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Abstract
Models of investment under uncertainty mostly concern the firm’s stochastic environment
as exogenously given and subject to constant characteristics. We consider a firm that can
sequentially invest to alter the growth rate of a project through a revenue-enhancing pre-
investment activity prior to entering a new market, both when the change is fixed and
when the magnitude of the change can be optimally chosen by the firm. We find that this
incentivises the firm to invest early in revenue-enhancing activities, and then wait to invest to
enter the market. There is both an option value of waiting that delays investment in revenue-
enhancing activities, as well as an accelerating effect from the change in growth rate. The
overall effect on the investment thresholds from increased uncertainty is ambiguous. Which
effect dominates is dependent on both the cost parameters and the magnitude of the change
in the rate of growth. When the firm can optimally choose the amount of the revenue-
enhancing activity, we find that the firm invests more in these activities when uncertainty
is higher, but the effect of uncertainty can still be ambiguous. When the marginal cost
of the activity increases, the firm both delays the investment and undertakes less revenue-
enhancement, but the overall amount spent increases. We conclude that increasing the drift
through revenue-enhancing pre-investments is very attractive for the firm, and that this
affects the firm’s optimal investment strategy.
Keywords: Sequential investment, Real Options, Endogenous uncertainty, Optimal control

1. Introduction

In 2014, The Panasonic Corporation entered into a joint-venture with Tesla Motors
Inc. on the Tesla Gigafactory project. The venture is a strategic alliance and R&D effort
between the two firms in order to position Panasonic for higher long-term growth in a novel
market. The president of Panasonic, K. Tsuga, has stated that they "see the rechargeable
battery business as the biggest growth driver. So we are aggressively making an upfront and
strategic investment here"1. Through the alliance with Tesla, Panasonic has invested to ob-
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tain a favorable position for capturing higher profits in the potential future of high-volume
production of lithium-ion batteries for electric vehicles (EVs) and household electricity stor-
age. Therewith, Panasonic has taken an upfront and proactive stake in the development
of the EV-market, possibly obtaining a larger profit growth in the future than they would
have by waiting passively for the market to develop and only supply EV-producers with
battery-cells.

Strategic alliances, marketing campaigns, lobbyism, standard-captures, and other pre-
launch activities may influence the growth potential of a project. Thus, a firm can effectively
be proactive in its existing and potential markets, influencing the expected growth of new
projects before they are installed. The idea that a firm can enhance the potential revenue
of a project by undertaking some strategic pre-investment actions, models what McGrath
(1997) refers to as amplifying pre-investments. Such actions could be aimed at affecting
the revenue potential of the product, the adoption rate, or the likelihood of imitation or
competing products taking shares of the market.

In this paper, we focus on actions that increase the revenue potential through active
investments, changing the firm’s future environment favourably. We study two different sce-
narios: one where the revenue-potential is subject to a fixed change after the firm undertakes
a pre-amplifying investment, and one where the firm can choose the intensity of this invest-
ment optimally, effectively deciding to what degree it should boost the revenue-potential in
the market.

This paper contributes to the strategy literature by formally modelling revenue-enhancing
pre-investment opportunities, and investigating their effects. Furthermore, we add to the
modelling literature by including such dependencies of the stochastic environment on the
firm actions. Regarding the second strand of literature, investment problems under uncer-
tainty are widely studied using the real options approach. However, most models consider
the underlying process driving the uncertainty as exogenously given. Dixit & Pindyck (1994)
present many of the early models, while Trigeorgis (1996) presents models for portfolios com-
prised of different options on the same real asset, i.e. embedded options. In the strategy
literature, real options reasoning has been used in decision-heuristics. Examples are the
score-based questionnaire in McGrath & MacMillan (2000) of mapping a project’s possi-
bilities and threats, or the mixed decision-tree analysis and scoring of MacMillan et al.
(2006). The field of real options analysis was initiated by Myers (1977), who noted that the
presence of uncertainty in cash-flows affects corporate expenditure decisions. A common
assumption of the uncertainty in real option models is that the underlying price or demand
is following an exogenous stochastic process, often a geometric Brownian motion. Thus, the
resulting resolution of uncertainty is purely a function of time, and beyond the control of the
firm. Work on endogenous uncertainty is limited to problems of learning-type investments.
In this strand of work, Pindyck (1993) regards projects with cost uncertainty and time-to-
build, where the technical uncertainty can only be resolved through actually undertaking the
project. Such uncertainty relates to the physical difficulty of completing a project, affecting,
for example, the final amount of an input factor. Hence, technical uncertainty represents
endogenous resolution of the uncertainty, dependent of the firm’s action, where the uncer-
tainty is not only resolved through time, but also through investment. Another approach in
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the literature to model endogenous actions of the firm is to allow the exogenous stochastic
process to be partly unobservable. The firm must then undertake costly learning activities
to assess the true state of the market. Kwon & Lippman (2011), for example, consider a firm
that undertakes a small-scale pilot project to infer the full project’s profitability. The firm
observes a noisy profit flow from the pilot and from this updates the belief of the market
state in a Bayesian fashion. The firm must then consider the decision to expand the pilot
project or exit. Thijssen et al. (2004) consider a similar situation, where the firm at random
times receives imperfect signals from the market and uses these signals in updating its be-
liefs. The trade-off for the firm is therefore between waiting longer to reduce the uncertainty
of the market state, and investing immediately to reap potential profits. This approach is
further investigated in a model by Harrison & Sunar (2015), where the firm can adopt dif-
ferent learning modes that affect the quality of the obtained market signals, incurring cost
at different rates, dependent on the choice of learning mode. The papers presented above
represent examples of earlier models and extensions for including endogenous actions of the
firm w.r.t. the stochastic environment.

The aforementioned models are all characterized by endogenous revelation of an exoge-
nous uncertainty process. The firm takes an active role in learning about the uncertainty, but
has no means of actually affecting its own environment. There is a clear gap in the literature
of real options modelling in studying endogenous influence on the stochastic environment,
which is already noted by Adner & Levinthal (2004). Adner & Levinthal (2004) argue that
firms take steps to affect the attractiveness of possibilities, either by changing the technical
agenda of the project or altering the target market. They further argue that the assumption
of exogeneity can be seen as a "wait-and-see" approach to the investment problem. This
critique is also valid for the endogenous uncertainty resolution approaches mentioned above,
as the firm has no means to change the market state or adapt to it should the market belief
turn out unfavourable. In a response to Adner & Levinthal (2004), McGrath et al. (2004)
argue that the real options heuristics utilized in the strategy literature can give insights into
how upside potential can be enhanced by strategic actions or redirecting projects. Never-
theless, the authors concur with Adner & Levinthal (2004) that further work on endogenous
uncertainty resolution and influence is important for advancing the real options approach
to investment analysis. We translate this to our modelling approach to allowing for the
decision-maker to affect the stochastic process the firm is subject to, through undertaking
some specified investments.

In this paper, we aim to address the aforementioned shortcomings of dealing with endo-
geneity in a real options approach. We analyze how the opportunity for a firm to undertake
strategic pre-investment actions to alter a project’s growth potential affects the investment
behaviour and profits of the firm. This represents a shift from seeing the firm as a pas-
sive actor, subject to an exogenous market process, to allowing the firm to proactive and
effectively shape its own growth potential through strategic investments. The work on real
options subject to stochastic processes with changing parameters is generally very limited,
and to the best of our knowledge restricted to one exogenously specified fixed change after an
investment. Kwon (2010) studies a firm producing an aging product subject to a downward
trending demand, with the possibility to innovate once. The uncertainty is modelled as an
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arithmetic Brownian motion, with a fixed change in drift if the firm innovates. It might be
optimal for the firm to cease operations and exit, or to innovate once to boost the profits.
The new product would obtain a higher, but still negative, drift rate if undertaken, thus
making an eventual exit of the market inevitable. The effect of uncertainty on the optimal
strategy of the firm is found to be non-monotonic, which contradicts the standard result of
investment under uncertainty, that higher uncertainty delays investment. Matomäki (2013,
Article 1) extends Kwon (2010) for more general stochastic processes, as well as including
changes to the volatility of the process, and the results regarding the effect of uncertainty
are in line with Kwon (2010). Further, Hagspiel et al. (2016b) expands the setting of Kwon
(2010) to allow for capacity choice for the new product, while still holding the change in
drift rate for the stochastic demand process as exogenously given. Including capacity choice
yields a monotonic effect of uncertainty on the optimal investment timing. The firm invests
in larger capacity when uncertainty increases, which then gives an incentive to invest later.
Another approach taken in the literature is wherein the volatility of the stochastic process is
changed after a certain investment. Herein, Alvarez & Stenbacka (2003) consider a setting
where the investment changes the volatility of the firm’s environment, while keeping the drift
unchanged. They find a non-monotonic effect of uncertainty on the investment threshold.
However, allowing for change in the volatility of the process necessitates the use of more
advanced mathematical tools. This is left for future work for our problem, as we study a
sequential investment problem, with embedded options. This is a complication relative to
the single-investment case studied in Alvarez & Stenbacka (2003).

In this paper, the market is characterized by an uncertain price. The price follows a
geometric Brownian motion, with a change of drift at the time the firm undertakes the
revenue-enhancing investment. We introduce two models: (1) where the change in drift is
fixed, meaning that the drift rate is boosted to a specified level when the firm invests in
the revenue-enhancing activity. (2) where the change is dependent on the amount of the
revenue-enhancing activity the firm undertakes, where the intensity of the activity deter-
mines the degree to which the drift is boosted. The first model presents an optimal stopping
problem subject to a changing stochastic process, while the second model is a joint optimal
stopping and impulse problem, where the change in drift is controlled by the firm (Vollert,
2012). The problem concerns the optimal investment strategy of sequential investment un-
der uncertainty, as the firm can invest in the revenue-enhancing activity and in entering the
market at two separated points in time. We find that a fixed change in drift incentivises the
firm to invest sequentially, i.e. to invest in revenue-enhancing activities initially and then
wait and hold the option to actually finish the project. This is in contrast to the similar
two-stage sequential model in Dixit & Pindyck (1994) with constant drift, who find that
the firm will never invest sequentially when there is no time-to-build. The incentive is in-
creasing with the magnitude of the boost in drift. We show that the effect of uncertainty is
not straightforward. Increasing uncertainty can both delay or accelerate the investment in
revenue-enhancing activities. In the case where the firm can optimally choose the magni-
tude of the change in drift, we find that the firm invests more in revenue-enhancement when
uncertainty increases. Further, when the marginal cost of this activity increases, the firm
undertakes less revenue-enhancement, while the total amount spent on boosting the drift
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increases. We check the robustness of these results, considering a more general specification
of the effect of the revenue-enhancing activity on the drift rate, and both concave and convex
cost function for the activity. Extensive numerical analysis confirms the robustness of the
results of uncertainty on investment.

The rest of the paper is organized as follows. An investment model with a fixed change
in the drift of the price process is presented in Section 2. In Section 3, we extend this
approach by letting the firm control the change of drift through the size of the investment.
In Section 4 we perform a robustness analysis of the impulse function and the cost of the
revenue-enhancing activity. Section 5 summarizes the results. Additional derivations are
presented in Appendix Appendix A, while Appendix Appendix B presents proofs of all
propositions and corollaries.

2. Investment under fixed change in drift

We consider the investment decision of a monopolist firm with an opportunity to enter a
novel market. The market is characterized by a stochastic price process, with a fixed change
in market growth triggered by the firm’s investment in revenue-enhancing activities. The
firm is currently not active, but has the option to irreversibly invest in order to enter the
market. The uncertainty of the investment opportunity is characterized by a pair of price
processes following geometric Brownian motion, as given by Eq. (1).

dP1 = α1P1dt+ σP1dz, (1a)
dP2 = α2P2dt+ σP2dz. (1b)

In Eq. (1), dz denotes the increment of a standard Wiener process and σ the volatility,
equal for both geometric Brownian motions. α1 and α2 are the drift parameters for the
first and second process, respectively. The second price process, P2(t), starts at the moment
of a specified investment action of the firm at time τ , with initial value equal to P1(τ),
i.e. P2(0) = P1(τ). A sample path of the price process is illustrated in Fig. 1. After the
change in drift has occurred, P1(t) is irrelevant. Further, we assume an appropriate discount
rate, ρ, for the project and assume that α1 ≤ α2 < ρ. This assumption allows us to disregard
the trivial situation where it would never be optimal for the firm to enter the market, as the
expected growth is larger than the discount factor and therefore postponing the investment
decision would always be optimal. Our model is similar to that presented by Kwon (2010)
and Hagspiel et al. (2016b), where a producing firm is subject to a declining market, with
the possibility to innovate once and boost the drift. However, in the mentioned works the
boost in drift only postpones the inevitable exit of the market. Conversely, our problem
is concerned with the decision of entry rather than exit, and not restricted to a declining
market. Further, the two-stage sequential investment model of Dixit & Pindyck (1994,
Chapter 10) is a special case of the problem studied here, with α1 = α2 in Eq. (1).

In Section 2.1, we first outline a two-stage sequential investment problem, where the
firm completes the project in two discrete steps. This describes a situation where the firm
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Figure 1: One sample path of P1(t) and P2(t), with α1 = 0.01, α2 = 0.02, σ = 0.01. Change of processes at
t = 5.

undertakes some initial investment, e.g. marketing or lobbyism, prior to actually completing
the project. After that, the firm decides when to undergo the second investment to enter
the market. Under certain assumptions, this model reduces to a single-investment problem,
as outlined in Section 2.2, which represents a simplified case where all revenue-enhancing
activities must be conducted at the same time as entering the market. We present this
simplification as it helps to build intuition for the controlled single-stage investment problem
presented in Section 3. In Section 2.3, results for the comparative statics analysis for both
models are presented.

2.1. Two-stage investment with fixed change of drift
In a two-stage sequential investment model, the firm may first undertake an initial in-

vestment at a fixed cost I1. The first-stage investment has the effect of increasing the drift
from α1 to α2 by switching the price process in Eq. (1) from P1(t) to P2(t). The firm then
obtains the option to invest in the second stage to complete the project at a fixed cost I2.
After the second investment is undertaken, the project is assumed to generate one unit of
output per time period, at price P2(t), in perpetuity. Without loss of generality, we assume
zero operating costs. Then the discounted value of a fixed operating cost can be incorpo-
rated into the investment cost, I2. Thus, the per period profit is given by π(P2(t)) = P2(t).
The value of the firm can then be found as the solution to the following optimal stopping
problem
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F (P1) = sup
τ1

EP1

− I1e
−ρτ1 + sup

τ21{τ2>τ1}

{

+ e−ρτ2 × EP2

[∫ ∞
τ2

e−ρ(t−τ2)π(P2(t− τ1))dt
]
− I2e

−ρτ2

}.
(2)

In Eq. (2), τ1 denotes the optimal stopping time of undertaking the first-stage investment
to improve the drift of the price process. τ2 denotes the optimal stopping time of the
second-stage investment, at which the firm enters the market. Thenceforth, the firm earns
the per period profit flow, π(P2(t)). Further, the expectation operators denote that the
expectations are conditional on the defined starting values, i.e. that EP1 ≡ E[·|P1(0) = P1]
and EP2 ≡ E[·|P2(0) = P1(τ1)]. The solution to the optimal stopping problem in Eq. (2)
is characterized by the investment thresholds P1(τ1) = P ∗1 and P2(τ2 − τ1) = P ∗2 of the
stochastic price process. The starting point for P2(t) is given by the value of the geometric
Brownian motion P1(t) at the time of the first investment, τ1, i.e. P2(0) = P1(τ1) = P ∗1 . The
three regions of the two-stage investment problem are illustrated in Fig. 2. The optimal
stopping problem given by Eq. 2 can be split into three elements: the expected discounted
value of the completed project at the time of completion, denoted by V (P2(t)); the value of
the option to undertake the second-stage investment, denoted by F2(P2(t)); and the value
of the opportunity to invest in the project’s first stage, denoted by F1(P1(t)).

0 tτ1 τ2

P1(τ1), −I1 P2(τ2 − τ1), −I2

P1(t) P2(t) P2(t), π(P2(t))

Figure 2: Regions for the two-stage sequential investment.

To find the value of the investment opportunity, F1(·), we work backwards; first we derive
the value of the completed project, V (·), and the option to invest in the second stage, F2(·).
Using conditions of continuity and smoothness of the value functions at their joint threshold,
we obtain the second price threshold, P2(τ2 − τ1) = P ∗2 . Next, we find the value function of
the first option, F1(P1), and can therewith derive the optimal investment threshold of the
first-stage investment, P1(τ1) = P ∗1 . The complete derivations of the value of the project
are given in Appendix Appendix A, while the option values, F1(·) and F2(·), are derived in
Appendix Appendix B.

The expected present value of the cash flows generated by the project, at the time of the
second-stage investment, is given by

V (P2) = E
[∫ ∞

0
e−ρtP2(t)dt | P2(0) = P2

]
= P2

ρ− α2
, (3)
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where P2 is the value of the price process at the time of investment. Thus, the completed
project becomes more valuable if the drift-rate or the price at the time of investment in-
creases. Proposition 2.1 presents the expression for the value of the option to invest in the
second project stage.

Proposition 2.1. The value of the option to undertake the second-stage investment, F2(P2),
is given by

F2(P2) =

D2P
β12
2 if P2 < P ∗2 ,

V (P2)− I2 if P2 ≥ P ∗2 ,
(4)

where

β12 = 1
2 −

α2

σ2 +
√(

α2

σ2 −
1
2

)2
+ 2ρ
σ2 , (5)

and

D2 = 1
(ρ− α2)β12

[
β12

β12 − 1(ρ− α2)I2

]1−β12

. (6)

The optimal threshold for investing in the second project stage is given by

P ∗2 = β12

β12 − 1(ρ− α2)I2. (7)

Proposition 2.1 shows that the value of the second-stage option is dependent on the price,
P2. If the price is lower than the threshold, the value stems from the option to invest in the
second project stage at a later time, i.e. the firm is in the continuation region of the second
option. If the price is higher than the threshold, the second project stage is undertaken,
and the firm obtains the expected discounted value of the project, net investment cost. This
represents the stopping region of the second-stage option.

Proposition 2.2 below presents the value of the option to invest in the first project
stage. Here we have to distinguish between two cases. If the first investment threshold,
P ∗1 , is smaller than the second, P ∗2 , the firm obtains the second-stage option to invest in
the completed project if it exercises the first-stage option. However, if the first investment
threshold is the largest, the firm would undertake both stages concurrently, and the firm
receives the expected present value of the cash flows from exercising the first-stage option.

Proposition 2.2. If the first investment threshold is lower than the second, i.e. P ∗1 < P ∗2 ,
where P ∗2 is given in Eq. (7), the value of the firm, F1(P1), is equal to

F1(P1) =

D1P
β11
1 if P1 < P ∗1 ,

D2P
β12
1 − I1 if P1 ≥ P ∗1 ,

(8)
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where β12 and D2 is given by Eq. (5) and Eq. (6), respectively, and

β11 = 1
2 −

α1

σ2 +
√(

α1

σ2 −
1
2

)2
+ 2ρ
σ2 , (9)

D1 = β12

β11
D2

 I1

(1− β12
β11

)D2

1−β11
β12

. (10)

The first-stage investment threshold is then given by

P ∗1 =
 I1

(1− β12
β11

)D2

 1
β12

. (11)

If P ∗1 ≥ P ∗2 , the value of the firm is given by

F1(P1) =

D1P
β11
1 if P1 < P ∗1 ,

V (P1)− I1 − I2 if P1 ≥ P ∗1 ,
(12)

where β11 and V (·) is given by Eq. (9) and Eq. (3), respectively, and

D1 = 1
(ρ− α2)β11

[
β11

β11 − 1(ρ− α2) (I1 + I2)
]1−β11

. (13)

Then, the first investment threshold is given by

P ∗1 = β11

β11 − 1(ρ− α2) (I1 + I2) . (14)

The ordering of the investment threshold in Proposition 2.2 is dependent on all underly-
ing parameters. The following corollary shows that the ordering of the thresholds is unique,
which implies that only one of the cases P ∗1 < P ∗2 and P ∗1 ≥ P ∗2 holds true for the stated ex-
pressions in Eq. (11) and Eq. (14), when compared to the expression of the second threshold
in Eq. (7).

Corollary 2.3. In the sequential investment problem in Proposition 3.3, only one of the
cases for the ordering of the threshold give an admissible solution. Further, if it holds that

I1 <
β12

β12 − 1 ×
(

1
β12
− 1
β11

)
× I2, (15)

then P ∗1 < P ∗2 .

If the first threshold is the lowest, the firm will invest in the initial project stage as soon
as the price process, P1(t), is larger than P ∗1 , increasing the drift of the project. After this
it is optimal to wait until the second price process, P2(t), reaches the second threshold, P ∗2 ,
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before investing in the last stage to complete the project. If the other case holds true, the
firm will undertake both project stages at the same time as soon as the first price threshold
is reached. Note that we assume no time-to-build, and that the investment is instantaneous.
Corollary 2.4 show the dependence of the solution to the values of the drift parameters.

Corollary 2.4.

i) If α2 > α1, then β12 < β11, and Eq. (11) and Eq. (10) are well-behaved.

ii) If α1 = α2, then β11 = β12, and P ∗1 > P ∗2 always holds.

Corollary 2.4 states that the expressions for the value function and the first threshold
price are well-behaved for the cases considered in this paper, and take on positive and real
values. Further, in the case of constant drift, the model reduces to the sequential investment
problem presented by Dixit & Pindyck (1994, Ch. 10.1), albeit without suspension and
operational costs. As Dixit & Pindyck (1994) find, under the assumption of no time-to-
build, there is never an incentive to invest in two stages when the drift rate before and
after revenue-enhancing investment does not change. We show that when the firm has the
opportunity to boost the drift, there is an incentive to invest in two separate stages for
certain parameter ranges.

2.2. Single-investment problem reduction
Note that if the second-stage investment cost is set to zero, the two-stage sequential

investment problem reduces to that of a single-investment opportunity. We present this
model simplifaction here as it will serve as a comparison for the single-investment problem
with controlled increase in the drift, presented in Section 3.1. Let I denoting the total cost of
both revenue-enhancement and market entry. Then, the reduced model can be represented
by the following optimal stopping problem

F (P1) = sup
τ

EP1

[
−Ieρτ + e−ρτ × EP2

[∫ ∞
τ

e−ρ(t−τ)π(P2(t− τ))dt
]]
. (16)

The solution to the reduced optimal stopping problem in Eq. (16) is also of a threshold-type,
characterized by the investment threshold P ∗1 (τ), where τ is the time of the investment. Now
the increase in drift and the onset of the profit flow occur at the same time. The solution
to this problem is given by Eq. (12)–(14) in Proposition 2.2, with I1 = I and I2 = 0. The
reduction of the problem is evident in Eq. (7) and Eq. (14): if I2 = 0, then P ∗2 = 0 and
P ∗1 can never be smaller than P ∗2 . This is intuitive. If the second-stage investment has zero
cost, the project will be completed as soon as the threshold for the first-stage investment is
reached.

2.3. Comparative statics results
In this section, we present the results of a comparative statics analysis for the optimal

investment thresholds P ∗1 and P ∗2 .
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Proposition 2.5. The optimal threshold of the option to invest in the second project stage,
P ∗2 , is increasing in σ. The first price threshold, P ∗1 , is increasing in σ if P ∗1 ≥ P ∗2 . If
P ∗1 < P ∗2 , then P ∗1 is increasing in σ if the following condition holds,

I2

I1
<
β11(β12 − 1)
β11 − β12

exp
[

β11

β11 − β12

(
(1

2σ
2(2β12 − 1) + α2)(β11 − 1)

(1
2σ

2(2β11 − 1) + α1)(β12 − 1) − 1
)]

. (17)

Otherwise, P ∗1 is decreasing in σ.

Proposition 2.5 shows that the standard result in real options theory of the effect of
increased uncertainty might not be true for the initial investment, if the condition in Eq. (17)
does not hold. When it holds, the firm demands a higher price to invest in both stages when
the uncertainty increases, which is the standard result of investment under uncertainty. We
refer to this as the real options effect of uncertainty.

If the condition in Eq. (17) does not hold, a higher uncertainty accelerates the investment
in the initial project stage. This is contradictory to the standard real options results (Dixit
& Pindyck, 1994). Due to the complexity of the condition in Eq. (17), the impact of the
different problem parameters cannot be determined easily. The condition is a function of
the volatility, σ, both directly and via the dependence in β11 and β12. We see from numerical
studies that when the first investment cost is very small compared to the cost of the second
project stage, the effect of increased uncertainty on the first threshold is ambiguous. Further,
this ambiguity seems only to be present when the difference in drift is smaller than some
level. Fig. 3 presents two different cases: one for a relatively small change in drift, and one
for a relatively large boost in drift. Hence, there are two opposing effects of uncertainty on
the first threshold. The real options effect yields that higher uncertainty gives a higher value
of waiting, and delays investment, while the change in drift incentivises the firm to invest
the first project stage to boost the drift. The effect of uncertainty is dependent on which
effect dominates.

An explanation for this non-monotonic effect of uncertainty is that the option to invest
in the second project stage becomes more valuable with increased uncertainty. This is a
standard real options result. Thus, when the first investment is relatively inexpensive, this
increased option value of the subsequent investment stage outweighs the increased value of
the insurance embedded in the first-stage option. A higher uncertainty makes the insurance
arising from the optionality of the first project stage more valuable, which the firm forfeits
if it invests. The effects of changing the level of the initial drift on the optimal investment
thresholds are presented in Proposition 2.6.

Proposition 2.6. The optimal threshold to invest in the first project stage, P ∗1 , is increasing
in initial drift, α1, while the second threshold, P ∗2 , is unaffected by α1.

The threshold for investing in the second project stage is independent of the initial drift
level. This is intuitive, as the first investment has already been undertaken, and therefore
the first price process, P1(t), is irrelevant at the time of the decision to undertake the second
investment. The drift has already been boosted, so the initial level is not relevant for the
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Figure 3: Sensitivity of first price threshold, P ∗
1 , w.r.t. uncertainty, when the first investment cost is small

compared to the second, for two levels of the boosted drift. (Parameters: I1 = 10, I2 = 1000, ρ = 0.1,
α1 = 0.01.)

firm’s decision. The first investment threshold is increasing in α1. If the level of the boosted
drift is kept constant, an increase in the initial drift is effectively decreasing the magnitude of
the change. Thus, the firm has less incentive to invest in the first project stage, and demands
a higher price to undertake the revenue-enhancing activities. Proposition 2.7 presents the
effect of changing the level of the boosted drift on the optimal investment thresholds.

Proposition 2.7. The optimal threshold to invest in the second project stage, P ∗2 , is de-
creasing in the boosted drift, α2, if the following condition holds:

σ >

√√√√ ρ− α1β12

(β12 − 1)(β12 − 1
2) . (18)

The first investment threshold, P ∗1 , is decreasing in α2 when P ∗1 ≥ P ∗2 .

The threshold for investing to enter the market is decreasing in the boosted drift, α2. The
firm invests in the market at the threshold P ∗2 if P ∗1 < P ∗2 , while investing at the threshold
P ∗1 if P ∗1 ≥ P ∗2 . Increasing the boosted drift thus incentivises the firm to enter the market
earlier, as the expected discounted value of the project increases.

When the threshold for the first project stage is lower than the second, i.e. P ∗1 < P ∗2 , we
refrain to numerical results in order to analyze the effect of increasing the boosted drift on
P ∗1 . Remark 2.8 presents the effect, while a numerical example is presented in Table 1.

Remark 2.8. The optimal threshold to invest in the first project stage, P ∗1 , is decreasing in
the boosted drift, α2, when P ∗1 < P ∗2 .

12



Our numerical analysis suggests that the effect of the boosted drift on the first-stage
investment threshold when P ∗1 < P ∗2 is equal to that presented in Proposition 2.7. This is
as expected, as increasing the boosted drift increases the expected discounted value of the
project, which increases the value of the option to invest in the final stage. When P ∗1 < P ∗2 ,
investing in the first project stage represents exchanging the option to invest in the initial
stage with the option to invest in the second stage. Upon investing, the firm forgoes the
option to invest in the first project stage at a later time, but receives option to invest in
the last stage at a later time. Thus, when the value of the underlying project increases, the
option to complete the project becomes more valuable, which motivates the firm to invest
earlier to obtain this second-stage option.

α2 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
P ∗1 49.09 43.63 32.20 23.32 16.29 10.73 6.45 3.32 1.21
P ∗2 45.00 43.42 42.00 40.75 39.65 38.70 37.87 37.16 36.54

Table 1: Effect of increasing the boosted drift on the optimal investment thresholds. (Parameter values:
ρ = 0.1, α1 = 0.0, I1 = 50, I2 = 300.)

3. Investment under controlled change in drift

We now consider a situation where the firm can optimally choose the drift of the second
price process by incurring some additional cost at the time of the first-stage investment.
The problem constitutes a joint optimal stopping and optimal impulse problem (Vollert,
2012). In this case the firm has both discretion over the stopping times, as well as direct
influence over the parameters of the stochastic diffusion process that characterizes the market
environment. This represents an extension of the model presented in Section 2.1 to make the
firm active in its own potential market, endogenously affecting the stochastic environment.

The drift term of the second price process is now modelled as dependent on the amount
K, i.e. α2 = α2(K) in Eq. (1). We denote α2(K) as the impulse function, and K the control.
Note that the impulse function must be specified so that α1 ≤ α2 < ρ still hold. The
control K represents the amount invested by the firm in order to boost the growth of the
project by e.g. marketing or lobbyism. We assume that the firm does not obtain any boost
in the drift without investing in revenue-enhancing activities and incurring some extra cost,
i.e. α2(K = 0) = α1. Further, we do not allow disinvestment in revenue-enhancement, where
K < 0 and α2 < α1. We model the impulse function, α2(K), by

α2(K) = ρ− ε− ρ− ε− α1

1 +K
, (19)

where ε > 0 is an offset-value that ensures that the drift rate, α2(K), can never approach
the discount rate, ρ. This parameter is introduced in order to avoid that the expected
discounted value of the cash flows from the project can approach infinity. Practically, this
implies that there is a maximum obtainable value of α2 that the firm can approach, but never

13



0 5 10 15 200

0.002

0.004

0.006

0.008

0.01

0.012

ρ− ε

K

α
2(
K

)

Figure 4: The assumed impulse function: the second drift-rate α2 plotted as a function of K for parameters:
ρ = 0.04, ε = 0.03, α1 = 0.

attain, by investing more in revenue-enhancing activities. An example plot of Eq. (19) is
illustrated in Fig. 4. The choice of function for α2 is adopted to model diminishing marginal
effects on the drift from increasing the amount of revenue-enhancing actions, in line with
practical reasoning that increasing the intensity of an investment cannot increase the rate
of profit indefinitely. In Section 4 we present an alternative impulse function, and perform
a robustness check of our results w.r.t. this choice.

As the firm can now optimally decide the intensity of the revenue-enhancing activity, the
cost of the first investment stage is given as a function of the control. We model the first
investment stage as having both a fixed and variable part, denoted by IK(K) = I1 + ξK.
Here I1 > 0 is a constant fixed cost, and ξ the constant marginal cost of the activity. The
fixed part represents, for example, the minimum required marketing that needs to be done
prior to launching a product, for which the firm does not obtain any boost in the market.
For the second project stage, similar to Section 2, there is a fixed investment cost I2 > 0.

In order to build intuition, we first consider a controlled single-investment problem in
Section 3.1, where the firm undertakes the revenue-enhancing activities at the same time as
committing to the project. This simplified problem will serve as a benchmark to understand
how control over the change of drift affects threshold prices and values. Section 3.2 expands
to the two-stage sequential investment with control over the drift at the time of the first
project stage, i.e. the firm undertakes revenue-enhancing activities in the first project stage,
but receives a flow of profits only after the second-stage investment. In Section 3.3, we
present the comparative static analysis of the models.

3.1. Single-stage investment, controlled change of drift
We now consider a single-investment case, where the firm can choose the control K

optimally at the time of investment in order to boost the drift α2. The problem can be seen

14
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Figure 5: Regions for the single investment problem with controlled boost in drift.

as a joint optimal stopping and control (impulse) problem, where the firm must decide when
to invest and enter the market, and choose the amount of revenue-enhancing activities at
the time of investment. The problem can then be written as

F (P1) = sup
τ

EP1

− Ie−ρτ
+ eρτ ×max

K≥0

{
EP2

[ ∫ ∞
τ

e−ρ(t−τ)π(P2(t− τ,K))dt− ξK
]},

(20)

where the expectation operators are defined as EP1 ≡ E[·|P1(0) = P1] and EP2 ≡ E[·|P2(0) =
P1(τ)].

Fig. 5 illustrates the continuation and stopping regions of the investment problem. The
problem is similar to the single investment problem presented in Section 2.2, with the differ-
ence that the firm can now decide on the optimal amount of the revenue-enhancing invest-
ment (the control variable), hereafter denoted by K∗. The solution procedure is as follows:
we find the value function for a given K, then maximize the net project value with respect
to K, for any given price P2. Using the equation for the optimal value K∗(P2), we find the
option value F (P1) and the threshold price P ∗1 .

The expected value of the completed project, V (P2, K), is similar to before (see Eq. (3)),
with the difference that the value function now becomes a function of K. Thus, the expected
discounted value of the cash-flows generated by the project, at the time of investment, is
given by

V (P2, K) = 1
ρ− α2(K)P2. (21)

At the time of the investment, the firm chooses the amount of the revenue-enhancing actions
through the control K. Upon investment, the firm must pay the full investment cost of
revenue-enhancement and market entry, i.e. IK(K) = I+ξK. Here I = I1 +I2 represent the
fixed cost of both activities, and ξ > 0 the marginal cost of the revenue-enhancing activity.
Thus, we want to find the value of K that maximizes the value of the firm at the time of
investment, given by

V (P2, K)− I − ξK = 1
ρ− α2(K)P2 − I − ξK. (22)

We find the optimal control K̂∗ by the first-order optimality condition, and controlling that
15



the second-order derivative is negative. Solving this maximization problem yields the value
of the optimal revenue-enhancement and the resulting drift function, as functions of the
price, P2, presented in Proposition 3.1.

Proposition 3.1. The optimal value of the control variable and the resulting optimal drift
rate, as functions of the price P2, are given by

K∗(P2) = max{0, K̂∗} = max
{

0, ξ(α1 − ρ) +
√
P2ξ(ρ− ε− α1)
ξε

}
, (23)

α∗2(P2) = α2(K∗(P2)) = max
{

0, (ε− ρ)
√
P2ξ(ρ− ε− α1) + ρξ(ρ− ε− α1)

ξ(ρ− ε− α1)−
√
P2ξ(ρ− ε− α1)

}
. (24)

The optimal control is given as the maximum of zero and K̂∗, as we assume that the
control is bounded from below at zero. Thus, the resulting drift rate is the maximum of
α∗2(P2) and α1, i.e. α2(0) = α1 in Eq. (24). Corollary 3.2 presents the condition for which
the optimal control is positive.

Corollary 3.2. The optimal control value K∗ is greater than zero if

P2 >
ξ(ρ− α1)2

ρ− ε− α1
. (25)

Thus, the smaller the potential increase in the drift, the higher the price at the time of
investment needs to be for the firm to undergo revenue-enhancing activities. We can now
use the optimal control and drift as functions of the price, presented in Proposition 3.1, to
find the value of the investment opportunity. The value of the firm is then presented in
Proposition 3.3.

Proposition 3.3. The optimal value of the firm, F (P1), is given by

F (P1) =

AP
β11
1 if P1 < P ∗1 ,
P1

ρ−α∗2(P1) − I − ξK
∗(P1) if P1 ≥ P ∗1 ,

(26)

with K∗(P1) and α∗2(P1) as given in Proposition 3.1. If the condition in Corollary 3.2 holds,
so that K∗ > 0, then

β11 = 1
2 −

α1

σ2 +
√(

α1

σ2 −
1
2

)2
+ 2ρ
σ2 , (27)

A =

(
(ε+ α1 − ρ)ξ +

√
P ∗1 ξ(ρ− ε− α1)

)
P ∗1−β11

1

εβ11

√
P ∗1 ξ(ρ− ε− α1)

. (28)
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Furthermore, the optimal investment threshold is given by

P ∗1 = 1
2

(
2β11 − 1
β11 − 1

)2

ξ(ρ− ε− α1) + β11

β11 − 1(Iε− ξ(ρ− α1))

+ 1
2

(
2β11 − 1
β11 − 1

)√√√√ξ(ρ− ε− α1)
(

β11

β11 − 1(Iε− ξ(ρ− α1) + ξ(ρ− ε− α1)
)
,

(29)

if the following condition holds,
I

ξ
≥ ρ− α1

ε
. (30)

If K∗ = 0, then
A = 1

β11(ρ− α1)
(P ∗1 )1−β11 , (31)

and the optimal investment threshold is given by

P ∗1 = β11

β11 − 1(ρ− α2)I. (32)

Similar to the model in Section 2, the value of the option to invest is dependent on the
current price level, P1. If the current price is below the investment threshold, the firm holds
the option to invest, with a value equal to the first case in Eq. (26). If the currently observed
price is above the threshold, it is optimal to invest immediately, paying the investment cost
I(K∗) = I+ξK∗(P1), and therewith undertaking the amount of revenue-enhancing activities
that maximizes the value of the project at the given price, P1. The condition in Eq. (30) is
necessary for the existence of a unique investment threshold2. We assume this condition to
always hold, as the opposite case would imply an unrealistically high marginal cost of the
activity compared to the fixed investment cost. The following corollary presents conditions
for the existence of a real-valued threshold.

Corollary 3.4. In Proposition 3.3, there exists a real-valued investment threshold, P ∗1 , if
the following condition holds

Iε ≥ ξ(ρ− α1)− ξ(ρ− ε− α1)
β11 − 1
β11

. (33)

3.2. Two-stage investment, controlled change of drift
We now consider the situation where the firm can affect the expected growth of the price

process before launching the project. This represents a two-stage sequential investment,
where the increase in drift rate occurs after the initial investment. We assume that the firm

2Extensive numerical analysis shows that even if this condition does not hold, there is only one unique
threshold P ∗

1 that is admissible w.r.t. the assumption that P ∗
1 ≥ P ∗

2 . We therefore disregard this for the
rest of the section.
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Figure 6: Regions for the sequential investment problem with controlled boost in drift.

incurs both a fixed and variable cost from the first-stage investment. Thus, we define the
first-stage investment cost by IK(K) = I1 + ξK. The joint optimal stopping and impulse
control problem is then given by Eq. (34) with the corresponding regions illustrated in Fig. 6.

F (P1) = sup
τ1

EP1

− I1e
−ρτ1 + max

K≥0
EP2

{
− ξKe−ρτ1

+ sup
τ21{τ2>τ1}

{
e−ρτ2

[ ∫ ∞
τ2

e−ρ(t−τ2)π(P2(t− τ2, K))dt
]
− I2e

−ρτ2

}}.
(34)

The solution approach is similar to that in Section 3.1, taking the control variable as
given for any time t > τ1. Hence, the value function after investment is given by Eq. (21).
The value of the option to invest in the second project stage is now a function of the control.
The value function is given by the following proposition.

Proposition 3.5. The value of the second-stage option, F2(P2, K), is given by

F2(P2, K) =

D2(K)P β12(K)
2 if P2 < P ∗2 (K),

P2
ρ−α2(K) − I2 if P2 ≥ P ∗2 (K),

(35)

where

β12(K) = 1
2 −

α2(K)
σ2 +

√√√√(α2(K)
σ2 − 1

2

)2

+ 2ρ
σ2 , (36)

P ∗2 (K) = β12(K)
β12(K)− 1(ρ− α2(K))I2, (37)

D2(K) = 1
(ρ− α2(K))β12(K)P

∗1−β12(K)
2 . (38)

The option value of the first project stage is, similar to the case presented in Section 2.1,
dependent on the ordering of the first and second investment thresholds. The maximization
with respect to K is different for the two cases, dependent on whether exercise of the
first-stage option represents entering the continuation or the stopping region of the second-
stage option. Note that the boosted drift is a function of the investment K (see Eq. (19)).
Proposition 3.6 presents the value of the firm and the price thresholds for the two cases.
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Proposition 3.6. If P ∗1 < P ∗2 , the value of the firm, F1(P1), is given by

F1(P1) =

D1P
β11
1 if P1 < P ∗1 (K∗)

D2(K∗)P β12(K∗)
1 − I1 − ξK∗ if P1 ≥ P ∗1 (K∗)

(39)

where

β11 = 1
2 −

α1

σ2 +
√(

α1

σ2 −
1
2

)2
+ 2ρ
σ2 , (40)

K∗ = K∗(P1) = arg max
K≥0

{
D2(K)P β12(K)

1 − I1 − ξK
}
, (41)

D1 = β12(K∗)
β11

D2(K∗)P ∗β12(K∗)−β11
1 , (42)

and P ∗1 is implicitly given as the solution to the following equation

(β12(K∗)− β11)D2(K∗)P ∗β12(K∗)
1 + (I1 + ξK∗)β11 = 0. (43)

If P ∗1 ≥ P ∗2 , the solution is the same as presented in Proposition 3.1 and Proposition 3.3,
with I = I1 + I2.

In Proposition 3.6, the first threshold price must be found implicitly by solving Eq. (43)
numerically. Unlike to the sequential investment problem with fixed change in drift, pre-
sented in Proposition 2.2, we cannot ex-ante determine the admissible threshold. Therefore,
both cases of the threshold ordering must be considered, and the case that is admissible is
adopted.

3.3. Comparative statics result
In this section, we present the comparative statics results for the optimal investment

strategy when the firm has control over the change in drift. An extensive numerical analysis
is conducted to examine how the investment thresholds and optimal drift rate change with
the model parameters when analytic results are not obtainable. The effect of σ on the initial
investment threshold for a single-stage problem reduction is presented in Proposition 3.7.

Proposition 3.7. The optimal threshold for the first stage investment, P ∗1 , increases in σ,
if P ∗1 ≥ P ∗2 .

From Proposition 3.7, we see that the result from the investment problem under fixed
change in drift is still valid under controlled change. If the threshold for the initial invest-
ment is larger than the second threshold, the investment decision reduces to a single-stage
investment, undertaken when the price becomes larger than P ∗1 . Increased uncertainty would
then delay the investment, consistent with the results from Section 2. The effects of σ on
the thresholds for the other cases are presented in Remark 3.8. Numerical results are given
in Table 2 and Table 3.
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σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 18.20 19.95 21.76 23.66 25.66 27.81 30.14 32.67
P ∗2 30.77 32.88 35.99 39.88 44.46 49.69 55.54 62.03
K∗ 14.25 15.15 16.01 16.87 17.74 18.64 19.57 20.54
α∗2 0.0474 0.0475 0.0476 0.0478 0.0479 0.0480 0.0481 0.0481

Table 2: Effect of increasing uncertainty on the optimal investment thresholds, the optimal amount of
revenue-enhancing investment, and the resulting boosted drift. (Parameter values: ρ = 0.1, ε = 0.05,
α1 = 0.01, ξ = 1, I1 = 50, I2 = 300.)

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
P ∗1 21.40 19.70 17.60 16.30 15.80 15.90 16.40 17.40 18.70
P ∗2 103.00 122.13 151.71 189.62 235.83 290.62 354.34 427.23 509.49
K∗ 784.01 837.28 876.32 916.26 961.11 1010.3 1061.3 1120.5 1182.5
α∗2 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400

(a) Low variable cost, ξ = 0.0001

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
P ∗1 32.60 32.10 31.00 31.10 32.40 35.00 38.70 43.60 49.90
P ∗2 103.20 122.93 152.84 190.91 237.19 292.01 355.70 428.55 510.76
K∗ 9.57 10.50 11.23 12.08 13.04 14.14 15.36 16.71 18.23
α∗2 0.0372 0.0374 0.0375 0.0377 0.0379 0.0380 0.0382 0.0383 0.0384

(b) Medium variable cost, ξ = 1

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
P ∗1 53.20 58.50 64.20 72.50 84.20 100.10 121.20 148.60 183.50
P ∗2 103.47 123.87 154.05 192.18 238.43 293.16 356.75 429.48 511.58
K∗ 3.87 4.46 5.03 5.68 6.43 7.31 8.31 9.45 10.73
α∗2 0.0338 0.0345 0.0350 0.0355 0.0360 0.0364 0.0368 0.0371 0.0374

(c) High variable cost, ξ = 10

Table 3: Effect of increasing uncertainty on the optimal investment thresholds, the optimal amount of
revenue-enhancing investment, and the resulting boosted drift, for three different levels of the variable cost
parameter, ξ. (Parameter values: ρ = 0.1, ε = 0.06, α1 = 0.01, I1 = 10, I2 = 1000.)
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Remark 3.8. The optimal threshold for the second stage investment, P ∗2 , increases in σ.
The effect of σ on the first-stage threshold, P ∗1 , is ambiguous if P ∗1 < P ∗2 and depends on
the cost-parameters in relation to the potential increase in drift. The optimal control value,
K∗(P ∗1 ), increases in σ, yielding an increase in the optimal drift rate, α∗2(P ∗1 ).

Table 2 shows that the firm invests at a higher threshold price for the second project
stage when the uncertainty is higher. However, the effect of increasing uncertainty on P ∗1
when P ∗1 < P ∗2 is ambiguous, as shown in Table 3. This is similar to the case of fixed
change in drift, presented in Section 2.3, where uncertainty has an ambiguous effect on the
initial investment threshold, dependent on the problem parameters. However, now there is
an additional cost-parameter for the first-stage investment: the marginal cost of the control,
ξ. From our numerical analysis, we see that in case where the fixed portion of the cost, I1,
is low, and the potential boost in drift is small, the first threshold can decrease in σ. This
is however dependent on the value of ξ, as presented in Table 3. If the variable part of the
cost is high, it mitigates the effect of the low fixed cost, such that the threshold is increasing
in the uncertainty (see Table 3c). Since the variable cost is high, the first stage investment
becomes more costly for the firm for a given level of the control. The firm chooses the optimal
amount of revenue-enhancing activities, which results in the total cost of the first project
stage to become large enough for the option value of waiting to dominate under increased
uncertainty. However, the other way around is not observed, i.e. that very small values of
ξ reverse the effect of a high value of I1. This can be seen as it is optimal for the firm to
invest in revenue-enhancing activities, even when ξ is large, to obtain a valuable boost in
drift. Thus, the extra cost the firm incurs from boosting the drift, mitigates the low fixed
cost I1, and the value of waiting dominates the effect of uncertainty on the threshold. In
the case where ξ is small, the solution approaches the model with a fixed-change in drift in
Section 2.1, as seen in Table 3a. For the cases when the first investment threshold decreases,
the same reasoning as in Section 2.3 could hold. As the non-monotonic behaviour of the
optimal strategy persists under controlled change in drift, more analysis of this ambiguous
effect is warranted in future research.

Nonetheless, the amount of investment in revenue-enhancing activities always increases in
σ (for all values of the cost parameters), increasing the resulting boosted drift. We also find
that the firm generally waits longer to invest in the market when the product market is more
uncertain, i.e. P ∗2 increases in σ, but on the other hand conducts more revenue-enhancing
activities to attain higher growth. Remark 3.9 presents how the cost of the control affect
the optimal strategy for the firm.

Remark 3.9. The investment threshold for the first project stage, P ∗1 , increases in ξ. The
second threshold, P ∗2 , also increases, but at a lower rate than P ∗1 . The optimal control K∗
and the resulting drift rate α∗2 decreases in ξ.

Increasing the cost of the revenue-enhancing activities may lead to the threshold of the
first project stage becoming larger than the second threshold, as seen in Table 4. The firm
has a lower incentive to invest early in boosting the drift when such investments are more
expensive, as the firm forgoes the opportunity to invest later. Also, the firm invests less in
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ξ 1 10 20 30 40 50 60 70
P ∗1 23.70 35.70 41.54 44.06 46.06 47.72 49.12 50.32
P ∗2 39.88 40.29 40.52 40.73 40.92 41.09 41.25 41.41
K∗ 16.89 5.70 3.96 3.05 2.49 2.11 1.82 1.59
α∗2 0.0478 0.0440 0.0419 0.0401 0.0385 0.0371 0.0358 0.0346

Table 4: Effect of increased variable cost of revenue-enhancement on the optimal investment thresholds,
the optimal amount of revenue-enhancing investment, and the resulting boosted drift. (Parameter values:
ρ = 0.1, ε = 0.05, α1 = 0.01, σ = 0.2, I1 = 50, I2 = 300.)

α1 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
P ∗1 21.65 22.54 23.66 25.07 26.91 29.41 32.95 38.42 41.58
P ∗2 39.93 39.91 39.88 39.86 39.83 39.81 39.78 39.75 39.73
K∗ 17.75 17.32 16.87 16.40 15.89 15.32 14.67 13.86 11.70
α∗2 0.0473 0.0475 0.0478 0.0480 0.0482 0.0485 0.0487 0.0490 0.0492

Table 5: Effect of increased initial drift rate on the optimal investment thresholds, the optimal amount
of revenue-enhancing investment, and the resulting boosted drift. (Parameter values: ρ = 0.1, ε = 0.05,
σ = 0.2, ξ = 1, I1 = 50, I2 = 300.)

revenue-enhancing activities, obtaining a lower drift for the project. However, the overall
amount paid in revenue-enhancing activities is greater. The firm is willing to pay more
overall to obtain the boosted drift, even when it is more expensive per unit of change, as
can be seen from multiplying ξ and K∗ in Table 4. Since an increased marginal cost of
the activity leads to a delay in investment, the firm also to pays more overall in revenue-
enhancing activities at this time. Remark 3.10 presents the effect of changing the initial
drift, α1, while numerical results are given in Table 5.

Remark 3.10. The investment threshold for the first project stage, P ∗1 , increases in α1,
while the second threshold, P ∗2 , decreases (albeit at a low rate). The optimal control, K∗,
decreases in α1, while the resulting drift rate, α∗2, increases in α1.

The level of the initial drift, α1, must be seen in relation to the maximum obtainable
drift, given as ρ− ε, which is assumed constant when changing α1. Increasing α1 thus makes
the region of α2(K) smaller, as α2(0) = α1 and α2(∞) = ρ − ε, and we assume K ≥ 0.
Remark 3.10 notes that the first threshold increases, while the second threshold decreases
slightly. When the initial drift is greater, the firm demands a higher price before investing.
When the difference in drift, ρ − ε − α1, is small enough, we see that the ordering of the
thresholds changes, and the incentive to invest in two stages diminishes. The firm undertakes
less revenue-enhancing activities when the initial drift increases, but the resulting boosted
drift rate, α2(K), increases. However, the change in drift decreases when α1 increases, as
seen in Table 5 by α∗2 − α1.

Since only the lower bound of the range of α2(K) increases with higher α1, the firm
can obtain the same boosted drift with less effort. This observation can be explained by
the example plot in Figure 7. As the initial drift, α1, is increased, the firm can obtain the
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Figure 7: The effect of increasing α1 on α2(K). (Parameters: ρ = 0.04, ε = 0.03.)

ε 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
P ∗1 2.80 6.16 10.66 16.42 23.66 32.82 43.16 48.37
P ∗2 36.66 37.32 38.07 38.92 39.88 40.97 42.21 43.59
K∗ 37.44 27.13 22.41 19.30 16.87 14.68 11.99 7.57
α∗2 0.0879 0.0775 0.0674 0.0575 0.0478 0.0381 0.0285 0.0188

Table 6: Effect of decreasing the maximum obtainable drift on the optimal investment thresholds, the optimal
amount of revenue-enhancing investment, and the resulting boosted drift. (Parameter values: ρ = 0.1,
α1 = 0.01, σ = 0.2, ξ = 1, I1 = 50, I2 = 300.)

same boosted drift, α2(K), at a lower value of the control, K. This effect is evident from
comparing K1 and K2 in Figure 7. Thus, the firm can obtain a higher boosted drift from an
increase in the initial drift, even though the firm undertakes less revenue-enhancing activities.
This effect arises since increasing α1 represents making the initial market conditions more
favourable, while keeping the maximum obtainable drift for the firm constant. The effect
of increasing ε on the optimal investment strategy of the firm is presented in Remark 3.11,
with numerical results given in Table 6.

Remark 3.11. The first-stage investment threshold P ∗1 increases in ε. The second threshold
P ∗2 also increases, but at a lower rate than P ∗1 . The optimal control K∗ and the resulting
drift rate α∗2 decrease in ε.

Increasing ε is effectively lowering the upper bound of α2(K), i.e. the maximum obtain-
able drift rate, as the upper bound is defined as ρ − ε. We see from Table 6 that the firm
invests at a higher threshold price when the upper bound is lowered, and that the ordering of
the thresholds depends on the range of obtainable drift, similar to increasing the initial drift,
α1. The resulting boosted drift rate is now lowered. Thus, when the maximum obtainable
drift is lowered, the firm invests later and undertakes less revenue-enhancing activities. Since
an increase in ε makes the available magnitude of the boost lower, there is less incentive

23



for the firm to invest in the revenue-enhancing activity, which increases the first investment
threshold. Further, the smaller obtainable boost makes the expected present value of the
project’s cash flow after revenue-enhancement lower, which decreases the attractiveness of
the project, and increases the second investment threshold.

4. Robustness testing

In this section, we perform a robustness test of the results of the combined optimal
stopping and impulse problem presented in Section 3.3. We derive the results assuming an
alternate specification of the impulse function in Section 4.1, and introduce a non-linear
cost function for the control in Section 4.2. We perform a comparative static analysis of
uncertainty for both cases, and compare to the earlier findings presented in Section 3.3.

4.1. Impulse function
We now introduce a more flexible specification of the impulse function. Nonetheless,

the basic assumptions made in Section 3 are upheld. I.e. we assume diminishing marginal
returns of the value-enhancing activity and assuring that the resulting drift rate is lower
than the discount rate. We utilize an inverse exponential function as given by Eq. (44), with
example plots of the impulse function given in Fig. 8. Varying λ changes the slope of the
impulse, yielding a more refined specification of how the value-enhancing investment affects
the drift rate of the stochastic process. However, the downside is that under this impulse
function there exists no closed form solutions for the optimal control value and investment
thresholds, in any of the cases. These values can easily be computed numerically.

α2(K) = ρ− ε− (ρ− ε− α1)e−λK (44)

The optimal stopping problem is the same as presented in Eq. (34). The value of the
options to invest in the first and second stage is equal to that given by Eq. (35)-(43).
However, if P ∗1 ≥ P ∗2 , there is no closed-form solution available, and the value of the option
to invest is given by the following proposition.
Proposition 4.1. If P ∗1 ≥ P ∗2 , the value of the investment opportunity is given by

F (P1) =

D1P
β11
1 if P1 < P ∗1 ,

P1
ρ−α2(K∗) − I1 − I2 − ξK∗(P1) if P1 ≥ P ∗1 ,

(45)

where

β11 = 1
2 −

α1

σ2 +
√(

α1

σ2 −
1
2

)2
+ 2ρ
σ2 , (46)

K∗ = K∗(P1) = arg max
K≥0

{
P1

ρ− α2(K) − I1 − I2 − ξK∗(P1)
}
, (47)

D1 = (P ∗1 )1−β11

(ρ− α2(K∗))β11
, (48)
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Figure 8: Inverse exponential impulse function as given by Eq. (44). The second drift-rate is plotted as a
function of the control. (Parameters: ρ = 0.04, ε = 0.03, α1 = 0).

and P ∗1 is implicitly given as the solution to the following equation

(β11 − 1) P ∗1
ρ− α2(K∗(P ∗1 )) − β11(I1 + I2 + ξK∗(P ∗1 )) = 0. (49)

Conducting a numerical comparative statics analysis of the investment thresholds, we
compare the results to those obtained in Section 3.3. The effect of volatility on the optimal
investment thresholds, optimal control value, and resulting drift rate, under the new impulse
function are given in Table 7. We see in Table 7a and Table 7b that under a steep impulse
function, which resembles the specification in Section 3.3, the initial investment threshold
can be both increasing and decreasing in volatility. Similar to before, when the cost of the
initial investment is significantly lower than that of the second investment, we observe a
non-monotonic effect of uncertainty on the initial investment threshold. In Table 7c and
Table 7d, the impulse function is less steep, with λ = 0.1. The effect of uncertainty can also
be non-monotonic here, but this necessitates the marginal cost of the impulse, ξ, to be low.
Thus, there is an interplay between the effect of the value-enhancing activity on the drift
rate, and the marginal cost of the activity, in whether there is a non-monotonic effect of
uncertainty. This is in line with Table 3 in Section 3.3, wherein a high marginal cost of the
control makes the effect of uncertainty monotonic. Thus, we can confirm that our earlier
results are robust to the specification of the impulse function, providing that the underlying
assumptions of the firm’s effect on the drift rate is upheld.

4.2. Non-linear cost of impulse
We now investigate the role of the specification of the cost for the value-enhancing ac-

tivity. We introduce a more general, non-linear, investment cost function for the impulse, so
that the cost structure can be either convex or concave, depending on parameter values. This
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σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 15.50 16.83 18.16 19.49 20.88 22.34 23.84 25.50
P ∗2 30.74 32.77 35.82 39.67 44.21 49.41 55.25 61.73
K∗ 5.34 5.45 5.54 5.62 5.71 5.79 5.86 5.94
α∗2 0.0498 0.0498 0.0498 0.0499 0.0499 0.0499 0.0499 0.0499

(a) ξ = 1, I1 = 50, I2 = 300, λ = 1.

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
P ∗1 14.34 14.11 13.25 12.79 12.81 13.25 14.05 15.19
P ∗2 102.46 119.45 147.44 184.24 229.62 283.78 346.99 419.47
K∗ 4.57 4.72 4.82 4.93 5.03 5.14 5.26 5.38
α∗2 0.0496 0.0496 0.0497 0.0497 0.0497 0.0498 0.0498 0.0498

(b) ξ = 1, I1 = 10, I2 = 1000, λ = 1.

σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 19.88 21.93 24.15 26.50 28.98 31.62 34.49 37.56
P ∗2 30.75 32.82 35.90 39.76 44.31 49.51 55.35 61.83
K∗ 33.20 34.37 35.47 36.51 37.51 38.47 39.42 40.36
α∗2 0.0486 0.0487 0.0488 0.0490 0.0491 0.0491 0.0492 0.0493

(c) ξ = 1, I1 = 50, I2 = 300, λ = 0.1.

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
P ∗1 11.96 11.51 10.52 9.90 9.70 9.86 10.30 10.98
P ∗2 102.44 119.37 147.33 184.11 229.48 283.64 346.86 419.35
K∗ 66.03 67.48 68.41 69.34 70.30 71.32 72.38 73.46
α∗2 0.0499 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

(d) ξ = 0.01, I1 = 10, I2 = 1000, λ = 0.1.

Table 7: Effect of increasing uncertainty on the optimal investment thresholds, the optimal amount of
revenue-enhancing investment, and the resulting boosted drift under an inverse exponential impulse function
as given by Eq. (44). (General parameters: ρ = 0.1, ε = 0.05, α1 = 0.01.)
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is similar to the studies performed in capacity choice models under uncertainty, like Dangl
(1999) and Hagspiel et al. (2016a). A concave cost function indicates a decreasing marginal
cost of investment, in line with a situation of economies of scale for the investment, while
a convex cost function represent diseconomies of scale. Here we assume that the impulse
function is given as in Eq. (19), to investigate the case of changed investment cost compared
to the base case controlled model with linear cost. The cost of the value-enhancing activity
undertaken at the first investment stage is a function of the control K, and defined as

IK(K) = I1 + ξKη, (50)

where the constant I1, ξ, and η are larger than zero. η = 1 represents the case of linear cost
studied in Section 3.1 and Section 3.2, while η ∈ (0, 1) represents a concave and η > 1 a
convex cost function. The value of the second-stage option is given by Eq. (35)-(38). Similar
to before, there are two cases for the first-stage investment option which must be considered.
The value of the first investment option is given in the following proposition.

Proposition 4.2. If the first threshold is lower than the second, i.e. P ∗1 < P ∗2 , the value of
the first investment option is given by

F1(P1) =

D1P
β11
1 if P1 < P ∗1 (K∗),

D2(K∗)P β12(K∗)
1 − I1 − ξ(K∗)η, if P1 ≥ P ∗1 (K∗),

(51)

where β11 is given by Eq. (9), D1 by Eq. (42), and D2(K) by Eq. (38). The optimal control
is given by the maximization

K∗ = K∗(P1) = arg max
K≥0

{
D2(K)P β12(K)

1 − I1 − ξKη
}
, (52)

and P ∗1 is implicitly given as the solution to the following equation

(β12(K∗)− β11)D2(K∗)P ∗β12(K∗)
1 + β11(I1 + ξ(K∗)η) = 0. (53)

If P ∗1 ≥ P ∗2 , the value of the first investment option is given by

F (P1) =

D1P
β11
1 if P1 < P ∗1 ,

P1
ρ−α2(K∗) − I1 − I2 − ξ(K∗(P1))η if P1 ≥ P ∗1 ,

(54)

with D1 given by Eq. (48) and the optimal control as the maximization

K∗ = K∗(P1) = arg max
K≥0

{
P1

ρ− α2(K) − I1 − I2 − ξK∗(P1)
}
. (55)

The first investment threshold, P ∗1 , is implicitly given as the solution to the equation given
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by
(β11 − 1) P ∗1

ρ− α2(K∗(P ∗1 )) − β11(I1 + I2 + ξ(K∗(P ∗1 ))η) = 0. (56)

Conducting a numerical comparative static analysis of the effect of uncertainty, the
results under both concave and convex cost functions are given in Table 8. In Table 8a and
Table 8b, we see that the earlier result of non-monotonicity w.r.t. uncertainty hold under
a concave cost structure for the control. A relatively low initial investment cost may yield
a non-monotonic effect of uncertainty on the investment cost. In Table 8c and Table 8d
we see the same holds for a convex cost function. Thus, our previous results are robust
under various specifications of the cost function. In a capacity choice model, Hagspiel et al.
(2016a) investigate the case of both a concave and convex investment cost, and find that
the firm invests significantly later under a convex than a concave cost function. Comparing
the concave and convex cases in Table 8, we see that in our impulse problem, a convex
investment cost also delays the initial investment decision relative to the concave case. The
firm also invest in less value-enhancement when there are diseconomies of scale, as would be
expected.

5. Conclusions

In this paper, we study the investment problem of a firm with an option to irreversibly
invest to enter a novel market. The firm has the opportunity to undertake some amplifying
pre-investments to boost the expected value of the profits from the project, e.g. through
marketing or lobbyism. The stochastic market price is modelled as a geometric Brownian
motion, subject to a change in drift following from the revenue-enhancing pre-investment.
We consider a case with a fixed change in drift, and a situation where the magnitude of the
change is influenced by the amount of revenue-enhancing activities undertaken by the firm.
This makes the stochastic environment of the firm endogenous, as the firm can influence its
potential profits through its actions.

We find that when a firm can change the drift rate of the cash flows from a project, it has
an incentive to invest sequentially, and to boost the drift before committing to launching the
project. This result is not dependent on including other complicating factors such as time-
to-build, contrarily to what is shown by Dixit & Pindyck (1994), but is a pure effect of the
change in the stochastic environment. The effect of uncertainty on the investment triggers
is ambiguous. For the revenue-enhancing investment, increasing the uncertainty can both
delay or accelerate the investment w.r.t. the threshold price, depending on the parameter
values. The effect of the option value of waiting and the incentive to invest early to boost
the drift are conflicting. Which effect dominates is dependent on the cost parameters, the
magnitude of the change in drift, as well as the level of the uncertainty.

In the situation where the firm can optimally choose the magnitude of the boost in
drift through the intensity of revenue-enhancing activities, we find that higher uncertainty
leads to more investment. The firm invests more to boost the drift when the market is
characterized by a higher volatility. Increasing the marginal cost of the revenue-enhancing
activities decreases the intensity of the activity, but increases the total amount spent on
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σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 14.96 16.18 17.31 18.43 19.58 20.78 22.11 23.53
P ∗2 30.74 32.80 35.86 39.72 44.27 49.48 55.32 61.81
K∗ 60.18 64.52 68.36 72.13 76.00 79.98 84.22 88.62
α∗2 0.0492 0.0492 0.0493 0.0493 0.0494 0.0494 0.0494 0.0494

(a) Concave cost function: ξ = 1, I1 = 50, I2 = 300, η = 0.5.

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
P ∗1 14.70 14.26 13.22 12.62 12.56 12.97 13.77 14.91
P ∗2 102.50 119.67 147.79 184.66 230.08 284.26 347.46 419.94
K∗ 36.25 40.20 42.93 45.94 49.42 53.46 58.00 63.10
α∗2 0.0487 0.0488 0.0489 0.0489 0.0490 0.0491 0.0492 0.0492

(b) Concave cost function: ξ = 1, I1 = 10, I2 = 1000, η = 0.5.

σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 19.43 21.24 23.06 25.01 27.07 29.31 31.74 34.49
P ∗2 30.83 33.04 36.25 40.22 44.86 50.12 56.01 62.52
K∗ 7.23 7.61 7.95 8.31 8.67 9.04 9.42 9.83
α∗2 0.0439 0.0442 0.0444 0.0446 0.0448 0.0450 0.0452 0.0454

(c) Convex cost function: ξ = 1, I1 = 50, I2 = 300, η = 1.5.

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
P ∗1 24.71 24.51 23.72 23.86 25.20 27.65 31.41 36.62
P ∗2 102.82 121.17 150.08 187.40 233.05 287.32 350.52 422.91
K∗ 5.87 6.38 6.77 7.23 7.77 8.39 9.12 9.95
α∗2 0.0427 0.0432 0.0436 0.0439 0.0443 0.0447 0.0451 0.0454

(d) Convex cost function: ξ = 1, I1 = 10, I2 = 1000, η = 1.5.

Table 8: Effect of increasing uncertainty on the optimal investment thresholds, the optimal amount of
revenue-enhancing investment, and the resulting boosted drift under a generalized investment cost function
as given by Eq. (50). (General parameters: ρ = 0.1, ε = 0.05, α1 = 0.0.)
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boosting the drift. As a higher marginal cost delays the investment, the firm optimally
incurs a larger total cost of this activity, even though the resulting effect on the drift is
smaller.

This paper represents an early effort in including endogeneity in real options modelling,
bridging the gap to the use of option reasoning in the decision-heuristic oriented strategy
literature. The functional form of how the firm can affect the drift of the market, and the
structure of the cost of this influence, is generally motivated, but not made to fit any specific
practical actions. However, we see that the results are robust w.r.t. these specifications,
suggesting that the results hold more generally for activities of this kind that a firm can
undertake. Future research could investigate specific activities that a firm can undertake,
basing the specification of the influence on literature on the type of activities considered,
like marketing or standard-captures. This could also allow for empirical testing for the
results. Further, considering changes in volatility could broaden the connection to practical
investment problems, as the degree of risk-taking may be an important decision for a firm
introducing a new product, like the case motivated in Alvarez & Stenbacka (2003). Lastly,
future studies could compare the value added from the opportunity to boost the drift, to
the case where the firm has no such affect on the market. This could give further insight
into the nature of including such dependencies of the market characteristics on decisions of
the firm.

References
Adner, R., & Levinthal, D. A. (2004). What is not a real option: Considering boundaries for the application

of real options to business strategy. Academy of management review, 29 , 74–85.
Alvarez, L. H., & Stenbacka, R. (2003). Optimal risk adoption: a real options approach. Economic Theory,

23 , 123–147.
Dangl, T. (1999). Investment and capacity choice under uncertain demand. European Journal of Operational

Research, 117 , 415–428.
Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton university press.
Hagspiel, V., Huisman, K. J., & Kort, P. M. (2016a). Volume flexibility and capacity investment under

demand uncertainty. International Journal of Production Economics, 178 , 95–108.
Hagspiel, V., Huisman, K. J., Kort, P. M., & Nunes, C. (2016b). How to escape a declining market: Capacity

investment or exit? European Journal of Operational Research, 254 , 40–50.
Harrison, J. M., & Sunar, N. (2015). Investment timing with incomplete information and multiple means of

learning. Operations Research, 63 , 442–457.
Kwon, H. D. (2010). Invest or exit? Optimal decisions in the face of a declining profit stream. Operations

Research, 58 , 638–649.
Kwon, H. D., & Lippman, S. A. (2011). Acquisition of project-specific assets with bayesian updating.

Operations Research, 59 , 1119–1130.
MacMillan, I. C., Van Putten, A. B., McGrath, R. G., & Thompson, J. D. (2006). Using real options

discipline for highly uncertain technology investments. Research-Technology Management, 49 , 29–37.
Matomäki, P. (2013). On two-sided controls of a linear diffusion. Ph.D. thesis Turku School of Economics.
McGrath, R. G. (1997). A real options logic for initiating technology positioning investments. Academy of

Management Review, 22 , 974–996.
McGrath, R. G., Ferrier, W. J., & Mendelow, A. L. (2004). Real options as engines of choice and hetero-

geneity. Academy of Management Review, 29 , 86–101.
McGrath, R. G., & MacMillan, I. C. (2000). Assessing technology projects using real options reasoning.

Research-Technology Management, 43 , 35–49.

30



Myers, S. C. (1977). Determinants of corporate borrowing. Journal of financial economics, 5 , 147–175.
Pindyck, R. S. (1993). Investments of uncertain cost. Journal of financial Economics, 34 , 53–76.
Thijssen, J. J., Huisman, K. J., & Kort, P. M. (2004). The effect of information streams on capital budgeting

decisions. European Journal of Operational Research, 157 , 759–774.
Trigeorgis, L. (1996). Real options: Managerial flexibility and strategy in resource allocation. MIT press.
Vollert, A. (2012). A stochastic control framework for real options in strategic evaluation. Springer Science

& Business Media.

Appendix A. Additional derivations

This section presents derivations of the value of the expected discounted cash flows of
the project.

Appendix A.1. The value of the project
Assume that the profit flow per unit time period after the project is launched is given as

π(P2, t) = P2(t), where P2(t) follows Eq. (1b), and that the appropriate discount rate for the
project is ρ. Then the value of the project V (P2) for a price P2 at investment is found using
a dynamic programming approach (Dixit & Pindyck, 1994). The per time period value of
the installed project should be given by the profit flow, plus the change in project value
(capital gains), so we have

ρV (P2)dt = π(P2)dt+ E[dV (P2)]

= π(P2)dt+
[
α2P2

∂V (P2)
∂P2

+ 1
2σ

2P 2
2
∂2V (P2)
∂P 2

2

]
dt

(A.1)

Thus, the value of the completed project, V (P2), must satisfy the differential equation

α2P2
∂V (P2)
∂P2

+ 1
2σ

2P 2
2
∂2V (P2)
∂P 2

2
− ρV (P2) + π(P2) = 0. (A.2)

The last term leads to a particular solution, since π(P2) = P2. The value function V (P2) is
given by the combination of a homogeneous and particular solution, and equal to

V (P2) = B1P
β12
2 +B2P

β22
2 + P2

ρ− α2
. (A.3)

In Eq. (A.3), β12 and β22 are the positive and negative solutions, respectively, of the funda-
mental quadratic

Q ≡ 1
2σ

2β2(β2 − 1) + α2β2 − ρ = 0, (A.4)

giving β12 > 1 and β22 < 0 (Dixit & Pindyck, 1994). The boundary condition limP2→0 V (P2) =
0, gives that B2 = 0 must hold, since β22 < 0. Further, assuming no speculative bubbles as
in Dixit & Pindyck (1994), we have B1 = 0 as well, and the project value is given its the
fundamental value only:

V (P2) = P2

ρ− α2
. (A.5)
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Appendix B. Proofs

This section presents proofs of all propositions and corollaries.

Appendix B.1. Proof of Proposition 2.1
The discounted change in value of the option to undertake the second-stage investment,

F2(P2), for a given value P2 of the price process is equal to the capital gains of the option, as
there is no profit flow from holding the option. The value function must satisfy the Bellman
equation

ρF2(P2)dt = E[dF2(P2)] =
[
α2P2

∂F2(P2)
∂P2

+ 1
2σ

2P 2∂
2F2(P2)
∂P 2

2

]
dt, (B.1)

where the right-hand-side follows from Itô’s Lemma. This gives the differential equation

α2P2
∂F2(P2)
∂P2

+ 1
2σ

2P 2
2
∂2F2(P2)
∂P 2

2
− ρF2(P2) = 0. (B.2)

From the boundary condition F (0) = 0, we obtain the solution form F2(P2) = D2P
β12
2 ,

where β12 is the positive root of the characteristic quadratic equation

1
2σ

2β2(β2 − 1) + α2β2 − ρ = 0. (B.3)

The remaining boundary conditions for the value function are

F2(P ∗2 ) = V (P ∗2 )− I2,

F ′2(P ∗2 ) = V ′(P ∗2 ).
(B.4)

Eq. (B.4) represent the value-matching and smooth-pasting conditions at the optimal thresh-
old price for investing in the second project stage, with the value of the completed project
V (P2) given by Eq. (A.5). At the investment threshold, the value of the option and the
completed project must be continuous and smooth (Dixit & Pindyck, 1994). From these
conditions the threshold price, P ∗2 , and the constant, D2, are given by

P ∗2 = β12

β12 − 1(ρ− α2)I2, (B.5)

D2 = 1
(ρ− α2)β12

[
β12

β12 − 1(ρ− α2)I2

]1−β12

. (B.6)

Hence, the value of the option to invest in the second-stage is given by

F2(P2) =

D2P
β12
2 if P2 < P ∗2 ,

V (P2)− I2 if P2 ≥ P ∗2 ,
(B.7)
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where V (P2) is given in Eq. (A.5).

Appendix B.2. Proof of Proposition 2.2
The value of the option to invest in the first stage, F1(P1), and thus the value of the

firm, for a given price P1, is given by the Bellman equation and Itô’s Lemma as

ρF1(P1)dt = E[dF1(P1)] =
[
α1P1

∂F1(P1)
∂P1

+ 1
2σ

2P 2
1
∂2F1(P1)
∂P 2

1

]
dt, (B.8)

which gives the differential equation

α1P1
∂F1(P1)
∂P1

+ 1
2σ

2P1
∂2F1(P1)
∂P 2

1
− ρF1(P1) = 0. (B.9)

With the boundary condition F1(0) = 0, we obtain the value function F1(P1) = D1P
β11
1

where β11 is the positive solution to the characteristic equation

1
2σ

2β1(β1 − 1) + α1β1 − ρ = 0. (B.10)

Similar to Section Appendix B.1, the option value should satisfy the value-matching and
smooth-pasting boundary conditions at the investment threshold P ∗1 . However, we must
check for both cases of P ∗1 < P ∗2 and P ∗1 ≥ P ∗2 , as the value of P ∗1 determines if we enter the
continuation region or stopping region of F2(P ) in Eq. (B.7).

If P∗1 < P∗2. the boundary conditions become

D1P
∗β11
1 = D2P

∗β12
1 − I1,

β11D1P
∗β11−1
1 = β12D2P

∗β12−1
1 ,

(B.11)

where D2 is given by Eq. (B.6). This gives the solutions of D1 and P ∗1 ,

D1 = β12

β11
D2

 I1

(1− β12
β11

)D2

1−β11
β12

, (B.12)

P ∗1 =
 I1

(1− β12
β11

)D2

 1
β12

, (B.13)

and we have the value of the firm given by

F1(P1) =

D1P
β11
1 if P1 < P ∗1 ,

D2P
β12
1 − I1 if P1 ≥ P ∗1 .

(B.14)
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If P∗1 ≥ P∗2. the boundary conditions become

D1P
∗β11
1 = P ∗1

ρ− α2
− I2 − I1,

β11D1P
∗β11−1
1 = 1

ρ− α2
,

(B.15)

which gives the expressions for D1 and P ∗1

P ∗1 = β11

β11 − 1(ρ− α2) (I1 + I2) , (B.16)

D1 = 1
(ρ− α2)β11

[
β11

β11 − 1(ρ− α2) (I1 + I2)
]1−β11

, (B.17)

and the value of the firm becomes

F1(P1) =

D1P
β11
1 if P1 < P ∗1 ,

V (P1)− I1 − I2 if P1 ≥ P ∗1 ,
(B.18)

where V (P1) is given in Eq. (A.5).

Appendix B.3. Proof of Corollary 2.3
Taking the inequality P ∗1 ≥ P ∗2 , with P ∗1 and P ∗2 being given by Eq. (14) and Eq. (7),

respectively. Reordering the terms give that P ∗1 ≥ P ∗2 if the following inequality holds

I1 ≥
β12

β12 − 1

(
1
β12
− 1
β11

)
× I2, (B.19)

where the right-hand side is positive, since 1 < β12 < β11 if α2 > α1 from Corollary 2.4.
Now evaluating the inequality P ∗1 < P ∗2 , where P ∗1 is given by Eq. (14) and P ∗2 by Eq. (7).
Then the inequality becomes

 I1(
1− β12

β11
D2
)
 1
β12

<
β12

β12 − 1(ρ− α2)I2, (B.20)

where D2 is given in Proposition 2.1. Inserting the expression for D2, we obtain by direct
rearrangement that P ∗1 < P ∗2 yields the inequality

I1 <
β12

β12 − 1

(
1
β12
− 1
β11

)
× I2. (B.21)

Thus, the ordering of the thresholds is unique, and whether the inequality in Eq. (B.21)
holds determines if P ∗1 < P ∗2 .
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Appendix B.4. Proof of Corollary 2.4
Appendix B.4.1. Part i)

Define the characteristic equation as Q(x, ρ, σ, α) = 1
2σ

2x(x − 1) + αx − ρ = 0, and let
β12 and β11 represent the positive roots of the characteristic equations Q(β2, ρ, σ, α2) and
Q(β1, ρ, σ, α1), respectively. Then β12 < β11 gives

1
2 −

α2

σ2 +
√(

α2

σ2 −
1
2

)2
+ 2ρ
σ2 <

1
2 −

α1

σ2 +
√(

α1

σ2 −
1
2

)2
+ 2ρ
σ2

⇒ α2 − α1 > σ2

√(α2

σ2 −
1
2

)2
+ 2ρ
σ2 −

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2


If we assume that α2 − α1 > 0, then we obtain that√(

α2

σ2 −
1
2

)2
+ 2ρ
σ2 −

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2 > 0,

and since this inequality holds, we know that α2 > α2 implies that β12 < β11.

Appendix B.4.2. Part ii)
If the drift rate is constant for the two price processes P1(t) and P2(t), i.e. α1 = α2,

then β12 = β11. From this, the value-matching and smooth-pasting boundary conditions
when P ∗1 < P ∗2 , given by Eq. (B.11), are contradictory. Thus, P ∗1 ≥ P ∗2 always holds when
α1 = α2.

Appendix B.5. Proof of Proposition 2.5
To prove Proposition 2.5–2.7, we first present an auxiliary result outlining the sign of

the partial derivatives of β12 and β11, where β12 and β11 denote the positive roots of the
quadratic equations in Eq. (B.3) and Eq. (B.10), respectively. We know that β12, β11 > 1
(Dixit & Pindyck, 1994).

Lemma Appendix B.1. The sign of the partial derivatives of β12 are given as

∂β12

∂σ
< 0, ∂β12

∂α2
< 0. (B.22)

From this, the sign of the partial derivatives of the fraction β12
β12−1 are given as

∂

∂σ

β12

β12 − 1 > 0, ∂

∂α2

β12

β12 − 1 > 0. (B.23)

The same holds for the partial derivatives of β11 and the fraction β11
β11−1 w.r.t. σ and α1.
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Proof of Lemma Appendix B.1. Evaluate the total derivative of the quadratic equation, Q,
in Eq. (B.3) w.r.t. σ and α2 at the positive root β12:

∂Q
∂β12

∂β12

∂σ
+ ∂Q
∂σ

= 0, ∂Q
∂β12

∂β12

∂α2
+ ∂Q
∂α2

= 0. (B.24)

Thus we have that the partial derivatives given by

∂β12

∂σ
= − ∂Q/∂σ

∂Q/∂β12
,

∂β12

∂α2
= − ∂Q/∂α2

∂Q/∂β12
. (B.25)

The partial derivative of the quadratic w.r.t. β12 is given as ∂Q/∂β12 = 1
2σ

2(2β12− 1) +α2.
Since we know β12 > 1, and σ, α2 > 0, we have ∂Q/∂β12 > 0. Further we have the partial
derivatives

∂Q
∂σ

= σβ12(β12 − 1) > 0, ∂Q
∂α2

= β12 > 0. (B.26)

From this we have that Eq. (B.24) holds. Further, have the derivative of the fraction given
as

∂

∂β12

β12

β12 − 1 = −1
(β12 − 1)2 < 0 (B.27)

and the related derivatives of the fraction in Eq. (B.23) are true. The same can be shown
for β11.

From Proposition 2.1 we have that the second investment threshold given by

P2(τ2) = P ∗2 = β12

β12 − 1(ρ− α2)I2. (B.28)

Trivially, we see that P ∗2 is unaffected by α1 and I1, as well as increasing in I2. Using
Lemma Appendix B.1 and noting that β12 > 1, the partial derivative of P ∗2 w.r.t. σ give

∂

∂σ
P ∗2 = (ρ− α2)I2

∂

∂σ

β12

β12 − 1 > 0 (B.29)

with the assumption that ρ > α2. For the first investment threshold, it is given by Proposi-
tion 2.2 as

P ∗1 =


β11
β11−1(ρ− α2)(I1 + I2) if P ∗1 ≥ P ∗2 I1(

1−β12
β11

)
D2

 1
β12

if P ∗1 < P ∗2
(B.30)

where D2 is given in Proposition 2.1. For the case when P ∗1 ≥ P ∗2 , using Lemma Ap-
pendix B.1, the sign of the partial derivative w.r.t. σ is given by

∂

∂σ
P ∗1 = (ρ− α2)(I1 + I2)

∂

∂σ

β11

β11 − 1 > 0 (B.31)
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For the case when P ∗1 < P ∗2 , the partial derivative w.r.t. σ becomes

∂

∂σ
P ∗1 =

 I1

(1− β12
β11

)D2

 1
β12

︸ ︷︷ ︸
>0

 1
β12

 I1

(1− β12
β11

)D2

−1
∂

∂σ

I1

(1− β12
β11

)D2

+ ln
 I1

(1− β12
β11

)D2

 ∂
∂σ

1
β12

.
(B.32)

Using the partial derivatives of D2, and β12
β11

as given by

∂

∂σ
P ∗2 = (ρ− α2)I2

σβ12(β12 − 1)
0.5σ2(2β12 − 1) + α2

1
(β12 − 1)2 (B.33)

∂

∂σ
D2 = (P ∗2 )−β12

(ρ− α2)β2
12

[
−P ∗2

(
∂

∂σ
β12

)
(β12 ln(P ∗2 ) + 1)− (β12 − 1)β12

(
∂

∂σ
P ∗2

)]

= (P ∗2 )−β12

(ρ− α2)β2
12
× σβ12(β12 − 1)

0.5σ2(2β12 − 1) + α2
× P ∗2 × β12 ln(P ∗2 )

(B.34)

∂

∂σ

β12

β11
= 1
β2

11

[
β12

σβ11(β11 − 1)
0.5σ2(2β11 − 1) + α1

− β11
σβ12(β12 − 1)

0.5σ2(2β12 − 1) + α2

]
(B.35)

we obtain that

∂

∂σ
P ∗1 = P ∗1

β1(β11 − β12)

[
(1 + (β11 − β12) ln

(
P ∗2
P ∗1

)
d

dσ
β12 −

β12

β11

d

dσ
β11

]
. (B.36)

Thus, ∂P
∗
1

∂σ
> 0 implies that the following inequality must hold:

(1 + (β11 − β12) ln (P
∗
2
P ∗1

) d
dσ
β12 −

β12

β11

d

dσ
β11 > 0.

Rearranging, and using the fact that

ln
(
P ∗2
P ∗1

)
= ln

(
(β11 − β12)I2

β11(β12 − 1)I1

) 1
β12
,

we obtain that d
dσ
P ∗1 > 0 if the following condition holds

I2 <
β11(β12 − 1)
β11 − β12

× exp
{

β12

β11 − β12

(
β12

β11

dβ11/dσ

dβ12/dσ
− 1

)}
× I1

Inserting the expressions for dβ11/dσ
dβ12/dσ

from Lemma B.24, we obtain the stated condition.
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Appendix B.6. Proof of Proposition 2.6
The second investment threshold, P ∗2 , is given in Proposition 2.1, while the first threshold

is given by Proposition 2.2. For the sensitivity to the initial drift rate, α1, the partial
derivative of the second investment threshold is trivially zero, as all terms are independent
of α1.
For the case when P ∗1 ≥ P ∗2 , the sign of the partial derivative of P ∗1 w.r.t. α1 is given by

∂

∂α1
P ∗1 = (ρ− α2)(I1 + I2)

∂

∂α1

β11

β11 − 1 > 0, (B.37)

where the sign is given by Lemma Appendix B.1 and the assumptions that ρ > α2, I1, I2 > 0.
For the case when P ∗1 < P ∗2 , we have that

∂

∂α1
P ∗1 =

[
I1

D2

] 1
β12 ∂

∂α1

 1
1− β12

β11

 1
β12

=
[
I1

D2

] 1
β12 1

β12

 1
1− β12

β11

 1
β12
−1

∂

∂α1

1
1− β12

β11

.

(B.38)

Since we know that β12 < β11 from Corollary 2.4, and that D2 > 0, and assume that I1 > 0,
the sign of the derivative is dependent on the last term. Using the fact that

∂

∂α1

(
1− β12

β11

)−1

= −β12

β2
11

(
1− β12

β11

)2
∂

∂α1
β11, (B.39)

we know that ∂P ∗1
∂α1

> 0, since Lemma Appendix B.1 states that ∂β11
∂α1

< 0.

Appendix B.7. Proof of Proposition 2.7
The expressions for the second investment threshold, P ∗2 , and the first threshold, P ∗1 , are

given by Proposition 2.1 and Proposition 2.2, respectively. The sensitivity to the boosted
drift rate, α2, is then given for P ∗2 as

∂

∂α2
P ∗2 = I2

∂

∂α2
(ρ− α2)

β12

β12 − 1 = I2

[
−β12

β12 − 1 + (ρ− α2)
∂

∂α2

β12

β12 − 1

]
. (B.40)

From Lemma Appendix B.1, we have that the last term in the bracket is positive, meaning
that the overall effect is ambiguous. The last term is given as

∂

∂α2

β12

β12 − 1 = −∂β12/∂α2

(β12 − 1)2 = β12
1
2σ

2(2β12 − 1) + α2

1
(β12 − 1)2 (B.41)
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Thus, the derivative of the threshold becomes

1
I2

∂

∂α2
P ∗2 =

[
−1 + (ρ− α2)

1
1
2σ

2(2β12 − 1) + α2

1
β12 − 1

]
β12

β12 − 1 . (B.42)

Noting that the last term is always positive, the sign of the derivative is dependent on the
term in the brackets. Finding the negative region as

−1 + (ρ− α2)
1

1
2σ

2(2β12 − 1) + α2

1
β12 − 1 < 0, (B.43)

which implies
σ2 >

ρ− α1β12

(β12 − 1)(β12 − 1
2) . (B.44)

Thus, ∂P ∗2 /∂α2 is negative as long as Eq (B.44) holds.

Appendix B.8. Proof of Proposition 3.1
The firm maximizes the expected net present value function at the time of investment,

given by
V (P2, K)− I − ξK = P2

ρ− α2(K) − I − ξK, (B.45)

where α2(K) is given by Eq. (19). The first- and second-order derivatives of this value
function are given by

∂

∂K
[V (P2, K)− ξK] =

P2
∂
∂K
α2(K)

(ρ− α2(K))2 − ξ, (B.46)

and

∂2

∂K2 [V (P2, K)− ξK] =
P2

[
(ρ− α2(K)) ∂2

∂K2α2(K) + 2
(
∂
∂K
α2(K)

)2
]

(ρ− α2(K))3 . (B.47)

Setting the first-order derivative to zero, and rearranging, give the positive solution

K̂∗(P2) =
ξ(α1 − ρ) +

√
P2ξ(ρ− ε− α1)
ξε

, (B.48)

and K∗(P ∗2 ) = max{0, K̂∗(P2)}. Further the second-order derivative is given by

∂2

∂K2V (P2, K)− ξK = −2ε(ρ− ε− α1)
(Kε+ ρ− α1)3 P2. (B.49)

This is always negative, as we assume that ρ− ε− α1 > 0, and K is bounded by below by
zero. The price process P2(t) is following a geometric Brownian Motion, so it will never be
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negative. Hence, K∗(P2) is the global maximum. The resulting optimal drift rate α∗2(P2) is
given by

α∗2(P2) = α∗2(K∗(P2)) = ρ− ε− ρ− ε− α1

1 +K∗(P2)

= ρ− ε− ξε(ρ− ε− α1)
ξ(−ρ+ ε+ α1) +

√
P2ξ(ρ− ε− α1)

=
(ε− ρ)

√
P2ξ(ρ− ε− α1) + ρξ(ρ− ε− α1)

ξ(ρ− ε− α1)−
√
P2ξ(ρ− ε− α1)

(B.50)

Appendix B.9. Proof of Corollary 3.2
Using the equation for K̂∗(P2) in Proposition 3.1, and finding the inequality K̂∗(P2) > 0,

we obtain
ξ(α1 − ρ) +

√
P2ξ(ρ− ε− α1)
ξε

> 0, (B.51)

which after rearranging yields the inequality

P2 >
ξ(ρ− α1)2

ρ− ε− α1
, (B.52)

where we have used the assumptions that ρ− ε− α1 > 0, ε > 0, and ξ > 0.

Appendix B.10. Proof of Proposition 3.3
Before investment, the value of the opportunity to invest follows from a Bellman equation

similar to Proposition 2.2. Solving the resulting ordinary differential equation, and letting
β11 be the positive solution to the quadratic equation Q = 1

2σ
2β1(β1−1)+α1β1−ρ = 0, the

value of the firm is then given as in Eq. (26). The the value-matching and smooth-pasting
boundary conditions at the investment threshold P ∗1 are given by,

AP ∗β11
1 = P ∗1

ρ− α∗2(P ∗1 ) − I − ξK
∗(P ∗1 )

β11AP
∗β11−1
1 = d

dP1

[
P1

ρ− α2(K∗1(P1))
− I − ξK∗(P1)

]
P1=P ∗1

.
(B.53)

Defining the term in brackets as f(P1, K(P1)), we obtain that the total derivative is given
as

AP ∗β11
1

β11

P ∗1
= ∂

∂P1
f(P1, K(P1)) + ∂f(P1, K(P1))

∂K

∂K(P1)
∂P1

(B.54)
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However, by the construction of the first-order maximization ofK, we have that ∂f(·)/∂K =
0, and we obtain

AP ∗β11
1 = P ∗1

β11

1
ρ− α2(K∗1(P ∗1 )) (B.55)

Subtracting the equations from the conditions of continuity and smoothness, we obtain

β11 − 1
β11

P ∗1
ρ− α2(K∗(P ∗1 )) − I − ξK

∗(P ∗1 ) = 0. (B.56)

Using the equations for K∗1(P1) and α∗2(P1), this becomes the second-order polynomial for√
P ∗1 given by

P ∗1 −
(

β11

β11 − 1 + 1
)√

ξ(ρ− ε− α1)
√
P ∗1 + β11

β11 − 1(ξ(ρ− α1)− Iε) = 0. (B.57)

Solving for
√
P ∗1 , we obtain

√
P ∗1 = 1

2

(
β11

β11 − 1 + 1
)√

ξ(ρ− ε− α1)

±

√√√√1
4

(
β11

β11 − 1 + 1
)2

ξ(ρ− ε− α1) + β11

β11 − 1(Iε− ξ(ρ− α1)).
(B.58)

Squaring this and rearranging, we obtain the solution for P ∗1 , as given by

P ∗1 = 1
2

(
2β11 − 1
β11 − 1

)2

ξ(ρ− ε− α1) + β11

β11 − 1(Iε− ξ(ρ− α1))

± 1
2

(
2β11 − 1
β11 − 1

)√√√√ξ(ρ− ε− α1)
(

β11

β11 − 1(Iε− ξ(ρ− α1) + ξ(ρ− ε− α1))
)
.

(B.59)

Taking the minus part of Eq. (B.58), we derive when this is smaller than zero. This yields
a non-admissible solution, as the square root of the threshold cannot be negative. Setting√
P ∗1 < 0, we obtain

β11

β11 − 1(Iε− ξ(ρ− α1)) > 0. (B.60)

We know the fraction is greater than zero, since β11 > 1. Thus, there is only one non-negative
root for the investment threshold, i.e.

√
P ∗1 > 0, if the following condition holds

Iε > ξ(ρ− α1). (B.61)
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Appendix B.11. Proof of Corollary 3.4
For Eq. (B.59) to have real-valued solutions, the term in the square root must be greater

than or equal to zero. When rearranging this term, we obtain the condition

Iε ≥ ξ(ρ− α1)− ξ(ρ− ε− α1)
β11 − 1
β11

. (B.62)

Appendix B.12. Proof of Proposition 3.5
As seen in Section Appendix B.1, the value of the second-stage option is dependent on

the value of the drift, and therefore becomes a function of the control K in the controlled
case. However, the choice of K is undertaken before the second-stage option exists, and K
can therefore be considered a constant in this region. Thus, the proof follows analogously the
proof in Section Appendix B.1, with the terms being functions of K through the dependence
of α2(K) on K.

Appendix B.13. Proof of Proposition 3.6
For the case with controlled change in drift, the value of the option to invest in the first-

stage is, similarly to the fixed case presented in Proposition 2.2, dependent on the ordering
of the threshold. The value of the option to invest in the first stage, F1(P1), for a given
price P1, is given by the Bellman equation in Appendix Appendix B.2. The value function
is therefore given as F1(P1) = D1P

β11
1 , where D1 is a parameter to be decided and β11 the

positive solution to the fundamental equation in Eq. (B.10). At the investment threshold,
the firm must chose optimal value of K, and pay the investment cost. The value-matching
and boundary conditions is dependent on the ordering of the thresholds.

If P∗1 ≥ P∗2. the value of the option to invest is given by

F (P1) =

D1P
β11
1 if P1 < P ∗1

maxK
{

P1
ρ−α2(K) − I1 − I2 − ξK

}
if P1 ≥ P ∗1

(B.63)

This is the same situation as in Proposition 3.3, with I = I1 + I2, proven in Appendix Ap-
pendix B.10

If P∗1 < P∗2. the value of the option to invest is given by

F (P1) =

D1P
β11
1 if P1 < P ∗1

maxK
{
D2(K)P β12(K)

1 − I1 − ξK
}

if P1 ≥ P ∗1
(B.64)

whereD2(K) is given by Eq. 6. DefiningK∗ as the maximizing argument, the value-matching
and smooth-pasting boundary conditions at the threshold becomes

D1P
∗β11
1 = D2(K∗)P ∗β12(K∗)

1 − I1 − ξK∗,
β11D1P

∗β11−1
1 = β12(K∗)D2(K∗)P ∗β12(K∗)−1

1 ,
(B.65)
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Multiplying the second equation by P ∗1
β11

, and subtracting the left- and right-hand-sides of
the equations yields that P ∗1 must satisfy the equation given by

(β12(K∗)− β11)D2(K∗)P ∗β12(K∗)
1 + (I1 + ξK∗)β11 = 0. (B.66)

Appendix B.14. Proof of Proposition 3.7
Taking the value of the first investment threshold, P ∗1 , given by Eq. (B.59), we compute

the derivative dP ∗1
dσ

. We obtain that

dP ∗1
dσ

= 1
2ξ(ρ− ε− α1)

d

dσ

(
2β11 − 1
β11 − 1

)2

+ (Iε− ξ(ρ− α1))
d

dσ

β11

β11 − 1

+ d

dσ

[
1
2

2β11 − 1
β11 − 1

√
ξ(ρ− ε− α1)(ξ(ρ− ε− α1) + β11

β11 − 1(Iε− ξ(ρ− α1)))
] (B.67)

The sign of the first term is given as

d

dσ

(
2β11 − 1
β11 − 1

)2

= 4β11 − 2
β11 − 1 ×

−dβ11/dσ

(β11 − 1)2 > 0. (B.68)

This is larger than zero, since we know from Lemma Appendix B.1 that dβ11/dσ < 0. The
sign of the second term in Eq. (B.67) is given by d

dσ
β11
β11−1 , which we know from Lemma Ap-

pendix B.1 is larger than zero. The sign of the last term in Eq. (B.67) is given by

d

dσ
[· · · ] =

√
· · · × d

dσ

[
1
2

2β11 − 1
β11 − 1

]
+ 1

2
2β11 − 1
β11 − 1 ×

d

dσ

√
· · ·. (B.69)

In this equation, we know from earlier that the first term is positive, as long as the square-
root is well-defined. For the second term, the sign is determined by the derivative of the
square-root, which is given by

d

dσ

√
· · · = 1

2
√
· · ·
× (Iε− ξ(ρ− α1))×

d

dσ

β11

β11 − 1 . (B.70)

We know that d
dσ

β11
β11−1 > 0. Therefore, if Iε−ξ(ρ−α1) > 0, the overall term is positive. This

is exactly the necessary condition for a unique threshold, given in Section Appendix B.10.
Since all the evaluated derivatives are postive, we know that dP ∗1 /dσ > 0.

Appendix B.15. Proof of Proposition 4.1
This result is similar to the case proved in Section Appendix B.10, with a different im-

pulse function. However, now the maximization does not yield an analytical result for K∗.
Thus, the value of the optimal control is given implicitly as the maximizing argument. Fur-
ther, using conditions of continuity and smoothness of the value function at the investment
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threshold, similar to Section (Appendix B.2), it is straightforward to see that the investment
threshold, P ∗1 , must satisfy the expression given in Eq. (49).

Appendix B.16. Proof of Proposition 4.2
This result follows the case proved in Section Appendix B.10, with the investment cost

for the first project stage given as IK(K) = I1 + ξKη. The value of the optimal control is
given implicitly as the maximizing argument for each case of the ordering of the thresholds
P ∗1 and P ∗2 . Further, using conditions of continuity and smoothness of the value function at
the investment threshold, similar to Section (Appendix B.2), P ∗1 , must satisfy the expression
given in Eq. (56).
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