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Abstract

Lagging public-sector investment in infrastructure and the deregulation of
most industries mean that decisions will have to be made increasingly by
the private sector under multiple sources of uncertainty. We enhance the
traditional real options approach to analysing investment under uncertainty
by accounting for both multiple sources of uncertainty and the time-to-build
aspect. The latter feature arises in the energy and transportation sectors
because investors can decide the rate at which the project is completed. Fur-
thermore, two explicit sources of uncertainty represent the discounted cash
inflows and outflows of the completed project. We use a finite-difference
scheme to solve numerically for both the option value and the free boundary
that characterises the optimal investment strategy. Somewhat counterintu-
itively, we find that with a relatively long time to build, a reduction in the
growth rate of the operating cost may actually lower the investment thresh-
old. This is contrary to the outcome when the time-to-build aspect is ignored
in a model with uncertain price and cost. Hence, research and development
efforts to enhance emerging technologies may be more relevant in infrastruc-
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ture projects with long lead times.

Keywords: Investment analysis, real options, time-to-build problem

1. Introduction

Public investment in infrastructure, such as power grids, telecommuni-

cations, and transport, in OECD countries has languished since the 1990s

(OECD, 2011), dropping from a mean of over 4% of GDP in 1990 to 3%

in 2007. In conjunction with a transition in many OECD countries towards

service-based economies, an “infrastructure gap” has developed that could

have serious consequences for the competitiveness of many OECD countries.

Indeed, newly industrialising countries such as Brazil, China, and India have

the comparative luxury of developing their infrastructure now with relatively

generous public funding. By contrast, infrastructure in OECD countries is

decades old in many sectors and faces a lack of public funding. In effect, the

trend towards deregulation has in past thirty years has put more emphasis

on private provision of infrastructure investment, which is confounded by the

exposure to uncertain revenues and costs in decision making.

Due to the private sector’s greater role in handling infrastructure invest-

ments, concerns about managing uncertainty in the context of maximising

profit have become more important. For example, John Laing PLC, a British

private equity firm that develops and operates public infrastructure, has re-

cently announced its intention to raise capital through a flotation on the Lon-

don Stock Exchange to finance a fund for environmental infrastructure and is

aiming to provide annual returns of 8% (FT, 2014). Thus, the introduction

of private incentives into the public sphere necessitates the development and

application of appropriate methods for decision making, viz., those that con-

sider uncertainty in cash flows, managerial flexibility, and salient features of

infrastructure projects. Such analysis may also provide insights to regulators

in designing mechanisms that elicit desired outcomes, e.g., environmental or

social, from a private sector that has profit maximisation as its principal
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motivation.

Using the real options approach (Dixit and Pindyck, 1994), we take a

stylised view of an infrastructure project that is to be carried out by a pri-

vate firm. Similar to Majd and Pindyck (1987), we assume that the firm

has the discretion not only to decide when to launch the project but also

to determine the rate at which its construction proceeds. Indeed, large in-

frastructure projects can take years or even decades to build, and once con-

struction is initiated, the cash flows may fluctuate to the point where it is

optimal for the firm to suspend progress. Thus, an optimal decision rule is

characterised by a free boundary that indicates the minimum revenues from

the completed project for every possible realisation of operating costs and

remaining investment. If the current revenue level is above this threshold,

then the next tranche of investment is undertaken; otherwise, it is optimal

to suspend investment.

Motivated by the fact that next-generation infrastructure projects, e.g.,

for smart grids or electric vehicles, may have both uncertain and non-cointegrated

revenues and operating costs, we extend Majd and Pindyck (1987) to the

case of two sources of uncertainty. We find that this consideration has a non-

monotonic effect on the optimal threshold boundary for investment when

the operating cost is high. Intuitively, with almost no time to build, a re-

duction in the growth rate of the operating cost monotonically increases the

investment threshold as it is optimal to wait for lower cash outflows before

completing the project. However, with a relatively long time to build, a

reduction in the growth rate of the operating cost may actually lower the

investment threshold as the expected absolute decrease in the operating cost

upon project completion is high. This effect is especially pronounced when

the operating cost is high.

The rest of this paper is structured as follows:

• Section 2 provides a review of the relevant literature.

• Section 3 formulates the problem and provides a quasi-analytical solu-

3



tion to it.

• Section 4 consists of numerical examples that convey our main insights.

• Section 5 summarises the work, discusses its limitations, and points out

directions for future research.

2. Literature Review

In contrast to the now-or-never net present value (NPV) approach, the

real options framework reflects the value of managerial flexibility in response

to unfolding uncertainties. For example, McDonald and Siegel (1986) exam-

ine the value of the deferral option in which a firm waits for the optimal time

to invest when both revenues and investment costs are uncertain. Embedded

options, such as the discretion to suspend and resume operations (McDon-

ald and Siegel, 1985), expand or modify the project after initial investment

(Pindyck, 1988), and determine the capacity of the project (Dixit, 1993;

Dangl, 1999; Décamps et al., 2006), may also be handled. Such flexibility is

often present in real projects and can affect the initial investment decision.

Unlike the now-or-never NPV approach, the effects of these features on the

value of the investment opportunity and optimal adoption thresholds may

be assessed (Dixit and Pindyck, 1994).

A simplifying assumption in most of the literature is that the project

is constructed immediately after the investment decision has been taken.

In other words, the rate of investment is infinite, which is defensible only

if lead times are low relative to the lifetime of the project. However, this

assumption does not hold in most infrastructure projects, e.g., transmission

lines for electricity may take several years to construct with several stages

encompassing the initial planning permission to assembling the towers to

restoring the land (Hydro-Québec, 2014). Relaxing the assumption of an

infinite investment rate, Majd and Pindyck (1987) tackle the problem of

a firm facing uncertain revenues with discretion over not only initiation of
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the investment cycle but also suspension and resumption of the investment

process as each stage is completed. Thus, their decision rule encompasses

an optimal revenue trigger for each stage that depends on the remaining

investment until project completion. In effect, they have embedded options

to manage the time to build and show that this additional flexibility reinforces

the standard real options result that higher volatility and the effective growth

rate of the revenues delay action. By contrast, Bar-Ilan and Strange (1996)

have a model with investment lags and an embedded option to abandon the

project costlessly. Because the marginal costs of waiting, i.e., the foregone

revenues from not investing, are higher as a result of the lead time to receipt

of cash flows and an abandonment option that puts a lower bound on the

value of those cash flows, the standard real options result is weakened or even

reversed: higher uncertainty may reduce the investment trigger. Aguerrevere

(2003) extends the issue of investment lags to include competition.

Recent real options work develops quasi-analytical solutions to problems

when both revenues and operating costs are uncertain (Adkins and Paxson,

2011). In contrast to McDonald and Siegel (1986), they relax the assumption

that the project’s payoff is homogenous in the revenues and costs because

it may be that it is operating costs rather than the investment cost that is

prone to uncertainty. Consequently, the dimension-reducing step of turning

the partial differential equation (PDE) into an ordinary differential equa-

tion (ODE) no longer holds, and the optimal investment trigger is not a

linear relationship between revenues and costs. Adkins and Paxson (2011)

motivate their work in the context of renewal assets, while Dockendorf and

Paxson (2013) apply a similar model to the case of commodity switching in

a production plant. An important consideration of this strand of the litera-

ture is that often revenues and operating costs cannot be modelled together,

i.e., as a single stochastic process describing the profit flow, because the two

processes are not cointegrated. Indeed, for infrastructure projects concerning

new technologies, e.g., smart grids or electric vehicles, there is not even a time
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series of the relevant revenues and operating costs from which to detect the

presence of cointegration. Taking this point of view, our work also makes a

methodological enhancement to real options by considering the time-to-build

attribute together with multiple uncertain factors.

3. Analytical Model

3.1. Assumptions

We extend Majd and Pindyck (1987) by considering two stochastic vari-

ables that determine the value of the project. Likewise, our work could also

be thought of as adding investment lags to the two-factor model of Adkins

and Paxson (2011). Specifically, our aim is to examine how introducing a

stochastic variable that represents the costs incurred by the finished project

affects the investor’s optimal investment policy. We denote the cash in-

flows of the finished project with Vt and the cash outflows with Ct, where

t ≥ 0 indicates time. Thus, the payoff of the finished project at time t is

max(Vt − Ct, 0). Note that we implicitly assume that the finished project

can be scrapped without cost as the payoff cannot yield negative values even

if Vt − Ct < 0 when the project is finished. However, this assumption is

not restrictive because a rational investor will never complete the investment

program if the payoff is negative.

We assume that both the option to invest in the project and the project

itself are perpetual.2 This is not true in reality, but because the cash flows

are discounted, the effect of distant cash flows is negligible. The benefit of

assuming a perpetual option is that it relieves us from making the option

value an explicit function of time. We also assume that Vt and Ct follow the

following geometric Brownian motions (GBMs)

dVt = αV Vtdt+ σV Vtdzt (1a)

2The assumption that the project is perpetual could be easily relaxed by modifying the
payoff of the investment option. However, it does not significantly alter our results.
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dCt = αCCtdt+ σCCtdwt (1b)

where αV and αC are drift rates, σV ≥ 0 and σC ≥ 0 are volatilities, and

dzt and dwt are increments of uncorrelated Wiener processes. We take the

increments of the GBMs to be uncorrelated as they are assumed to arise from

non-cointegrated time series. However, instantaneous correlation between the

two increments would be straightforward to implement.

The assumption of constant drift and volatility parameters of GBMs in

(1a) and (1b) implies that the investor cannot affect the evolution of Vt and

Ct. In the case of Vt, this is essentially a perfect market assumption, i.e.,

the investor takes the market value of the output of the project as given.

In the case of Ct, the interpretation depends on the situation. If αC = 0,

then the interpretation is simply that the evolution of the cost variable is

stochastic yet without a trend. When αC > 0, the interpretation is that

the costs are expected to increase in the long run. For example, if the main

cost determinant of the finished project is a diminishing natural resource,

then the interpretation might be that because the price of this resource will

increase in the future due to decreasing reserves; consequently, the costs of

production will rise. By contrast, if αC < 0, then we can form an interesting

interpretation. Consider the case of new technology adoption, e.g., electric

vehicles (EVs) and a charging infrastructure. If the adoption of EVs is in line

with the goals of policymakers, then they might support the R&D required to

initiate private-sector investment and further accelerate the adoption process.

In this case, it is also feasible for policymakers to make their information

and progress available to the public so that the private sector can capitalise

on the evolving technology, thereby fulfilling the goals behind the public

investments.3 This implies that the private investor in our case experiences

3According to the Joint Research Centre of the European Commission (European Com-
mission, 2013), about 65% of the outstanding total European EV RD&D budget of e1.9
billion is from public funding. The report also finds that an increased exchange of infor-
mation between the projects would result in a better societal return for the investments
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an exogenous learning curve effect that decreases the costs of the finished

project over time. Hence, by considering the case αC < 0, we can examine

how an exogenous learning curve effect described above affects the actions of

rational investors.

We model the investment process à la Majd and Pindyck (1987) and

denote the capital investment left at time t with Kt, the investment rate

with I, and the maximum investment rate with k ≥ 0. Thus, the dynamics

of Kt are as follows:
dK

dt
= −I, I ≤ k (2)

We assume that the investor can continuously adapt the rate at which she

invests as new information about the expected profitability of the finished

project arrives. This implies that our framework is most relevant in mod-

elling situations in which the investment is made in multiple stages and the

investor can halt the investment between the stages. If the investor has an

opportunity to halt the process during the stages, then our model is even

more relevant. In fact, the more irreversible the investment process becomes,

the less appropriate our model is in describing the optimal investment be-

haviour. With such irreversibility, a model such as the one in Bar-Ilan and

Strange (1996) should be employed, which will lead to different results.

Since we will use the dynamic programming approach to value the invest-

ment option, we denote the firm’s required rate of return with ρ ≥ 0. As is

typical with dynamic programming, ρ is interpreted as an exogenous param-

eter that represents the cost of maintaining the investment possibility. We

assume ρ > αV in order to rule out the case that it would be never optimal

to exercise the option to invest.

due to the exogenous learning effects described above.
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3.2. Problem Formulation

Given initial values V ≡ V0, C ≡ C0, and K ≡ K0, we denote the value

of the option to invest as F (V,C,K). The option value in (V,C,K) ∈ X ≡
(0,∞)× (0,∞)× (0,∞) given the investment policy I∗(V,C,K) ≡ I can be

obtained from the following Bellman equation:

ρF = max
I∈[0,k]

(
E[dF ]

dt
− I

)
(3)

Note that dF is a function of I, and dt in the denominator means that

the expression in the nominator is divided by the increment of time and not

differentiated with respect to time. Intuitively, Eq. (3) states that the instan-

taneous return on the investment opportunity is equal to its net appreciation

if it were managed optimally. By expanding dF using Itô’s lemma and taking

the expected value, we obtain:

ρF = max
I∈[0,k]

(
1

2
σ2
V V

2FV V +
1

2
σ2
CC

2FCC + αV V FV + αCCFC − IFK − I

)
(4)

By noting that the expression to be maximised with respect to I is linear in

I, we conclude that if it is optimal to invest at all, then it is also optimal to

invest at the maximum rate k. Therefore, the optimal investment policy is

“bang-bang” control as in Majd and Pindyck (1987).

Following Adkins and Paxson (2011), we use backward induction to ob-

tain first the value of the option to invest when it is optimal to continue the

investment program. This is separated from the option value in the waiting

region by a unique continuous surface V ∗(C,K) in X so that it is optimal

to invest if V ≥ V ∗(C,K) and to wait otherwise. This assumption is based

on the intuition that the option value is increasing in V . Thus, we denote

the option value in the investment region R ≡ X ∩ {V ≥ V ∗(C,K)} with

F and in the waiting region W ≡ X \ R with f . Under this assumption,

the option value functions in the two regions are given by PDEs obtained by
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re-arranging Eq. (4):

1

2
σ2
V V

2FV V +
1

2
σ2
CC

2FCC + αV V FV + αCCFC − kFK − ρF − k = 0 in R

(5a)

1

2
σ2
V V

2fV V +
1

2
σ2
CC

2fCC + αV V fV + αCCfC − ρf = 0 in W (5b)

Note that only Eq. (5a) contains partial derivatives with respect to K as no

investment occurs in W .

The appropriate boundary conditions to the problem are:

F (V,C, 0) = max(V − C, 0) (6a)

lim
V→0

f(V,C,K) = 0 (6b)

lim
C→∞

f(V,C,K) = 0 (6c)

F (V ∗(C,K), C,K) = f(V ∗(C,K), C,K) (6d)

FV (V
∗(C,K), C,K) = fV (V

∗(C,K), C,K) (6e)

FC(V
∗(C,K), C,K) = fC(V

∗(C,K), C,K) (6f)

Eq. (6a) is simply the payoff of the option when there is no investment re-

quirement remaining, whereas Eq. (6b) states that when V reaches zero, the

option becomes worthless. This is because zero is an absorbing barrier to

the GBM given by Eq. (1a). Eq. (6c) means that the option value con-

verges to zero as the operating costs of the finished project grow arbitrarily

large. Eq. (6d) is the value-matching condition stitching together the two

option values along the free boundary, V ∗(C,K). Eqs. (6e) and (6f) are

the smooth-pasting conditions, which are first-order conditions for making

optimal transitions across the free boundary. Note that now there are two

smooth-pasting conditions as there are two stochastic variables.
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3.3. Quasi-Analytical Solution

A general solution to Eq. (5b) is of the form

f(V,C,K) = A(K)V β(K)Cη(K) (7)

where coefficients β(K) and η(K) must satisfy the condition

1

2
σ2
V β(β − 1) +

1

2
σ2
Cη(η − 1) + αV β + αCη − ρ = 0 (8)

for each value of K. We use short-hand notation for β(K) and η(K) here.

By “general solution,” we mean that any linear combination of functions

of the form given by Eq. (7) satisfies the PDE given by Eq. (5b). Eq. (8)

has solutions in all four quadrants of the (β, η)-plane (Adkins and Paxson,

2011). However, we can rule out three of the four quadrants by using the

boundary conditions given by Eqs. (6b) and (6c). Doing so, we obtain that

β(K) > 0 and η(K) < 0, i.e., the option value increases (decreases) with

revenues (operating costs) in line with economic intuition. From now on, we

will assume that the solution to PDE (5b) is f(V,C,K) = A(K)V β(K)Cη(K),

where (β(K), η(K)) ∈ (0,∞)× (−∞, 0) ∀ K ∈ (0,∞) so that Eq. (8) holds.

A(K) must be solved for by using the other boundary conditions and the

option value in R.

Since the PDE in the investment region has no analytical solutions, we use

a numerical approach based on an explicit finite-difference method to solve

the rest of the investor’s problem. However, now that we know the form of

the analytical solution in the waiting region, we can write boundary condi-

tions (6d)-(6f) in a more convenient form. By inserting the quasi-analytical

solution given by Eq. (7) into the conditions mentioned above, we obtain

that the following conditions must be met at the free boundary:

F (V ∗(C,K), C,K)

FV (V ∗(C,K), C,K)
=

V ∗(C,K)

β(K)
(9a)
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F (V ∗(C,K), C,K)

FC(V ∗(C,K), C,K)
=

C

η(K)
(9b)

where β(K) and η(K) satisfy Eq. (8). We will utilise conditions (9a) and

(9b) to determine the free boundary numerically. Once the free boundary

is obtained, we can solve for the values of A(K), β(K), and η(K) for each

discrete value of K. The numerical solution method is discussed in further

detail in Appendix A.

4. Numerical Examples

We present the results of the model in two parts. First, we consider a

base case and provide a discussion of the results in general. Next, we present

the most interesting results by performing comparative statics to isolate the

effects of individual parameters on the investor’s optimal investment policy.

4.1. Base Case

For the base case, we assume that the total investment required to finish

the investment program is K = 6 (Me) and the maximum investment rate

is k = 1 (Me/year). This implies that the minimum time to complete the

investment program is six years and that the unit of time is years. We set

αV = 0.04 and σV = 0.14 in this section and consider at first a case in which

the drift and volatility of C are the same as those of V (αC = 0.04 and

σC = 0.14).4 Finally, we assume that the discount rate is ρ = 0.08.

Figure 1 shows the level sets of the option value and the free boundary in

the base case whenK = 6. The option value is increasing in V and decreasing

in C as intuition suggests, which is the case for other values of K as well.

4If we were considering an all-equity firm that consisted only of the investment oppor-
tunity studied here, then the base case values would imply that the volatility of the firm’s
stock is approximately

√
0.142 + 0.142 = 19.8%. Considering that the implied volatility of

the S&P 500 index options sold on the Chicago Board Options Exchange is usually around
20%, the assumptions made on the volatilities of the processes are fairly realistic.
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Figure 1: Option value, free boundary, and NPV threshold when K = 6

The black line indicates the position of the free boundary, V ∗(C,K = 6).5

As expected, the investment threshold increases in C. Note also that the

free boundary is not a level set of the option value. Therefore, we cannot, in

general, draw a straight connection between the option value and the location

of the investment threshold.

The red dashed line in Figure 1 shows the NPV investment threshold

assuming that the entire investment is finished at the full rate if it is optimal

to invest.6 We can see that the NPV rule is to invest in cases when it

is optimal to wait according to the real options rule. The NPV rule, by

definition, is obtained by calculating the expected cash flows of the project

5The free boundary does not appear smooth because of the numerical finite-difference
method used to solve the problem.

6In this case the NPV rule is to invest only if e−ρK
k

(
V eαV

K
k − CeαC

K
k

)
−

k
ρ

(
1− e−ρK

k

)
≥ 0.
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Figure 2: Option value surface, now-or-never NPV, and free boundary when K = 6

net of the initial investment costs. Therefore, there must be other reasons

than the initial investment cost for the free boundary, V ∗(C,K = 6), to

be above the NPV threshold. The reason is twofold. First, since both Vt

and Ct evolve stochastically in time, there is a chance that the investment

opportunity might increase in value over time. This implies that there are

benefits to waiting that are not present in the NPV analysis. Second, as

there is uncertainty in the value of the finished project due to the time-to-

build aspect, it is optimal to wait longer than the NPV rule suggests in order

to cover this uncertainty by waiting for the expected value of the finished

project to rise well above the NPV rule.

Figure 2 shows the option value surface, the now-or-never NPV, and the

projection of the free boundary onto the option value surface when K =

6. The value-matching and smooth-pasting conditions are satisfied by the

numerical solution as the option values in the investing and waiting regions

meet smoothly at the free boundary. Also, the option value is non-negative
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Figure 3: Free boundaries in the base case for different values of K

for all values of (V,C). By comparing the option value and the NPV, we

observe that the option value is greater than the NPV for all values of (V,C),

thereby reflecting the fact that unlike the NPV analysis, real options analysis

considers also the value of waiting and the possibility to vary the investment

rate. We also notice that the difference between the option value and the

NPV converges to zero as V increases and C decreases. This happens because

then the investment program will be completed almost certainly at full pace

yielding, on average, a total payoff that equals the NPV.

Figure 3 shows the investment thresholds for various values of K in the

base case. The threshold curves are increasing in C for each value of K

as they should by the argument that the value of the finished project is

decreasing in C. Also, in the base case, the investment thresholds increase in

K. This is due to two reasons. First, the remaining initial investment cost

increases in K. Second, the uncertainty over the value of the payoff when

the investment program is completed is increasing in K since a large value
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of K indicates that the minimum time-to-build is large as well. Note that

Figure 3 can be used as a decision rule: since we have implicitly assumed

that the investor can observe V , C, and K at each point in time, she may

use the investment thresholds at different values of K as a guide on how to

proceed optimally with the investment program.

4.2. Comparative Statics

4.2.1. Sensitivity with Respect to αC and αV

Figure 4: Sensitivity of the free boundary with respect to αC

As the main motivation for this study is to gain insight into how the
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inclusion of C affects the investor’s choices, we first discuss the mechanics

behind the effects of αC on the investor’s optimal behaviour in detail. Figure

4 illustrates the investment thresholds at different values of K for various

values of αC while holding the other parameters the same as in the base

case. For the smaller values of K, i.e., when the remaining time to build

is negligible, the effect of αC on the results is monotonic: a decrease in

αC shifts the investment threshold up and, thus, increases the incentive to

wait. Intuitively, lowering αC increases the value of the option to wait as

the expected operating cost upon completion of the project will be lower.

However, for K = 6 the effect is more subtle: when αC decreases from 0.08

to -0.10, the investment threshold increases, but as αC decreases further,

V ∗(C,K = 6) actually reduces.

The effect of αC on the results can be understood by considering the

expected evolution of V − C. By using Eqs. (1a) and (1b), we obtain:

E[(V − C)t+s|Ft] = Vte
αV s − Cte

αCs, (10)

where Ft is a set containing all information on the evolution of V and C

up to time t. Now, we observe explicitly that the expected evolution of the

payoff depends on the value of αC , i.e., specifically, it is decreasing in C and

αC .

We first assess how αC affects the investment boundary when K = 0.01,

i.e., the capital investment is nearly finished and the payoff can be obtained

almost instantaneously. This will help us to understand the effect on the

investment thresholds for larger values of K. The plots in Figure 4 show

that the investment threshold V ∗(C,K = 0.01) increases monotonically as

αC decreases. In other words, when αC decreases, the future probability

distribution of the payoff shifts to a desirable direction, thereby creating

incentives for waiting since the gap between the capital appreciation of V −C

and the required rate of return ρ narrows. This is also shown by McDonald
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and Siegel (1986) in the case K → 0.7

Next, we consider the effect of αC on the investment thresholds whenK >

0.01 and the payoff cannot be obtained instantaneously on demand. Recall

that the underlying idea behind the dynamic programming approach used

to solve the investor’s problem is that at each state (V,C,K), the optimal

decision is derived assuming that the subsequent decisions are optimal as

well. In our case, this means that the investor holding the option to invest

withK amount of initial investment remaining knows the optimal investment

rule for smaller values of K as well. Due to the fact that the cash flows are

discounted, this implies that for larger values of K it is optimal to wait for

V and C to reach such values that the remaining initial investment will be

done with minimal pauses on average assuming that the investor follows the

optimal investment rule.8 In this way, the initial investment costs will be

paid as late as it is reasonable while still allowing the investor to obtain the

payoff as soon as it is optimal to do so in most cases. The drivers behind this

logic are that, first, the discount factor implies that cash outflows paid in the

future are less valuable than if they were paid now, and second, because of the

discount rate, it is better to obtain the payoff now than in the future assuming

that it would actually be optimal to obtain the payoff now. Therefore, the

placement of the investment thresholds at larger values ofK depends on both

the placement of the investment threshold when K → 0 and the stochastic

evolution of the payoff.

To understand the logic above fully, we shall first consider the situation

in the upper left plot of Figure 4, where αV < αC . By Eq. (10), this implies

that the payoff is expected to increase in the future less than in the base case

displayed by Figure 3. Therefore, as αC increases from the base case value,

7It can be shown numerically that V ∗(C,K) converges to the analytical results of
McDonald and Siegel (1986) when K → 0.

8It can be shown numerically that if V − C evolves according to Eq. (10), then the
investor will receive the payoff after the minimum time-to-build once it is optimal to invest
at K = 6 by investing at full rate up to the completion of the investment program.
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αC = 0.04, the investment threshold for K = 0.01 decreases for each value of

C since the incentive to wait diminishes. Following the threshold V ∗(C,K =

0.01), the thresholds for larger values of K shift down as well since otherwise

the investor would wait for too long to begin investing and the expected

discounted payoff at the end of the investment program would decrease. Note,

however, that the spread between the thresholds for different values of K

increases in C. This is explained by Eq. (10): since the expected increase of

C is linear in C, the investor will wait for V to increase further for larger

values of C to offset the larger expected increase of C. This argument applies

generally as the effects of αC on the investment thresholds are amplified at

large values of C.

Let us next consider what happens when αC decreases from 0.08 to 0.00 by

examining the upper plots in Figure 4. We notice that V ∗(C,K = 0.01) shifts

upwards for each value of C in comparison to the same threshold curve for

αC = 0.08 as αC decreases. This reflects the increased incentive to wait since

for αC = 0.00, C is not expected to increase at all, whereas the stochastic

process of V remains the same as before.

However, we notice that the investment thresholds for large values of K

shift up less than the thresholds for smaller values of K for each value of C

as αC decreases. The explanation for this is that the decrease of αC from

0.08 to 0.00 increases the growth rate of the payoff. Therefore, since after the

decrease of αC the payoff is expected to increase more during the minimum

time-to-build than in the case of αC = 0.08, it is optimal to start investing at

lower values of V with respect to the investment threshold at K → 0 given a

value of C than in the case αC = 0.08. As explained above, this enables the

investor to obtain the payoff as soon as it is optimal to do so on average.

Moreover, we observe that for small (large) values of C, the investment

threshold is increasing (decreasing) in K. This is explained by the effect of

the initial investment cost on the threshold. Since the investor needs to pay

K amount of capital to obtain the payoff, it is not optimal to start investing
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if the expected payoff of the investment program exercised by the optimal

policy does not at least exceed the discounted initial investment left. This

is depicted by the fact that the intercept of the investment threshold and

the vertical axis is positive in all cases where K > 0. Also, as K decreases,

this intercept converges to zero as the initial investment left decreases and

its effect on the investment threshold vanishes. Recall that the initial invest-

ment outflows are completely irreversible. Therefore, the initial investment

outflows that are already paid are not taken into consideration in the sub-

sequent investment decisions. This explains why for small values of C, the

investor will ultimately settle for a payoff that is smaller than it is on the

investment thresholds for larger values of K, as can be seen in Figure 4.

This threshold-increasing effect of K is present for all values of C, and

its magnitude does not depend on the value of C. For small values of C,

first, the expected payoff of the optimally completed investment program is

not large in comparison to K for values of V that are near the investment

threshold, and second, the absolute change in the value of the payoff during

the time-to-build is on average small according to Eq. (10). Therefore, for

small values of C, the investment threshold is increasing in K since the need

to wait for V to reach such values that the expected payoff overcomes the

initial investment dominates the investment-hastening effect of the expected

growth of the payoff during the investment period.

By contrast, for larger values of C, the expected payoff of an optimally

executed investment program is significantly larger than the initial invest-

ment and the expected absolute increase of the payoff during the investment

program is substantial. Therefore, the effect of the expected growth of the

payoff during the investment process dominates the effect of the initial in-

vestment, and, thus, the investment threshold is actually decreasing in K for

large values of C.

Finally, we will consider the cases where αC decreases below zero, i.e.,

C is expected to decrease in the future. We can see from Figure 4 that
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V ∗(C,K = 0.01) will shift further up as αC decreases. The effect on the

thresholds at higher values of K is not as dramatic, however. We notice

that, for example, V ∗(C,K = 6) stays the same as αC changes from 0.00

to -0.10 and actually shifts down when αC decreases further to -0.20. This

happens as now C is expected to decrease in the future, whereas V is expected

to increase as before. Therefore, when K = 6, it is optimal to start investing

even if C is substantially larger than what it should be in order to exercise

the option as K → 0.

Our interpretation of the results above is that by starting to invest at

larger values of K, the investor buys the right to be able to receive the payoff

just as V and C reach such values that it is optimal to do so, rather than

having to wait for the minimum time-to-build to receive the payoff once this

happens. This interpretation justifies the observation that the investment

threshold may be decreasing in K for large values of C since it is optimal

to start investing even when the current value of the payoff is suboptimal in

comparison to the threshold at K → 0 if the payoff is expected to increase

fast enough after the investment process begins. Also, the observation that

V ∗(C,K = 6) shifts downwards as αC decreases from -0.10 to -0.20 is then

well explained by the fact that since C is expected to decrease at a higher

rate when αC = −0.20, it is optimal to start investing at higher values of C

given a value of V because the expected decrease of C is greater.

The effect of αV on the results is similar to that of αC . An increase

in αV increases the benefits of waiting and shifts the investment threshold

V ∗(C,K = 0.01) upwards. Again, the investment thresholds at larger values

of K are located in a way that once the first initial investment is made, the

investor will, on average, be able to invest continuously at the maximum

rate up to the end of the investment program. We should also note that

the investment thresholds grow without boundaries as αV → ρ (assuming

that αV > αC) since then the long-term capital rate of return of the payoff

converges to ρ and the cost of waiting diminishes. Finally, as ρ represents
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the cost of waiting in our model, the effect of an increase in ρ is to shift the

investment threshold down for all values of K and, thus, hasten investment.

4.2.2. Sensitivity with Respect to k

As our explanation for the results above relies on the logic that the in-

vestor holding the option considers both the expected evolution of V − C

during the investment period and the optimal investment policy at smaller

values of K when making decisions on whether to invest or wait, we would

assume that the results of the comparative statics above would be amplified

for smaller values of k since this would imply a longer investment period.

Consider, for example, the case where αC < 0 and C is expected to decrease

while V is expected to increase. Now, if we decrease the maximum invest-

ment rate, then we expect that it is optimal to start investing at even higher

values of C given a value of V since the minimum time-to-build is longer,

thereby implying that the expected decrease of C during the investment pe-

riod is larger as well. By generalising the logic above, we would assume that

a decrease in k would amplify the results of the comparative statics above.

Motivated by this, we will next analyse the results of the same comparative

statics as above using a smaller maximum investment rate, k = 0.5. This

doubles the minimum time-to-build for every value of K in comparison to

the value k = 1 used above.

Figure 5 shows the results of the comparative statics with respect to αC

when k = 0.5 and the other parameters are the same as in the base case. We

note that our intuition is correct as the smaller value of k amplifies the effects

of αC on the investment thresholds. Note that the investment thresholds are

not affected by the change in the value of k when K = 0.01 since then the

payoff can be received almost instantly. The reason why the other thresholds

react more dramatically to changes in αC than in the case above is that now

the investor needs to look further ahead in time when making decisions for

larger values of K as the minimum time-to-build is longer.

An interesting result occurs in the lower right case of Figure 5 where
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Figure 5: Sensitivity of the investment threshold with respect to αC when k = 0.5

αC = −0.20. For large values of C and K, it is optimal to invest even if

V − C < 0. However, this is well explained by the expected increase of

V − C during the investment program. Also, for each value of C, the NPV

rule in this extreme situation is to invest at a smaller value of V than the

real options rule suggests. The observation applies generally: the real options

investment threshold is always larger than the now-or-never NPV threshold.

This strengthens our explanation for why it might be optimal to invest even if

the current value of the payoff is negative since the fact that the real options

threshold is larger than the NPV threshold in all situations ensures that the

average value of the investment program executed by the real options rule is
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positive in all cases.

Recall that Majd and Pindyck (1987) found the investment threshold to

be increasing in K for all parameter values. On the contrary, in our two-

factor model, the investment thresholds may be decreasing in K for certain

values of C. What explains this difference? The answer is obvious: our

model is built on different assumptions. Particularly, in our model there

are two stochastic variables that determine the payoff whereas the model of

Majd and Pindyck (1987) consists of only one. Therefore, the results are not

completely comparable. This is also the explanation for why we find that

in our model the investment threshold can be increasing in k, which might

seem to contradict the results of Majd and Pindyck (1987). However, this

effect is well explained by the evolution of the payoff as seen above.

4.2.3. Sensitivity with Respect to σV and σC
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Figure 6: Sensitivity of the investment threshold with respect to σV and σC when αV =
αC = 0.04, k = 1.00, and ρ = 0.08

Figure 6 indicates the sensitivity of the investment threshold with respect
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to the volatilities when the other parameters are as in the base case.9 The

upper graph shows how much the threshold changes given a value of (C,K) as

σV changes from 0.04 to 0.20 and σC = 0.14, and the lower graph shows how

much the threshold changes as σC changes from 0.04 to 0.20 and σV = 0.14.

Both graphs reveal that the change in the threshold, i.e., ∆V ∗(C,K), is

positive for all values of (C,K). In fact, the observation holds for all tested

parameter values: V ∗(C,K) is increasing in both σV and σC in all situations.

This reflects the well-known property of options with convex payoffs: since

the payoff max(V −C, 0) is bounded from below, an increase in the volatility

of V −C increases the benefits of waiting and, thus, increases the investment

threshold (Majd and Pindyck, 1987; McDonald and Siegel, 1986).

A second observation common to both of the graphs in Figure 6 is that

∆V ∗(C,K) is increasing in C for all values of K. Our interpretation is that

this is due to the assumption that V and C follow GBMs. This assumption

implies that the standard deviations of dV and dC are increasing in σV and

σC by Eqs. (1a)-(1b). Therefore, the spread of the future values of the payoff

max(V −C, 0) is more sensitive to the volatilities of V and C when the values

of V and C are large. Thus, the sensitivity of the threshold with respect to

the volatilities is increasing in C given a value of K since for a large value of

C the value of V needs to be large as well in order to investment to occur as

V ∗(C,K) is always increasing in C.

In the upper graph of Figure 6, ∆V ∗(C,K) is increasing in K given a

value of C, while in the lower graph, ∆V ∗(C,K) is slightly decreasing with

respect to K given any positive value of C. The evolution of ∆V ∗(C,K)

as a function of K given a value of C depends on other parameters than

the volatilities as well. For example, Figure 7 displays ∆V ∗(C,K) when

αV = 0.04 and αC = −0.20. In this case, ∆V ∗(C,K) is decreasing in K for

all values of C when σC increases. Also, when σV increases, ∆V ∗(C,K) is

9The lines in the graphs of this subsection are linearised to smooth out noise due to
the numerical method used.
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decreasing in K for large values of C.
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Figure 7: Sensitivity of the investment threshold with respect to σV and σC when αV =
0.04, αC = −0.20, k = 1.00, and ρ = 0.08

Next, we consider how the distribution of the total volatility of V − C

among the two variables affects the investment threshold. By total volatility,

we mean the value of σtotal =
√
σ2
V + σ2

C . Although σtotal is not an accurate

measure of the standard deviation of d(V − C) = dV − dC as this depends

on the value of (V,C), we will use σtotal as an useful approximation of the

volatility of V − C. Then, the question is that how does the investment

threshold change as the value of (σV , σC) is varied so that σtotal remains con-

stant. Figure 8 depicts such a sensitivity analysis when (σV , σC) evolves ac-

cording to the chain (0.20, 0.00) → (0.14, 0.14) → (0.00, 0.20), during which

σtotal = 0.20, and αV = αV = 0.04, k = 1.00, and ρ = 0.08. The figure

shows that for large values of K, V ∗(C,K) shifts down as σV decreases and

σC increases. However, when K = 0.01, the investment threshold does not

change visibly as (σV , σC) is varied so that σtotal remains constant, which is
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consistent with the result of McDonald and Siegel (1986). The behaviour of

V ∗(C,K) with respect to the distribution of the volatilities described above

is common to all tested parameter values. Hence, we conclude that when

K >> 0, a situation in which most of the uncertainty is due to σV leads to

higher investment thresholds than a situation in which most of the uncer-

tainty stems from σC . Still, the threshold V ∗(C,K → 0), which governs the

completion of the investment program, depends only on σtotal.
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Figure 8: Sensitivity of the investment threshold with respect to the distribution of σtotal

when αV = 0.04, αC = 0.04, k = 1.00, and ρ = 0.08

Finally, we consider what the effect of a non-zero correlation between dV

and dC would be. By using Eqs. (1a) and (1b), we obtain that in the case

of a non-zero correlation, the stochastic part of d(V − C) has a variance

of (σ2
V V

2
t − 2VtCtσV σCµ+ σ2

CC
2
t ) dt, where µ is the correlation between dzt

and dwt. Therefore, a positive (negative) µ whould decrease (increase) the

volatility of V−C and, therefore, decrease (increase) the investment threshold

in all situations since uncertainty is found to increase the threshold uniformly.
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5. Conclusions

In this paper, we propose a method to compute the option value and the

investment thresholds with an investor who sequentially invests in project

opportunity, the payoff of which is a function of two stochastic variables.

The sequential nature of the investment process is modelled by allowing the

investor to choose the rate at which to invest continuously in time. As

the investment rate is assumed to be bounded between zero and a positive

constant, the investor cannot obtain the payoff instantly but has to wait for

at least a minimum time-to-build.

The implications of the model are analysed via comparative statics. We

find that when K → 0, the investment threshold increases in αV and de-

creases in αC . For larger values of K, the placement of the investment

thresholds depends on the expected stochastic evolution of the payoff V −C

alongside with the minimum time-to-build. As the value of k affects the min-

imum time-to-build, it affects the investment thresholds as well. We explain

the results of the comparative statics by considering the investor’s problem in

the framework of dynamic programming. Uncertainty is found to postpone

investment in all cases. Also, the real options investment threshold is found

to be always larger than the now-or-never NPV threshold given a value of C.

Some of the outcomes that the model yields might seem to be in contra-

diction with the earlier results of Majd and Pindyck (1987). In particular, we

find that if C is expected to decrease fast enough in the future compared to

V , the minimum time-to-build is long, and the value of C is large compared

to K, then it is optimal to start investing even if the current expected NPV

of the payoff at the end of the investment program is negative. However, the

difference is explained by the fact that in our model, the stochastic evolu-

tion of the payoff is different than in the model of Majd and Pindyck (1987)

because of the inclusion of the second stochastic variable.

We choose V and C to represent the discounted cash in- and outflows

of the completed project, respectively. We also assume that the value of
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the completed project is max(V − C, 0). However, the stochastic variables

could have other interpretations depending on which particular investment

situation is of interest. Also, the payoff could be generally any function of V

and C in our framework.10 In this sense, our model is general and can be used

to analyse multiple investment situations that meet the assumptions made

about the nature of the investment process and the stochastic variables.

One of the limiting assumptions of the model is that the investor can

decide on whether to invest or wait continuously in time. As discussed above,

this assumption might be an appropriate approximation in some situations.

However, if the initial investment decision is completely irreversible, then

our model does not apply. For example, the initial decision to build a coal

power plant is practically completely irreversible once undertaken, and the

construction time of the plant is substantial. Also, the major revenue and

cost determinants of the power plant, i.e., the prices of electricity and coal,

evolve stochastically in time. Therefore, the exercise of building and solving

a two-factor model, in which the investment decision is modelled following

the lead of Bar-Ilan and Strange (1996) could be interesting. In this case, the

effect of the volatilities of the processes that V and C follow on the results

could be in contrast to that in our model. In addition, it would be interesting

to see if the effect of the drift rates would be similar to that in our model since

even if the initial investment decision is made completely irreversible, then

the investment lag implies that a rational investor considers how the payoff

is expected to evolve during the lag when making investment decisions.
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Appendix A. Numerical Solution Method

We first apply the transformation F (V,C,K) = e−ρK
k G(X, Y,K), where

X = lnV and Y = lnC, to the PDE given by Eq. (5a) in order to modify

the PDE to a simpler form and to ensure numerical stability. After the

transformation, the PDE in R is:

1

2
σ2
VGXX+

1

2
σ2
CGY Y +

(
αV − 1

2
σ2
V

)
GX+

(
αC − 1

2
σ2
C

)
GY −kGK−keρ

K
k = 0

(A.1)

Note that the coefficients of the PDE are now constant. After the trans-

formation, the boundary conditions that solution for Eq. (A.1) must satisfy

are:

G(X,Y, 0) = eXY , (A.2a)

G(X∗(Y,K), Y,K)

GX(X∗(Y,K), Y,K)
=

1

β(K)
(A.2b)

G(X∗(Y,K), Y,K)

GY (X∗(Y,K), Y,K)
=

1

η(K)
(A.2c)

where β(K) and η(K) solve Eq. (8) for each value of K.

Since we will solve the PDE numerically in a cubic grid, we need some

additional boundary conditions that apply at the boundaries of the grid. For

this purpose, we assume the following second-order boundary conditions:

lim
X→∞

GXX = 0 (A.3a)

lim
X→−∞

GXX = 0 (A.3b)

lim
Y→∞

GY Y = 0 (A.3c)

lim
Y→−∞

GY Y = 0 (A.3d)
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These boundary conditions are chosen since they are known to work well

with many financial options (Wilmott, 2007) as well as for our model. We

will from now require that these conditions are approximately met at the

boundaries of the lattice.

Let us denoteG(i∆X, j∆Y, ℓ∆K) = Gℓ
i,j, where i ∈ {imin, imin+1, ..., imax},

j ∈ {jmin, jmin+1, ..., jmax}, and ℓ ∈ {ℓmin, ℓmin+1, ..., ℓmax}. ∆X, ∆Y , ∆K,

and the minimum and maximum indices are predetermined constants that

govern the dimensions of the lattice.11 We use the following finite-difference

approximations for the partial derivatives of G:

GX(i∆X, j∆Y, ℓ∆K) =
Gℓ

i+1,j −Gℓ
i−1,j

2∆X
(A.4a)

GY (i∆X, j∆Y, ℓ∆K) =
Gℓ

i,j+1 −Gℓ
i,j−1

2∆Y
(A.4b)

GXX(i∆X, j∆Y, ℓ∆K) =
Gℓ

i+1,j − 2Gℓ
i,j +Gℓ

i−1,j

(∆X)2
(A.4c)

GY Y (i∆X, j∆Y, ℓ∆K) =
Gℓ

i,j+1 − 2Gℓ
i,j +Gℓ

i,j−1

(∆Y )2
(A.4d)

GK(i∆X, j∆Y, ℓ∆K) =
Gℓ+1

i,j −Gℓ
i,j

∆K
(A.4e)

By inserting the approximations above in the transformed PDE given by Eq.

(A.1), we obtain the following difference equation:

Gℓ+1
i,j = a+G

ℓ
i+1,j + a−G

ℓ
i−1,j + b+G

ℓ
i,j+1 + b−G

ℓ
i,j−1 + cGℓ

i,j − nℓ (A.5)

where

a+ =
∆K

2k∆X

(
σ2
V

∆X
+ αV − σ2

V

2

)
(A.6a)

11imin and jmin will be negative in order to obtain option values near the zero border
in the (V,C)-world. The value of ℓmin will be zero.
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a− =
∆K

2k∆X

(
σ2
V

∆X
− αV +

σ2
V

2

)
(A.6b)

b+ =
∆K

2k∆Y

(
σ2
C

∆Y
+ αC − σ2

C

2

)
(A.6c)

b− =
∆K

2k∆Y

(
σ2
C

∆Y
− αC +

σ2
C

2

)
(A.6d)

c = 1− σ2
V∆K

k(∆X)2
− σ2

C∆K

k(∆Y )2
(A.6e)

nℓ = ∆Keρ
ℓ∆K
k (A.6f)

If the lattice point considered is on the lattice boundary, then we discretise

the boundary conditions given by Eqs. (A.4a)–(A.4e). Subsequently, the

discretised boundary conditions can be inserted into Eq. (A.5) to compute

the option value at the lattice point.

In terms of the computational method, first we calculate the values of G

when ℓ = 0 using Eq. (A.2a). Next, we calculate the values of option when

ℓ = 1 using Eq. (A.5) and the discretised versions of boundary conditions

(A.4a)–(A.4e). Now that we know the preliminary option values at ℓ = 1,

the next task is to find the investment threshold. For this, we use bound-

ary conditions (A.2b), (A.2c), and (8). By combining these conditions, the

following equation must be met on the investment threshold:

1

2
σ2
V

GX

G

(
GX

G
− 1

)
+

1

2
σ2
C

GY

G

(
GY

G
− 1

)
+αV

GX

G
+αC

GY

G
− ρ = 0 (A.7)

Our strategy is then to evaluate the left-hand side of this equation at every

lattice point for ℓ = 1 by using the finite-difference approximations in Eqs.

(A.4a) and (A.4b).12 The location of the investment threshold given a value

of j is then the pair (i, j), for which the absolute value of the left-hand side

12The locations of the investment threshold at ℓ = ℓmin and ℓ = ℓmax are extrapolated.
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of Eq. (A.7) is the smallest in i ∈ {imin+1, imin+1, ..., imax− 1}.13 After we

have numerically solved the free boundary for ℓ = 1, we can solve the values

of constants A(∆K), β(∆K), and η(∆K) using Eqs. (A.2b) and (A.2c), the

value-matching condition in Eq. (6d), the functional transformation, and the

form of the analytical solution in the waiting region given by Eq. (7). We

solve the values of these constants at each investment threshold for ℓ = 1

and take the averages of these values to determine the final values.

After having calculated the initial option values, the placement of the

investment threshold, and the constants of the analytical solution in the

lower region, we should fill the waiting region for ℓ = 1 with the values given

by the analytical solution before repeating the procedure above for ℓ = 2.

However, as this proves to cause numerical instability, we update the option

values after the initial option values and the investment thresholds have been

determined for all values of ℓ. Once the iteration above has been completed

for all values of ℓ and the option values in the waiting region are updated, the

final solution for the investor’s problem is obtained by using the functional

and variable transformations in the opposite direction than what was initially

done.
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