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Abstract

This paper considers two incumbent firms with an option to adopt a horizontally and vertically

differentiated technology. The firms engage in a Stackelberg competition where they decide upon both

the investment moment and the investment size. I find that adoption kills the old technology only when

innovation is radical. When the degree of innovation is small and when the products are not close

substitutes a war of attrition arises. Otherwise the firms end up in a preemption equilibrium. When

a second-mover advantage is present, firms either want to stay alone on the old market or want to set

a larger capacity as Stackelberg follower. This paper also shows that market uncertainty increases the

first-mover advantage while at the same time it makes it more attractive for the endogenous follower to

forego adoption.
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1 Introduction

Timing of technology adoption has received much attention over the years. In particular, is has been shown

that games face different outcomes under different set-ups. Since Jensen (1992) it has been established that,

under uncertainty, a second-mover advantage might arise, reflected by the presence of a war of attrition
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instead of the more traditional preemption run. Hoppe (2002) serves a decent overview of the literature and

her conclusion has remained relatively consistent ever since. Firms are inclined to wait for new information

- as e.g. the adoption by a competitor disclosing the true market characteristics - if the uncertainty about

the profitablity of the new technology imposes that the expected post-adoption profit is too small. However,

this hinges on the asymmetry between the prior and posterior beliefs on the new technology’s profitability.

Nevertheless, in this paper I show that this is not a nessecity. In particular, I show that a second-mover

advantage can arrise even when waiting does not lead to new information, nor to the emergence of new

technologies. This is in line with Golder and Tellis (1993), who conclude that, by studying 500 brands in

50 product categories, followers are more often market leaders and tend to be more successful. I moreover

show that, after the adoption of one firm, other firms might decide not to undertake the adoption, even

though the new technology yields an innovation with respect to the old technology. The empirical work on

the diffusion of chairlifts by Mulligan and Llinares (2003) shows that adoption of a technological innovation

by a firm decreases the likelihood that a local competitor will also adopt it. Despite well observed in real

life, incentives to not undertake (profitable) adoption has not been a common observation in the theoretical

literature1.

A good example of these markets is one that arose very recently. Under the discussion of sustainability,

the submarket for organic food and durable products gained much popularity over the past decades. New

technologies are developped to manufacture products that are of a better quality, but also more expensive.

Since only part of the consumers is willing to pay a higher price the market for traditional products never

disappeared. Therefore, not all firms decided to adopt the new technology, which has lead to a variety of

products consumers face nowadays. Especially in this sector, for different reasons, firms were reluctant to

embrace the new technologies. However, many firms found it better to adopt than to stay on a crowded

submarket. For some of them, this was a matter of conscious, but for many other firms this decision was a

strategic choice.

This paper studies two incumbents with homogenous goods facing the option to adopt a better technology.

When adopting, a firm replaces its current product by a new product that is horizontally and vertically

differentiated from the earlier product. Vertical differentiation captures the innovative improvement relative

to the old technology, or differently, the quality improvement, while the horizontal differentiation reflects the

cross sensitivity between the products’ prices, i.e. the degree to which the products are substitutes. Both

products are part of the same market that is subject to exogenous stochastic shocks affecting the products’

prices, so that the timing of technology is partially dependent on the firm’s expectation of the market’s

future. Firms do not only decide upon the optimal adoption moment, but also upon the capacity size they

set under the new technology. I find that it depends on the degree of differentiation whether only one firm

adopts or whether both firms leave the old submarket. In particular, when both the vertical differentiation,

1The static game with reversible adoption by Reinganum (1983) includes imperfect information about the other firm’s

adoption. Here, the possibility that firms do not adopt is not an endogenous result.
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i.e. the innovative improvement, and the cross sensitivity are small, only one firm undertakes the adoption.

In such a situation, it serves both firms’ interest if one of them decides not to switch to the new product,

since serving your own submarket yields a higher profit than to serve the same submarket with a competitor.

However, if the new technology is much more of an improvement or if the products are closer substitutes,

the second firm decides to also substitute products after the leader’s investment. One could fairly say that

innovation kills the old technology when innovation is radical, but it does not when innovation is incremental.

Firms then face a second-mover advantage as a result of this: they prefer to stay with the old technology

instead of undertaking the adoption. This happens only when products are poor substitutes and the quality

improvement is small, so that no firm has the incentive to move first. Nevertheless, when both firms stay, they

are both worse off and therefore optimally investment is undertaken by one firm, but neither firm prefers to

do so. However, if the market uncertainty is small, a second type of second-mover advantage comes into play.

Then, if the new technology is more vertically differentiated or if the cross-sensitivity is larger both firms

want to adopt, but neither of them wants to adopt first. Smaller uncertainty levels accelerate investment so

that adoption is undertaken in the situation where the first mover sets a small capacity size. Being a late

mover induces a larger capacity size, which makes that firms prefer to be a late mover.

In the context of asymmetric firms, that is, when firms have different capacities on the submarket corre-

sponding to the old technology, this paper shows that there are situations where one firm has a second-mover

advantage while the other one has a first-mover advantage. Moreover, it shows that in these settings not

always the firm with the first-mover advantage undertakes adoption first. In fact, it can happen that the

firm with the second-mover advantage is the only adopter in the game. This happens since, although the

firm prefers its competitor to leave the old submarket in an early stage of the game, it is worse off when the

competitor undertakes the adoption in a later stage of the game. As a result, the firm with the second-mover

advantage undertakes the adoption.

Earlier models on timing of technology adoptions under uncertainty include the seminal work by Rein-

ganum (1981), building a game-theoretic framework and showing the diffusion of adoption dates, by Jensen

(1982), where the probabilities of the outcomes of the project are uncertain, and by Fudenberg and Tirole

(1985), loosening the precommitment assumption resulting in the firms’ preemptive behavior. Other papers

on the timing of technology adoption include Götz (1999), studying the diffusion of adoption under monop-

olistic competition, Riordan (1992), including regulations, and Hendricks (1992) on reputations, looking at

the innovative capabilities of rival firms. The effect of R&D on the adoption moments was studied after

Dutta, Lach, and Rustichini (1995).

Among others, Gal-Or (1985) considered the differences between being leader of follower. She concluded

that, without uncertainty, the preferred position in the order depends on the slope of the players’ reaction

curves. Since then, different models have been introduced studying the adoption behavior of firms resulting

from uncertainty regarding the new technology. In Hoppe (2000) the new technology can be good with

probability p and bad with probability 1 − p. When p is believed to be relatively small, Hoppe finds that
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Information spillover Choi (1997), Hoppe (2000), Frisell (2003)

Ferreira, Ferreira, Ferreira, and Pinto (2015)

Liu (2005), Thijssen, Huisman, and Kort (2006)

Jensen (2003)

Observation costs and/or Bagwell (1995), Vardy (2004), Yoon (2009)

imperfect information

Cost asymmetry Amir and Stepanova (2006), Meza and Tombak (2009)

Harsanyi and Selten (1988)

Technology choice Kopel and Löffler (2008)

+ Internal organization

Uncertain time lags Stenbacka and Tombak (1994), Götz (2000)

Very costly R&D Hoppe and Lehmann-Grube (2001)

Exogenous Tran, Sibley, and Wilkie (2012)

Table 1: Literature where being a late mover can be beneficial

firms gain from being a late mover, since after the first investment the true type is revealed. Information

spillover is a common cause for the presence of such behavior. Table 1 shows a small summary of the papers

in this field. Not only information spillovers, but also other factors could imply the advantage of a late

mover. Amir and Stepanova (2006) consider asymmetric firms and differentiated products. They find that

a second-mover advantage applies to the low cost firm when costs are sufficiently different or when costs

are high for both firms. Also asymmetry in information quality (Yoon (2009)), expensive R&D (Hoppe and

Lehmann-Grube (2001)) or uncertainty about implementation time (Stenbacka and Tombak (1994)) lead to

a similar result. Bagwell (1995) and Vardy (2004) find that the first-mover advantage is completely lost if the

first mover’s choice is imperfectly observed or if there are observation costs. A final stand of papers studies

the effect of a second-mover advantage by introducing a larger fixed costs when producing two products

(Bárcena-Ruiz and Olaizola (2008)) or by assuming the second-mover advantage to be exogenously given

(Tran, Sibley, and Wilkie (2012)). Although this paper also includes uncertainty, one should notice that

this type of uncertainty is different from the literature. In this paper uncertainty affects both submarkets

equivalently and does not lead to imperfect information or any asymmetries. Moreover, in this set-up,

uncertainty is not resolved after the first mover’s adoption so that this cannot incentify the rival firm to be

a late mover, which is the case in the papers mentioned above. Overviews of earlier work can be found in

Hoppe (2002), Karshenas and Stoneman (1995) and Reinganum (1989).

Perhaps the closest paper is the work by Steg and Thijssen (2015) where a switching option is offered in a

duopoly game. Profits are assumed to be zero if both firms are active on the same market, so either of them

has to switch to a different market. Each market is subject to different market shocks, continuously altering

4



the relative profitability among markets. In case the other market is, relative to the current market, more

profitable firms behave in a preemptive manner, while a war of attrition is present otherwise. Their results

are, therefore, comparable, but there are some substantial differences. First, since duopolies are assumed to

make no profits, the follower is automatically assumed not to switch. In this paper this is not the case and

arrises as an endogenous result. Second, since the market dynamics are characterized by different stochastic

processes for each market, one could alternate between a second-mover advantage and a first-mover advantage

constantly. In this model, I speak of heterogeneous products on the same market so that being a first or late

mover is not only a result of the state variable but also the technological improvement, the degree to which

products are substitutes, the current capacities and the strategic advantages of being leader and follower

play a significant role.

Although Dawid, Kopel, and Kort (2013) do not consider technology adoption, qualitatively their results

are comparable. In their model there is no vertical differentiation and rather than adoption, firms consider

to expand their production lines by offering a second product that forms a substitute. Here, large firms can

prevent that small firms also undertake investment. Partially this can be explained by the presence of the

cannibalization effect, where prices are reduced each time investment is undertaken. This comes in since

both the first mover and the second mover remain present on both submarkets.

The stochastic nature of the demand process in this paper’s model shows that the number of adopters

and the willingness to invest is dependent on the level of uncertainty. More specifically, when considering

large market uncertainty firms delay their investments. This results in a situation where first movers invest

when the market is more profitable. Intuitively one would expect that in these situations both firms would

undertake investment. However, since the old submarket is subject to the same market development, this

type of profitability does not trigger the second firm to also undertake investment. Contrarily, for high levels

of uncertainty the late mover more willingly does not undertake the adoption. This comes as a result of a

large capacity set by the leader. Hence, only for small levels of uncertainty, when the leader sets a small

capacity, firms are eager to be a second adopter.

After describing the model characteristics in Section 2, this paper will continue by studying a model where

the investment order is fixed. Standard in these games, first the follower’s reaction curves are determined,

in Section 3, before optimizing the leader’s decisions, which is done in Section 4. The second part of this

paper deals with the adoption under endogenous firm roles, i.e. where the investment order is endogenously

determined, described by Section 5. Finally, Section 6 analyses the effect of uncertainty and discusses the

robustness of the model. Section 7 concludes this paper.

2 Model

This paper considers two (asymmetric) firms on an established, currently homogeneous, market. Both firms

have the option to substitute their current product for a new product that is both vertically and horizontally
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differentiated from the existing product in continuous time t ∈ R+. In this paper’s terminology, a firm is

said to undertake investment the moment it decides to exercise the option and to adopt the new technology.

The horizontal differentiation, i.e. the degree to which products are close subsitutes, is captured by the

parameter ω and the vertical differentation, i.e. the degree of technological improvement, by parameter

ν. After the adoption by one firm, which will then be called the leader (L), both firms serve different

submarkets. However, after successive investment by the other firm, the follower (F), both firms are only

active on the new submarket. I assume firms are perfectly informed about the other firm’s movements and

time information legs are asummed to be negligable (closed-loop). Before investment, the price on the old

market is equal to

po(x(t), t) = x(t)(1− ηqoL − ηqoF ),

where η is the sensitivity parameter measuring the sensitivity of the leader’s old capacity size qoL and the

follower’s old capacity size qoF on the price and where x =
(
x(t)

)
t≥0 is an exogenous shock process assumed

to follow a geometric Brownian motion, i.e.

dx

x
= µdt+ σdz.

Here µ and σ > 0 are the trend and volatility parameters and z(t) is a Wiener process.2 After the leader’s

investment, where it installs capacity qnL on the new market, prices equal

po(x(t), t) = x(t)(1− ηqoF − ωqnL),

pn(x(t), t) = x(t)(ν − ηqnL − ωqoF ).

It is assumed that ν ≥ 1 and ω ≤ η.3 Note that products are more differentiated for larger ν and smaller ω.

Moreover, if ν = 1 and ω = η one can speak of homogenous products.

Investment in this model does not only consist of determining the optimal investment moment but also

incorporates the optimal investment size. At investment a firm is confronted with adoption costs, which are

assumed to be linear in the firm’s new capacity and are captured by marginal investment cost parameter δ.

Finally, after investment of both firms, the old market ceases to exist and the new market is defined by the

price function

pn(x(t), t) = x(t)(ν − ηqnL − ηqnF ).

The optimal investment moment is determined on the basis of real options theory (see, e.g. Dixit and

Pindyck (1994)). As of now, the denotation of time t shall be omitted to simplify notation. There are two

additional assumptions. First, the current value of the shock process X = x(0) is sufficiently small, so that

none of the firms is inclined to undertake immediate investment. This allows us to examine all incentives

and expore the different investment strategies. Secondly, firms are commited to produce the amount their

capacity dictates. This assumption is widely used in the literature on capacity constrained oligopolies (e.g.

2Throughout the paper I will refer to the current value of the process x(t) as X.
3Although it has no consequences qualitatively, I generally assume ω to be nonnegative.
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Deneckere et al. (1997), Chod and Rudi (2005), Anand and Girotra (2007), Goyal and Netessine (2007) and

Huisman and Kort (2015)).

In line with standard game theory, this model is solved backwards. After obtaining the follower’s reaction

curves, the leader’s optimal strategies are determined. This paper deals with two models. In the first model

it is assumed that the investment order is exogenously determined. This is done in Section 3 and Section 4.

Section 5 allows for an endogenously determined order of investment.

3 Follower’s decision

The follower (F) is defined as the firm that undertakes the investment secondly. This means, at the time

the follower is evaluating its investment option, the other firm, the leader (L), has already invested and

has substituted the old product in favor of the new product. At investment, the follower also carries out

the substitution and both are active on the new market, which leads to the following value function for the

follower at its investment,

VF (X, qnL) = max
qnF≥0

{
E
[∫ ∞

0

qnF pn(x(s), s)e−rs ds | F(τF )

]
− δqnF

}
= max
qnF≥0

{
X

r − µ
qnF (ν − η(qnF + qnL))− δqnF

}
,

where τF is the investment moment of the follower4 and F is the filtration with observations of the shock

process. The value function consists of two terms. The first term represents the expected discounted cash

inflow stream from production whereas the second term reflects the investment costs. The firm chooses qnF

in such a way that it optimizes its value,

qn∗F (X, qnL) =
1

2η

[
ν − ηqnL −

δ(r − µ)

X

]
.

Conforming the real options literature on investment decisions, a firm decides to undertake an investment

instantly when the exogenous shock process hits the trigger X∗F , at which point the value of waiting no

longer constitutes a larger value than the value of investment. The value of waiting (see, e.g., Dixit and

Pindyck (1994)) combines the option value and the value of current activity respectively,

VF (X, qnL) = AFX
β +

X

r − µ
qoF (1− ηqoF − ωqnL),

where the value of β is defined as

β =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2r

σ2
.

4Notice that, although ex-ante the adoption moment of the follower is stochastic, it is not here since this is the determination

of the follower’s profits at the moment of its investment. For the same reason, X = x(τF ) is deterministic since adoption takes

place at t = τF .
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The value of X∗F and AF follow from the smooth pasting and value matching conditions (see Appendix A).

However, these conditions do not always return solutions. This means that, under certain conditions, there

is no solution to the follower’s optimization problem. More specifically, one can show that the investment

trigger X∗F exists if and only if

4ηqoF (1− ηqoF − ωqnL) < (ν − ηqnL)2. (1)

This implies that when the inequality does not hold, the second firm decides to never adopt the new tech-

nology. The net gain from undertaking investment is smaller than the loss one faces when loosing the old

market. This occurs since, when undertaking investment, the follower shares the new product’s market with

the leader, whilst serving only its own submarket when not undertaking investment. For that reason the

firm optimally abstains from investment. The first thing one could notice is the absence of the marginal

investment cost δ in the equation. Generally, a larger cost would delay investment and impose a larger

capacity. However, the binary decision whether or not to invest, is not affected by this parameter. After

all, for large δ, investment is only delayed, as a result of a one-off investment cost, while not affecting the

profitability on the new market relative to the old market. For that reason one does not take δ into account.

A more thorough analysis of (1) will be provided, but let me first state the following proposition.

Proposition 1 Define X as the current value of the stochastic demand process. Define qoF as the follower’s

capacity before investment and similarly define qnL as the leader’s capacity on the new market. Then, for

sufficiently large values of x the follower undertakes investment if and only if

ν > ηqnL +
√

4ηqoF (1− ηqoF − ωqnL). (2)

Assume (2) holds. Then there exists a pair (qoptF , X∗F ) such that the follower postpones investment for

X < X∗F and invests qoptF when x reaches X∗F . However, the follower undertakes immediate investment for

X ≥ X∗F and sets capacity equal to

qn∗F (X, qnL) =
1

2η

[
ν − ηqnL −

δ(r − µ)

X

]
. (3)

The follower’s investment trigger is defined as

X∗F (qnL) =
δ(r − µ)

β − 1

β(ν − ηqnL) +
√

(ν − ηqnL)2 + (β2 − 1)4ηqoF (1− ηqoF − ωqnL)

(ν − ηqnL)2 − 4ηqoF (1− ηqoF − ωqnL)
. (4)

The corresponding capacity size then equals qoptF = qn∗F (X∗F , q
n
L). As a result, the follower’s value function is

defined as

VF (X, qnL) =

AFX
β + X

r−µq
o
F (1− ηqoF − ωqnL) if X < X∗F ,

X
r−µq

n∗
F (X, qnL)(ν − η(qnL + qn∗F (X, qnL)))− δqn∗F (X, qnL) if X ≥ X∗F .

Assume (2) does not hold. Then the follower never undertakes investment, in which case X∗F → ∞. The

follower obtains the value of current production under horizontal competition,

VF (X, qnL) =
X

r − µ
qoF (1− ηqoF − ωqnL).
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The presence of the follower on the new market hinges on (1). Here, the set of potential actions for the

follower seems to inherently depend on its current capacity and in the second place on the leader’s newly

chosen capacity size. For sufficiently large qoF this inequality is always true. However, this is not the case for

all qoF and would then depend on the value of the leader’s capacity qnL. Correspondingly, one can distinguish

three regions with respect to qoF . Figure 1 illustrates these regions graphically.

Proposition 2 Define qoF as the follower’s capacity on the old market and define qnL as the leader’s capacity

on the new market. Let X∗F be defined as in Proposition 1. Assume qnL <
1
η . Then one can define

q̃1F =
η − ων
η2

, q̃2F =
η − ων
η2 − ω2

and q̃3F =
1

η

such that

(i) for qoF ∈ R1 ≡ [0, q̃1F ), the follower’s trigger is an increasing function with respect to qnL for qnL < q̃1L

and is defined as X∗F →∞ for qnL ≥ q̃1L,

(ii) for qoF ∈ R2 ≡ [q̃1F , q̃
2
F ), the follower’s trigger is an increasing function with respect to qnL for qnL < q̃1L,

is defined as X∗F → ∞ for qnL ∈ [q̃1L, q̃
2
L] and is a decreasing function for q̃2L < qnL < q̃3L. For qnL > q̃3L

the follower immediately invests.

(iii) for qoF ∈ R3 ≡ [q̃2F , q̃
3
F ], the follower’s trigger is a nonmonotonic function with respect to qnL for qnL ≤ q̃3L

that is first increasing and then decreasing. For qnL > q̃3L the follower immediately invests.

The borders with respect to qnL are defined as

q̃1L =
1

η

[
ν − 2ωqoF − 2

√
qoF (η − ων)− (qoF )2(η2 − ω2)

]
, (5)

q̃2L =
1

η

[
ν − 2ωqoF + 2

√
qoF (η − ων)− (qoF )2(η2 − ω2)

]
, (6)

q̃3L = {qnL : (β2 − 1)4ηqoF (1− ηqoF − ωqnL) + (ν − ηqnL)2 = 0}. (7)

Region 1 In Region 1, that is, for qoF < q̃1F it is found that for small values of qnL the follower undertakes

investment for sufficiently large values of x, while large values of qnL incentify the follower to never undertake

investment. This signifies that the leader can block any investment on the new market by the competitor by

setting a sufficiently large capacity size. This result expands the set of possible strategies believed for the

leader. In a more traditional set-up where firms do not substitute but expand their production lines (see,

e.g., ...), firms are believed to always undertake investment. Substituting products induces that it could

be unbeneficial for firms to undertake the adoption, even though the second product is better. Intuitively,

serving your own submarket is more profitable than sharing a submarket with a (large) competitor. For that

reason, the follower abstains from participation in the new market when the leader sets a relatively large

capacity.
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Figure 1: Regions with respect to the follower’s adoption decision.

Region 2 Capacities affect both products through their corresponding price functions differently. There

could emerge a situation where setting an (exceedingly) large capacity size as a leader may still contribute to

a positive price on the new market, while only a very small price on the old market. A suchlike situation can

only occur for sufficiently large values of qoF . This defines Region 2, with q̃1F < qoF < q̃2F . Here, similar to the

analysis for Region 1, small values of the leader’s new capacity allow the follower to undertake investment

and medium sized values of the leader’s capacity would segregate the firms with respect to their submarkets,

i.e. the follower will never enter the new market. However, for large values of the leader’s new capacity, it

becomes rewarding again to undertake investment for the follower and leave the old market. In the latter

case, the leader’s new capacity marginalizes the profitability on the old market, which triggers the follower

to leave it5. The leader would find the employment of such a strategy satisfactory for in such a case the

follower would trade his large capacity on the old market for a very small capacity on the new market. This

is, being a small firm on the new market as a follower is preferred by the leader over being a large firm on

the old market since, in that case, it holds that ηqnF < ωqoL.

Figure 2 features an example6 of the follower’s trigger for values of qoF that belong to the Region 2.

For small values of qnL the follower’s trigger is increasing. The gray area depicts the region where the

follower is delayed and in the superjacent white region the follower undertakes investment immediately. For

intermediate values of qnL the follower optimally never adopts the new technology, but it does in case of large

values of qnL as shown in the figure. For Region 1, one obtains a similar picture, but then without the second

gray area on the right.

5Technically, this is also possible for Region 1. This would, however, require values for the leader’s capacity that would make

the price on the new market negative.
6Examples in this paper use the following parametrization: µ = 0.02, r = 0.1, σ = 0.1, η = 0.2, ω = 0.13, ν = 1.05 and

δ = 1000.
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Figure 2: The follower’s trigger X∗F for different values of the leader’s new capacity qnL differentiating the

different strategic regions in Region 2, where qoF = 2.7.

Region 3 For large values of qoF the region where the follower undertakes no action ceases to exist. Instead,

the follower always undertakes investment for sufficiently large values of the shock process, irrespective of the

leader’s capacity size. The reason for leaving the market, though, does depend on the value of the leader’s

capacity. For small values of qnL this is because the new market is more attractive. Nevertheless, for large

values of qnL the follower is forced to leave the old market since the introduction of the new product cuts the

profitability on the old market. Hence, one then ends up in Region 3, if qoF ≥ q̃2F .

3.1 Discussion

Evidently, the existence of the regions relies on the parametrization. When considering the situation where

both products are kept on the market, each produced by a different firm, one studies the presence of the

Segregation Region. Let the Segregation Region be defined as the region with respect to qnL where the follower

never undertakes investment. The vertical differentiation parameter ν has a negative effect on the magnitude

of this strategy. In other words, the degree of existence of the segregation strategy, and hence the possibility

to separate markets, is negatively influenced by the degree of innovation. From the follower’s perspective, a

more profitable new market makes it more interesting for the follower to adopt the new technology, which

is captured by the negative relation with q̃1F and q̃2F . This effect is also apparent from equation (2). This

makes it harder for the leader to block the follower from investing, captured by a positive relation between

ν and q̃1L.

� The values of q̃1F and q̃2F are only positive in case η > ων, i.e. in a scenario with a stronger degree

of innovation, that is, a larger vertical differentiation parameter ν, the follower has more incentives

to enter the new market which results in a fading likelihood for the segregation strategy to emerge.

Nevertheless, the gap between the horizontal differentation parameter ω and the sensitivity parameter

11



η should be sufficiently large. In case, though, the horizontal differentiation parameter takes a small

value, firms are more eager to hold on to their own submarkets.

� The negative relation between ν and q̃1L follows directly from (5). Nevertheless, one can verify that the

minimum of q̃1L with respect to qoF takes place at the coordinates

(qoF , q
n
L) =

(
η − ων

2η(η − ω)
,
ν − 1

η − ω

)
.

Here, one can easily check that the minimum bears a positive relation with ν. Moreover, it can be

shown that q̃1L is a decreasing function of ν, as is q̃2L a decreasing function of ν. Therefore, as could

also be concluded from (2), for a given level of qoF , the Segregation Region is expanding with respect

to the vertical differentiation ν. However, in order for η > ων, the latter parameter cannot be too

large. This underlines that, for a given value of qoF , the extent to which segregation is a noticeably

present strategy is smaller for a larger degree of innovation. Moreover, it is apparent that is negatively

influenced by the relative mutual sensitivity of the products.

4 Leader’s decision

This section serves to study the leader’s decision whether or not to obviate the other firm’s adoption. It is

therefore assumed that the follower’s initial capacity size falls in Region 1 or Region 2. This is still under

the framework of exogenous firm roles; the case where the investment order is not exogenously chosen, but

endogenously determined, is studied in the next section.

If the leader chooses qnL to be in the interval [q̃1L, q̃
2
L] the follower chooses to never undertake investment.

This defines the leader’s segregation strategy. However, if the leader chooses qnL to between outside the

interval [q̃1L, q̃
2
L] the follower is prone to adopt. It then depends on the current value of x whether the

follower undertakes an investment immediately or waits for the shock process to reach a sufficiently high

level. If, for a given level of X = x(0), the leader’s capacity is chosen in such a way that X∗F > X, the

follower is temporarily deterred. All capacity levels corresponding to a delayed investment by the follower

form the leader’s deterrence strategy (see, e.g. Huisman and Kort (2015)). The complementary levels, the

levels of qnL for which X∗F ≤ X, lead to an immediate investment by the follower. These choices constitute

the accommodation strategy.

4.1 Investment under segregation

Here, the leader chooses to employ the strategy where the follower does not adopt. The leader’s value at

investment in such a setting comes down to

V segL (X, qnL) = E
[∫ ∞

0

qnL p
n(x(s), s)e−rs ds | F(τL)

]
− δqnL =

X

r − µ
qnL(ν − ηqnL − ωqoF )− δqnL.

12
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Figure 3: Example of optimal capacity qnL and the borders to qnL for different values of X.

The value function consists of two terms, reflecting, similar to the case of the follower, the expected

discounted cash inflow stream from production and the investment costs.

At investment, the leader chooses its capacity such that it optimizes VL with respect to qnL, which, under

the segregation strategy, comes down to

qsegL (X) =
1

2η

[
ν − ωqoF −

δ(r − µ)

X

]
.

Generally speaking, the optimal capacity size of the leader is defined as qn∗L , which corresponds to qsegL

in case optimal investment takes place while blocking the other firm’s investment, corresponds to qdetL in

case optimal investment is chosen to be done under the deterrence strategy and similarly to qaccL under the

accommodation strategy. Investment under the segregation strategy will only be considered by the leader

if qsegL falls in the Segregation Region, i.e. qnL > q̃1L for R1 and qnL ∈ [q̃1L, q̃
2
L] for R2. To see when this

happens one first needs to invert X∗F as defined in Proposition 2 with respect to qnL, so that e.g. Figure 2 is

transformed into Figure 3. Figure 3 shows the inverted curves for Region 2, mapping each value of the shock

process x into a value q̂1 and q̂2 at which the follower is indifferent between waiting and investing. This is,

if, for a given value of x, the optimal investment size falls to the left of q̂1 or q̂2, let me call these the Upper

Region and Lower Region resp., the follower’s investment is delayed. However, if the optimal investment size

falls to the right, both firms simultaneously invest. Moreover, it shows q̃1L and q̃2L denoting the borders to

the region where the follower’s investment is blocked (see Proposition 2), the equivalent Segregation Region.

Since qsegL is an increasing function of X one can obviously conclude that qsegL falls into the Segregation

Region for a convex interval of X.

Note that this figure corresponds to the scenario where qoF lies in Region 2 (R2). Figures resulting from

Region 1 (R1) and Region 3 (R3) are similar to Figure 3 but the former does not contain the Upper Region

and latter only contains the Lower Region.
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Lemma 1 Consider the leader’s optimization problem. If and only if

ν ≥ 8η

5ω +
√

16η2 − 7ω2
, (8)

then there exist no qoF such that there exist X < ∞ at which the leader’s value function V detL is maximized

in the Segregation Region.

This Lemma shows that for a large degree of vertical differentiation, the follower will always undertake the

adoption. This is in line with the results from the follower’s analysis. For smaller values of ν there exist qoF

such that the leader prefers to block the follower’s adoption, see Appendix C.

4.2 Investment under deterrence

Under the deterrence strategy the leader obtains the value given by the segregation strategy, corrected by a

term reflecting the future investment by the follower at time t = τF ,

V detL (X, qnL) = E

[∫ τF

s=0

qnL x(s)(1− ηqnL − ωqoF )e−rsds+

∫ ∞
s=τF

qnL x(s)(1− ηqnL − ηqnF )e−rsds
∣∣∣ F(τL)

]
− δqnL

=
X

r − µ
qnL(ν − ηqnL − ωqoF ) +

X∗F
r − µ

qnL(ωqoF − ηqnF )

(
X

X∗F

)β
− δqnL.

Investment under the deterrence strategy is only considered feasible when the optimal investment size

qdetL , the value of qnL that optimizes V detL , falls in the Upper or Lower Region.

Figure 3 shows an example of the optimal investment by the leader. Clearly, for small values of X the

leader invests in the Lower Region, delaying the follower’s investment. For increasing X = x(0) the leader,

consecutively, optimally, invests in the Segregation Region, the Upper Region and eventually it chooses

accommodation as an optimal strategy7.

Lemma 2 Consider the leader’s optimization problem. If and only if

ν <
3ωη

η2 + 2ω2
, (9)

then there exists a q̄2F such that for qoF ∈ [q̄2F , q̃
2
F ] there exist X < ∞ at which the leader’s value function

V detL is maximized in the Upper Region.

The range of all values satisfying (9) are depicted in Figure 4a. If the leader decided to undertake

investment in the Upper Region, then the price for the old product is minimized, in which way the follower

is forced to undertake adoption. This strategy is not feasible for relatively large values of the vertical

differentiation parameter ν. Intuitively, a large degree of innovation, raises the leader’s incentives to not

share the market with a competitor - which would lead to optimal investment in the Segregation Region.

Moreover, is ν is large, adoption becomes sufficiently attractive for the follower. This implies that, under the

7In the proof of Lemma 2 I show that, if investment in the Upper Region is feasible, this order always holds.
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Figure 4: Parameter sets that lead to interior solutions the Upper Region and the Segregation Region.

deterrence strategy, investment would take place in the Lower Region. For smaller values of ν, investment

only takes place in the Upper Region when the follower’s old capacity is noticeably present on the new

market, i.e. a relatively large value of ω. However, when both products are close substitutes, i.e. in the case

where ω
η is close to 1, both firms have more incentives to trade their capacities for the new market is more

profitable. This explains the convex shape of the region.

4.3 Investment under accommodation

Under the accommodation strategy the leader sets its capacity in such a way that X∗F (qnL) ≤ X. Both firms

then decide to simultaneously undertake investment, while the leader sets its capacity first (a la Stackelberg).

It obtains,

V accL (X, qnL) = E

[∫ ∞
s=0

qnL x(s)(1− η(qnL + qn∗F (X, qnL))e−rsds
∣∣∣ F(τL)

]
− δqnL

=
X

r − µ
1
2q
n
L(ν − ηqnL)− 1

2δq
n
L. (10)

At the moment of investment, capacity is chosen to maximize (10),

qaccL (X) =
1

2η

(
ν − δ(r − µ)

X

)
.

Notice that qaccL > qsegL for all X. Entry accommodation can only be played when qaccL falls in the region

where entry accommodation is feasible, i.e. below q̂1 and above q̂2. One can show that the capacity size qaccL

is an increasing function of X, starting in the Lower Region where deterrence is optimal, i.e. the smallest

value of X for which qaccL becomes positive lies in the region where the follower’s investment is delayed.

Then, either, the function intersects with q̂1 so that accommodation becomes feasible there, or, it intersects

with q̃1L so that it never reaches the accommodation region associated with the Lower Region. Hence, for
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the former scenario, accommodation becomes feasible at X = Xacc
1 , where

Xacc
1 = {X ∈ R | qaccL (X) = q̂1(X)}.

In the latter scenario, the curve could intersect with q̂2, in which case accommodation becomes feasible

in the Upper Region. One can show that this intersection point in both scenarios is characterized by the

same equation as defined in the following Proposition.

Proposition 3 Let qoF ∈ R1 ∪ R2. Assume ν > 2η
η+ω , then the accommodation strategy becomes feasible at

Xacc
1 , where

Xacc
1 = δ(r − µ)

β+1
β−1ν + 2ωqoF +

√
ν2
[(

β+1
β−1

)2
− 1

4
β+3
β−1

]
+ 4(qoF )2(ω2 − η2) + qoF

(
2ων + 4η β+3

β−1

)
1
2ν

2 − 4qoF (2η − ων − 2η2qoF )
. (11)

Notice that 2η
η+ω is strictly larger than 1. Intuitively, for the accommodation strategy to be feasible for

all qoF , one needs the new product to be substantially more profitable in order to undertake investment

simultaneously, i.e. one needs a sufficiently large ν. However, the requirement becomes less rigorous the

closer ω en η are. When prices become more sensitive to other products the incentive to stay with the

old product becomes lower. Also notice that 2η
η+ω < η

ω , which means that there exist ν such that the

accommodation strategy is always feasible and such that η − νω > 0, so that R1 and R2 are nonempty.

In the situation where ν ≤ 2η
η+ω , entry accommodation is not feasible for all values of qoF ∈ R1 ∪ R2.

Appendix C elaborates on these cases.

For convenience, let S(qoF ) denote the Segregation Region with respect to the leader’s new capacity

for given qoF . I will omit the given argument unless necessary. Then the following Corollory shows that

accommodation and segregation are two mutuallty exclusive strategies, for R1 and for cases in R2.

Corollary 1 Assume there exists an X ∈ R such that qn∗L ∈ S.

(i) Let qoF ∈ R1. Then Xacc
1 →∞, i.e. the accommodation strategy is infeasible.

(ii) Let qoF ∈ R2 and assume ν ≥ 4ωη
η2+3ω2 . Then Xacc

1 →∞, i.e. the accommodation strategy is infeasible.

4.4 Optimal investment under the presence of segregation

I will now study the optimal investment decision for the situation where investment under the segregation

strategy is possible. This means that there exists at least one X such that qn∗L ∈ S. As shown before, for

different values of X the leader prefers different strategies. The optimal moment, i.e. the optimal value of X

at which the leader performs the adoption, then determines whether the follower also (eventually) undertakes

investment.
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4.4.1 Region 1

Notice that in R1, under the presence of segregation, accommodation is infeasible. As a result, either

the follower never undertakes adoption or the leader delays the follower’s investment: for small X optimal

investment takes place under deterrence strategy which delays the follower’s investment and for larger X

the leader sets a sufficiently large capacity such that the follower will never substitute its current product.

Define,

Xseg
1 =

δ(r − µ)

ν − ωqoF − 2ηq̃1L
,

then qn∗L ∈ D for X < Xseg
1 and qn∗L ∈ S otherwise. Here, D is defined as the region with respect to qnL,

for given qoF , where the leader delays the follower’s investment and S is defined as the region with respect

to qnL, for given qoF , where the leader’s investment hinders the follower. Naturally, A is then defined as the

region where the follower is accommodated8. The significance of the Segregation Region S depends on the

parameterization. Xseg
1 is only defined as long as ν − ωqoF − 2ηq̃1L > 0, i.e. if the opposite is true, then

it holds that qsegL < q̃1L for all X. This implies that in that case optimal investment, under the deterrence

strategy, always takes place in D9. Hence,

Xseg
1 =


δ(r−µ)

ν−ωqoF−2ηq̃1L
if ν − ωqoF − 2ηq̃1L > 0,

∞ otherwise.

Since the investment size qsegL is an increasing function of X it is concluded that the segregation strategy

is only feasible for X ≥ Xseg
1 . As discussed in Section 4.1, deterrence is only feasible for qn∗L > q̂1. The

deterrence strategy is, thus, only present when q̂1 < qdetL < q̃1L, where,

q̂1(X) = {qnL ∈ [0, q̃1L] | X∗F (qnL) = X}.

For X < X∗F (0), the value of q̂1 is assumed to be zero. In other words, if one defines

Xdet
1 = min{X ∈ R | qdetL (X) = q̂1},

then deterrence is considered by the leader for X ≥ Xdet
1 . One can prove10 that qdetL hits the upper boundary

q̃1L at the same moment, that is, for the same value of X, when the segregation strategy becomes feasible.

All together, it holds that qdetL ∈ D for X ∈ [Xdet
1 , Xseg

1 ) and qsegL ∈ S for X ∈ [Xseg
1 ,∞). This leads to the

following proposition.

Proposition 4 Let qoF ∈ R1. Assume ν −ωqoF − 2ηq̃1L > 0. Then the investment is considered by the leader

for X > Xdet
1 . Moreover, there exists a unique value Xseg

1 > Xdet
1 , such that the follower’s investment is

8Both sets A and D can be written as the union of two sets, that is, D = DL ∪ DU where DL includes all values such that

investment takes place in the Lower Region. Similarly DU includes all points in the Upper Region. Consistently, A can be

written as AL ∪ AU .
9See proof of Lemma 2.

10See proof of Lemma 2.
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delayed for X ∈ [Xdet
1 , Xseg

1 ) and the leader blocks the follower on the new market for X ≥ Xseg
1 . There,

moreover, exists a pair (qoptL , Xdet
L ) such that

(i) for X ≥ Xdet
L the leader makes an immediate investment and obtains the value function defined by

V detL (X, qnL; qoF ) =


X
r−µq

n
L(ν − ηqnL − ωqoF ) + XF

r−µq
n
L(ωqoF − ηq

opt
F )

(
X
XF

)β
− δqnL if X ∈ (Xdet

1 , Xseg
1 )

X
r−µq

n
L(ν − ηqnL − ωqoF )− δqnL if X ∈ [Xseg

1 ,∞)

and sets capacity qnL = qsegL (X; qoF ) in case X ≥ Xseg
1 and qnL = qdetL (X; qoF ) otherwise;

(ii) for X < Xdet
L the leader postpones investment until x reaches Xdet

L . This yields

F detL (X; qoL, q
o
F ) = AdetL Xβ +

X

r − µ
qoL(1− η(qoL + qoF )).

The leader’s investment quantity equals qoptL = qsegL (Xdet
L ; qoF ) in case Xdet

L ∈ [Xseg
1 ,∞) and equals

qoptL = qdetL (Xdet
L ; qoF ) otherwise.

For the complementary case, if ν − ωqoF − 2ηq̃1L ≤ 0, it holds that it is never possible to prevent the follower

from investing in the new market. In that case the leader always considers the deterrence strategy for all X.

Investment trigger The investment trigger is defined as the value of X below which the leader finds

waiting optimal and above which immediate investment is preferred. If this trigger XL is smaller than Xseg
1 ,

i.e. if it falls in the Segregation Region S, optimal investment is undertaken while blocking the follower.

However is the trigger falls in the Deterrence Region D the follower’s adoption is merely delayed.

Proposition 5 Let qoF ∈ R1. Assume ν−ωqoF −2ηq̃1L > 0. Then the segregation investment trigger is given

by

Xseg
L =

δ(r − µ)

β − 1

β(ν − ωqoF ) +
√

(ν − ωqoF )2 + (β2 − 1)4ηqoL(1− η(qoL + qoF ))

(ν − ωqoF )2 − 4ηqoL(1− η(qoL + qoF ))

and exists for all different values of qoL and qoF . The investment trigger under the deterrence strategy is the

solution with respect to X of

X

r − µ
β − 1

β

[
qdetL (ν − ηqdetL − ωqoF )− qoL(1− η(qoL + qoF ))

]
+ 1

2

δ

X
qdetL

(
X

X∗F

)β−1
= δqdetL ,

where qdetL = argmaxqnL∈DV
det
L .

The value of Xseg
L is very much dependent on the value of qoL. Notice that the value of q̃1L and q̂1 are

only related to qoF and not to qoL. This means that the value of the leader on the old market can determine

whether Xseg
L > Xseg

1 or not.

However, not only the value of qoL bares a great influence on the relative position of the segregation trigger.

Also value of β plays an important role. The parameter β is influenced by the degree of uncertainty in the
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market, captured by σ, the discount rate r and the trend parameter µ. As an example, look at the case

where qoL = 0. Then, Xseg
L > Xseg

1 if and only if

β + 1

β − 1
(ν − ωqoF − 2ηq̃1L) > ν − ωqoF .

Obviously, it depends on the value of β whether the inequality holds or does not hold. Notice that q̃1L is not

related to β or any of its components.

4.4.2 Region 2

For larger values of qoF , in R2, optimal investment can take place in three regions, the Lower Region, the

Segregation Region and the Upper Region, depending on the parameterization. In a similar way as in

Region 1, one can define,

Xdet
2 = {X ∈ R | qdetL (X) = q̂2},

Xseg
2 =

δ(r − µ)

ν − ωqoF − 2ηq̃2L
,

where

q̂2(X) =
{
qnL ∈

[
q̃2L,

ν−ωqoF
η

]
| X∗F (qnL; qoF ) = X

}
.

Suppose ν − ωqoF − 2ηq̃2L > 0, i.e. suppose for sufficiently large X optimal investment qn∗L takes place in the

Upper Region. Then we have that, under the deterrence strategy, the follower’s investment is delayed for

X ∈ (Xdet
1 , Xseg

1 )∪ (Xseg
2 , Xdet

2 ) and eternally deterred for X ∈ (Xseg
1 , Xseg

2 ). Intuitively, if 2ηq̃2L > ν −ωqoF
then the margin on the old market is relatively too small for the follower to have no incentives to stay there.

Lemma 3 Let qoF ∈ R2. If Xseg
2 <∞ then Xdet

2 <∞.

This means that if for investment becomes feasible in the Upper Region, that is, forcing the other firm to

leave the old marktet, then it is also possible to have simultaneous investment.

Proposition 6 Let qoF ∈ R2. Assume ν−ωqoF−2ηq̃2L > 0. Then, investment under the deterrence/segragation

strategy is considered by the leader for X ∈ [Xdet
1 , Xdet

2 ]. There exist unique values Xseg
1 and Xseg

2 such that

0 < Xdet
1 < Xseg

1 < Xseg
2 < Xdet

2 . Moreover, the follower’s investment is delayed for X ∈ (Xdet
1 , Xseg

1 ) ∪

(Xseg
2 , Xdet

2 ). The leader has no competitor on the new submarket if it invests at X ∈ [Xseg
1 , Xseg

2 ]. Then,

a pair (qoptL , X∗L) exists such that

(i) for X ≥ X∗L the leader makes an immediate investment and obtains the value function defined by

V detL (X) =


X
r−µq

n
L(ν − ηqnL − ωqoF ) + XF

r−µq
n
L(ωqoF − ηqnL)

(
X
XF

)β
− δqnL if X ∈ (Xdet

1 , Xseg
1 )

or X ∈ (Xseg
2 , Xdet

2 )

X
r−µq

n
L(ν − ηqnL − ωqoF )− δqnL if X ∈ [Xseg

1 , Xseg
2 ]

and sets capacity qnL = qsegL (X; qoF ) in case X ∈ [Xseg
1 , Xseg

2 ] and qnL = qdetL (X; qoF ) otherwise;

19



(ii) for X < X∗L the leader postpones investment until x reaches Xdet
L . This yields

F detL (X; qoL, q
o
F ) = AdetL Xβ +

X

r − µ
qoL(1− η(qoL + qoF )).

The leader’s investment quantity equals qoptL = qsegL (Xdet
L ) in case Xdet

L ∈ [Xseg
1 , Xseg

2 ] and equals

qoptL = qdetL (Xdet
L ) otherwise.

For the case ν − ωqoF − 2ηq̃2L ≤ 0, one can consult the analysis for Region 1. The analysis for the leader’s

investment trigger is similar to the analysis for R1, with the only difference that D is split into two regions.

Investment under the accommodation strategy is not discussed here, since the main focus of this paper is

the preclusion of the follower’s adoption. In Appendix C, however, for the sake of completeness, there is a

summary of the optimal investment decision under accommodation.

5 Endogenous firm roles

In this section the situation is studied where both firms are allowed to take the role as leader. To that

purpose each firm compares the value as when it is leader to as when it is follower for each value of x.

Standard in the literature (see e.g. ), the intersection point is called the preemption point XP . Let us call

the two firms firm A and firm B, then the preemption trigger for firm A is defined as

XPA := max{X ∈ R | VLA(X, qnA) = VFA(X, qnB)}.

where qnA and qnB are defined as the leader’s capacity11 when firm A is leader or follower respectively. Here

LA stands for the leader’s value function when firm A is leader, i.e. qoL = qoA and qoF = qoB . These capacities

are reversed in case firm B is leader in which case firm A obtains VFA as a follower. It follows that for

X > XPA firm A prefers to be a leader and for smaller values of the shock process the firm finds it optimal

to take the role as follower and therefore prefers the other firm to undertake investment.

Example 1 Suppose ν = 1.1, η = 0.26, ω = 0.135 and assume qoA = 1 and qoB = 1.6. Since q̃1F = 1.65

we have that investment takes place in R1. First, it follows from Proposition 7 that for large values of

X investment takes place in S and for small values the leader optimally invests in D. Recall that since

investment is feasible in S, accommodation is never feasible (see Corollary 1). For firm A it then holds that:

XPA = 556 and Xseg
LA = 392.

For firm B one can check that

XPB = 517 and Xseg
LB = 511.

In both cases we see that the exogenous trigger XL lies below the preemption trigger XP . Since it holds that

Xseg
1A = 174 and Xseg

1B = 265, it can be concluded that investment takes place in S.

11Since is it not known ex-ante in which of the regions D, S or A these capacities will lie, I keep the notation open.
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In the example both firms find that Xseg
L < XP , which means that if a firm would invest at its exogenous

trigger, it obtains a lower value than if the other firm invests at the same value of x. The intuition behind

this result is the following. Recall that after investment of the leader, the other firm will stay on the old

market permanently. In this case both firms prefer that the other firm undertakes investment so that it won’t

have to undertake investment itself and serve the old market on its own. However, given that the other firm

will not undertake investment for all X, optimal investment is undertaken at the trigger. The situation

where both firms decline to undertake the adoption is never optimal, which follows from the existence of the

exogenous trigger. That is, for values of x larger than XL, the so-called stopping region is reached, indicating

that investing at that particular value of x always yields a larger value than never undertaking investment.

If both players have a second-mover advantage there is a situation where each player wants the other

firm to undertake investment. Games with this structure are generally called war of attrition games. A

game where neither of players has second-mover advantage, i.e. where XL > XP for both firms, is called a

preemption game. In the remainder of this section two cases are distinguished. First the case of symmetric

players is studied. Here, both firms have identical capacity sizes on the old submarket. After that, the

situation of asymmetric firms is discussed.

5.1 Symmetric players

Under symmetric players, capacities associated with the old submarket are of the same size. For identical

firms one can clearly determine in which situations firms end up in a war of attrition or a preemption

game. Moreover, this section aims to analyse under which characteristics investment is undertaken under

the segregation strategy.

Since firms are assumed to be symmetric, define qo to be each firm’s capacity on the old market, i.e.

qo := qoA = qoB . Since prices are assumed to be positive it follows that it always holds that qo ≤ 1
2η , since in

that case 1− η(qoA + qoB) ≥ 012. Under the segregation strategy, the investment trigger can be written as,

Xseg
L =

(β2 − 1)δ(r − µ)

β(ν − ωqo)−
√

(ν − ωqo)2 + (β2 − 1)4ηqo(1− 2ηqo)
. (12)

Let us first look under which circumstances the exogenous trigger XL falls in the segregation region13 and

in the deterrence region. Figure 5 shows these different regions for XL with respect to ν and ω
η . Here, XL

either equals the trigger under the deterrence strategy or the trigger under the segregation strategy. The

curves represented by the solid line are defined as the intersection point of Xseg
L and Xseg

1 . For large (small)

values of ν and ω the investment trigger lies in the region where the other firm also undertakes the adoption

12One can easily check that for ν sufficiently small to 1, 1
2η

< η−νω
η2−ω2 . Recall that for the segregation strategy to be applicable,

it is required that qo < η−νω
η2−ω2 .

13In slight abuse of definitions, a trigger is said to fall in the segregation region if the capacity size qnL resulting from investment

undertaken at this trigger falls in the Segregation Region as defined in Section 4. To omit complex linguistic structures, the

latter situation is described as the trigger falling in the respective region.
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Figure 5: Curves distinguishing segregation and deterrence

r = 0.1, µ = 0.02, , σ = 0.05, η = 0.2

(stays on the old market). That is, when the quality improvement is larger or when the products are closer

substitutes, it is harder to ward off the follower on the new submarket. For large ν, the new market is

more profitable and it is therefore less attractive for the follower to not undertake the adoption. It is then

too costly to ward off the other firm, for it would take a large investment size. This means that radical

innovation, i.e. a large value of ν, induces that the follower also undertakes investment which in turn brings

to existence of the old technology to an end. Incremental innovation does not, since small values of ν make

sure that the follower does not adopt. For large ω, the markets are more sensitive towards the other market’s

production size. Since, for the same degree of vertical differentiation, the products are less differentiated, it

is less attractive to stay with the old technology, as a follower.

The region where investment is optimal under the segregation region shrinks or expands for different

parametrizations. The following Lemma shows that segregation is possible as long as the old submarket’s

capacity is sufficiently close to the optimal production level14.

Lemma 4 Let qo ∈ [0, 1
2η ]. There exist (ν, ω) ∈ [1,∞) × [0, η] such that XL ≥ Xseg

1 if and only if qo ≥ q∗

for some q∗ ∈
(

0, 1
4η

)
. More broadly speaking, those values of (ν, ω) exist if and only if

β −
√

1 + (β2 − 1)4ηqo(1− 2ηqo) ≤ (β2 − 1)(4
√
ηqo(1− ηqo)− 1).

Overall, if qo goes up, the range of parameter values (ω, ν) where firms employ the segregation strategy at

XL increases. Intuitively, the larger one’s current capacity, the more one is inclined to stay on a profitable

market, which implies that it becomes easier for the other firm to hold off its competitor. For smaller

14An optimal production level is understood to be the level one would set under a monopolist’s mindset, for after the game

ends the follower is the only firm present on the old market.
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Region σ r µ δ

XL ≥ Xseg
1 + - + 0

XP ≥ Xseg
1 0 0 0 0

Attrition - + - 0

Table 2: Effect of an increase in a parameter leading to a shrinking (-)/an expanding (+) size of the regions.

capacity sizes, firms can improve by replacing their capacity size.

The effect of other parameters is summarized in the first line of Table 2. Here, more market uncertainty

leads to more points (ω, ν) allowing for the segregation strategy, reflected by an upward movement of the

line corresponding to the cases where Xseg
L = Xseg

1 . Larger uncertainty makes firms invest at larger values

of x, which makes it less costly to install a capacity sufficiently large to hinder the follower. In this way, a

broader range of parameter values emerge where segregation can be played. A similar story can be held for

µ and r.

In Figure 5, a qualitatively similar figure is also shown for the regions where the preemption point appears

to be in the segregation or the deterrence region respectively. The conclusions and intuition are equivalent to

the analysis for the exogenous trigger XL. The following Lemma shows that preemption through segregation

is preferred over deterrence when the old product’s capacity size is sufficiently large.

Lemma 5 Let qo ∈ [0, 1
2η ]. There exist (ν, ω) ∈ [1,∞)× [0, η] such that XP ≥ Xseg

1 if and only if

ηqo ≥ 1
2 −

1
6

√
5.

Here, the same intuition applies as before. It is only possible to block the follower’s investment as long as

the old market is profitable enough. Nothing else than the product ηqo plays a role in the determination of

the existence of points (ω, ν), in Figure 5. The preemption point is the value of x such that, when comparing

the valuation of staying on the old market and the valuation of launching the new product, one is indifferent

between the two possibilities. Here, the waiting option does not come into play. Therefore, the parameters

mentioned in Table 2 have no influence on the preparedness to undertake investment.

Taken together, for small values of ω and ν both the preemption point XP and the trigger XL fall in the

segregation region. For large values of ω and ν both fall in the deterrence region. For intermediate values

two cases arise. Either the preemption point XP is smaller than Xseg
1 and XL is larger or exactly the other

way around. The first situation is depicted in Figure 5a and the second one in Figure 5b. Roughly speaking,

the former happens for high levels of uncertainty, while the latter happens for small values. This implies that

in the first case the preemption point lies below the trigger XL which leads to a preemption run. However,

in the second case, relatively, more values induce a situation where XP > XL: war of attrition games. The

effect of uncertainty is further discussed in Section 6.1.
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Equilibria In a preemption game, i.e. a game where XP < XL for both players, firms end up in a

preemption run. This means that, suppose one firm wants to undertake investment at XL as a leader, then

it is optimal for the other firm to invest for a value of x just before x hits XL. In this way it obtains the

leader value at XL − ε instead of the lower follower value, had the other firm invested as a leader at XL.

The same argument holds for both firms so that investment is accelerated and undertaken at X−P by one

firm. The determination of preemptive equilibria have extensively been discussed in the literature and for

this paper one can conclude that the leader undertakes investment at the preemption trigger XP .15

Regarding the war of attrition games, a thorough formulation of equilibria in set-ups like this paper is

done by Steg and Thijssen (2015). Here, similar to the set-up without market uncertainty by Hendricks

et al. (1988), firms randomize their strategies in the attrition region. Translated to the context of this paper,

an attrition region arises when XL < XP . Here, firms are willing to adopt before x hits XL since waiting is

always optimal, and, at the same time, firms are in the preemption context when x exceeds XP . Therefore,

one could fairly say that investment is not undertaken before x hits XL and investment is yet undertaken

when x grows beyond XP .16 Equilibria in a war of attrition game are also studied by e.g. Fudenberg and

Tirole (1991) and Thijssen et al. (2006).

Taken together, if in a preemption game one finds XP ≥ Xseg
1 investment is undertaken while blocking the

other firm and investment is undertaken while delaying the follower’s adoption for the complementary case

XP < Xseg
1 . In a war of attrition game, the same logic applies, but then for the attrition region [XL, XP ],

rather than only one trigger.17 However, since one cannot determine a priori where in the attrition region the

first firm adopts, one cannot know under which strategy adoption takes place for the case XL < Xseg
1 < XP .

Effect of horizontal differentiation Horizontal differentiation is captured by the parameter ω. The

first order derivative with respect to ω of (12) shows that Xseg
L is positively related to ω. This means that

investment is delayed when products are closer substitutes. As ω becomes larger, profits become smaller.

Then, firms are only considering investment for larger values of x which compensate for the loss in profits.

15Formally, following Fudenberg and Tirole (1985) and Steg and Thijssen (2015), in the preemption region P = [XP ,∞)

firm i plays a strategy (Gi, αi) with the distribution function Gi of investment and intensity αi. At a stopping time τ ∈ P,

this is Gτi (s) = Is≥τP ∀i where τP = inf{t ≥ t0 : x(t) ≥ XP } and intensity ατi (s) = Is≥τP
L(s)−F (s)
L(s)−M(s)

∀i. The functions

L and F correspond to VLi and VFi respectively where firm i is leader and sets qnLi in the first case and follower in the

second. The function M corresponds to the case where firms make a coordination mistake and both invest as a leader. Since

ν − η(qnLA + qnLB) ≥ 0 we don’t run into any issues here. Nevertheless, since X assumed to be sufficiently small (see Section 2)

the intensity equals 0, so that each firm invests with probability 1
2

(see literature).
16In a formal analysis, again following Fudenberg and Tirole (1985) and Steg and Thijssen (2015), firms play a mixed strategy

(Gi, αi) where ατi is identical to the one for the preemptive strategy and where Gτi is played such that firms are indifferent

between investment and waiting in the attrition region [XL, XP ) and equals 1 in P. Define Vi(t, Gj) to be firm i’s payoff under

Gj . Then firms are indifferent if Vi(t
′, Gj) = Vi(t, Gj) ∀t′ ≥ t so that, as can be shown, Gτj solves (F −L)dGτj +(1−Gτj )dL = 0.

17The main focus of this paper is the presence of the second-mover advantage and under which specifications the second

firm undertakes investment. Since these research questions can be answered without full specifications of the equilibria the

determination and formulation is beyond the scope of this paper.
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Notice that before adoption by the first firm, ω plays no role. The same holds for the preemption trigger

(see e.g. (13)). A similar relation was found by Milliou and Petrakis (2011). However, in their analysis

where firms precommit to their adoption strategy, a second effect is present. For values of ω above a certain

reservation value they find a negative relation, i.e. competition in accelerated. In this situation, the so-called

output effect becomes dominant. This happens since under their set-up firms have a cost advantage when

undertaking adoption. When competition is stronger, a cost advantage is dominant over the former effect.

Accelerated investment is also found in their preemption game, which is in contrast to this paper’s results.

This can however be explained by the difference in set-up. In their model a cost advantage makes firms less

reluctant to wait when competition becomes more heavy. In this paper, waiting until the exogenous process

reaches a higher value pays off, for one invests in times of a higher profitability.

5.1.1 War of attrition

In the first case, see Figure 5a and Figure 6a, we see that for large values of ω and ν one has Xseg
1 < XP < XL,

then, when decreasing their values one finds consecutively XP < Xseg
1 < XL and XP < XL < Xseg

1 . Both

XP and XL are increasing functions with respect to ω. If the new market becomes more sensitive to the

other market’s capacities, investment is delayed in order to wait for more profitable circumstances. However,

since ω also affects profits on the old market, one finds that the preemption point does not increase as rapidly

as the trigger XL. As a result, for small values of ω, the order of the two even changes so that a war of

attrition arises, i.e. XL < XP < Xseg
1 . The intuition behind the finding that a war of attrition arises for

small values of ν is straightforward. Since a small ν implies that the old market becomes relatively more

profitable it follows that one is less reluctant to have the other firm invest in the new technology.

Similar as before, the size of the region with respect to (ω, ν) where a war of attrition is present depends

on the parametrization. The size of the region with a war of attrition is positively related to η, qo and r,

but negatively by σ and µ, see Table 2.

Lemma 6 Let qo ∈ [0, 1
2η ]. There exist (ν, ω) ∈ [1,∞) × [0, η] such that XL ≤ XP ⇔ qo ≥ qatt for some

qatt ∈
(

0, 1
2η

)
. Generally, such values exist if and only if

β −
√

1 + (β2 − 1)4ηqo(1− 2ηqo) ≥ (β2 − 1)(1− 2
√
ηqo(1− ηqo)).

Since a more profitable old market, i.e. a larger qo, makes it less interesting to undertake investment as

a leader, a war of attrition is more prevalent. However more market uncertainty, i.e. a larger σ, or a larger

market trend, µ, makes the firm delay investment, which makes it, as explained before, less likely that firms

end up in a war of attrition. Since a larger discount rate, r, excellerates investment it results in an opposite

effect, i.e. firms more easily end up in a war of attrition when discounting is done more heavily.

In the second case, see Figure 5b and Figure 6b, for small values of (ω, ν) we have XL < XP < Xseg
1 ,

25



0.0 0.2 0.4 0.6 0.8 1.0

Ω

Η

1.05

1.10

1.15

1.20

Ν

ATTR PREEMPTION

SEG

SEG

DET

X
P <

X
L <

X
1

seg

X
1

seg
<

X
P <

X
L

X
P <

X
1

seg
<

X
L

(a) War of attrition under segregation, qoA = qoB = 1.

0.0 0.2 0.4 0.6 0.8 1.0

Ω

Η

1.1

1.2

1.3

1.4

1.5

Ν

ATTRITION

ATTRITION PREEMPTION

SEG

DET

DET

SEG�DET

(b) War of attrition under segregation and deterrence, qoA =

qoB = 1.7.

Figure 6: Curves distinguishing segregation and deterrence

r = 0.1, µ = 0.02, , σ = 0.05, η = 0.2

where consecutively, for increasing (ω, ν), this changes into XL < Xseg
1 < XP ,18 Xseg

1 < XL < XP and

eventually Xseg
1 < XP < XL. The difference with the first case is that, over there attrition only took place

in the region where segregation was played. So, while having the other firm undertake investment, one stays

on the old market ever after. However, in this case, a war of attrition also takes place under entry deterrence.

This brings in a second type of late-mover advantage where firms do want to undertake the adoption, but

only as a second adopter. In other words, the new market is sufficiently more profitable for both firms to

undertake investment, but being a temporary monopolist on the old market is more beneficial than being

a temporary monopolist on the new market. This happens e.g. when firms are sufficiently large on the old

market so that the monopoly rents accummulated while being the only firm on the old submarket are larger

than on the new submarket.

Generally, Table 3 shows under which parametrizations both cases occur. This shows that investment

under deterrence, while being involved in a war of attrition, is possible in situations that are characterized

by parametrizations where the leader sets a relatively small capacity on the new market. In this way the

firm hopes it will trade its current market for a market where it can enter as a follower so that it scoops the

profits on the old market and can set a sufficiently large capacity size.

Markets that have low uncertainty, a small market trend and faces firm discounting, i.e. under the

conditions of a small value of σ and µ and a large value of r, one finds that the leader undertakes investment

relatively early, i.e. for a relatively small value of x. This results in a small capacity. Similarly, a large

capacity on the old market burdens the new market, while existing, in two ways. First, it reduces the price

18In this region it is undetermined ex-ante at which value of x investment is undertaken. More specifically, if one allows for

the possibility to play a mixed equilibrium, it is unknown whether investment takes place before or after Xseg
1 . As a result, it

is unknown ex-ante whether entry deterrence or segregation will be played.
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War of attrition σ r µ ηqo δ

One firm adopts high low high low no effect

One or both firms adopt low high low high no effect

Table 3: Parameter settings distinguishing war of attrition types

and secondly, it delays the follower’s investment decision. As a result, the leader sets a relatively small

capacity. Under these specification it becomes rewarding to be the second investor.

5.1.2 Discussion

Existence of the preemption trigger The preemption trigger for symmetric firms, under segregation,

equals

XP =
δ(r − µ)

ν −
√

4ηqo(1− ηqo) + (ωqo)2
. (13)

Similar to the analysis in previous sections, one could notice from the specification that this value only

exists if the denominator is positive. In other words, for e.g. small values of ν, the preemption point is

not defined. In fact, for these parameter values the value function of the follower always lies above the

leader’s curve. Games with these characteristics are also defined to be a war of attrition game. Differently,

let X > Xseg
1 . Then

VL − VF =
X

r − µ

[
1
4ην

2 − 1
4η (ωqo)2 − qo(1− ηqo)

]
− 1

2η δν + 1
4η δ

2 r − µ
X

is the difference between the leader’s value function and the follower’s value function. For sufficiently large

values of X, this difference can only be positive if the first term is positive. This is equivalent to a positive

denominator of XP .

The initial market conditions The equilibriums described in this paper are subject to the assumption

that the initial value of the shock process is sufficiently small. In some situations this much influences the

outcome of the game. In the case where a war of attrition arises, i.e. when XL < XP , one can actually

speak of three different regions: a continuation region [0, XL), a war of attrition region [XL, XP ) and a

preemption region [XP ,∞). This means that if x(0) < XP firms always face a second-mover advantage.

However, had the state process begun at a higher level, x(0) ≥ XP , a first-mover advantage appears. If

x is small, prices are small as well and investment is less appealing than when x is large. This shows the

impact of market uncertainty by including a shock process in the model. However, saying something about

the resulting equilibrium, then becomes much more involved, but one could fairly summarize it as follows.

In presence of the attrition region, if the attrition region lies above Xseg
1 , i.e. Xseg

1 < XL < XP , there is

always only a single adopter, if it lies below Xseg
1 then multiple cases can be distinguished. If x(0) > Xseg

1

investment takes place immediatly, but only one firm adopts, which is the same for XP < x(0) < Xseg
1 , but
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then both firms will (eventually) adopt. For x(0) < XP firms randomize their strategies, since they find

themselves in a war of attrition game. However, both firms will undertake the adoption. In no presence of

the attrition region investment is always immediatly undertaken for x ≥ XP and here only one firm adopts

if max{x(0), XP } ≥ Xseg
1 .

5.2 Asymmetric players

Identical firms face the same investment problem: their the preemption points, their optimal investment trig-

gers and boundaries Xseg
1 are the same for both firms. As a result one finds that, for a given parametrization,

either both firms have a first-mover advantage, i.e. they end up in a preemption game, or both firms face a

second-mover advantage in a war of attrition game. However, if firms are asymmetric in their initial capaci-

ties, it no longer holds that both firms face the same investment problem. For a sufficient difference between

the firms’ capacities for the old technology one can find the situation where one firm has a second-mover

advantage but the other not.

Example 2 Under the baseline parametrization, assume in this case that qoB = 1.55. Then for firm A

XPA = 535 and Xseg
LA = 398.

For firm B it holds that

XPB = 513 and Xseg
LB = 517.

In this game, firm A has a second-mover advantage, but firm B has a first-mover advantage. However, for

qoB = 1.48 the order changes into XLA < XPB < XPA < XLB and for qoB = 1.45 the order XLA < XPA <

XPB < XLB emerges.

Asymmetry leads to a whole range of possible cases with respect to order of XLA, XPA, X
seg
1A , XLB , XPB

and Xseg
1B . Although one would expect that the firm with the first-mover advantage invests first, this is not

necessarily true. In the example it was shown that for qoB = 1.45 the order of the triggers shows that firm A

has a second-mover advantage and firm B has a first-mover advantage. However, firm A has no incentive to

wait until x reaches any of firm B’s investment triggers. As a result firm A undertakes investment first.19

In the example with q0B = 1.45, firm B is the largest firm on the old market. Its preemption trigger

equals XPB = 500 and its exogenous trigger equals XLB = 523. Since Xseg
1B = 264 < XPB adoption is done

19In this case one cannot speak of a war of attrition or preemption game. Here, firm A’s triggers are below firm B’s

triggers so that there exists no pair (GA, αA) × (GB , αB) such that firm A is indifferent between investment and waiting

for all ’adoption moments’ in the attrition region [XLA, XPA]. Therefore, formally, since investment is not optimal for firm

B at any moment before x hits XPB for the first time and the arguments given above, the equilibrium strategy in this

example is GτA(s) = ατA(s) = Is≥τL and GτB = ατB = 0 for all τ ∈ [0, τP ) where τL = inf{t ≥ t0 : x(t) ≥ XLA} and

τP = inf{t ≥ t0 : x(t) ≥ XPB}. For τ ≥ τP we are back in the preemption game described in Section 5.1. Nevertheless, this

framework is still under the assumption that x(0) is sufficiently small, i.e. x(0) < XLA.
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under the segregation strategy20 in case firm B undertakes it first. Similarly, for firm A, its lower bound

with respect to the segregation triggers equals Xseg
1A = 178 so that both XLA = 409 and XPA = 497 fall in

the segregation region. If firm A undertakes investment it switches from capacity qoA = 1 to qnA = 1.36 in

which case qnA(ν − ηqnA − ωqoB) = 0.749 compared to qoA(1− ηqoA − ωqnB) = 0.529 in the situation where firm

B undertakes investment with qnB = 1.56. So, although firm A prefers firm B to undertake investment for

values of x at firm A’s trigger, the firm is worse off when firm B undertakes investment at firm B’s trigger.

Hence, despite firm A has a second-mover advantage, its the only adopter nonetheless.

This is one example of many cases with respect to the order of the triggers. Elaborating on each of these

separately does not lead to any further understanding of technology adoption in this set-up, nor does it

lead to situations of extraordinary relevance. Therefore, I refrain from further studying the situation under

asymmetric firms.

6 Robustness

6.1 Effect of uncertainty

6.2 Robustness

Adoption costs In this model, firms face linear adoption cost when undertaking investment. As becomes

clear from e.g. (4), (12) and (13), the investment moments are positively related to the investment cost

and therefore these costs delay investment. As shown before, these costs, however, have no influence on the

follower’s decision whether to adopt or not. One could consider to, additionally, look at fixed costs. However,

these costs will have the same effect: they impose an (additional) cost, which will delay, but not block the

follower’s investment. Similarly, the result that a second-mover advantage is present when products are close

substitutes does not qualitatively change when considering different cost structures.

Capacity choice Although firms are generally free to set their capacities, it is not a common assumption

in the literature. In this paper’s set-up, fixing the capacity size leads to the following result. Denote the

firms’ capacity sizes by K, then the follower decides to never undertake adoption if and only

ν − ηK + ωK ≤ 0.

Clearly, this inequality is never true and, therefore, the follower always undertakes investment. This means

that the intuitive result that endogenously it is determined whether the follower also adopts does not exist

in a case where the firms’ capacities are assumed to be fixed. Nevertheless, if one assumes that, despite

fixing them, capacities are assumed to be asymmetric, one can find cases where only one firm undertakes

investment. All one then needs is to assume that the firm’s capacity on the new submarket can only become

20Notice that we are still in R1.
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sufficiently small, that is, sufficiently smaller relative to its capacity on the old submarket, to make adoption

unattractive.

Vertical differentiation This model assumes technological development i.e. ν > 1. However, it is widely

observed in real life that firm enter the market with products of cheaper quality to compete for consumers

of modest means. This would imply to study cases where ν < 1. Although not considered in this model,

it can be induced that for these cases the range of parameter values allowing for a second-mover advantage

and the adoption of only one firm increases. As an example, the restriction η > ων always hold, making

that Region 1 and Region 2 always exist.

7 Conclusion

This paper has three main results. Firstly, it is shown that although the new product’s quality is better

than the old product’s, under certain conditions, only one firms adopts. This happens when the degree

of innovation is small and products are not close substitutes. In this way, sharing the same submarket

with a rival firm is worse than serving your own submarket, despite the lower quality. Secondly, depending

on, a.o. things, the differentiation of the products, there is a first-mover advantage or a second-mover

advantage. When firms’ current capacity sizes are sufficiently large, they have no incentive to leave the

current technology themselves. Especially under the conditions of early investment, that is, investment

when the market is relatively in an early state, firms are reluctant to undertake investment. However, both

not undertaking investment is even worse. Therefore a war of attrition arises. This implies that waiting pays

off, not because uncertainty is resolved, the arrival of new information or because of information spillover,

but because the firms prefers to not undertake adoption all together. Third, as a result of market uncertainty,

the equilibrium in this market highly depends on the level of market uncertainty. For different values of this

level, firms are more or less reluctant to be the first adopter and also whether or not they want to undertake

adoption in the first place. Moreover, it distinguishes two types of second-mover advantage. As explained

before, firms prefer to be a late mover so that they will not undertake adoption. But under small undertainty

levels, firms can be incentified to be a late mover in order to obtain temporary profits resulting from the old

technology before undertaking investment. Moreover, as a second adopter, it invests at higher values of the

exogenous shock process so that it might set a higher capacity level.

Furthermore, there are some smaller results. Under the case of asymmetric firms an example is shown

where only one firm has a first-mover advantage. In equilibrium howerever, the firm with the second-mover

advantage undertakes the adoption and the other firm decides not adoption at all. This also comes as a

result of the timing decisions combined with capacity choice. Preferably the firm with the second-mover

advantage prefers the other firm to undertake the adoption. However, it is worse off when the other firm

adopts much later in the process, setting a large capacity size with the new technology. A second result
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worth mentioning here is the fact showing that simultaneous investment and segregation are two mutually

exclusive strategies. This is, when first movers are able block the second firm from adopting - even when its

not optimal - simultaneous investment is never a feasible strategy. Only when either the quality improvement

is moderate and when the initial capacity level of the follower is very large, simultaneous investment can

be feasible. In that case the follower is forced to undertake adoption since the profit margins are nil. This

brings us to a next small result, where this paper shows that for sufficiently large initial capacity levels the

profits associated with the new technology are marginalized, while keeping the profits on the new submarket

sufficiently positive to make this a feasible strategy. Here, the quality improvement is large enough to set a

capacity level that reduces the price on the old submarket. Another minor result is that, although this paper

assumes to start with an initially low value of the state process, it does influence the type of equilbrium. For

large values of the state process firms always end up in a preemption game, even despite a war of attrition

would have arisen when the state process started with an inially small value.
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Appendix A: Proofs

Proof of Proposition 1 If the follower undertakes investment it obtains VF (X, qFL ; qoF , q
n
L) as given in the

text. The first order conditions lead to the optimal capacity size:

X

r − µ
(ν − 2ηqnF − ηqnL)− δ = 0.

It follows from the second order conditions that this is indeed a maximum: X
r−µ (−2η) < 0. The value

matching and smooth pasting conditions lead to the values of X∗F and AF ,

X

r − µ
qnF (ν − η(qnF + qnL))− δqnF = AFX

β +
X

r − µ
qoF (1− ηqoF − ωqnL),

X

r − µ
qnF (ν − η(qnF + qnL)) = AFβX

β +
X

r − µ
qoF (1− ηqoF − ωqnL),

where β is the positive root (see e.g. Dixit and Pindyck (1994)) of

σ2β2 + (2µ− σ2)β = 2r.

This, together with (3) leads to (4) and

AF = (X∗F )−β
[
X∗F
r − µ

(qoptF (ν − η(qoptF + qnL))− qoF (1− ηqoF − ωqnL))− δqoptF

]
.

The existence of X∗F is treated in Proposition (2). In case the follower does not undertake investment, it

stays on the old market and obtains

E
[∫ ∞

0

qoF (1− ηqoF − ωqnL) e−rt dt | x(0) = X

]
=

X

r − µ
qoF (1− ηqoF − ωqnL).

�
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Proof of Proposition 2 The follower’s trigger is the solution of f(X) = 0 where f(X) is defined by the

following equation:

f(X) = X(ν − ηqnL)2 − δ(r − µ)(ν − ηqnL)
2β

β − 1
− 4ηqoFX(1− ηqoF − ωqnL) +

β + 1

β − 1

δ2(r − µ)2

X
,

which can be rewritten as f(X) = bX + c+
d

X
, where,

b = (β − 1)
[
(ν − ηqnL)2 − 4ηqoF (1− ηqoF − ωqnL)

]
(14)

c = −2βδ(r − µ)(ν − ηqnL) (15)

d = δ2(r − µ)2(β + 1). (16)

It follows that f(X) is a convex function since d ≥ 0. Since prices remain positive, c < 0 is always true. The

function then only has a feasible root if b ≥ 0.21 Since b is convexly parabolic in qnL we conclude that between

the roots of b = 0 there is no solution to f(X) = 0. This leads one to equations (5) and (6). Moreover, b is

decreasing for qnL < q̃1L and increasing for qnL > q̃2L. Then, overall, the largest root of f(X) is increasing for

qnL < q̃1L and decreasing for qnL > q̃2L.

The parabolic formulation of b only has two roots as long qoF < η−ων
η2−ω2 , one root in case qoF = η−ων

η2−ω2 and

the parabola lies above the x-axis in case qoF exceeds this level. This concludes that Region 2 ends at

(q̃2F , q
n
L) =

(
η − ων
η2 − ω2

,
ν(η2 + ω2)− 2ωη

η(η2 − ω2)

)
.

For ν − ηqnL to remain positive it is required that qnL <
ν
η . It can be calculated that q̃2L exceeds ν

η when qoF

is below

q̃1F =
η − ων
η2

,

which concludes the boundary between Region 1 and 2 as depicted in Figure 1.

For larger values of qnL the entire function f(X) moves upwards, until at a certain point f(X) > 0 for all

values of X. The largest value of qnL at which f(X) = 0 leads to a solution can be calculated in the following

way. In this point the horizontal axis is tangent to the curve, which means that we need to solve for qnL and

X∗ such that f(X∗) = 0 and f ′(X∗) = 0. This is equivalent to c2 = 4db, i.e.

q̃3L = {qnL : (β2 − 1)4ηqoF (1− ηqoF − ωqnL) + (ν − ηqnL)2 = 0}, (17)

which serves as an upperbound to the leader’s capacity in Region 2 and Region 3. It is easily checked that

the intersection of q̃2L and q̃3L takes place at q̃1F . The end to the third region is then defined as

q̃3F = {qoF : q̃3L = 0} =
1

2η

(
1 +

√
1 +

ν

β2 − 1

)
>

1

η
.

21Technically we find 2 roots, where the smallest one also exists in cases where b < 0. However, since this point corresponds

to a negative option value, this point is ruled out as a feasible solution to the follower’s threshold.
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However, to find a solution to equation (17) it is required that qoF (1− ηqoF −ωqnL) < 0, which is equivalent

to a negative price on the old market. This concludes that qnL is bounded from above by

{qnL : po ≥ 0} =
1− ηqoF

ω
,

where po = X(1− ηqoF −ωqnL). One can easily check that this curve intersects with both q̃3L and q̃2L at q̃1F . �

Similarly one can define an upperbound to qnL dictated by the price of the new product: pn = X(1 −

ηqnL − ωqoF ). It holds that

• this upperbound starts at (qoF , q
n
L) = (0, νη ) which coincides with q̃1L at qoF = 0;

• this upperbound intersects with the upperbound dictated by po exactly at q̃2F , here qnL = νη−ω
η2−ω2 ;

• these remarks are sufficient to show that the upperbound dictated by pn intersects q̃2L exactly between

q̃1F and q̃2F . This happens at:

(qoF , q
n
L) =

(
4(η − ων)

4η2 − 3ω2
,

4ην + νω2 − 4ηω

4(4η2 − 3ω2)

)
.

Proof of Lemma 1 We want to know when it is possible to have qn∗L > q̃2L. Since limqnL→q̃iL X
∗
F = ∞, for

both i ∈ {1, 2} one has V detL = V segL for qnL = q̃1L and qnL = q̃2L. Moreover, it holds that, for i ∈ {1, 2},

lim
qnL→q̃iL

d

dqnL
V detL = lim

qnL→q̃iL

d

dqnL
V segL . (18)

It is therefore sufficient to look at cases where qsegL > q̃2L. Since at qoF = q̃2F it holds that

q̃1L = q̃2L =
ν(ω2 + η2)− 2ωη

η(η2 − ω2)
,

it should at least hold that

lim
X→∞

qsegL =
1

2η
[ν − ωqoF ] >

ν(ω2 + η2)− 2ωη

η(η2 − ω2)
.

Rewriting gives (9). �

Proof of Lemma 2 We want to know when it is possible to have qn∗L > q̃1L. It is sufficient to look for

intersection points between qsegL and q̃1L. One can check that

qoF =
16η − 10ων − 8

√
D

32η2 − 14ω2
,

qoF =
16η − 10ων + 8

√
D

32η2 − 14ω2
,

yield the two intersection points, where D = 4η2 + 2ω2ν2 − 5ηων − ν2η2. It is concluded that D ≥ 0 is a

sufficient condition. The equation D = 0 has two intersection points with respect to ν,

ν =
5ηω ± η

√
16η2 − 7ω2

4ω2 − 2η2
. (19)
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If 2ω2 > η2 then D > 0 is satisfied for all values outside the roots and one can check that (??) is sufficient

since the other root is larger than η
ω in which case η < ων. For the case 2ω2 < η2 all values between the

roots are considered to satisfy D > 0. In this case the smallest root is negative and again (??) is sufficient.

For 2ω2 = η2 we find that D is linearly decreasing function with a root at 4η
5ω . However, when rewriting of

(19) one obtains 8η

5ω+
√

16η2−7ω2
which has a positive denominator for all parameter values. �

Proof of Proposition 3 Since qsegL is an increasing function with respect to X, it holds that the segregation

strategy is feasible, i.e. qsegL ≥ q̃1L, if and only if X is larger than some threshold. Rewriting qsegL = q̃1L with

respect to X leads to Xseg
1 . Moreover, the segregation strategy, and therefore the deterrence strategy, is

considered for all X > Xseg
1 . Further arguments are given in the text.

Suppose the leader invests such that the follower’s investment is not blocked. Then, if the leader sets a

capacity level sufficiently large, qnL > q̂1(X; qoF ), it delays the follower’s investment and it obtains,

V detL = E

[∫ tF

t=0

qnLx(t)(ν − ωqoF − ηqnL))e−rtdt+

∫ ∞
t=tF

qnLx(t)(ν − η(qnL + qoptF )e−rtdt
∣∣∣x(0) = X

]
− δqnL

= E

[∫ ∞
t=0

qnLx(t)(ν − ωqoF − ηqnL)e−rtdt+

∫ ∞
t=tF

qnLx(t)(ωqoF − ηq
opt
F )e−rtdt

∣∣∣x(0) = X

]
− δqnL

=
X

r − µ
qnL(ν − ωqoF − ηqnL) +

X∗F
r − µ

qnL(ωqoF − ηq
opt
F )

(
X

X∗F

)β
− δqnL

where tF is defined as the moment the follower undertakes investment. Optimal capacity is determined via

the following first order conditions,

X

r − µ
(ν − 2ηqnL − ωqoF ) +

X∗F
r − µ

(ωqoF − ηq
opt
F )

(
X

X∗F

)β
− δ

X∗F

1

2
qnL

(
X

X∗F

)β
dX∗F
dqnL

−β − 1

r − µ
qnL(ωqoF − ηq

opt
F )

(
X

X∗F

)β−2
dX∗F
dqnL

− δ = 0.

It is now shown that the value of X for which qdetL = 0 lies in D. Notice that since one can easily

construct an example for which this is true, it is sufficient to show that it is not possible to have that

{X : qdetL = 0} = {X : q̂1 = 0} for all parameter sets. The first order conditions can be rewritten as,

X

r − µ
(ν − ωqoF ) +

X∗F
r − µ

(ωqoF − ηq
opt
F )

(
X

X∗F

)β
= δ.

Then if {X : qdetL = 0} = {X : q̂1 = 0} = X∗F (0; qoF ), we have

X∗F (0, qoF ) =
δ(r − µ)

ν
,

which is equivalent to

(−1)(ν2 − 4ηqoF (1− ηqoF )) = ν

√
ν2 + (β2 − 1)4ηqoF (1− ηqoF ).

Since the left hand side is negative (see (14)) and the right hand side positive, one has a contradition and

therefore we have that the curve of the leader’s capacity starts in D.
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From (18) it follows that qdetL = qsegL if X = Xseg
1 . From this it follows that qsegL > q̃1L if and only if

X > Xseg
1 and qdetL < q̃1L if and only if X < Xseg

1 .

Proof of Proposition 4 From the smooth pasting and value matching conditions one obtains the descrip-

tions of the triggers.

The segregation trigger only exists if (ν − ωqoF )2 > 4ηqoL(1 − η(qoL + qoF )). Fix qoF , then the inequality

becomes an equality for

qoL =
(1− ηqoF )±

√
(1− ηqoF )2 − (ν − ωqoF )2

2η
.

However, since (1− ηqoF )2 < (ν − ωqoF )2 we always have that (ν − ωqoF )2 > 4ηqoL(1− η(qoL + qoF )). �

Proof of Lemma 3 First notice that q̃2L < q̂2 and notice that qdetL is an increasing function. By definition,

for X → ∞ one has q̂2 → q̃2L. So if, for some X, qdetL > q̃2L, then by the definition of the convergence of

functions, one has that there exists an X̃ such that qdetL > q̂2 for all X > X̃. Hence, if qdetL ∈ DU for some

X then also qdetL ∈ AU for some X. �

Proof of Proposition 5 The main part of the proof is identical to the proof of Proposition 4. The same

proof applies to the intersection point between qsegL and qdetL respectively with q̃2L. Moreover, since

lim
X→∞

q̂2 = q̃2L

and since q̂2 is monotonically decreasing, it must hold that if for some X it holds that qdetL ∈ DU then there

must exist an Xdet
2 such that qdetL ∈ AU for X ≥ Xdet

2 . Further arguments are given in the text. �

Proof of Proposition 6 First it is shown that that the accommodation curve starts in the region where

the follower is deterred. In that case we have that {X | qaccL (X) = 0} = δ(r−µ)
ν ∈ D, i.e. δ(r−µ)

ν < X∗F (0; qoF ).

One can show that

X∗F (0; qoF ) =
δ(r − µ)

β − 1

βν +
√
ν2 + (β2 − 1)4ηqoF (1− ηqoF )

ν2 − 4ηqoF (1− ηqoF )
,

which leads to inequality

βν2 + ν

√
ν2 + (β2 − 1)4ηqoF (1− ηqoF ) > (β − 1)(ν2 − 4ηqoF (1− ηqoF )).

Since this inequality always holds, it is concluded that qaccL

(
X = δ(r−µ)

ν

)
∈ D. The value of the intersection

point with respect to X between qaccL and q̂1, Xacc
1 , can be calculated by substituting qnL = qaccL in (4) and

solve for X. Rewriting leads to (11).

Finally, we need to show that ν > 2η
η+ω is a sufficient condition. Accommodation is always feasible as long

as the tail of qsegL remains in the deterrence/accommodation part as depicted in Figure 1, i.e.

lim
X→∞

qaccL =
ν

2η
<
ν − 1

η − ω
.

The righthandside of this equation is the minimum of q̃1L. Rewriting this inequality gives ν > 2η
η+ω . �
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Proof of Proposition 7 The accommodation strategy is considered to be feasible as long as

lim
X→∞

qaccL (X) =
ν

2η
< q̃1L.

Using (5), one can rewrite this condition. This gives qoF < q̃acc1 and qoF > q̃acc2 . Similarly, the accommodation

strategy is feasible for limX→∞ qaccL (X) = ν
2η > q̃2L. One can check that it comes down to the same equations.

The value with respect to qnL at which the Upper Region starts (see, e.g., Figure 1) equals

qnL =
ν(η2 + ω2)− 2ωη

η(η2 − ω2)
.

This means that for ν
2η < ν(η2+ω2)−2ωη

η(η2−ω2) one has that accommodation can only take place in the Lower

Region. However, the complementary case leads to the situations where the Upper Region is reached for

sufficiently large qoF . Rewriting leads to 4ηω
η2+3ω2 .

Finally, it needs to be shown that 4ηω
η2+3ω2 ≤ 2η

η+ω . Rewriting gives (η − ω)2 ≥ 0 which is always true. �

Proof of Corollary 1 Assume there exists an X ∈ R such that qn∗L ∈ S. Since qaccL > qsegL and since we

have that qaccL starts in the Lower Region, it cannot be true that qaccL ∈ A1. Accommodation is then only

possible if qaccL ∈ A2. Following the same logic as in Lemma 2, we find that rewriting limX→∞ qaccL ≤ q̃2L

leads to ν ≥ 4ωη
η2+3ω2 . Since this holds for qoF = q̃2F this implication is true for all qoF . �

Proof of Proposition 8 The investment trigger follows from the smooth pasting and value matching con-

ditions. It follows from (26) that the investment trigger exists if and only if

ν2 > 8ηqoL(1− η(qoL + qoF ).

Rewriting leads to the conditions with respect to qoL. Then these values only exist if

ν2 ≤ 2(1− ηqoF )2.

Notice that for
√

2(1−ηqoF ) ≥ ν the inequality always holds. Notice that for
√

2(1−ηqoF ) = ν the investment

trigger exists for all qoL. �

Proof of Lemma 4 Notice that if segregation is possible, it is at least possible for ν = 1 and ω = 0. Under

those specifications one finds

Xseg
1 =

δ(r − µ)

4
√
ηqo(1− ηqo)− 1

Xseg
L =

δ(r − µ)(β2 − 1)

β −
√

1 + (β2 − 1)4ηqo(1− 2ηqo)
.

Then XL ≥ Xseg
1 if and only if

(β2 − 1)(4
√
ηqo(1− ηqo)− 1)− β +

√
1 + (β2 − 1)4ηqo(1− 2ηqo) ≥ 0. (20)

39



Since for qo = 0 this equation is negative and positive for qo = 1
4η , one can conclude that the lemma is true

if the first order conditions are positive. Then q∗ is defined as the value of qo such that the inequality is

binding. One can show that differentiating with respect to qo gives,

1− 2ηqo√
ηqo(1− ηqo)

+
1− 4ηqo√

1 + (β2 − 1)4ηqo(1− 2ηqo)
,

which is positive for all q ∈
(

0, 1
4η

]
. In order to conclude that the lemma is true for all q ≥ q∗, perform the

substitution qo = γ
2η . To see that the inequality in (20) holds for all γ ∈ [ 12 , 1], notice that a minimum to

the equation is equal to

(β2 − 1)(
√

3− 1)− β + 1.

Since this is an increasing function in β and since it is nonnegative for β = 1 one can conclude that indeed

for all q ≥ q∗ the lemma holds. �

Proof of Lemma 5 The same reasoning, as in the previous lemma, applies here, where

XP =
δ(r − µ)

1− 2
√
ηqo(1− ηqo)

.

Then XP ≥ Xseg
1 is and only if

4
√
ηqo(1− ηqo)− 1 ≥ 1− 2

√
ηqo(1− ηqo),

which is equivalent to ηqo(1− ηqo) ≥ 1
9 . Since qo ≤ 1

2η , the condition in the Lemma is sufficient. �

Proof of Lemma 6 Following the proof of the previous lemmas one can show that a war of attrition is

present if and only if

β −
√

1 + (β2 − 1)4ηqo(1− 2ηqo) + (β2 − 1)(2
√
ηqo(1− ηqo)− 1) ≥ 0.

Since the equation is not true for qo = 0 but is for qo = 1
2η we study the first order conditions,

1− 2ηqo

2
√
ηqo(1− ηqo)

− 1− 4ηqo√
1 + (β2 − 1)4ηqo(1− η2qo)

.

Obviously, the derivative is positive for qo ≥ 1
4η . For qo < 1

4η we perform the following trick. Let us first

substitute qo = γ
4η so that we are interested in the value of the derivative for all γ ∈ [0, 1). This gives,

1− 1
2γ√

γ(1− 1
4γ)
− 1− γ√

1 + (β2 − 1)γ(1− 1
2γ)

.

Obviously, this term is increasing with β. Since it is positive for β = 1, one can conclude that this derivative

is positive for all β ≥ 1 and γ ∈ [0, 1). Hence, there exists a qatt such that the inequality is true for all

qo ≥ qatt. �
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Proof of Proposition 9 Suppose firm B does not undertake investment, then firm A’s best reply is to

undertake investment at its trigger XLA. Moreover, if firm A invests at its trigger XLA, then firm B’s best

strategy would be to withhold investment: there is no alternative such that it could improve its position

given firm A’s investment at XLA. As a follower firm B optimally retains and for becoming a leader firm B

needs firm A to be willing to become follower at XLA. However, this is never subgame perfect for firm B. �

Proof of Proposition 10 Assume XPA < XPB . Suppose x∗A = XPB − ε, then x∗B = XPB ∈ RB(SA) is

an optimal reaction for firm B. Moreover,

x∗A = RA ∈ RA(x∗B) ∈ RA(RB(x∗A)) = RA(RB(XPB − ε)) = RA(XPB) = XPB − ε = x∗A.

For the case that XLB < XPA one finds that x∗A =∞ and x∗B = XLB form a Nash equilibrium,

x∗A = RA ∈ RA(x∗B) ∈ RA(RB(x∗A)) = RA(RB(∞)) = RA(XLB) = [XPA,∞).

And a similar proof works for the case where XLA < XPB . �

Proof of Theorem 1 Arguments given in text. �

8 Appendix B: Robustness

9 Appendix C

9.1 Additional analyses

The segregation strategy is feasible for the following cases, they are illustrated in Figure 8.

Proposition 7 Let qoF ∈ R1 ∪R2. Define

q̃seg1 =
8η − 5ων − 4

√
(3η − 2ων)(η − ων)− η2(ν2 − 1)

16η2 − 7ω2
, (21)

q̃seg2 =
8η − 5ων + 4

√
(3η − 2ων)(η − ων)− η2(ν2 − 1)

16η2 − 7ω2
. (22)

Then, for sufficiently large X, the leader’s value function is optimized in the Segregation Region for qoF > q̃seg1

if

ν ≤ 3ωη

η2 + 2ω2
.

Moreover, the segregation strategy is feasible for q̃seg1 < qoF < q̃seg2 if

3ωη

η2 + 2ω2
< ν <

8η

5ω +
√

16η2 − 7ω2
. (23)

The segregation strategy is never feasible if

ν ≥ 8η

5ω +
√

16η2 − 7ω2
.
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Figure 7: The information in this picture is to be incorporated in Figure 2, which will make this figure

redundant.
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Figure 8: Regions showing where segregation is feasible, see Proposition 7.

For a large value of the vertical differentiation parameter ν, that is, for a much more profitable new

product, the follower is more keen on adopting. Therefore, the leader is not able to block the second firm

in that case. For values of ν close to 1, both firms are more eager to segregate since the cross-product

sensitivity ω is smaller than η. However, the follower’s old capacity should be sufficiently large to eliminate

the situation where the follower prefers adoption simply because it currently faces very small profits due to a

small capacity size. For intermediate values of ν the segregation strategy is only interesting if the follower’s

capacity is not too large, so that it would like to change it’s capacity for a smaller size, not too small, so

that it would like to adopt to increase profits.

For the accommodation strategy the following Proposition holds, Figure 9 illustrates these values.

Proposition 8 Let qoF ∈ R1 ∪R2. Define

q̃acc1 =
1

4η

2− ων

η
−

√(
2− ων

η

)2

− ν2

 > 0, (24)

q̃acc2 =
1

4η

2− ων

η
+

√(
2− ων

η

)2

− ν2

 . (25)

Then the accommodation strategy is feasible for X > Xacc
1 in the Lower Region for qoF < q̃acc1 and qoF > q̃acc2

if
4ηω

η2 + 3ω2
< ν ≤ 2η

η + ω
.

Moreover, the accommodation strategy is feasible for X > Xacc
1 in the Lower Region for qoF < q̃acc1 and in

the Upper Region for qoF > q̃acc2 if

ν ≤ 4ηω

η2 + 3ω2
.

For q̃acc1 ≤ qoF ≤ q̃acc2 accommodation is never feasible, i.e. Xacc
1 →∞.
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Figure 9: Regions showing where accommodation is feasible.

For small values of ν accommodation is only interesting to the leader when the follower has a large share

on the old market. In that case the follower would exchange a large capacity on the old market for a smaller

capacity on the new market. Conversely, when the follower is very small on the old market it prefers to

quickly renew its capacity by undertaking the investment. This makes the investment trigger of the follower

relatively small and it is then harder for the leader to deter the other firm.

As a side note, one can show that q̃acc2 ≤ η−ων
η2−ω2 if and only if ν ≤ 4ηω

η2+3ω2 . This means that all cases

presented in the Proposition exist.

9.2 Optimal investment under accommodation

At investment, the leader obtains value V accL . The value before investment is given by

F accL (X; qoL, q
o
F ) = AaccL Xβ +

X

r − µ
qoL(1− η(qoL + qoF )).

The optimal investment trigger is then given by,

Xacc
L =

δ(r − µ)

β − 1

βν +
√
ν2 + (β2 − 1)8ηqoL(1− η(qoL + qoF ))

ν2 − 8ηqoL(1− η(qoL + qoF ))
. (26)

Proposition 9 Let qoF ∈ R1∪R2 such that
√

2(1−ηqoF ) > ν. Under the accommodation strategy, the leader

invests at Xacc
L if and only if

qoL <
1− ηqoF −

√
(1− ηqoF )2 − 1

2ν
2

2η
or qoL >

1− ηqoF +
√

(1− ηqoF )2 − 1
2ν

2

2η
.

For
√

2(1− ηqoF ) ≤ ν the investment trigger exists for all qoL.

44



For small values of ν the trigger does not exist and investment under accommodation is always delayed.

Small ν imply a relatively less profitable market. It would require a larger value of X to undertake investment.

However, for larger values of X one finds that the optimal investment size increases sufficiently to delay the

follower’s investment. In the end, the optimal moment to undertake simultaneous investment is always

delayed.

Not only the existence of the trigger depends on the capacities on the old market, also the relative position

of the trigger with respect to Xacc
1 is fully dependent on qoL. Notice that Xacc

1 is not dependent on the value

of qoL, which is not the case for Xacc
L .
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