continuously di¤erentiable density f(�) de�ned on a positive support � =

[�l; �h]� R+. Furthermore, we assume that agents�information about �i and  i(t) is independently

distributed among projects.19 In addition, the asset owner and all n bidders know the initial project

cash �ow, i.e. xi(0) = xi. These values may be viewed as the estimates, provided by some

independent experts, of the initial cash �ow level associated with each project. For convenience,

we sort these initial values as x1 � x2 � ::: � xn.

At t = 0, the asset owner establishes a sealed-bid auction where the bidders competitively bid

by o¤ering a �xed payment, pi (or a �ow of periodic payments, wi; such that pi = wi=r): Since

17We may, however, easily allow for a xi(t) resulting from taking into account the presence of a periodical constant

�ow cost.
18Note that our framework can easily apply to the case of a single project where the di¤erent levels of revenue are

the results of new information on the true probability distribution of x(t); where xi(t) = Ei(x(t)) (see Board, 2007).

Further, it can be used to represent the di¤erent quality of the output produced by each �rm once the project is

realized (Davis, 2002).
19This is done to rule out full surplus extraction à la Crémer and McLean (1988).
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the probability distribution of xi(t) and its future realisations are private information, we exclude

contingent payments as a function of the realised cash �ow xi(t). More speci�cally, we consider

only time-contingent payments: i.e. after the auction, the control of the asset is transferred to the

winner in exchange for pi paid at the time of the investment. Then as the winning bidder�s cash

�ow changes over time, he can decide when to exercise the embedded investment call option where

the bid plays the role of the strike price.

Our framework is consistent with several potential situations. Consider, for instance, pure

equity auctions where it is di¢ cult for investors to verify the actual periodic pro�ts of the �rm

from which they are buying stock20 or auctions for contracts granting the right to exploitation

of natural resources where payments (i.e. royalties) are set on the basis of estimates of top-line

revenues.21 Furthermore, one may include delivery-contingent contracts for real estate agents who

are compensated when they are able to locate (veri�able) suitable buyers22 or Pre-Commercial

Procurement (PCP) where a public buyer contracts for R&D of new innovative goods before they

are commercially available.23

Finally, at no loss for what may concern our results, we exclude the presence of ownership

transfer costs.24

20Gorbenko and Malenko (2014) discuss the case where the target �rm can agree to receive the payment in stock

of the combined company, if the bidder is unable to pay cash.
21For instance, when considering oil (or gas) leases, even if the market price is observable, reaching an agreement

may be rather complicated due to the di¢ culties in veri�cation of actual extraction costs (see Robinson, 1984) or

pro�ts to be shared (see Opaluch et al., 2009).
22See Taylor (1993).
23PCP involves di¤erent suppliers competing through di¤erent phases of development. The risks and bene�ts

are shared between the procurers and the suppliers under market conditions. See https://ec.europa.eu/digital-

agenda/en/pre-commercial-procurement. See Chillemi and Mezzetti (2014) on optimal procurement mechanisms

when contractors�costs are private information.
24Note that considering commonplace transfer costs would just imply a reduction in the number of potential projects

that the asset owner would consider. As we will show later this, is equivalent in our frame to setting a reservation

value on the initial cash �ows xi(0):
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3.2 The ex-post value of the asset

After the auction, the winning bidder, by gaining full control over the asset, must decide his timing

of investment by solving the following problem:25

Vi(xi;�i) = max
Ti

E0[exp(�rTi)][(x�i =�i)� pi]; (4)

where Ti = infft � 0 j xi(t) = x�i g is the bidder�s optimal investment time and x�i is the cash �ow

level triggering investment.

The actual investment cost for the bidder in problem (4) is represented by the payment pi to be

paid at Ti. We assume that 0 � pi � x�i =�i. This implies that, in expected terms, the present value

of cash �ows accruing from the project, x�i =�i; covers the initial out�ow, pi. Hence, the ex-post

value of the project, once invested at Ti, is given by Vi(x�i ;�i) = (x
�
i =�i)� pi � 0.26

Problem (4) can be rearranged as follows:

V (xi;�i) =

8><>: (xi=x
�
i )
i [(x�i =�i)� pi] for xi < x�i

(xi=�i)� pi for xi � x�i

(5)

where i is the positive root of 	(i) = (�
2
i =2)i(i � 1) + (r � �i)i � r = 0.27 As can be easily

shown, @i=@�i < 0; @i=@r > 0 and @i=@�i > 0:
28

By standard arguments, the optimal investment threshold and project value function are given

by:

x�i = [1 + 1=(i � 1)]�ipi; (6)

V (xi; pi;�i) = �(xi;�i)pi
1�i ; (7)

where �(xi;�i) = f(xi=�i)[1� (1=i)]gi=(i � 1).

As can be easily seen, the investment threshold is increasing in the level of volatility, i.e.

@x�i =@�i > 0. This is a well-known result in the literature on investment under uncertainty. It

25We drop the time index for notational convenience.
26We may easily allow for a payment pi including a �xed component independent on the agent�s type. One, in

fact, would simply need incorporating it in the investment threshold x�i . Note however that including this component

would not a¤ect the ranking resulting from the auction.
27The expected present value E0[exp(�rTi)] = (xi=x

�
i )
i is determined by using dynamic programming (see e.g.

Dixit and Pindyck, 1994, pp. 315-316).
28See Appendix A.2
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basically implies that the higher the uncertainty characterising the project pay-o¤, the later, in ex-

pected terms, the project will be undertaken. In other words, the bidder tries to limit any potential

downside loss by waiting until the option is su¢ ciently "in the money".

4 The auction

In this section we solve the bidding game presented above. On the basis of our set-up, agents i)

observe the initial project cash �ows fxi; i = 1; ::ng, ii) have rational expectations about  i(t),

and iii) have private information about �i and  i(t). We can then proceed to the analysis of the

underlying game adopting a standard independent private value auction framework.

4.1 Equilibrium strategy

Each agent i sets his optimal bidding strategy, pi, by maximising the following function:

W (xi; pi) = V (xi; pi) � Pr(of win/pi) + 0 � (1� Pr(of win/pi)) (8)

where Pr(of win/pi) is the probability of winning the auction conditional on the reported bid pi:

Thus, at t = 0, with probability Pr(of win/pi), the agent i wins and gets the value associated with

the asset, i.e. the value of the embedded investment project, V (xi; pi). In contrast, with probability

(1� Pr(of win/pi)); the agent does not win and gets 0.

Since i is monotonic in �i, bidders may be equivalently characterised in terms of i = (�i).

It follows that, as di=d�i < 0, G(i) = 1 � F (�i); G() = 0 and G() = 1 where  = (�h) and

 = (�l).

The solution of the bidding game is given in the following proposition:

Proposition 1 For any �nite n > 1, there exists a Bayesian Nash equilibrium in symmetric and

strictly increasing strategies p(�i) for all i 6= 1, characterised by:

1.1) the bidding function:

p(�i) = C � exp(�(i)) � F (�i)
n�1
i�1 , for �i 2 [b�; �h] (9)

where C � x1=r is an arbitrary constant, �(i) =
R i
 [ln(1�G(z))

n�1=(1�z)2]dz < 0, p(�h) =

C and the cut-o¤ b� solves the equation:
p(b�) = x1=r;

11



1.2) the optimal investment trigger:

x�(�i) = [1 + 1=(i � 1)]�ip(�i) (10)

where

x�(�h) = [1 + 1=( � 1)]�i(�h)C and x�(b�) = [1 + 1=((b�)� 1)]�(b�)(x1=r);
while, for agent 1,

2.1) the bidding function is:

p1 = max[p(�1); p(b�)]; for �1 2 [�l; �h] (9.1)

2.2) the optimal investment trigger is:

x�(�1) = [1 + 1=(i � 1)] � �1 � [p(b�) + I(p(�1)>p(b�)) � (p(�1)� p(b�))] (10.1)

where I(p(�1)>p(b�)) is an indicator function which takes value 1 if p(�1) > p(b�) and 0 otherwise.
Proof. See Appendix A.3.

By taking the derivative of p(�i) with respect to �i, we can isolate one of the central �ndings

of our model. It is easy to show in fact that @p(�i)=@�i > 0. Although the asset is awarded to the

ex-ante most e¢ cient agent, i.e. the agent making the highest bid, this corresponds to the bidder

who may later undertake the project characterised by the highest volatility in the cash �ows. It

is also worth highlighting that, for any C � x1=r, the bid function (Eq.( 9) and (9.1)) does not

depend on the time at which the project is actually executed and on the changes in post-auction

cash �ows. These properties have some important implications. First, the seller does not need any

speci�c information for holding the auction. Second, even though only the �rms are informed about

the change in xi(t) after t = 0, this information advantage does not yield any additional rents.29

Third, even if the seller were able to observe the actual cash �ows xi(t), as the investment timing

is not known there would not be any incentive for renegotiating the contract.30 Finally, the seller

29This is basically due to the fact that at the moment of contracting the future cash �ows are still unknown to

both parties. The result is line with previous �ndings in the literature (see for instance Baron and Besanko, 1984;

Besanko, 1985; Eso and Szentes, 2013; Pavan et al., 2014; Arve and Zwart, 2014).
30Note that some of these properties characterise the mechanism for the allocation of investment options in Board

(2007) and Kruse and Strack (2015).
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is able to set C so that a reserve value can be established and used as a benchmark for assessing

submitted bids and selecting participants. In the next section we discuss this issue.

Continuing with the properties of Eq. (9), note that participation in the auction is restricted to

a speci�c set of agents. Only the agents likely to develop a project whose cash �ows have a volatility

�i no lower than b� > �l participate (see Appendix A.3). Intuitively, this occurs because the option-

like nature of the contract allows the bidders to decide the time of investment. As bidders with

more volatile projects bene�t from delaying investment, this will stimulate more aggressive bids.

In other words, the marginal disutility of an extra dollar of pi decreases as �i increases.

Finally, since the degree of shading, exp(�(i)) � F (�i)
n�1
i�1 < 1, decreases with the number of

bidders, the level of competition has an important impact on bidding behaviour. In fact @pi=@n < 0;

which in turn implies that @x�i =@n < 0, i.e. delays in the project activation are less likely when the

level of competition is high. This is consistent with our framework since, while squeezing agents�

rents, open competition can induce the agents to anticipate their investment for balancing pro�t

reduction.

In Figure 1 we illustrate our �ndings by drawing the bid function and the corresponding invest-

ment threshold as functions of �i for a speci�c range of parameter values, i.e. x1 = 4:5; C = 100;

� = 0:30; r = 0:05 and � = f�1;�0:5; 0; 0:5;�1g. The solid lines indicates the bids and the cor-

responding triggers within the admissible range �(�̂) = [�̂; �h]. The restriction on the range of

admissible �i depends on the correlation parameter � and is set in order to ensure that �i > 0.

see FIGURE 1

Figure 1: Bids and investment thresholds for x1 = 4:5; C = 100; � = 0:30; r = 0:05

4.2 Auction participation and bidding cap

By studying the equilibrium in Proposition 1, we observe three important aspects about auction

participation. First, we observe that participation in the auction depends on the degree of potential

competition. In particular, competition may restrict the participation only to the agents having

very valuable projects which, in our frame, are the projects characterised by higher volatility in

their cash �ows. This conclusion �nds support in Proposition 2:
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Proposition 2 As n increases, fewer agents actively participate in the auction, i.e.:

@b�=@n = �Z (b�)


ln(1�G(z))=(1� z)2dz=[(n� 1)(f(b�)=F (b�))=((b�)� 1)] > 0 (11)

Proof. See Appendix A.4

Second, as expected, the participation is negatively related to the rank of the initial cash �ows,

i.e.:

Proposition 3 An increase in agent 10s revenue reduces the number of agents that participate in

the auction, i.e.:

@b�=@x1 = 1=r(n� 1)[(f(b�)=F (b�))=((b�)� 1)] > 0 (12)

Proof. See Appendix A.4

Finally, it is interesting to study the impact that a change in C has in terms of participation.

This is given by Proposition 4.

Proposition 4 As C increases, more agents will actively participate in the auction, i.e.:

@b�=@C = �1=C(n� 1)[(f(b�)=F (b�))=((b�)� 1)] < 0 (13)

Proof. See Appendix A.4

Hence, the exogenous parameter C may be thought as capturing the actual target set by the

seller in terms of participation. More speci�cally, C may be considered as a cap set on the maxi-

mum level of allowed bids, or equivalently, by the relationship between presented bid, pi, and the

corresponding investment trigger, x�i , as a limit imposed to the maximum acceptable investment

timing.

Note that, if this is the case, setting, for instance, a looser cap would have a twofold e¤ect. In

fact, it would increase the range of types participating in the auction and it would also increase

the payment �nally accruing to the seller. Nothing would change concerning the characteristics of

the winning bid. The asset would, in fact, still be awarded, to the agent among the participants

investing in the project with higher volatility in the cash �ows. However, as a higher payment is

due to the seller, the project, in expected terms, will clearly be delayed.

In other words, the level of discretion by the seller in deciding the range of risky projects

permitted to participate in the auction magni�es the e¤ect of uncertainty vis-a-vis the e¤ect of
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competition. In this respect, each bidder taking account of the uncertainty about his project�s cash

�ows and the level of competition strategically chooses a higher degree of �exibility that results in

an increase in both the bid and the investment trigger.31

On the basis of these considerations, suppose that the seller sets C by targeting a certain

probability that the investment will be eventually undertaken. In particular, de�ning with q(xi;x�)

the probability that the process in Eq. (2) will eventually hit the threshold x�(�i); this is equal to

(see Dixit, 1993):

q(xi;x
�) = xi=x

�(�i) = [1� (1=i)] � (xi=�(�i)p(�i)) = (1=p(�i))(xi=�(�i)) (14)

where �(�i) = r + (1=2)�i
2i.

32 Notice that the probability of investment is basically given by the

ratio between the present value of the stream of xi computed at t = 0 using the adjusted discount

rate �(�i) and the price paid to the seller to be awarded the asset. Note also that, as expected, the

probability of investment is unambiguously decreasing in �i, i.e. dq=d�i = �(q=x�)(dx�=d�i) < 0:

Now suppose that, with the information available at t = 0; the seller considers the project

with the highest initial cash �ows, i.e. x1, and the potentially most risky project in the range

� = [�l; �h].33 Hence, by Eq. (9), the corresponding cap is such that:

qminC = x1=�(�
h) (15)

where qmin is the targeted (minimally acceptable) probability of investment.34 By Eq. (15), consis-

tently with our discussion above, C is set such that the minimal expected payment the seller would

receive is equal to the stream of x1 discounted by the adjusted discount rate �(�h).

In order to illustrate the impact of introducing a bid cap, in Figure 2 we plot the bid function

and the corresponding investment thresholds for x1 = 4:5; � = 0:30; r = 0:05 and � = 0:5;�0:5:

This is done for three potential levels of minimal probability of investment, qmin, namely for 20%;
31 In a model of investment timing of joint ventures, Yoshida (2012) �nds a similar result. Notably, in a simple two-

agent model, in which an option model of investment is embedded, he shows that the �exibility chosen by one party

creates strategic uncertainty for another party, which causes the other party to choose a higher level of �exibility.

The strategic complementarity then leads to delays in the investment.
32The rental rate r is adjusted by adding the term 1

2
�i
2i in order to account for the presence of an option value

(see Dixit and Pindyck, 1994, p. 145).
33 It is worth stressing that the frame may be easily adapted for setting C on the basis of other considerations.
34See Appendix A.5 for a discussion of this case.
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25% and 30%. We observe that, irrespective of the sign of �, bids are decreasing in the strictness of

the cap. In contrast, investment, in expected terms, is anticipated. Last, in line with Proposition 4

but only evident for the scenario where � = 0:5 and qmin = 30%, the number of projects considered

by the seller (on the solid thicker line) is decreasing with the strictness of the cap.

see FIGURE 2

Figure 2: Bids and investment thresholds with cap for x1 = 4:5; � = 0:30; r = 0:05

We conclude this section by discussing the limit case where C = x1=r. In this case, the seller

basically awards the asset to agent 1 in exchange for the payment �ow p1 = x1=r. Then, once

o¤ered p1, consistently with his own type, �1, agent 1 will activate the project at:

x�(�1) = [1 + 1=(i � 1)]�1(x1=r)

5 Model implications

In this section we investigate the implications that selling the right to develop the asset may have

on the distribution of the ex-post project value among the parties. We also investigate the role

played by risk in the ex-post distribution. More speci�cally, in Section 5.1 we show how the value

of the winner�s project is shared between the seller and the winning bidder. In Section 5.2, using

as a benchmark the ex-post value that could have been generated under a �rst-best scenario, we

examine the losses arising in our auction frame. In Section 5.3 we study the impact that selecting

riskier projects has on the parties�share. In all cases, we employ numerical examples to illustrate

our �ndings.

5.1 Value shares

The ex-post values accruing to winner and seller are:

V (xi; pi) = (xi=x
�
i )
ipi=(i � 1) (16.1)

R(xi; pi) = (xi=x
�
i )
ipi = V (xi; pi)(i � 1) (16.2)

respectively, where Eq. (16.1) is obtained by substituting Eq. (6) into Eq. (5).
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The ex-post social project�s value, S(xi; pi), is equal to the sum of the parties�payo¤s, i.e.

S(xi; pi) = V (xi; pi) +R(xi; pi) = iV (xi; pi) (17)

It is easy to show that the project value shares accruing to the parties are

V (xi; pi)=S(xi; pi) = 1=i (17.1)

R(xi; pi)=S(xi; pi) = 1� (1=i) (17.2)

Note that, since @i=@�i < 0; @i=@r > 0 and @i=@� > 0; the share of the project value accruing

to the winner is increasing in the volatility of its cash �ow and decreasing in the risk-free interest

rate and in the correlation of the project returns with the return on the market portfolio. Opposite

considerations should be made when considering the seller. Concerning the impact of volatility, we

notice that

Proposition 5 If i < 2, the winner holds the largest share of the value of the project. Otherwise,

the opposite occurs.

This means that the winner is paid the largest share when projects are characterized by highly

volatile cash �ows. An interesting limit result is lim�!1(1=i) = 1 which implies that the winner

would be able to cash the entire value of the project. So, at least for what may concern the share,

as the auction always awards the asset to the riskier project (see Proposition 1), the seller may

be seen as losing. However, this is not necessarily the case as the social value, S(xi; pi), totally

generated is, in contrast, increasing in �i (see Figure 4). Last, as @i=@� > 0, negative systematic

risk reduces, ceteris paribus, the share accruing to the seller.

In Figure 3 we illustrate these �ndings by plotting V (xi; pi); R(xi; pi) and S(xi; pi) as a function

of �i for the scenarios � = 0:5 and � = �0:5. Other parameters are as above. In Figure 3 we also

check for the e¤ect of setting a cap on the acceptable bids. We consider three levels of probability of

actual investment, namely qmin = 20%, 25% and 30%. We note that, ceteris paribus and irrespective

of the sign of �, a higher social value, S(xi; pi), can be generated in the presence of a stricter cap.

see FIGURE 3

Figure 3 : V (xi; pi); R(xi; pi) and S(xi; pi) for x1 = 4:5; � = 0:30; r = 0:05
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5.2 Social loss

The ex-post social loss due to the presence of an information failure is de�ned as the di¤erence

between the outcome, in terms of ex-post project value, resulting in a �rst-best scenario and that

accruing when auctioning the asset, i.e.:

L(xi;�i) = U(xi;�i)� S(xi; pi) (18)

= [1� (xi=x�i )i�1]U(xi;�i) > 0

From Eq. (18), the loss due to the information failure corresponds to the portion [1� (xi=x�i )i�1]

of the �rst-best outcome. Note that (xi=x�i )
i�1 = Vxi=�i < 1 where Vxi = @V (xi; pi)=@xi. We can

then rearrange Eq. (18) as follows:

L(xi;�i) = (�i � Vxi)U(xi;�i)=�i > 0 (18.1)

where �i � Vxi > 0.35 From Eq. (18.1), the magnitude of losses can be linked to the di¤erence

between the rate-of-return shortfall, �i; of the winning project and the marginal return, Vxi , attached

to the option to invest in the winning project at the time of award. It is worth stressing that, ceteris

paribus, as Vxi is increasing in xi, the seller may be able to reduce the ex-post social loss L(xi;�i)

by choosing when the auction should be held.36

5.3 Are riskier projects better?

In a �rst-best scenario, the ex-post social project value would be equal to Ui(xi;�i): This value is

a¤ected by the cash �ow volatility as follows:

@Ui(xi;�i)=@�i =

8><>: < 0 for � > 0;

� 0 for � � 0:
(19)

This result leads to the following consideration:

Remark 2: In a �rst-best scenario, having the possibility of choosing any of the available n

investment projects, the seller would choose the project with the highest expected present value,
35 In �nance @V (xi; pi)=@xi is known as � and it measures the rate of change of the option value with respect to

changes in the underlying asset�s price. For a (perpetual) Call Option it is a number between 0 and 1 and reaches 1

as the option approaches its optimal exercise time (i.e., it is highly in-the-money).
36See Cong (2016) for an analysis of the timing of an auction.
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i.e. max [Ui(xi;�i)] for all i. From Eq. (19) and provided that xi=�i � x1=�1; this is the

project with cash �ows characterised by i) the highest volatility for � > 0 or ii) the lowest

volatility for � � 0.

Hence, as the auction would always award the asset to the project with the highest volatility

in the cash �ows, the ranking identi�ed in Remark 2 is fully violated when the systematic risk

component is positive or, in other words, the project is positively correlated with the market

portfolio.

Pushing the analysis further, it is interesting to examine, still using as a benchmark the �rst-

best payo¤U(xi;�i), how the ex-post social loss responds to changes in the volatility level. In order

to do this, we �rst de�ne the ratio:

�S(xi; pi) = S(xi; pi)=U(xi;�i) = S(xi; pi)(�i=xi) < 1; (20)

taking its derivative with respect to �i yields the following result:

Proposition 6 An increase in �i has an ambiguous e¤ect on the ex-post social loss, i.e.:

@�S(xi; pi)=@�i = �S(xi; pi)f[ln(xi=x�i ) + (1=i)](@i=@�i)� (n� 1)(f(�i)=F (�i)) +

���(i � 1)=�ig (20.1)

Proof. See Appendix A.7

Three e¤ects are in place. The �rst is the so-called "asset substitution" (see Shibata 2009, p.

916). If jln(xi=x�i )j < 1=i; then a riskier project reduces social losses; otherwise, an increase in

�i reduces the social value of the project. The second, de�nitely negative, e¤ect depends on the

information rents to be paid to the most e¢ cient bidder. The third is the correlation between the

project returns and the return on the market portfolio. In this respect, we note that, as expected,

the relative term enters positively for � < 0.

Similar considerations can be made when considering the ratio between the ex-post value ac-

cruing to the winner and the �rst-best outcome:

�R(xi; pi) = R(xi; pi)=U(xi; pi) = [1� (1=i)]�S(xi; pi) < 1; (21)
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and its derivative with respect to �i; i.e.

@�R(xi; pi)=@�i = [1� (1=i)]�S(xi; pi)[ln(xi=x�i ) + 1=(i � 1))(@i=@�i) +

�(n� 1)(f(�i)=F (�i))� ��(i � 1)=�i] (21.1)

To illustrate how these three e¤ects work, we plot in Figure 4 the social value accruing when

auctioning the asset, S(xi; pi), and the associated losses, L(xi;�i), as a function of �i for the

scenarios � = 0:5 and � = �0:5. We again consider three levels of probability of actual investment,

namely qmin = 20%; 25% and 30%. Other parameters are as above. We observe that, irrespective

of the sign of �, S(xi; pi) is increasing in the volatility of the winning project. However, since

Ui(xi;�i) depends on the sign of �, the loss curve, L(xi;�i), takes a di¤erent shape. Note in fact

that for a positive �, losses are decreasing in �i while, driven by the term ��(i � 1)=�i, they are

increasing for the case of a negative systematic risk. We observe that, however, the rate of increase

is decreasing in �i. We also observe that, irrespective of the sign of �, losses are lower when a

stricter cap is imposed on bids. This positive e¤ect is exclusively due to the higher social value

that, ceteris paribus, can be generated in the presence of a stricter cap.

see FIGURE 4

Figure 4: Social value and losses for x1 = 4:5; � = 0:30; r = 0:05

6 Conclusions

In several economic situations, the right to use a real asset is essential for activation of an investment

project. In this paper, we consider a seller who auctions such an asset among n agents. Each agent

contemplates a potential investment project and has private information about the associated cash

�ows and their volatility. The asset is granted in exchange for a payment to be made at the time

of investment and is awarded to the bidder making the highest bid. We show that the auction

is e¢ cient and assigns the asset to the agent contemplating the investment project characterised

by the highest volatility in the associated cash �ows. The winner is then the agent i) investing

and, consequently, ii) paying the seller later than anyone else in the project pool. The optimal

bid function has interesting properties, namely, the bid does not depend on: i) the time at which

the project is actually executed and ii) the change in post-auction cash �ows. We also examine
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the distribution of the ex-post project value among the parties and show that i) the winner always

holds the largest share of the project value when projects are characterized by su¢ ciently high

volatility in the cash �ows and that ii) negative systematic risk reduces, ceteris paribus, the share

accruing to the seller. We then evaluate, using the case of a fully informed seller as a benchmark,

the impact that information issues have in a dynamic and uncertain environment. We show that

when project returns and return on the market portfolio are positively correlated, a fully informed

seller would always grant the asset to the agent considering a project with the lowest volatility in

cash �ows. This is in evident contradiction of the auction outcome, by which the asset would be

granted to the project with the highest volatility in cash �ows. Last, when comparing �rst-best

and auction outcomes from a societal perspective, we show that an increase in the level of volatility

has an ambiguous e¤ect on the magnitude of losses due to the presence of information asymmetry.
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A Appendix A1-A7

A.1 Project cash �ow and its di¤usion

Assume that the stream xi(t) follows geometric Brownian motion:

dxi(t)=xi(t) = �idt+ �id i(t)

where �i is the drift rate, �i is the constant instantaneous volatility, and  i(t) is a standard Wiener

process. Under the assumption of a complete capital market, a traded security (or a portfolio)

yi(t) capable of hedging the risk of the process  i(t) exists. Assume that yi(t) follows a stochastic

di¤erential equation of the form dyi(t)=yi(t) = �idt + �id i(t): Given the assumption of complete

markets, the process yi(t) can be written as (Harrison and Pliska, 1981):

dyi(t)=yi(t) = rdt� rdt+ �idt+ �id i(t)

= rdt+ �id!i(t); (A.1.1)

where r is the riskless interest rate, (�i � r)=�i is the market price of the risk class  i(t) and

d!i(t) = (1=�i)(�i � r)dt+ d i(t). Under the measure !i(t), the process xi(t) can be written as:

dxi(t)=xi(t) = �idt+ �id i(t)

= [�i � (�i=�i)(�i � r)]dt+ �id!i(t)

= (r � �i)dt+ �id!i(t); (A.1.2)

where �i = r + (�i=�i)(�i � r)� �i: Note that r + (�i=�i)(�i � r) represents the project�s expected

rate of return, i.e. (Exi(dxi)=dt)=xi = �i + �i. In order to obtain Eq. (2), it su¢ ces to set �i = 0

and (�i�r)=�i = ��i; where � = (rm�r)=�m is the market price of risk with rm and �m indicating

expected return and volatility of the market portfolio, respectively, and �i = cov(dxi=xi; rm)=�i�m

measures the correlation of the asset xi with the market portfolio. Finally, a simple algebra yields:

�i = cov(dxi=xi; rm)=�i�m = cov((r � �i)dt+ �id!i(t); rm)=�i�m

= cov(�id!i(t); rm)=�i�m = cov(d i(t); rm)=�m: (A.1.3)
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A.2 Some comparative statics

From 	(i) = 0 we obtain:

@i=@�i = i[��� �i (i � 1)]=Y < 0 (A.2.1)

@i=@r = 1=Y > 0 (A.2.2)

@i=@q = �ii=Y > 0 (A.2.3)

where q = �� and Y = (1=2)�2i (2i � 1) + (r � �i).

Note in fact that:

�� < �i (i � 1) and Y > 0

A.3 Proof of Proposition 1

Agent i0s expected payo¤ from bidding pi is given by:

W (xi; pi) = V (xi; pi) � Pr(of win/pi) + 0 � (1� Pr(of win/pi)): (A.3.1)

Now, consider the agent i0s bidding behaviour. Assume that all other agents use a strictly

monotonically increasing bid function p(�j), i.e. p(�j) : [�l; �h] ! [p(�l); p(�h)] 8j 6= i. Since,

by assumption, p(�i) is monotonous in [�l; �h], the probability of winning by bidding p(�i) is

Pr(p(�i) > p(�j) j 8j 6= i) = Pr(�j < p�1(p(�i)) j 8j 6= i) = F (�i)
n�1. It follows that agent i

chooses reporting e�i by solving the following problem:
W (�i; e�i) = maxe�i V (xi; p(e�i)) Pr(of win/p(e�i)) = maxe�i V (xi; p(e�i)) Pr(p(e�i) > max

j 6=i
pj)

= maxe�i V (xi; p(e�i))F (e�i)n�1; (A.3.2)

where F (e�i)n�1 is the probability that all other bidders have a e�i lower than that of the winner.
Note that bidders may be equivalently characterised in terms of i. It follows that, as di=d�i <

0, G(i) = 1� F (�i); G() = 0 and G() = 1 where  = (�h) and  = (�l). Hence, maximising

the objective (A.3.2) with respect to e�i and imposing the truth-telling condition e�i = �i yields the

necessary condition:

@W (�i; e�i)=@e�ije�i=�i = @W (i; ei)=@eijei=i � @i=@�ij = 0; (A.3.3)
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where ei = (e�i) and W (i; ei) = V (xi; p(ei))(1�G(ei))n�1.
This is equivalent to imposing:

@W (i; ei)=@eijei=i = �(xi;�i)(1� i)p(i)�i @p(i)=@eijei=i (1�G(ei))n�1+
��(xi;�i)p(i)1�i(n� 1)[g(i)=(1�G(i))](1�G(ei))n�1

=W (i)[(1� i)(@p(i)=@eijei=i =p(i))� (n� 1)[g(i)=(1�G(i))]] = 0: (A.3.4)

By Eq. (A.3.4), the maximisation problem can be reduced to the following �rst-order linear di¤er-

ential equation:

@p(i)=@i � (n� 1)[g(i)=(1�G(i))][p(i)=(1� i)] = 0: (A.3.5)

The solution to the di¤erential equation (A.3.5) is given by:

p(i) = C � exp((n� 1)
Z i


f[g(z)=(1�G(z))]=(1� z)gdz)

= C � exp(�(n� 1) jln(1�G(z))=(1� z)ji +�(i))

= C � (1�G(i))
n�1
i�1 � exp(�(i)); (A.3.6)

where �(i) =
R i
 [ln(1�G(z))

n�1=(1� z)2]dz and C is an arbitrary constant.

Rearranging in terms of �i, we have:

pi = p(�i) = C � exp(�(i)) � F (�i)
n�1
i�1 (A.3.7)

x�i = x�(�i) = [1 + 1=(i � 1)]p(i)�i = [(�2i =2)i + r]pi (A.3.8)

where

V (xi; pi) = �(xi;�i)�[exp((1�i)
Z i


ln(1�G(z))=(1�z)2dz=(1�G(i))]n�1�C1�i = �(xi;�i)p

1�i
i

(A.3.9)

where �(xi;�i) = f(xi=�i)[1� (1=i)]gi=(i � 1) or, equivalently,

V (xi; pi) = (xi=x
�
i )
ipi=(i � 1) (A.3.9a)

By evaluating the extremes, we have:

p(�h) = C; p(�l) = 0; (A.3.7a-A.3.7b)

x�(�h) = [1 + 1=( � 1)]�i(�h)C and x�(�l) = 0: (A.3.8a-A.3.8b)
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Note that each agent identi�es two potential bids contingent to the exercise time, i.e. p(�i) and

xi(0)=r. Note that xi(0)=r is the only alternative bid that an auctioneer not able to verify the actual

cash �ows xi(t) may accept. In order to maximise the probability of winning, the bidder should

report the highest value between the two potential bids, i.e. pi = max [p(�i); xi(0)=r]. However,

since, by assumption, the initial values xi are publicly known, each agent knows that i) agent 1

will report p1 = max [p(�1); x1=r] and ii) x1 � x2 � ::::: � xn. Hence, agent i participates in the

auction if, and only if, p(�i) � x1=r for any i 6= 1. It follows that actual participation in the auction

is restricted to agent types in the range �i � b� where the cut-o¤ type b� is determined by solving
the following equation:

p(b�) = x1=r (A.3.7c)

On the basis of these considerations, note that for C = x1=r, the auctioneer is basically awarding

the asset to agent 1 in exchange for the payment �ow p1 = x1=r.

It is easy to show that both the payment, pi, and the investment trigger, x�i , are monotonically

increasing in �i. Concerning the payment, note in fact that:

@pi=@�i = C � [@(1�G(i))
n�1
i�1 =@i + (1�G(i))

n�1
i�1 � @�(i)=@i] exp(�(i))(@i=@�i)

= �(n� 1)[g(i)=(1�G(i))]pi(@i=@�i)=(i � 1)

= (n� 1)(f(�i)=F (�i))pi=(i � 1) > 0; (A.3.10)

Now, taking the derivative of x�i with respect to �i, we have:

@x�i =@�i = [�ii + (1=2)�
2
i (@i=@�i)]pi + [(�

2
i =2)i + r](@pi=@�i)

= f(�2i =2)i(�ii � ��)+

+(n� 1)(f(�i)=F (�i))[(�2i =2)i + r]=(i � 1)g=[(�2i =2)i + r]gx�i > 0 (A.3.11)

Last, by taking the derivative of Eq. (A.3.7), with respect to n; we get:

@p(�i)=@n = C � exp(�(i)) � f(@�(i)=@n)F (�i)
n�1
i�1 + lnF (�i)[F (�i)

n�1
i�1 =(i � 1)]g

= p(�i)[@�(i)=@n+ lnF (�i)=(i � 1)]

= p(�i)[

Z i


ln(1�G(z))=(1� z)2dz � ln(1�G(i))=(1� i)] < 0 (A.3.12)

It immediately follows that limn!1 p(�i) = 0.
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Last, the ex-ante value functions are:

W (xi;�i) � E��i [V (xi; p(�i))] = �(xi;�i)(Ce
�(i))1�i ; for all i 6= 1 (A.3.13)

and

W (x1;�1) = E��i [V (x1; p(b�))]+I(p(�1)>p(b�))�(E��i [V (x1; p(�1))]�E��i [V (x1; p(b�))]); for all i = 1
(A.3.14)

where I(p(�1)>p(b�)) is an indicator function which takes value 1 if p(�1) > p(b�) and 0 otherwise.
A.4 Proof of Proposition 2

Furthermore, di¤erentiating on both sides of Eq. (A.3.7c) with respect to n gives:

@p(b�)=@n = 0 (A.4.1)

Expanding the RHS of Eq. (A.3.1) yields

@p(b�)=@n = p(b�)[@�((b�))=@n+ (n� 1)(f(b�)=F (b�))(@b�=@n)=((b�)� 1) +
�(n� 1) lnF (b�)(@(b�)=@n)=((b�)� 1)2]

where

@�((b�))=@n =

Z (b�)


ln(1�G(z))=(1� z)2dz + (n� 1) ln(1�G((b�)))(@(b�)=@n)=((b�)� 1)2
=

Z (b�)


ln(1�G(z))=(1� z)2dz + (n� 1) lnF (b�)(@(b�)=@n)=((b�)� 1)2
Hence, Eq. (A.4.1) reduces to:Z (b�)


ln(1�G(z))=(1� z)2dz + (n� 1)(f(b�)=F (b�))(@b�=@n)=((b�)� 1) = 0

and it is easy to show that:

@b�=@n = �Z (b�)


ln(1�G(z))=(1� z)2dz=[(n� 1)(f(b�)=F (b�))=((b�)� 1)] > 0 (A.4.2)
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A.5 Proof of Proposition 3

By di¤erentiating on both sides of Eq. (A.3.7c) with respect to C, we get:

@p(b�)=@C = 0 (A.5.1)

Expanding the RHS of Eq. (A.5.1) yields:

@p(b�)=@C = p(b�)[(1=C) + @�((b�))=@C + (n� 1)(f(b�)=F (b�))(@b�=@C)=((b�)� 1) +
�(n� 1) lnF (b�)(@(b�)=@C)=((b�)� 1)2]

where

@�((b�))=@C = (n� 1) ln(1�G((b�)))(@(b�)=@C)=((b�)� 1)2
Hence, Eq. (A.5.1) reduces to:

(1=C) + (n� 1)(f(b�)=F (b�))(@b�=@C)=((b�)� 1) = 0
and it is easy to show that:

@b�=@C = �1=[C(n� 1)(f(b�)=F (b�))=((b�)� 1)] < 0 (A.5.2)

Furthermore, by di¤erentiating on both sides of Eq. (A.3.7c) with respect to x1, we get:

@p(b�)=@x1 = 1=r (A.5.3)

Expanding the RHS of Eq. (A.5.3) yields:

@p(b�)=@x1 = p(b�)[@�((b�))=@x1 + (n� 1)(f(b�)=F (b�))(@b�=@x1)=((b�)� 1) +
�(n� 1) lnF (b�)(@(b�)=@x1)=((b�)� 1)2]

where

@�((b�))=@x1 = (n� 1) ln(1�G((b�)))(@(b�)=@x1)=((b�)� 1)2
Hence, Eq. (A.5.3) reduces to:

(n� 1)(f(b�)=F (b�))(@b�=@x1)=((b�)� 1) = 1=r
and it is easy to show that:

@b�=@x1 = 1=[r(n� 1)(f(b�)=F (b�))=((b�)� 1)] > 0 (A.5.4)
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A.6 Setting C

Let us set a minimal acceptable probability level qmin and then consider the highest risk pro�le, �h,

and the highest potential current payo¤ x1. Plugging these element into Eq. (14) and rearranging,

we obtain:

C = (1=qmin)fx1=[(1=2)�h2 + r]g (A.6.1)

where the second term represents a stream of x1 discounted (to account for the presence of an

option value) at the adjusted rate (1=2)�h2 + r.

Setting a feasible C requires that:

(1=qmin)fx1=[(1=2)�h2 + r]g � x1=r (A.6.2)

which in turn implies that:

qmin � r=[(1=2)�h2 + r] < 1 (A.6.3)

In other words, when selecting the cap C, the auctioneer may never set 1 as a target in terms of

probability of eventual investment. Note also that lim�h!1 r=[(1=2)�h2 + r] = 0. This means

that �h ! 1 there does not exist any C with a corresponding positive probability of hitting the

investment threshold.

A.7 Proof of Proposition 6

Seller (ex-post) - Taking the derivative of Eq. (A.3.9a) with respect to �i yields

@V (xi; pi)=@�i = (@(xi=x
�
i )
i=@�i)[pi=(i � 1)] + (xi=x�i )i@[pi=(i � 1)]=@�i

= V (xi; pi)[�(i=x�i )(@x�i =@�i) + ln(xi=x�i )(@i=@�i) + (1=pi)(@pi=@�i) +

�(@i=@�i)=(i � 1)]

Note that:

@x�i =@�i = x�i [�(@i=@�i)=i(i � 1) + (1=p(�i))(@p(�i)=@�i) + (1=�i)(@�i=@�i)]

Thus,

@V (xi; pi)=@�i = V (xi; pi)[ln(xi=x
�
i )(@i=@�i)� (n� 1)(f(�i)=F (�i))� (i=�i)(@�i=@�i)]
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This implies that the sign of @V (xi; pi)=@�i depends on the sign taken by the following function:

�(�i) = ln(xi=x
�
i )(@i=@�i)� (n� 1)(f(�i)=F (�i))� (i=�i)(@�i=@�i) (A.6.1)

Winner (ex-post) - Note that

R(xi; pi) = (xi=x
�
i )
ipi = V (xi; pi)(i � 1)

Hence,

@R(xi; pi)=@�i = R(xi; pi)[�(�i) + (@i=@�i)=(i � 1)]

This implies that the sign of @R(xi; pi)=@�i depends on the sign taken by the following function:

#(�i) = �(�i) + (@i=@�i)=(i � 1) (A.6.2)

Social value (ex-post) - The ex-post social value attached to the project is

S(xi; pi) = V (xi; pi) +R(xi; pi) = V (xi; pi)i

Its derivative with respect to �i is

@S(xi; pi)=@�i = @V (xi; pi)=@�i + @R(xi; pi)=@�i = S(xi; pi)[�(�i) + (@i=@�i)=i] (A.6.3)

Losses - By comparing the social value attached to the project for the case of delegation with the

project value without delegation, it is easy to show that:

U(xi;�i)� S(xi; pi) = (xi=�i)� (xi=x�i )i [i=(i � 1)]pi = [1� (xi=x�i )i�1](xi=�i) > 0

De�ne now the ratio:

�S(xi; pi) = S(xi; pi)=U(xi;�i) = S(xi; pi)(�i=xi)

Its derivative with respect to �i is:

@�S(xi; pi)=@�i = (@S(xi; pi)=@�i)(�i=xi) + S(xi; pi)(@�i=@�i)=xi

= �S(xi; pi)f[ln(xi=x�i ) + (1=i)](@i=@�i)� (n� 1)(f(�i)=F (�i)) +

���(i � 1)=�ig (A.6.4)

Similarly, de�ne the ratio:

�R(xi; pi) = R(xi; pi)=U(xi;�i) = [1� (1=i)]�S(xi; pi)
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Its derivative with respect to �i is:

@�R(xi; pi)=@�i = �S(xi; pi)(1=i
2)(@i=@�i) + [1� (1=i)]@�S(xi; pi)=@�i

= [1� (1=i)]�S(xi; pi)f[(ln(xi=x�i ) + 1=(i � 1)](@i=@�i) +

�(n� 1)(f(�i)=F (�i))� ��(i � 1)=�i] (A.6.5)
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