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Abstract

Real option theory is a central tool in today’s investment theory as it
integrates uncertainty and managerial flexibility in the analysis and val-
uation of investment projects. This paper studies the optimal time and
size of investment for a monopolistic firm under demand uncertainty and
volume flexibility. In our modeling framework, demand is random and
the firm first decides the optimal time and size of the production process.
After entry, the firm adjusts continuously production volume to match
the observed demand. Volume flexibility comes at a cost which depends
on both the current output and the established capacity. We study two
different models of volume flexibility: Downside volume flexibility allows
the firms to produce any quantity below the installed capacity. Upside
volume flexibility also allows to expand production above the firm’s ca-
pacity size. In both cases, the option to temporary suspend production
is not given a priori, but it is part of the firm’s optimal choice. With
this feature, the model provides conclusions that contrast some of the
most recent theoretical findings on the same subject. We find that an in-
crease of the degree of downside volume flexibility makes the firm willing
to invest earlier in a larger plant. We also show that downside volume
flexibility reduces the utilization rates, especially in highly uncertain
markets. Upside volume flexibility has the joint effect of reducing the
size of the investment and the investment threshold at which the firm
installs capacity. The utilization rates are significantly higher compared
to the case of downside volume flexibility only, and there is an increasing
relationship between increased upside flexibility and utilization rates.

1 Introduction

In today’s business, changes in market and economic conditions have a tremen-
dous impact on firms’ performance. The high variability of demand in many
markets has become the nightmare of managers, since it is the cause of the po-
tential mismatch between supply and demand. An example is the breakdown
of the dotcom industry described in Raturi and Jack (2004). They report a 50
percent of demand felt down between 2000 and 2002 in the technological and
networking sector. This breakdown forced firms to perform a drastic revision
of their production process. For instance, in 2001 Cisco Systems announced
a suspension of 8,500 workers and a canceling of unused inventory for a total
value of $2,5 billion, due to a drastic change in market demand (in front of
a forecast of a 70 percent increase in sales, they experienced a 30 percent
decline), (see Raturi and Jack, 2004). Another example is the dramatic mar-
ket’s breakdown in the automotive industry during the recent financial crisis
(2008-2011) also mentioned in Hagspiel et al. (2016). Bengtsson and Olhager
(2002), among others, advocate the use of manufacturing flexibility to miti-
gate the risk exposure of firms’ profit flow due to drastic changes in demand.
In particualr, volume flexibility, that is the ability to adapt production to
current demand level, is a central feature of today’s investment planning. For
instance Fleischmann et al. (2006), in describing BMW’s model of strate-
gic planning, argues that “For BMW, flexibility of production capacities with
regard to future unknown demand is a central issue”.
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Traditional capital budgeting techniques suggest that the valuation of a
given investment project should be accomplished by computing the expected
value of the project’s future cash flow, the so-called project’s Net Present
Value (NPV), discounted with an opportunely risk-adjusted interest rate. In
this context, Trigeorgis (1996), at page 25 states “In the absence of manage-
rial flexibility, net present value (NPV) is the only currently available valua-
tion measure consistent with a firms objective of maximizing its shareholders
wealth”. However, NPV analysis typically ignores situations where a project
posses some degree of managerial flexibility, such as the ability to decide the
starting date of the project, the possibility to abandon the project at some
future date or the flexibility to decide about the scale of the project. In such
cases the valuation of an investment project requires more sophisticated tools,
such as modern real option analysis that recognizes an investment project as
a portfolio of complex real options (that is, options on real assets).

This paper utilizes a real option framework to analyze the effect of volume
flexibility on both the optimal time to invest and the optimal size of the pro-
duction plant to install under uncertain market conditions. More specifically,
the firm’s decision problem consists in determining: i) when it is optimal to
enter in the market; ii) what capacity maximizes the discounted sum of future
profit flow and iii) the current production. In this context, we analyze how
volume flexibility affects the firm’s optimal choice.

Previous research utilizes different definitions of volume flexibility. Sethi
and Sethi (1990) define it as the ability of a production process to profitably
operate at different output levels. For Gerwin (1993), volume flexibility allows
a firm to increase or decrease the aggregate production level. More recently,
Hagspiel et al. (2016) uses the concept for which volume flexibility is the abil-
ity to adjust production costlessly over time, identified in Bengtsson (2001) as
operational or production flexibility. We utilize the concept of volume flexi-
bility elaborated in Goyal and Netessine (2011), for which volume flexibility is
the ability to profitably produce at volumes different from installed capacity,
so as to adapt the production output to the current level of demand. This
is done by defining the firm’s cost structure to depend linearly on the cur-
rent output and by adding a quadratic term which measures and penalizes
volumes of production different from installed capacity, see also Vives (1989).
Our model accounts explicitly for two different variations. Downside volume
flexibility is the ability to profitably downscale production when demand is
low, while upside volume flexibility is the ability to increase production above
the established capacity to face periods of high levels of demand.

In our model, the option to suspend production is neither given nor dis-
carded a priori, but it is an endogenous choice. As it turns out, in fact, when
the ability to adapt production at the current demand level comes at cost,
the choice of the optimal capacity of the production plant impacts on the
possibility to temporary stop production in the future. With a relatively low
capacity, the option to suspend production in periods of market’s crisis is
part of the optimal solution. However, if the firm chooses a large capacity,
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stopping the production for a period of time might become so expensive to
be never contemplated in the optimal solution.

When planning an investment in a production plant, especially in markets
characterized by highly volatile levels of sale, firms face the following dilemma.
On the one hand, the possibility of increased future levels of demand makes
desiderable for the firm to invest in a large production plant. On the other
hand, the high risk of market’s breakdown makes more desiderable for the
firm to invest in a small production plant. This two contrasting forces are
the keys to understand how volume flexibility alters the firm’s choice. In this
paper we analyze separately the effects of upside and downside flexibility.

We start by considering a production process that only allows for downside
flexibility. We show that the choice about whether to include or not the option
to suspend production in the future depends on the level of uncertainty in
the market and the degree of (downside) volume flexibility of the production
process. When uncertainty is relatively low, the option is contemplated in
the optimal strategy if the firm is sufficiently flexible and it is discarded if
the firm is sufficiently inflexible. However, in markets characterized by high
uncertainty, the incentive to increase the capacity of the plant in order to
be able to face high levels of demand (Bar-Ilan and Strange, 1999; Dangl,
1999; Hagspiel et al., 2016) prevails over the need of the firm to hedge the
profit flow by the risk of a market’s crash. The result is that the firm always
discards the option to suspend production from the optimal strategy. Looking
at the effect of downside flexibility on the size of the optimal capacity, we
note that the more downside-flexible the firm, the larger the production plant
installed. Since downwards output adjustments are cheaper at high degrees
of flexibility, the firm has an additional incentive to rise capacity. While this
pattern is in line with previous findings Hagspiel et al. (2016), we note a huge
difference in quantitative terms between the case in which flexibility is for
free and the case in which it is costly. In the latter case, indeed, the firm
does not have the option to suspend production and, to balance the risk of
negative profits due to low levels of demand, requires a considerably lower
capacity than that required by a fully flexible firm. Analyzing the impact
of downside volume flexibility on the optimal investment timing, our model
predicts that, as far as flexibility is costly, the more flexible firm has an
incentive to invest earlier than the less flexible firm. This phenomenon is in
contrast with the recent findings of Hagspiel et al. (2016), where the inverse
relation is found in highly uncertain markets. Finally, looking at the impact
of downside volume flexibility on the utilization rates at the moment of entry,
our model with costly flexibility predicts percentages of capacity utilization
significantly higher than the benchmark case of full flexibility. Moreover, as
uncertainty increases, the utilization rates display a decreasing pattern.

We then analyze the impact of upside volume flexibility by introducing it
into a setup where downside flexibility is already present. This results in the
reduction of the optimal capacity installed by the firm. At higher degrees of
upside volume flexibility correspond lower optimal capacity sizes. Here, eco-
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nomic intuition suggests that the firm, being now able to profitably increase
output volume also above the established capacity, seeks for more protection
of the downwards part of the production process. This effect is particularly
pronounced at high levels of the uncertainty parameters, since in those cases
the risk of a market’s crash is higher. As the first consequence of this capacity-
reducing effect, the option to suspend production is restored, also in highly
uncertain markets. The rationale for this increased interest in the option to
suspend production is that upside volume flexibility provides the firm with
good chances to exploit high levels of demand also when capacity is sufficiently
low. Thus the firm has the possibility to better hedge the profit flow from the
risk of markets’ crash. However, this happens only for sufficiently high degrees
of upside flexibility. As the firm becomes less flexible in the upwards part of
the production process the option to suspend production looses importance
until is not contemplate in the optimal strategy. We also find that upside
volume flexibility further reduces the optimal investment threshold. This is
again a consequence of the capacity-reducing effect of upside flexibility, since
to install the desired capacity the firm has to reach a lower level of demand.
Finally, the model with upside flexibility predict higher utilization rates, and
an increasing relationship between the degree of upside volume flexibility and
the utilization rate. This phenomenon is persistent over different levels of
uncertainty and different degrees of downside volume flexibility.

The remainder of the paper is organized as follows. In subsection 1.1 we
provide a brief survey of related literature. Section 2 presents the firm’s deci-
sion problem and describe the concept of volume flexibility we utilize through-
out the paper. In section 3 we present our numerical results. In particular, in
section 3.1 we present the results of the model with downside flexibility only,
while in section 3.2 we analyze the model with upside flexibility. Section 4
concludes.

1.1 Related literature

This paper is related to the stream of literature studying volume flexibility
as a tool to face long-term uncertainty. Previous research in this context in-
vestigates the problem of selecting the optimal technology (that is, level of
flexibility). Considering a monopoly framework, this is done, for instance,
in Vives (1989) in a one-product setup and Goyal and Netessine (2011) in
a two-product setup. Our model of volume flexibility is borrowed from this
literature. The research questions, however, are quite different, since we in-
vestigate how volume flexibility affects the optimal investment timing and
the optimal capacity sizing of a production plant. Other research investigates
the strategic aspects of volume flexibility. In a three-stage (capacity choice,
pricing, and production) game, Anupindi and Jiang (2008) show that invest-
ments in volume flexibility are influenced by the nature of the random shock
affecting the demand. Our paper does not consider competition for tractabil-
ity reasons, but considers in addition the question of the optimal time of the
investment, allowing us to draw testable hypotheses on the utilization rate at
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the moment of entry.
In order to mitigate the risk associated with highly fluctuating levels of

demand, a number of relevant papers introduces real option contracts into the
supply chain management. Started with Barnes-Schuster et al. (2002), this
stream of literature has received considerable attention in recent years from
both academics and practitioners. For instance, Chen and Shen (2012) study
models of supply chain management that include service requirements as well
as option contracts, showing how real options affect the supply chain perfor-
mance. Chen et al. (2014) investigate the effects of the introduction of call
option contracts into the supply chain when the retailer is loss-averse. Chen
et al. (2017) extend Chen and Shen (2012) by introducing bidirectional option
contracts into the supply chain model, showing that bidirectional contracts
help members of the supply chain to enhance their profit flows. We view our
paper related to this stream of literature, since they share the overall goal of
facing the risks due to unanticipated demand.

This paper is also related to the literature studying investments under un-
certainty started with Dixit and Pindyck (1994); McDonald and Siegel (1986),
and more specifically with the previous research dealing with the problem of
optimal capacity sizing under uncertainty. One of the first contribution in this
vein is Bar-Ilan and Strange (1999), where the authors study the intensity of
investment of a non flexible firm. In this context, Bengtsson (2001) review
early papers that study manufacturing flexibility and real options from an in-
dustrial engineering/production management perspective. Among the most
recent papers in this stream of literature, it is worth mentioning Savolainen
et al. (2017) who analyze how the financing structure affects the value of a
large investment project such as that metal mining. Our paper also studies
investment timing and capacity, but the production process of our firm is
volume-flexible.

This paper is also strictly related to Dangl (1999). Our model of down-
side flexibility collapses to the model of (Dangl, 1999) when the parameter of
downside volume flexibility is set to zero. In that paper, however, the author
focuses on the impact of demand uncertainty on the optimal strategy, while
our focus is on the impact of volume flexibility. In this direction, even more
related to our work is the recent analysis in Hagspiel et al. (2016), where
the authors compare the case in which (downside) volume flexibility comes
for free with the non flexible case. They conclude that, in highly uncertain
markets, increased flexibility in production delays the optimal timing of the
investment, since in those cases the incentive of the firm to install a large
capacity is stronger than the incentive to invest earlier due to the increased
flexibility. Although our model of downside flexibility cannot be seen as a di-
rect generalization of Hagspiel et al. (2016), the key difference of our analysis
compared with Hagspiel et al. (2016) is in the introduction of the cost asso-
ciated to volume flexibility. This simple ingredient makes us conclude that,
when (downside) volume flexibility comes at some cost, though small, in-
creased flexibility reduces the optimal investment threshold, thus making the
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firm willing to invest earlier. This feature that cannot be seen by comparing
the two extreme cases of full (costless) flexibility and inflexibility. Moreover,
we also analyze the impact of upside volume flexibility, a factor that Dangl
(1999); Hagspiel et al. (2016) do not mention in their work.

2 Model, project value, and optimal investment

Consider a risk-neutral firm that has the possibility to undertake an invest-
ment in a production facility. The decision problem involves both the timing
of the investment and the capacity of the production plant, which we denote
by K. The sequence of events is depicted in figure 1. Starting from time t = 0,

t = 0 t = τ

Wait Produce

Invest

t

Figure 1: Model’s sequence of events.

the firm posses a perpetual option to invest in a production plant. At time τ
the firm exercises the option and installs the desired capacity. Once capacity
is installed, the firm is able to produce the product. This involves observing,
from time to time, the realized level of demand and adjusting production
accordingly.

Denote by qt the quantity produced at each time t ≥ 0. The price at time
t of the product is given by

p(qt) = θt − γqt, (1)

where the positive parameter γ is the slope of the inverse demand, and the
exogenous process {θt} models random fluctuations in the market and it is
assumed to follow a geometric Brownian motion

dθt = µθtdt+ σθtdWt (2)

where µ is the instantaneous growth rate and the positive parameter σ rep-
resents the volatility of the random process.

To simplify notation, from now on we omit the time subscript whenever it
does not create misunderstanding. The function C(q;K) describes the firm’s
cost of producing output q when installed capacity is K. It follows that the
instantaneous profit of the firm is

π(q; θ,K) = qp(q)− C(q;K) (3)

We assume that the risk neutral firm is endowed with a discount rate r
which satisfies r > µ and r > 2µ + σ2 to guarantee that the integrals below
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are well defined. The firm’s decision problem is formalized as follows:

FD(θ) = max
T≥0,K≥0

E

[∫ ∞
T

e−rtπ∗(θt,K)dt− e−rT I(K) | θ0 = θ

]
(4)

where π∗(θ,K) = max
q≥0

π(q; θ,K). Following Dangl (1999), the investment

costs is assumed to have the the functional form I(K) = δKλ, where δ > 0 is a
proportional parameter while λ > 0 measures the concavity of the investment
costs’ function. Any λ < 1 represents situations where the installation of
capacity benefits of economies of scale. At λ = 1 the cost function is linear,
so that doubling the size of the investment will double the investment cost.
Any λ > 1 models diseconomies of scale.

The functional forms of the cost function captures the flexibility charac-
teristics of the production process. We assume that the firm posses a volume-
flexible technology, which allows production at levels different from installed
capacity. Our model of volume flexibility mirrors (Goyal and Netessine, 2011),
where volume flexibility is defined as the possibility for a firm to profitably
produce levels of output different from installed capacity. We distinguish
between two different forms of volume flexibility. When only downside flexi-
bility is allowed, the firm can produce up to the established capacity. Sources
of downside flexibility are shutting down production lines, reducing working
hours, negotiating on volume with suppliers (Hagspiel et al., 2016; Jack and
Raturi, 2002). With upside volume flexibility, the firm is able to adjust the
current volume of production to levels of demand higher than installed ca-
pacity. Jack and Raturi (2002) list several sources of flexibility that firms
use to satisfy high levels of demand, such as labor flexibility (hiring tempo-
rary workers, using overtime or part-time labor resources), inventory buffers,
outsourcing arrangements, etc.

To model both sides of volume flexibility, we assume the cost of producing
output q to explicitly depend on the deviation from the output and installed
capacity. More precisely:2

C(q;K) = cq + (q −K)2
(
bD1{q<K}(q) + bU1{q>K}(q)

)
. (5)

In equation (5), in addition to the linear part of the cost function, the
quadratic component reflects the additional cost the firm incurs for producing
at levels different from installed capacity. The parameter bD ≥ 0, which is
active only when the firm produces below the established capacity, may be
interpreted as the degree of downside volume flexibility as it drives the steep-
ness of the average cost curve around the minimum. The greater the value of
bD, the steeper the average cost curves around its minimum, and the less flex-
ible the production process. This definition of degree of volume flexibility is
in accordance with Stigler (1939) (see also Goyal and Netessine, 2011; Vives,
1989). Similarly, the parameter bU ≥ 0, which is active only when production

2The function 1A(x) denotes the indicator function of x over the set A, which is equal
to 1 if x ∈ A and zero otherwise.
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exceeds installed capacity, drives the degree of upside volume flexibility. We
keep the distinction between the upside and downside volume flexibility by
allowing the parameters bD and bU to be different.3 This reflects the fact that
two types of flexibility come from different sources and abilities. Moreover,
different industries have different attitudes towards upside and downside flexi-
bility. For instance, hydropower producers are characterized by a high degree
of downside flexibility and a very low (if not completely absent) degree of
upside flexibility, while in many sectors, service providers are usually very
flexible on both sides of the production process, Kesavan et al. (2014).

The framework proposed in this paper also allows to study the case in
which the production process is flexible only in the downside direction. In-
deed, by letting bU grow to infinity, we retrieve the case in which only downside
flexibility is present. With this feature we are able to: i) make direct com-
parisons between the scenario in which downside volume flexibility is for free
(Dangl (1999); Hagspiel et al. (2016)) and the scenario in which the possibility
to scale down production is costly, and ii) separate the effects of both forms
of volume flexibility in the optimal time of investment and capacity choice.

Having described the framework, we now turn to the solution of the de-
cision problem. Suppose the firm has made the investment with capacity K
and assume that the current level of demand is θ. The optimal current output
q∗(θ,K) is computed by straightforward maximization:

q∗(θ,K) =


0 if θ ≤ c− 2bDK
2bDK−c+θ

2(bD+γ) if c− 2bDK ≤ θ < c+ 2γK
2KbU−c+θ

2(bU+γ) if θ ≥ c+ 2γK.

(6)

Since the level of demand θ can never be negative, inspection of (6) reveals
that when volume flexibility comes at cost the possibility to temporary stop
the production depends on the (endogenous) capacity of the production pro-
cess. The value c

2bD
acts as a threshold: the firm finds optimal to suspend

production only when the capacity is below the threshold. Thus, the firm
might choose a capacity size either below the threshold c

2bD
and get the profit

flow

π∗(θ,K) =


−bDK2 if θ ≤ c− 2bDK
(2bDK−c+θ)2

4(bD+γ) − bDK2 if c− 2bDK ≤ θ < c+ 2γK
(2bUK−c+θ)2

4(bU+γ) − bUK2 if θ ≥ c+ 2γK,

(7)

or above c
2bD

and get the profit flow

π∗(θ,K) =

{
(2bDK−c+θ)2

4(bD+γ) − bDK2 if θ < c+ 2γK
(2bUK−c+θ)2

4(bU+γ) − bUK2 if θ ≥ c+ 2γK.
(8)

3Observe that Dangl (1999)’s model is recovered when full downside flexibility is allowed
(bD = 0) and no upside flexibility is allowed (bU is infinitely large).
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In choosing the optimal capacity, the firm thus implicitly chooses whether
to contemplate or not in its future activities the possibility to temporary
shut down production. Here, intuition is clear. Since producing at levels
different from installed capacities is costly, a low capacity will give the firm
more freedom to adjust output volume when demand is low, including the
possibility to stop the production. On the other hand, with a large capacity
the firm is able to increase production at a cheaper cost, but scaling down
production is more costly. Also observe that this dilemma is present whether
or not the parameter driving the degree of upside volume flexibility is infinite.
This is not surprising, as upside flexibility only modifies that part of the
production process which exceeds capacity.

We observe that, in both cases, the profit flow can be negative for low
levels of demand. For this reason we assume that the firm has the possibility
to exit the market at the cost EC. This might happen provided that EC is
lower than discounted value of future losses.

Next proposition characterizes the value of the investment project at the
moment of entry for a fixed capacity, which is defined as the expect discounted
sum of future profit flows. We relegate additional details and cumbersome
expressions in A.

Proposition 1 Define the functions V̄1, V̄2 and V̄3 as follows

• V̄1(K) = bDK
2

r ;

• V̄2(θ,K) = −4bDcK−4bDγK
2+c2

4r(bD+γ) + θ(4bDK−2c)
4(bD+γ)(r−µ) + θ2

4(bD+γ)(−2µ+r−σ2)
;

• V̄3(θ,K) = −4bU cK−4bUγK
2+c2

4r(bU+γ) + θ(4bUK−2c)
4(bU+γ)(r−µ) + θ2

4(bU+γ)(−2µ+r−σ2)
;.

Define also β1 and β2 respectively as the positive and negative root of the
equation σ2

2 β
2 + (µ− σ2

2 )β = r and set θ1 = c− 2bDK, θ2 = c+ 2γK.

1. If the firm chooses its capacity such that K < c
2bD

, then the suspension

option is part of the optimal strategy and the project has value V Inc(K, θ)
given by:

V Inc(K, θ) =


−EC if θ < θIncE (K)

A1(K)θβ1 +A2(K)θβ2 − V̄1(K) if θIncE (K) ≤ θ < θ1

B1(K)θβ1 +B2(K)θβ2 + V̄2(θ,K) if θ1 ≤ θ < θ2

C2(K)θβ2 + V̄3(θ,K) if θ ≥ θ2.

(9)

2. If the firm chooses its capacity such that K ≥ c
2bD

, then the firm will
not have the possibility to suspend production in its optimal strategy,
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and the value of the project is V Exc(K, θ) given by:

V Exc(K, θ) =


−EC if θ < θExcE (K)

D1(K)θβ1 +D2(K)θβ2 + V̄2(θ,K) if θExcE (K) ≤ θ < θ2

E2(K)θβ2 + V̄3(θ,K) if θ ≥ θ2

(10)
The expressions of functions A1(·), A2(·), B1(·), B2(·), C2(·), D1(·), D2(·)
and E2(·) and exit thresholds θIncE (·), θExcE (·) are relegated in A.

The relationship between installed capacity and downside volume flexibility
has interesting implications in terms of managerial insights. From proposition
1, a fixed degree of downside volume flexibility, bD, defines the maximum
level of installed capacity, c

2bD
, which guarantees the future possibility to

temporary shut down production. This implies that the degree of freedom
the firm has when deciding about the size of the production plant is not
sufficient to provide the firm with protection.

The firm’s decision problem can be solved by backward induction. First,
for any fixed level of demand θ, the firm chooses its optimal capacity K∗(θ).
Then it determines the optimal demand level, which we denote θ∗, at which
it is optimal to make the investment. When deciding about the size of the
capacity, the firm faces implicitly the dichotomy between contemplating and
excluding the suspension option. This implies that the firm compares, for
each level of demand, the maximum value attainable by including the option
to suspend production with the maximum value attainable by excluding the
suspension option. We summarize the procedure in the next proposition.

Proposition 2 Define

K∗,Inc(θ) = arg max
0≤K< c

2bD

[
V Inc(θ,K)− I(K)

]
K∗,Exc(θ) = arg max

K≥ c
2bD

[
V Exc(θ,K)− I(K)

]
If V Inc(θ,K∗,Inc(θ)) > V Exc(θ,K∗,Exc(θ)) then the firm chooses to include

the suspension option in the optimal strategy. The optimal capacity size is
K∗(θ) = K∗,Inc(θ) and the value of the investment, right after the firm’s
entry, is V (θ) = V Inc(θ,K∗(θ)) − I(K∗(θ)). Otherwise, the firm chooses to
exclude the suspension option in the optimal strategy. The optimal capacity
size is K∗(θ) = K∗,Exc(θ) and the value of the investment, right after the
firm’s entry, is V (θ) = V Exc(θ,K∗(θ))− I(K∗(θ)).

In Proposition 2 the maximization of functions V Inc(·, θ) and V Exc(·, θ)
must be performed numerically, since no closed form solution is available. This
can be done by first deriving explicitly and then solve numerically the first
and second order optimality conditions for a maximum of a one-dimensional
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function like in Dangl (1999); Hagspiel et al. (2016). However, given the cum-
bersome expressions of the first and second derivatives of the value functions
with respect to capacity, we find more convenient the use of a derivative-free
optimization routine (see, for instance, Judd (1998); Miranda and Fackler
(2004)).

The last step of the decision problem is to find the threshold level, θ∗, at
which the firm finds optimal to make the investment. As seen at time 0, that
is before the firm makes the investment, the project has value F (θ) which,
by the log-normality assumption of the state variable θ, can be expressed as
(see, for instance, Karatzas and Shreve (1998)).

F (θ) =

(
θ

θ∗

)β1
V (θ∗). (11)

The optimal threshold is the value θ∗ that maximizes (11).

3 Results

In this section we perform a series of numerical experiments to show the main
insights of the model. We use, as base case, the parameter values in Table
1. Note that this base case is also studied in Dangl (1999); Hagspiel et al.
(2016). In what follows, we first analyze the effect of downside flexibility in

Table 1: Parameter values used in the analysis
µ r γ c δ λ EC

0.02 0.1 1 200 1000 0.7 0

the optimal investment strategy. This is done by letting bU grow to infinity.
Then, we turn to the impact of upside volume flexibility.

3.1 Downside volume flexibility

We recall that the degree of downside volume flexibility is driven by the
parameter bD. High values of bD correspond to low degrees of flexibility and
vice versa.

The option to suspend production

In our model the option to suspend production is endogenous. The firm can
choose a capacity size for which future production levels either contemplate
or neglect the possibility to temporary suspend production. It turns out
that, depending on demand uncertainty and flexibility degree, both situations
can occur. We first illustrate the optimal investment strategies when the
uncertainty is relatively low. An example is depicted in Figure 2. In this case,
the optimal strategy suggests to keep the option to suspend production for
high degrees of downside flexibility in the production process. This is shown,
for instance, in panel 2(a), which corresponds to a value of bD = 0.1. Here,
the optimal strategy tells the firm to enter the market whenever θ ≥ θ∗ = 445
and to choose a capacity size of K∗(θ∗) = 295.04. After entry, the firm will
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Figure 2: Investment strategy with downside volume flexibility only. Scenario
with low uncertainty (σ = 0.1). The black (solid) line depicts the function
K∗(·), while the black (empty) circle indicates the optimal capacity when
entry, K∗(θ∗). The green (dashed) line depicts the production output function
q∗(·,K∗(θ∗)) and the green (full) circle indicates the production when entry,
q∗(θ∗,K∗(θ∗)). The red horizontal (dash-dotted) line marks the threshold
c
2b . Capacities below (above) such value contemplate (neglect) the option
to suspend production. Panel 2(a) shows a highly flexible scenario (bD =
0.1). In this case the optimal values are: θ∗ = 445, K∗(θ∗) = 295.04 and
q∗(θ∗,K∗(θ∗)) = 138.19. Panel 2(b) shows a moderately flexible scenario
(bD = 1). In this case the optimal values are: θ∗ = 465, K∗(θ∗) = 215.11 and
q∗(θ∗,K∗(θ∗)) = 173.8. In both panels the remaining parameter values are
those in Table 1.
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suspend production whenever θ < c − 2bK∗(θ∗) = 140.99. The opposite
situation occurs in panel 2(b), which considers a production process which
is only moderately flexible (bD = 1). In this case, the option to temporary
suspend the production is not included in the optimal strategy: The firm will
entry the market whenever θ ≥ θ∗ = 465 with the chosen capacity K∗(θ∗) =
215.11 and start producing always positive quantities. To summarize, with
low uncertainty, the firm will contemplate the suspension options only if the
production process is sufficiently (downside) flexible. This is quite intuitive,
since low degrees of downside volume flexibility imply high costs associated
to the suspension of production. When demand is highly uncertain, however,
we find that, as far as the parameter bD is strictly positive (though small),
it is never optimal for the firm to contemplate the possibility to temporary
stop the production. An example of this effect is shown in Figure 3, where
we set the volatility parameter to σ = 0.2 and compare the case bD = 0 (full
downside flexibility, Dangl (1999)) in panel 3(a) with the case bD = 0.1 in
panel 3(b). This result is a consequence of the firm’s incentive to increase
the size of the installed capacity in markets with high uncertainty ((Bar-Ilan
and Strange, 1999; Dangl, 1999; Hagspiel et al., 2016)). Consider for instance
panel 3(a), a situation in which the production process posses a high degree
of downside flexibility. Under high uncertainty the firm foresees not only high
risk of market’s crash, but also a high probability of market’s boom. Due
to the high degree of downside flexibility, the firm is able to hedge the risk
of breakdown. On the other hand, the firm is not able to adjust production
beyond the established capacity, and the only way to get prepared to exploit
future high demand levels is to increase the capacity size at the moment of the
investment. This effect pushes the installed capacity well above the threshold
c
2b and the firm would find optimal to never suspend production.

The impact of downside flexibility

We now analyze how increased downside volume flexibility affects the invest-
ment strategy. Figure 4 shows the optimal capacity choice and Figure 5 the
optimal investment threshold, both as functions of bD. The two panels of
Figure 4 (one with high uncertainty and one with low uncertainty) displays
a monotonically increasing pattern between increased flexibility and capacity
sizing. The more flexible the production process, the cheaper the adjustments
of future production levels below from the established capacity. This pushes
the firm to establish a greater capacity to exploit the possibility of future
high levels of demand. Moreover, when uncertainty is high, we observe a
huge quantitative difference between the established capacity of the full flex-
ible case (bD = 0) with that of any other intermediate case. For instance,
with σ = 0.2, at level bD = 0.1 we find K∗(θ∗) = 1558.7, while the full flex-
ible case gives K∗(θ∗) = 93232. This is only in part due to the possibility,
in the full flexible case, to adjust production output without additional cost.
Indeed, we recall that in market with high uncertainty the optimal strategy
suggests to exclude the option to suspend production. This means that the
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Figure 3: Investment strategy with downside flexibility only. Scenario with
high uncertainty (σ = 0.2). The black (solid) line depicts the function K∗(·),
while the black (empty) circle indicates the optimal capacity when entry,
K∗(θ∗). The green (dashed) line depicts the production output function
q∗(·,K∗(θ∗)) and the green (full) circle indicates the production when entry,
q∗(θ∗,K∗(θ∗)). The red (dash-dotted) horizontal line marks the threshold c

2b .
Capacities below (above) such value contemplate (neglect) the option to sus-
pend production. Panel 3(a) shows the full-flexible scenario (bD = 0). The
optimal values are: θ∗ = 1770, K∗(θ∗) = 93232 and q∗(θ∗,K∗(θ∗)) = 785.
Panel 3(b) shows a high flexible scenario (bD = 0.1). The optimal values are:
θ∗ = 1279, K∗(θ∗) = 1558.7 and q∗(θ∗,K∗(θ∗)) = 632.15. In both panels the
remaining parameter values are those in Table 1.
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full flexible firm, having for free the possibility of not loosing money if the
demand drastically drops down, requires a very large capacity to exploit the
possible high levels of demand. On the other hand, although the firm with
flexibility coefficient bD = 0.1 can adjust production volume at a relatively
low cost, at large capacity size it incurs in the risk of producing output with
negative profits when demand is sufficiently low.

0.1 2 4
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K
∗ (θ

∗ )

(a) σ = 0.1

0.1 2 4
900

1200

1600

bD

K
∗ (θ

∗ )

(b) σ = 0.2

Figure 4: Impact of downside volume flexibility on capacity sizing. The line
depicts the optimal capacity at the moment of entry K∗(θ∗) as a function
bD. Panel 4(a) shows a case with low uncertainty (σ = 0.1). The optimal
capacity for the benchmark case of full downside flexibility is K∗(θ∗) = 589.
Panel 4(b) shows a case with high uncertainty (σ = 0.2). The benchmark
optimal capacity is K∗(θ∗) = 93232. In both panels the remaining parameter
values are those in Table 1.

We now turn to the effect of downside flexibility on the optimal timing of
investment. Figure 5 shows the optimal investment threshold as a function of
bD. Two cases are compared: panel 5(a) shows a low uncertainty scenario and
panel 5(b) a high uncertainty scenario. In both cases, as far as the parameter
governing flexibility is strictly positive, increased flexibility monotonically re-
duces the optimal investment threshold. This insight is only partially in line
with the results in Hagspiel et al. (2016), where the authors find the same
pattern only for low volatility levels. Instead, when demand is highly un-
certain they conclude that increased (downside) flexibility further delays the
optimal investment time. They correctly claim that in highly uncertain mar-
kets the firm’s willingness to wait in order to establish a much higher capacity
is stronger than the incentive of the firm to invest earlier because its ability
to vary production over time increases the value of the investment. However,
this is true only when adjustments in production levels are for free. As long
as the ability to vary production comes at (possibly also small) cost, the value
of increasing capacity is reduced. The firm looses the possibility to suspend
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Figure 5: Impact of downside volume flexibility on investment timing. The
line depicts the optimal investment threshold θ∗ as a function of bD, while
the red circle indicates the optimal investment threshold in the benchmark
case of full flexibility (bD = 0). Panel 5(a) shows a case with low uncertainty
(σ = 0.1). Panel 5(b) shows a case with high uncertainty (σ = 0.2). In both
panels the remaining parameter values are those in Table 1.

production and requires a much lower capacity size to balance the trade-off
between the protection from the risk of market’s crash and the exploitation
of future market’s boom. This in turn implies that, when downside flexibility
is present but costly, the incentive to invest earlier is stronger.

Downside volume flexibility and utilization rates

We continue the analysis of the model with downside volume flexibility only
by analyzing the capacity utilization at the time of investment, defined in
(Hagspiel et al., 2016) as the ratio UR = q∗(θ∗,K∗(θ∗))

K∗(θ∗) .

Table 2: Utilization rates for different levels of volatility and degrees of down-
side flexibility. The remaining parameter values are those used in Table 1.

σ

bD 0.1 0.15 0.2

0 0.2028 0.0795 0.0084
0.1 0.4684 0.4346 0.4056
0.5 0.7084 0.6970 0.6852
1 0.8080 0.8029 0.7962

2.5 0.9041 0.9030 0.9002
4 0.9360 0.9356 0.9339

Table 2 displays the utilization rates at the entry level, for different values
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of the uncertainty parameter and degrees of downside volume flexibility. The
first row indicates the benchmark case where downside volume flexibility is for
free (Dangl, 1999; Hagspiel et al., 2016). The capacity-reducing effect caused
by the costly volume flexibility has the immediate consequence of rising the
percentage of utilized capacity. The effect, particularly pronounced in highly
uncertain markets, is impressive when one compares the benchmark case with
a case of very high, though not full, downside flexibility. For instance, when
σ = 0.2 the capacity utilization jumps from 0.8% when flexibility is for free to
about 42% when bD = 0.1, a scenario of very high downside volume flexibility.
This is due to the already-mentioned effect for which as flexibility becomes
costly the reduction of the optimal capacity is significant.

For what concerns the effect of uncertainty in the utilization rates, we also
observe that the capacity utilization is decreasing with uncertainty, thus con-
firming the results Hagspiel et al. (2016). Intuitively, as uncertainty increases
so does the willingness of the firm to invest in a large production plant so as
to exploit a large capacity when the demand will rise. In other words, having
enough protection for the risk of a market’s crash, the firm gets prepared for
a possible drastic increase in the level of sales. This results in a decreasing
utilization rate as uncertainty increases.

3.2 The effects of upside flexibility

To analyze the effect of upside volume flexibility, we set to a finite value the
parameter bU . The greater the bU , the more expensive the production above
the established capacity and thus the less flexible the firm in the upwards part
of the production process.
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Figure 6: Effect of upside volume flexibility on optimal capacity size for dif-
ferent levels of volatility. The curves display the optimal capacity at the entry
level, K∗(θ∗). In panel 6(a) and 6(b) the degree of downside flexibility is set to
bD = 1 (moderate) and bD = 5 (low flexibility), respectively. The remaining
parameter values are those in Table 1.
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The introduction of some degree of upside volume flexibility into the pro-
duction process has the effect of reducing the size of the installed capacity.
Moreover, as the cost to adapt production at higher levels of demand de-
creases, the optimal strategy requires a lower capacity. Figure 6 displays sev-
eral examples of this effect for different levels of uncertainty and fixed degrees
of downside volume flexibility, showing that the phenomenon is persistent
over different market configurations and production processes. However, the
higher steepness of the curves at higher values of the volatility indicates that
the phenomenon is much more pronounced in highly uncertain markets. The
economic intuition is rather clear. If the firm can produce only up to capacity,
the firm has an incentive to install a capacity size sufficient to exploit a possi-
ble future boom of the market. This incentive is stronger in highly uncertain
markets since in those cases the probability of high levels of demand (as well
as the probability of low levels of demand) is much higher. However, as soon
as the firm can adapt (at some cost) its production process also toward the
upside part of the production process, this effect vanishes. The firm, by in-
stalling a lower capacity, keeps the possibility to exploit future high demand
levels, while simultaneously assuring a better protection for possible market’s
breakdowns.

The first immediate consequence of this effect consists in the increased im-
portance of the option to suspend production. In fact, with the possibility to
adapt the volume of production also above the established capacity, the firm
endogenously chooses the size of its production plant so as to contemplate the
possibility to temporary stop production also in highly uncertain markets. To
show this, in Figure 7 we plot the investment strategy in presence of upside
volume flexibility. For direct comparison, we use the same parameter values
of Figure 3(b), so that the two panels represent the same scenario of Figure
3(b) (a case of high uncertainty and high degree of downside volume flexibil-
ity) where, in addition, we allow for some degree of upside volume flexibility.
In panel 7(a), we consider a scenario where the upside flexibility parameter
is set to bU = 2.5. In this case, the introduction of upside volume flexibility
changes the qualitative structure of the investment strategy compared with
the optimal behavior of Figure 3(b), as it is now convenient for the firm to
keep the possibility to temporary stop production in the future. The ratio-
nale for this strategy follows from the considerations below. Upside flexibility
alleviates to some extent the risk of being unable to satisfy potential high
demand levels, so that the firm’s primary concern lies in protecting its profit
flow from the risk of potential losses due to market’s breakdowns. However,
in panel 7(b) the situation is reversed. The increased cost associated to pro-
duction above the established capacity reduces the value suspension option,
relative to the value the firm would loose at the same installed capacity due
to its reduced ability to adapt production at high demand levels. This pushes
the firm to establish a lager capacity until the suspension option is not part
of the optimal behavior anymore.

The introduction of upside flexibility has also the effect of further reducing
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Figure 7: Investment strategy with high uncertainty in demand (σ = 0.2)
and upside volume flexibility. The black (solid) line depicts the function
K∗(·), while the black (empty) circle indicates the optimal capacity when
entry, K∗(θ∗). The green (dashed) line depicts the production output function
q∗(·,K∗(θ∗)) and the green (full) circle indicates the production when entry,
q∗(θ∗,K∗(θ∗)). The red (dash-dotted) horizontal line marks the threshold
c
2b . Capacities below (above) such value contemplate (neglect) the option to
suspend production. Panel 7(a) shows the case in which bU is set to 2.5. In this
case the optimal values are: θ∗ = 947, K∗(θ∗) = 958.21 and q∗(θ∗,K∗(θ∗)) =
426.66. Panel 7(b) shows the case in which bU = 5. In this case the optimal
values are: θ∗ = 1021, K∗(θ∗) = 1125.4 and q∗(θ∗,K∗(θ∗)) = 475.49. For
direct comparison with Figure 3(b), in both panels the parameter of downside
flexibility is set to bD = 0.1. The remaining parameter values are those in
Table 1.

Table 3: Utilization rates for different levels of uncertainty, degrees of down-
side flexibility, and degrees of upside flexibility. The remaining parameter
values are those displayed in Table 1.

σ

bD bU 0.1 0.15 0.2

1 1 0.8685 0.8640 0.8628
1 3 0.8287 0.8243 0.8208
1 5 0.8204 0.8160 0.8115
1 10 0.8143 0.8096 0.8041

5 1 0.9687 0.9700 0.9720
5 3 0.9548 0.9553 0.9556
5 5 0.9519 0.9522 0.9520
5 10 0.9498 0.9498 0.9491
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Figure 8: Effect of upside volume flexibility on optimal investment threshold
for different levels of volatility. The curves display the optimal capacity at
the entry level, θ∗. In panel 6(a) and 6(b) the degree of downside flexibility
is set to bD = 1 (moderate) and bD = 5 (low flexibility), respectively. The
remaining parameter values are those in Table 1.

the optimal investment threshold. This, too, is an immediate consequence of
the capacity-reducing effect of upside flexibility, since the firm needs a lower
level of market demand to reach the desired capacity size. This is illustrated
in Figure 8 where, again, the effect is particularly pronounced at high uncer-
tainty. Moreover, Table 3 displays the utilization rates for different configura-
tions of market’s uncertainty and degrees of downside and upside flexibility.
The presences of upside flexibility increases the utilization rates. The ca-
pacity utilization is increasing as upside volume flexibility is less expensive.
This effect is persistent over different volatility levels and degree of downside
volume flexibility.

4 Conclusion

In this paper, we investigate the effect of volume flexibility for investment in
a production plant under uncertainty. The firm’s decision problem consists in
determining both the investment threshold and the capacity of the produc-
tion plant that maximize the investment value. We use the concept of volume
flexibility proposed by (Goyal and Netessine, 2011), for which volume flexi-
bility is the ability to profitably adapt the production volume to fluctuations
of demand. We study separately downside volume flexibility (the ability to
downscale production below installed capacity) and upside volume flexibility
(the ability to produce above installed capacity). In both cases, the cost as-
sociated to volume flexibility is modeled by the introduction of a quadratic
component which measures the distance between installed capacity and ac-
tual production. The degree of (upside and downside) volume flexibility is
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measured as the steepness of the cost curve around its minimum, a classic
concept of volume flexibility due to Stigler (1939).

A distinctive feature of our model is that the possibility to temporary sus-
pend production is not always part of the optimal decision, but it is itself an
endogenous choice. The firm faces the following dilemma: choosing a small
capacity allows the firm to contemplate the possibility to optimally suspend
production in the future but makes more expensive adjustments of volume of
production at higher levels of demand. On the other hand, a large capacity
implies lower costs of production adjustment in periods of market’s booms,
but makes the firm unable to suspend production if the market crashes. Thus,
the firm makes three explicit decisions, namely the investment time, the ca-
pacity, and the current volume of production, while the forth decision, namely
contemplating or disregarding the option to suspend production, is implicitly
included in the choice about capacity.

We first analyze the case in which the firm is volume-flexible only in
the downside part of the production process. This allows to make direct
comparisons with the results of Dangl (1999) and the more recent Hagspiel
et al. (2016). For what concerns the option to suspend production, we find
two distinct patterns. In market characterized by low uncertainty, the degree
of (downside) flexibility drives the results. Highly (downside)-flexible firms
choose to keep the option to suspend production, option that is discarded by
firms with low degree of (downside) flexibility. In markets characterized by
high uncertainty, instead, the incentive of the firm to invest in a large capacity
in order to get prepared for market’s boom is so strong that the (downside)-
flexible firm always discards the option to suspend production. For what
concerns the optimal investment in capacity, we find that at increased degrees
of (downside) volume flexibility correspond increases of the optimal capacity.
The firm, being able to hedge from the risk of market’s boom at a cheaper cost,
seeks to get prepared to exploit future high levels of demand. This incentive
is stronger in highly uncertain markets, since the probability of an increase
of the level of sales is higher. While the same qualitative effect is found in
Hagspiel et al. (2016), we note however a huge quantitative difference between
the case in which downside volume flexibility is for free with our case, where
flexibility is costly. As capacity increases the firm looses the option to suspend
production. This in turn modifies the risk exposure of the firm that is not able
anymore to fully protect the profit flow from the risk of a market’s breakdown,
thus requiring a lower capacity. This capacity-reducing effect has dramatic
implications on the optimal time of the investment. In this respect, Hagspiel
et al. (2016) conclude that an increase of flexibility creates an incentive for
the firm to invest earlier if uncertainty is sufficiently low, and delays the
optimal time of investment if uncertainty is high. Our analysis reveals that the
delaying effect is true only if flexibility comes for free. As far as the firm finds
costly to reduce production below capacity, even for small costs, we find that
increased downside flexibility has the effect of reducing the optimal investment
threshold, thus making the firm willing to invest earlier. In analyzing the
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capacity utilization at the time of investment, we find that the introduction of
the cost of flexibility sensibly rises the utilization rates. Moreover, analyzing
the relationship between the percentage of capacity utilized at the moment of
entry and uncertainty, we report a decreasing pattern, also found in Hagspiel
et al. (2016).

We then analyze the effect of the introduction of some degree of upside
volume flexibility in a production process where downside volume flexibility
is present. The introduction of upside volume flexibility alters the strength
of the incentives. Analyzing the optimal investment in capacity, we find that
upside volume flexibility reduces the size of the investment. The firm, being
able to profitably increases the volume of production above capacity, seeks
better protection in the downside part of the production process. This effect
is more pronounced in highly uncertain markets, since higher is the risk of
market’s breakdown. This effect impacts on the optimal strategy as follows.
First, there is an increased incentive for the firm to contemplate the option
to suspend production. Indeed, when upside flexibility is present, the option
to suspend can be part of the optimal strategy also in markets characterized
by high uncertainty. Second, the level of sales at which the firm invests is
further lowered. Third, the utilization rates at the moment of entry are higher
compared to the case of downside flexibility only. Moreover, the utilization
rate is an increasing function of the degree of upside volume flexibility. This
pattern is persistent over different degrees of downside volume flexibility and
levels of uncertainty.

This paper leaves unexplored several aspects of the design of a manu-
facturing process that certainly deserve more attention. In our model, the
levels of both downside and upside volume flexibility are given endogenously.
Nevertheless, in many real world situations managers can choose to some ex-
tent the degree of volume flexibility. Analyzing a model where the degree
of volume flexibility is chosen endogenously represents a promising direction
for future research. Also, in this paper we concentrate volume flexibility.
Further exploration is needed to understand the interaction between volume
flexibility and product flexibility, following the lines of Goyal and Netessine
(2011). Moreover, in this paper we completely ignored competition between
two firms. In this context: i) extending our model to a duopoly setup by
following the lines of Huisman and Kort (2015) seems to be a promising but
daunting task; ii) Analyzing an Incumbent-Entrant model with varying degree
of volume flexibility appears to be an interesting problem that is currently
under investigation.

A Details on the value of the investment

For a fixed value of demand level and capacity size, this appendix determines
the expected discounted value of future cash flows right after the investment
has been made, that is

V f (K, θ) = E
[∫ ∞

0
e−rtπ∗(θt,K)dt|θ0 = θ

]
(12)
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for f = Inc,Exc and π∗(·, ·) is given in (7) is f = Inc or in (8) is f = Exc.
We use the standard machinery to determine V f . By dynamic programming,
V f must satisfy the following Bellman equation

rV fdt = E
[
dV f

]
. (13)

A straightforward application of Ito’s Lemma gives the non-homogeneous sec-
ond order linear differential equation that V f satisfies:

σ2θ2

2

∂2V f

∂θ2
+ µθ

∂V f

∂θ
+ π∗ = rV f . (14)

In case f = Inc, the solution of (14) can be written as

V Inc(K, θ) =


−EC if θ < θIncE

A1θ
β1 +A2θ

β2 − V̄1(K) if θIncE ≤ θ ≤ θ1

B1θ
β1 +B2θ

β2 + V̄2(θ,K) if θ1 < θ < θ2

C1θ
β1 + C2θ

β2 + V̄3(θ,K) if θ ≥ θ2.

(15)

where the parameters A1, A2, B1, B2, C1, C2 and θIncE are determined as fol-
lows. Since β1 > 0, the condition lim

θ→∞
V Inc(K, θ) = V̄3(θ,K) implies C1 = 0.

The parameters A1, B1, B2, C2 are determined by solving the linear system
which imposes continuity and differentiability restrictions of V Inc(K, ·) at the
two thresholds θ1 and θ2. This gives:

A1(K) =
θ−β11 θ−β12

β1 − β2

(
θβ12

(
θ1
∂V̄2(θ1,K)

∂θ
− β2

(
V̄1(K) + V̄2(θ1,K)

))
+

θβ11

(
θ2

(
∂V̄3(θ2,K)

∂θ
− ∂V̄2(θ2,K)

∂θ

)
+ β2

(
V̄2(θ2,K)− V̄3(θ2,K)

)))

B1(K) =
θ−β12

(
θ2

(
∂V̄3(θ2,K)

∂θ − ∂V̄2(θ2,K)
∂θ

)
+ β2

(
V̄2(θ2,K)− V̄3(θ2,K)

))
β1 − β2

B2(K) =A2(K) +
θ−β21

(
θ1
∂V̄2(θ1,K)

∂θ − β1

(
V̄1(K) + V̄2(θ1,K)

))
β1 − β2

C2(K) =
θ−β21 θ−β22

β1 − β2

(
θβ22

(
θ1
∂V̄2(θ1,K)

∂θ
− β1

(
V̄1(K) + V̄2(θ1,K)

))
−A2(K)β2θ

β2
1 θβ22 +

θβ21

(
β1

(
A2(K)θβ22 + V̄2(θ2,K)− V̄3(θ2,K)

)
+ θ2

(
∂V̄3(θ2,K)

∂θ
− ∂V̄2(θ1,K)

∂θ

)))
.

The remaining parameters, θIncE (K), A2(K) are determined by imposing
the value matching and smooth-pasting conditions at the exit threshold θIncE .
This gives:
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θIncE (K) =

(
β2(V̄1(K)−EC)
(β2−β1)A1(K)

) 1
β1

A2(K) = θIncE (K)−β2
(
β1(V̄1(K)−EC)

(β1−β2)

)
In case f = Exc, the procedure follows the same steps as before oppor-

tunely adapted to the profit flow (8). The parameters D1(K), E2(K) are
computed by solving the value matching and smooth-pasting condition at the
threshold θ2. This gives:

D1(K) =
θ−β12

β1 − β2

β2(V̄2(θ2,K)− V̄3(θ2,K))− θ2

(
∂V̄2(θ2,K)

∂θ
− ∂V̄3(θ2,K)

∂θ

)
E2(K) =D2(K) +

θ−β22

β2 − β1(
θ2

(
∂V̄2(θ2,K)

∂θ
− ∂V̄3(θ2,K)

∂θ

)
+ β1(V̄3(θ2,K)− V̄2(θ2,K))

)
.

The value matching and smooth-pasting conditions at the exit threshold do
not admit closed form solution. By straightforward manipulation of the dif-
ferentiability condition, we express the exit threshold as the solution of the
following implicit equation:

D1(K)θExcE (K)β1
(

1− β1

β2

)
+ FθExcE (K)

(
1− 1

β2

)
+

GθExcE (K)2

(
1− 2

β2

)
+H + EC = 0

(16)

where H,F,G are such that V̄2(θ,K) = H + Fθ + Gθ2. Equation (16) must
be solved numerically. The parameter D2(K) can be computed as follows:

D2(K) = θExcE (K)−β2
(
−
β1D1(K)θExcE (K)β1 + FθExcE (K)− 2GθExcE (K)2

β2

)
.
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