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We consider firms with differing cost structures investing non-cooperatively in production capacity to

subsequently compete in output under capacity constraints. Firms have operational flexibility to discontinue

production or fully utilize their capacity in the presence of competition and stochastic demand. This paper

extends the extant literature on strategic investment under uncertainty by considering competition among

asymmetric firms with temporary shut-down and expansion options as well as optimal capacity investment

decisions. We analyze the effect of various parameters such as initial demand, volatility and heterogeneity

on firm values and concentration based on equilibrium characterizations for output choices, firm profits and

values in Cournot oligopoly. We find that (ex ante) linear capacity investment cost asymmetry leads to

(ex-post) heterogeneity with highly non-linear capacity distributions.

A interesting strategic feature of the model is that, while constrained firms are marginalized for

high demand, unconstrained firms exert greater market power by expanding production and capture a

larger/disproportional share of the growing total market value. The initial capacity decision-marking must

account both for the stand-alone value of an marginal capacity unit and for its strategic effect through

creating larger “strategic” convexity at large demand levels.

Key words : Asymmetric Cournot competition, real options, capacity constraints, operational flexibility

Introduction

Assessing how industries will develop is rather challenging because firms often face operating risk

arising from unforeseeable fluctuations in market demand or other exogenous parameters and

strategic risk when few stakeholders, e.g., competitors, pursuing their own interests, interact and

endogenously influence each others’ decisions. Economists typically account for the first risk type by

considering random variables or stochastic processes with parameters estimated using econometric

methods. Real options analysis (see, e.g., Dixit and Pindyck 1994, Smith and Nau 1995, Trigeorgis

1996) — capitalizing on an analogy between cash-flow claims obtained in business situations and

the payoff structure of financial options — enables quantifying a firm’s ability to mitigate (through,
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e.g., production contraction) or exploit operating risk (through, e.g., production expansion). This

modeling approach initially falls short of the second risk type. Industrial organization, by contrast,

provides prescriptive guidance into how firms should cope with strategic risk.1

The Cournot model ushered theoretical research on industrial organization (see Singh and Vives

1984, Tirole 1988). In the standard Cournot model, duopolist firms simultaneously and non-

cooperatively choose the quantities they will produce (their outputs) which they sell at the market-

clearing price. In our paper, we greatly revise the celebrated Cournot model by considering both

risk types in an integrative manner. We model a general, multistage oligopoly where, at the ini-

tial stage, firms with heterogeneous cost structures invest in production capacity (de facto setting

their own capacity constraints) and subsequently engage repeatedly in Cournot competition with

their rivals in the face of stochastic demand. In summary, we extend the standard model in several

dimensions. From a static perspective, we address two shortcomings. First, while the duopoly model

is an interesting benchmark, it may fail to account for certain strategic interactions compared

to more general oligopoly models. Second, certain firms may enjoy and exploit firm asymmetries

or competitive advantages (Porter 1980), for instance, in terms of cost structures. Incorporating

stochastic demand on top yields interesting dynamics and strategic interactions. In view of demand

developments, each firm may decide to contract its output or entirely shut down production, or,

to the contrary, expand production until it faces capacity constraints. Under asymmetric compe-

tition, internal rivalry may evolve over time as certain firms may face capacity constraints, while

other may still expand. Slack capacity gives unconstrained firms leeway in exerting greater market

power: they capture a greater share of a larger market value as demand builds up.2

Firms face several dilemmas. Subject to strategic risk in oligopoly, each firm must account

at all times for its rivals’ reactions when setting its production output. Besides, firms are not

necessarily on an equal footing in the product market: unconstrained firms can exert market power

by expanding production, while constrained firms are marginalized. Regardless of the industry

structure, each firm faces operating risk and must assess the relative advantages and disadvantages

of enhancing the expected value of its expansion option by adding production capacity and incurring

at the outset larger (total) cost of capacity. At the outset when firms non-cooperatively decide

1An analytical framework addressing strategic interactions among parties with conflicting objectives is (non-
cooperative) game theory (e.g., Fudenberg and Tirole 1991). Modern industrial organization (see, e.g., Tirole 1988)
borrows from these modeling techniques.

2An industry where the present setting fits well is the power sector. Indeed, certain utilities exert substantial
market power and behave as in Cournot oligopoly (Murphy and Smeers 2005). At times of high demand and/or bad
weather conditions, excess demand may rise substantially and jeopardize grid stability. Flexible Combined Cycle Gas
Turbines (CCGT) are expeceted to fill in such times (IEA 2014). Given high fuels costs, such generation capacities
will only operate for sufficiently above-average demand. Requiring significant investment outlays (c. e 700/kW, IEA-
RETD 2013) these assets are hence characterized by asymmetric profit claims similar to a call option, with zero profit
at low demand and positive profits during peak hours.
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on their production capacities, all these trade-offs resulting from strategic and operating risk are

accounted for: choosing a high production capacity creates subsequent option value convexity and

helps avoid getting marginalized and retaining a strategic stance at times of high market demand.

Yet, too large capacity choices may entail a prohibitive initial cost.

To address the various trade-offs arising here we proceed backwards characterizing in turn (i) firm

outputs, (ii) capacitated Cournot profits, (iii) firm values for an arbitrary industry capacity vector,

and finally (iv) firms’ optimal initial capacity choices. In proceeding we find several interesting

economic results:

(i) The optimal output policy involves a continuous range of output levels, from discontinued

production to full capacity utilization. At very low demand, firms decide not to sell at a price below

production cost. Firm output depends linearly on the demand level at intermediate demand but

is fixed (constrained) at larger demand. Rivalry among firms influences a firm’s output decision

as long as the latter remains unconstrained, i.e., for low to intermediate demand. Unconstrained

firms factor the capacity constraints of their smaller, constrained rivals as an aggregate competitive

pressure of fixed magnitude and compete with each others à la Cournot on “residual demand.”

Compared to the standard Cournot model, firms produce (weakly) more as long as they remain

unconstrained but less once standard Cournot output exceeds the capacity limit.

(ii) The Cournot profit of an unconstrained firm is first nil as long as demand is insufficient for

profitable operation and then convex in the demand shock as the demand level grows and firms raise

the production pace (exploiting their expansion option) to leverage on increased demand. Once the

capacity constraint becomes binding, profit becomes linear: the firm becomes non-strategic in the

price-setting mechanism but still benefits from a higher market-clearing price. The profit function

is continuous over the entire demand range but admits kinks (not continuously differentiable) at c

and the various demand levels at which individual firms become capacity constrained.

(iii) For a given capacity vector, firm values which can be expressed in semi-closed form reflect:

(a) the asset value under steady (expected) demand, (b) the upside potential for cases where

demand builds up and firms gradually face capacity constraints, (c) the downside risk-mitigation

value from contracting or discontinuing production when demand shrinks and constraints are no

longer binding. We further investigate the effect of key parameters, such as initial demand and

demand volatility, on industry value concentration.

(iv) The optimal capacity selection for the integrated multistage game informs us how industry

asymmetry arises from investment cost differences. Besides the expected asymmetry-enhancing

effect of capacity cost heterogeneity, we additionally find that demand volatility also enhances

capacity asymmetry. Conversely, the higher initial demand levels will reduce industry concen-

tration. Furthermore, we show that ex-ante investment linear cost asymmetry leads to ex-post

non-linear capacity heterogeneity resembling a rank order distribution.
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We make several contributions to the literature. The paper makes extensions and explores a

new territory involving demand uncertainty, operational flexibility, capacity constraints, general

oligopolistic competition and firm capacity distribution. We extend the literature on strategic

investment under uncertainty by considering oligopolies of arbitrary size versus duopoly situations

as well as firm asymmetry. Furthermore, we consider expansion and shut-down options during

the production phase as well as optimal capacity investment decisions. The article is organized as

follows. Section 1 discusses related research articles and positions the article within the relevant

literature. Section 2 describes the basic economic setup, while Section 3 characterizes the equi-

librium properties of the short-run Cournot oligopoly under capacity constraints. In Section 4 we

derive firm values under a given capacity vector. Section 5 examines the optimal capacity decisions

and assesses the impact of key parameters. The final section concludes.

1. Related literature

Our approach makes inroads into several research fields in operations management and economics,

involving operational flexibility, capacity investment, and continuous-time stochastic games.

1.1. Operational flexibility

The literature on flexible manufacturing systems (see, e.g., Sethi and Sethi 1990) has examined pro-

duction configurations allowing firms to deal with demand uncertainty by contracting or expanding

production. In Kogut and Kulatilaka (1994), a firm with a global manufacturing footprint can

adjust to exchange-rate fluctuations by either of two means. It can take short or long positions in

correlated financial instruments, e.g., it can trade in currency options or swaps to mitigate currency

variations. Alternatively, the firm can shift production between manufacturing plants exposed to

different currency regimes. Modeling such situations typically involves switching options where

the decision maker chooses among discrete operating modes by incurring specified non-negative

switching costs (e.g., Kulatilaka and Trigeorgis 1994). This type of setting often induces a binary,

“or bang-bang”, strategy whereby the firm either switches or not, with no intermediary manu-

facturing configuration adjustment. We extend this by additionally considering strategic risk in a

more general setting where the decision maker “switches” from one operating mode to another (in

terms of production intensity) within a continuum of production states. This feature is somewhat

more realistic as market price endogenously arises from firms’ collective actions.

1.2. Capacity investment under uncertainty

Spencer and Brander (1992) consider Cournot duopoly competition and characterize in closed form

the trade-off between flexibility and commitment under stochastic demand: The specific level of
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demand volatility determines whether commitment has more value than output flexibility. Gab-

szewicz and Poddar (1997) consider duopolists who simultaneously choose capacities prior to rev-

elation of the stochastic demand level. Subsequently, they engage in one-shot Cournot quantity

competition. They show that the duopolists choose capacities exceeding the Cournot certainty

equivalent game. Kulatilaka and Perotti (1998) assess the possibility of a Stackelberg duopoly

leader making an early commitment investment conferring greater “capability” to take advantage

of future growth opportunities vis-à-vis a Stackelberg follower. Besanko and Doraszelski (2004)

use a capacity accumulation model to explain firm heterogeneity in dynamic duopoly. Their model

highlights product market competition mode and investment reversibility as key determinants of

firm size distribution.

In Goyal and Netessine (2007), duopolist firms decide whether to adopt a production technology

adapted for a single or multiple products and then in turn on capacity and output in the product-

market stage. Swinney et al. (2011) analyze the investment timing decisions of established and

start-up firms in a new uncertain market, with possibility for firms to invest in capacity early on or

once uncertainty is resolved. In continuous time, Grenadier (2002) characterizes capacity investment

trajectories for symmetric oligopolistic firms. Aguerrevere (2003) extends this symmetric setting

by introducing output discretion. Novy-Marx (2007) considers firms that are asymmetric with

respect to their initial capacities and can expand capacity at an increasing cost-to-scale ratio.3 In

contrast to extant literature, we consider a continuous-time model of strategic interactions with

capacity constraints in a general k-firm oligopoly. Firms continuously decide on their output in

view of realized demand as part of a Cournot quantity competition game. Capacity selection takes

place at the outset and drives firm heterogeneity. We also investigate how the degree of ex-ante

heterogeneity drives firm strategies.

Boyer et al. (2012) consider symmetric duopolist firms competing under demand uncertainty à

la Cournot under capacity constraints and may repeatedly increase capacity by investing in lumps

of fixed size. The authors investigate Markov Perfect Equilibrium (MPE) investment paths and

articulate which situations favor preemption vs. tacit collusion in the investment behaviors. Hence,

they focus on the optimal timing of subsequent lumpy capacity additions. Huisman and Kort (2014)

study a duopoly and find that the Stackelberg leader strategically overinvests in order to deter

entry. While we disregard investment timing, we consider optimal investment scale in capacity and

consider closely output in the product-market stage.

3Chevalier-Roignant et al. (2011) summarize the literature on strategic investment under uncertainty and discuss
other related articles.
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1.3. Other continuous-time stochastic games

Some other literature streams have a more technical connection to our model: supergames and

stochastic differential games. The literature on stochastic supergames in continuous time (Sannikov

2007, Fudenberg and Levine 2007, 2009, Sannikov and Skrzypacz 2010) considers settings in which

information (e.g., on demand) arrives via diverse Levy processes and in which the players’ actions

may influence the parameters of the Brownian component. In this literature the question focuses

on conditions under which two firms are likely to coordinate on strategies that, over the long run,

yield higher value than a repeated, static Nash equilibrium.4 Although such supergame solutions

may serve as a useful benchmark, we adopt a different solution approach relying on the Markov

Perfect Equilibrium (MPE) solution concept under perfect monitoring. Besides, our model is cast

in a managerial context involving demand uncertainty, firm capacities and Cournot competition

with more than two rivals.

In differential games (Isaacs 1965, Basar and Olsder 1999), the player values are obtained as

the solution of a multidimensional Hamilton-Jacobi-Bellman (HJB) partial differential equation

influenced by all actors. Such games apply in a number of business contexts, such as in industrial

organization or operations management (see Dockner et al. 2000). In our model, adjusting output

from one period to the other does not give rise to additional fixed costs. Consequently, the subse-

quent quantity-setting decisions are independent from one another and there is no need to derive

and solve a k-dimensional HJB equation. Rather, we derive firm values by integrating the Cournot

profits over an infinite planning horizon.

2. Model setup and solution approach

Consider a market where k firms with asymmetric cost structures choose production capacities in a

non-cooperative manner and then compete à la Cournot with a flexible production technology. This

basic setup resembles the model by Gabszewicz and Poddar (1997), however, we expand on their

analysis by considering a general oligopoly and repeated Cournot competition based on continuously

fluctuating demand. These demand fluctuations are observable by all market participants at all

times.

We assume that sunk investment outlays and/or fixed operating costs are heterogeneous among

firms. Several causes can lead to such asymmetry.5 Function Ci(·) corresponding to the initial

4Whether a supergame solution for this setup exists is unclear. It is also questionable whether public authorities
would allow such an equilibrium to sustain as it could hamper consumer well-being without encouraging innovation.

5For instance, in the power sector, certain utility companies may have privileged conditions with key suppliers,
such as GE, Alstom, Siemens or Westinghouse/Mitsubishi or better financing terms. Firms may also incur distinct
project-specific fixed operating costs since larger energy groups can spread General, Selling and Administrative
(GS&A) expenses over a larger number of business units or because certain utility companies may have more efficient
internal processes, e.g., maintenance management.
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capital outlays and the present value of fixed operating costs as a function of firm i’s capacity

q̄i is continuously increasing. We opt for a simple linear cost model based on two parameters: (i)

the cost parameter of firm 1, C1, and (ii) the cost differential between successive (ranked) firms,

χ ∈ [0,C1/(k− 1)). Firm i’s cost function is Ci(q̄i) = Ciq̄i where Ci = C1 − (i− 1)χ. In the linear

cost model cost curves are not intersecting.

Firm i ∈ {1, . . . , k} holds production capacity q̄i ∈ R+ throughout the game, with rivals having

capacity Q̄−i ∈Rk−1
+ . Vector Q̄= (q̄1, ..., q̄k)

>
specifies the production capacities, with total industry

capacity given by
∑k

i=1 q̄i. For simplicity, we concentrate on strategy profiles for which firms are

weakly ranked and indexed by increasing capacity :6

0≡ q̄0 < q̄1 ≤ · · · ≤ q̄m ≤ · · · ≤ q̄k < q̄k+1 ≡∞. (2.1)

Denoting firm i’s share of industry capacity by si ≡ q̄i/
∑k

i=1 q̄i, industry concentration can be

assessed by the standard Herfindahl-Hirschman Index (H : Rk+→ [0,1]), namely

H(Q̄) =
k∑
i=1

s2
i (2.2)

After capacity selection, firms compete in a repeated Cournot competition game. At each time

t∈ [0,∞), firm i chooses output quantity qi(t) subject to capacity constraints given by:

0≤ qi(t)≤ q̄i, ∀t∈R+, ∀i= 1, . . . , k. (2.3)

All firms collectively produce output Qt =
∑k

i=1 qi(t). As in Kulatilaka and Perotti (1998) and

Van Mieghem and Dada (1999), we assume firms face a linear (inverse) demand of the form:7

p(Xt;Qt) =Xt− b Qt, b > 0. (2.4)

Suppose the demand intercept (Xt; t≥ 0) follows a geometric Brownian motion of the form:

dXt = µ Xt dt+σXt dBt, X0 = x (> 0), (2.5)

6It is neither obvious or certain whether the (weak) ordering of investment costs lead to a (weak) ordering of
production capacities in equilibrium. In this paper, we put an additional constraint to ensure that the Nash equilibrium
capacity vector preserves a weak ordering (2.1) in-line with the investment cost ranking. We prove the existence
and uniqueness of such a Nash equilibrium. There may exist Nash equilibria violating (2.1) but their existence will
highly depend on parameter choices. Besides, the former equilibrium type would Pareto-dominate them. As common
practice in economics, we focus on the Pareto-dominating Nash equilibrium in case of equilibrium multiplicity.

7Related contributions (see, e.g., Huisman and Kort 2014, Pawlina and Kort 2006, Grenadier 2002) typically
consider an economic shock Xt affecting demand not in an additive but in an multiplicative manner with an inverse
demand function of the form p(Xt;Qt) =Xtp(Qt) where function p is deterministic. While the multiplicative approach
offers obvious tractability advantages, it does fail to provide a suitable benchmark to deterministic Cournot models.
While multiplicative shocks are well suited for, e.g., exchange-rate fluctuations, they are less so to capture industry
or market specificity in terms of customers’ fluctuating willingness-to-pay or purchasing power.
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where µ is the risk-neutral drift, σ (> 0) is constant volatility per period, and (Bt; t≥ 0) is a stan-

dard Brownian motion.8 As standard in real options analysis, the firm can perform financial hedging

to mitigate certain business risks; this allows considering a stochastic process with drift adjusted for

the underlying systematic riskiness and thus discounting future risk-adjusted profit claims at the

risk-free rate (r > 0) under the risk-neutral probability measure.9 If δ represents some form of con-

venience yield, anticipated competitive erosion, opportunity cost or below-equilibrium growth or

return shortfall (see McDonald and Siegel 1986), the risk-neutral drift is given by µ= r− δ (> 0).10

Assuming marginal cost c common to all firms in the industry (gross) profit is

πi(Xt;Qt) = [p(Xt;Qt)− c] qi(t). (2.6)

The term Q−i(t) denotes the aggregate output by all other firms except firm i at time t, with

Qt ≡ qi(t) +Q−i(t).

Firm i’s payoff for given capacities (q̄i, Q̄−i) and arbitrary output policies (qi,Q−i) is obtained

by discounting expected risk-adjusted profits at the risk-free rate r:

Ji
(
x; qi,Q−i; q̄i, Q̄−i

)
=Ex

[ˆ ∞
0

e−rtπi(Xt;Qt)dt

]
−Ci(q̄i). (2.7)

Ex[·]≡E[· |X0 = x] denotes the conditional expectation operator under the risk-neutral probability

measure. Expression (2.7) differs from the standard notion of present value in that here firm i’s

management has flexibility in deciding what output strategy qi to follow. Because future demand is

unknown, the strategy is non-anticipative and allows for flexibility in managerial decision-making.11

The objective function (2.7) captures the various trade-offs and dilemmas faced by firm i. In

setting its own production output qi(t), it must cope with strategic risk at each time t ∈R+ and

make predictions on its rivals’ behaviors Q−i(t): in a holistic manner, it must assess the impact of

its decision on the market-clearing price as well as its rivals’ reactions. Because future demand is

unknown until realized, it muss assess the initial value of each capacity unit under the premises that

8The process is defined on probability space (Ω,F ,P), where P) is the risk-neutral or martingale probability
measure. The augmented Brownian filtration (Ft; t≥ 0) incorporates the historical path of the process, with Ft =
σ(Bs,0≤ s≤ t) being the information set at time t and F∞ =F .

9According to Birge (2000), option-pricing theory offers a rigorous way to incorporate risk aversion in linear profit
expressions without relying on (strictly concave) utility functions.

10One may want to adjust the model to incorporate both demand and cost uncertainty, i.e., to account additionally
for a stochastic marginal cost (ct; t≥ 0). Suppose (Xt; t≥ 0) and (ct; t≥ 0) follow correlated geometric Brownian
motions and note that πi is homogeneous of degree one in these stochastic variables. Solving this problem is feasible
by reducing the problem dimensionally. This would involve a change of variable replacing the two processes with a
single, new “relative” process whose law of motion reflects the probability characteristics of (Xt; t≥ 0) and (ct; t≥ 0).
The main analytical results would still hold except, for example, the volatility values for β1 and β2 in Proposition
3 would be adjusted to involve relative volatility, i.e., σ2 = σ2

X + σ2
c − 2ρσXσc. Since such change of variables brings

limited added value at the expense of exposition clarity, we concentrate on stochastic demand only.

11Formally, the output decisions (qi(t); t≥ 0) are (Ft; t≥ 0)-measurable.
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management will actively respond to economic shocks alongside its rivals. If firm i selects low initial

capacity q̄i, it must endure times of high demand at which it is constrained. Each unit of capacity

has positive option value since it widens the range of demand levels at which the firm can react to

favorable demand developments by expanding production. The initial value of capacity depends on

key parameters such as volatility, with large volatility creating larger expansion values. Regardless

of the industry structure, firm i has to wave the positive value of capacity additions against the

larger investment capacity cost Ci(q̄i). Asymmetry among production capacities complicates the

matter since, for a given demand level, some firms may be constrained and marginalized (producing

at full capacity), while unconstrained rivals may use their output discretion to exert market power

on the residual market. Firms are not initially aware of their rivals’ capacity decisions but recognize

that their rivals will factor all these strategic effects in when selecting their own production capacity.

The equilibrium solution to the game provides answers to all these issues and gives guidance into

which parameters prevail under which circumstances.

We now proceed backwards to solve the game, deriving in turn the equilibrium output strategies

and Cournot profits (Section 3), firm values for a set capacity vector (section 4), and finally the

equilibrium capacity vector (section 5). The basic problem in section 3 is close to the classic Cournot

duopoly game but its solution necessitates adjustments to account for fluctuating demand, capacity

constraints and an arbitrary number of oligopolist firms. In section 4, we assess firm i’s value in

Markov Perfect Equilibrium
(
qCi ,Q

C
−i
)
,

Vi(x; Q̄) = max
qi(·)

Ex
[ˆ ∞

0

e−rtπi(Xt; qi(t),Q−i(t))dt

]
. (2.8)

for a given capacity vector Q̄.12 As a final step in solving the game, we are seeking in section 5 a

capacity vector Q̄C for which no firm has an incentive to pursue a unilateral deviation from the

equilibrium industry choice. In Nash equilibrium, Q̄C =
(
q̄Ci , Q̄

C
−i
)

thus satisfies

V̂i(x)≡ Vi
(
x; q̄Ci , Q̄

C
−i
)
−Ci(q̄Ci )≥ Vi

(
x; q̄i, Q̄

C
−i
)
−Ci(q̄i) (2.9)

for all feasible capacity choices q̄i ∈R+ of each firm i, such that constraint (2.1) is satisfied.

3. Asymmetric k-firm Cournot Oligopoly with Capacity Constraints

We now consider the problem of determining the equilibrium outputs and profits for k firms with

asymmetric capacity constraints in Cournot oligopoly. We identify a Markov Nash equilibrium

(MNE), i.e., a profile of output choices such that no firm has an incentive to unilaterally deviate

12A MPE is a strategy profile,
(
qCi ,Q

C
−i
)
, in the class of Markov or feedback policies that yields a Markov Nash

equilibrium (MNE) for every demand state x. See Fudenberg and Tirole (1991, Chapter 13) for a discussion on MPE.
The perfectness of a MNE strategy profile is easily proved.
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from its equilibrium output decision. Let (qCi ,Q
C
−i)≡ (qCi (Xt),Q

C
−i(Xt)) be MNE output decisions

in demand state Xt. The equilibrium Cournot (gross) profit, πCi (Xt), of firm i= 1, . . . , k satisfies

πCi (Xt)≡ π(Xt; q
C
i ,Q

C
−i)≥ πi(Xt; qi(t),Q

C
−i)

for all output decisions qi(t) satisfying capacity constraints (2.3).13

As a benchmark, let’s recall the (equilibrium) Cournot output q̃ (Xt;k) in a unconstrained k-firm

oligopoly (see, e.g., Tirole 1988)

q̃(Xt;k) =

{
0 if Xt ∈ (0, c),
Xt−c
b(k+1)

if Xt ∈ [c,∞).
(3.1)

Before proceeding, we define new parameters and variables. Parameter x̄i > 0 is a demand threshold

given by

x̄i ≡ b

[
i−1∑
j=0

q̄j + (k− i+ 2) q̄i

]
+ c, i= 1, . . . , k. (3.2)

Weak capacity ordering (2.1) ensures that 0< x̄1 ≤ x̄2 ≤ · · · ≤ x̄k <∞ partitions the state space in

a non-overlapping manner. Also consider stochastic variables X̃t and k̃t defined by

X̃t ≡Xt− b

[
k∑

m=0

q̄m1{Xt≥x̄m}

]
(3.3)

and

k̃t ≡ k−
k∑

m=0

1{Xt≥x̄m} (3.4)

respectively, where 1{·} is the indicator function. Proposition 1 below gives the MNE for the static

Cournot game with capacity constraints.

Proposition 1 In MNE, firm i produces output qCi (Xt) given by

qCi (Xt) =


0 with firm i idle if Xt ∈ (0, c)
X̃t−c
b(k̃t+1)

with firm i unconstrained if Xt ∈ [c, x̄i)

q̄i with firm i constrained if Xt ∈ [x̄i,∞).

(3.5)

Proof of Proposition 1 See Appendix A. �

Following the MNE output policy in Proposition 1, a firm will not produce (“stay idle”) if

it cannot recover the marginal production cost c, i.e., in demand region (0, c); this is similar to

the unconstrained Cournot-Nash equilibrium, with qCi (Xt) = q̃(Xt;k) if Xt ∈ (0, c). Explaining the

optimal output strategy in the intermediate demand region [c, x̄i) is more involved as it critically

13For notational simplicity, we sometimes omit the dependency on vector Q̄.
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depends on the demand partitioning resulting from thresholds x̄m. In intermediate demand region

[x̄m−1, x̄m), firm m is the smallest unconstrained firm: the m− 1 smaller firms are constrained,

while firm m and its larger rivals (k− [m− 1] firms in total) remain unconstrained. The collective

actions of constrained firms results in aggregate output
∑m−1

j=0 q̄j in demand region [x̄m−1, x̄m) or∑k

m=0 q̄m1{Xt≥x̄m} in general for any arbitrary demand level Xt ∈ R+. Constrained firms exert a

competitive pressure of fixed magnitude on the addressable market of unconstrained firms. This

pressure is factored in in stochastic variable X̃t defined in (3.3): X̃t corresponds to the demand

for unconstrained firms when current total demand is Xt. A related variable is k̃t which tracks

down how many firms are still unconstrained for arbitrary demand Xt, with k̃t = k − (m − 1)

for Xt ∈ [x̄m−1, x̄m) or k̃t = k−
∑k

m=1 1{xt≥x̄m}. In our model, the k̃t unconstrained firms vie for

demand X̃t in a similar fashion as k Cournot oligopolists vie for total demand Xt in the classical

k-firm Cournot oligopoly model without capacity constraints, with equality qCi (Xt) = q̃(X̃t, k̃t)

holding when firm i is unconstrained in demand region (c, x̄i).
14 For large demand (Xt ≥ x̄i), firm

i will produce at full capacity q̄i (with qCi (Xt)< q̃(Xt;k)). In other words, parameter x̄i given in

(3.2) should be interpreted as the indifference demand level at which firm i will become capacity

constrained.

Having determined the optimal output, we next derive the resulting equilibrium profits. Propo-

sition 2 below gives the Cournot profit earned by incumbent firm i in MNE.

Proposition 2 In Cournot oligopoly with capacity constraints, firm i’s gross profit at demand level

Xt is

πCi (Xt) =


0 if Xt ∈ (0, c)

(X̃t−c)
2

b(k̃t+1)2
if Xt ∈ [c, x̄i)

q̄i
(X̃t−c)
(k̃t+1)

if Xt ∈ [x̄i,∞).

.

Cournot profit x 7→ πCi (x) is continuous, flat on (0, c), strictly convex increasing on (c, x̄i) and

linear increasing on (x̄i,∞). Note, however, that it is not continuously differentiable as there are

kinks at each xj with j = 1, ..., k.

Proof of Proposition 2 See Appendix B. �

For low demand (Xt < c) the firm does not produce, earning zero gross profit. For intermediary

demand, it is unconstrained and produces below its capacity, with profits being convex (quadratic)

in demand while the demand intercept grows, the firm raises the production pace (exploiting its

expansion option) to leverage on increased demand. For large demand (Xt ≥ x̄i), firm i’s capacity

constraint becomes binding, although this is not necessarily the case for its larger rivals; firm i’s

14Note the degenerate case with qCi (Xt) = q̃(Xt;k) for intermediate demand region (c, x̄1) where no firm is con-
strained.
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profit increases in a linear fashion as the firm, faced with capacity constraints, is not in a position

to expand output to fully tap on increased demand; yet, it still benefits from a higher equilibrium

price.

4. Firm values in constrained Cournot oligopoly

We turn next to assessing firm value. Without adjustment costs, output decisions are independent

over time, with firm value obtaining as the expected discounted sum of Cournot profits πCi (Xt):

Vi(x; Q̄) ≡ max
qi(·)

Ex
[ˆ ∞

0

e−rtπi
(
Xt; qi(t),Q

C
−i(t)

)
dt

]
= Ex

[ˆ ∞
0

e−rtπCi (Xt) dt

]
,

where demand intercept (Xt; t≥ 0) follows the GBM of equation (2.5).

4.1. Semi-analytic value expressions

The next proposition provides a value expression for firm i’s flexible production capacity, Vi(x; Q̄).

The expression which seems analytical/closed-form at first actually involves two intertwined series

which do not admit neat formulations; the expression is, hence, “semi-analytical.”

Proposition 3 For a given capacity vector Q̄, firm i’s value Vi(x; Q̄), is given by:

Vi(x; Q̄) =


A0x

β1 if x∈ (0, c),

vi(x;m) +Amx
β1 +Bmx

β2 if x∈ [x̄m−1, x̄m), m= 1, . . . , i,

v̄i(x;m) +Amx
β1 +Bmx

β2 if x∈ [x̄m−1, x̄m), m= i+ 1, . . . , k+ 1,

(4.1)

where

vi(x;m)≡ 1

b(k−m+ 2)2

[
x2

2δ− r−σ2
− 2Σmx

r−µ
+

Σ2
m

r

]
, m= 1, . . . , i,

v̄i(x;m)≡ q̄i
(k−m+ 2)

[
x

r−µ
− Σm

r

]
, m= i+ 1, . . . , k+ 1,

β1, β2 ≡−
r− δ−σ2/2

σ2
±

√(
r− δ−σ2/2

σ2

)2

+
2r

σ2

with β2 < 0< 2<β1 and Σm ≡ c+ b
∑m−1

j=0 q̄j. Terms Am and Bm are uniquely defined and obtained

recursively with x 7→ Vi(x; Q̄) being continuously differentiable. Firm value as a function of demand

x 7→ Vi(x; Q̄) is monotone increasing with Vi(0; Q̄) = 0 and Vi(∞; Q̄) =∞. Above assumes δ >

[r+σ2]/2.

Proof of Proposition 3 See Appendix C. �
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The (equilibrium) industry structure adjusts each time the capacity constraint of another firm

(namely the next larger) becomes binding (demand growth scenarios) or when the capacity con-

straint of the next smaller firm is relaxed (demand contraction scenarios); these changes in industry

structures are not accounted for in the steady-state value expressions vi(x;m) and v̄i(x;m). Terms

noted Amx
β1 capture the upside potential accounting for scenarios in which demand rises and firms

scale up production (up to their capacity limits). Amx
β1 in effect relates to a series of options,

each corresponding to an industry-structure change arising (at stochastic future time τA(x, x̄m)≡

inf {t≥ 0 |Xt ≥ x̄m}) when yet another previously unconstrained firm starts facing binding capac-

ity constraints (at the new demand threshold x̄m > x). Since the change takes place at a future

stochastic time τA(x, x̄m), the (future) value change from larger market power among a smaller

subset of oligopolist firms is discounted to the present with use of the present value of an Arrow-

Debreu derivative paying one dollar at future time τA(x, x̄m), Ex
[
e−rτA(x,x̄m)

]
= (x/x̄m)β1 . Terms

noted Bmx
β2 captures downside-risk mitigation for scenarios in which demand shrinks and the

firms contract or shut-down production. These terms are similarly linked to a series of options; each

time a demand threshold x̄m (<x) is first “hit” from above (at future stochastic time τB(x, x̄m−1)≡

inf {t≥ 0 |Xt ≤ x̄m−1}), the capacity constraint of yet another firm is relaxed, with rivals subse-

quently facing fiercer competition with more firms exerting market power over the residual market.

The change in value is again discounted to the present time by use of the present value of the

appropriate Arrow-Debreu derivative, Ex
[
e−rτB(x,x̄m)

]
= (x/x̄m)β2 .

For low current demand, x∈ (0, c), the firm is initially idle but operational flexibility is not worth-

less; it indeed reflects positive upside value A0x
β1 since demand may grow sufficiently to justify

production at a later time. When demand is so low that production is worthless, risk-mitigation

value B0 vanishes. In intermediate demand region [x̄m−1, x̄m), m− 1 firms are constrained, while

k− (m− 1) still exert market power on the residual market and earn convex profit. Suppose firm

i is ranked in capacity such that q̄i > q̄m. Then, in a situation where firms do not adjust their

outputs in view of actual demand developments, firm i would be entitled to present value

vi(x;m) =Ex
[ˆ ∞

0

e−rt
(Xt−Σm)2

b(k−m+ 2)2
dt

]
, x∈ [x̄m−1, x̄m), m= 1, . . . , i,

as given in Proposition 3.15 As demand fluctuates, however, a flexible firm will adjust production

in view of demand realizations and rivals’ actions. In the high demand regions for x> x̄i, firm i is

15For x ∈ [x̄m−1, x̄m), m= 1, . . . , i, the quadratic Cournot profit expression (see Proposition 3) has terms in x2,
x and a constant, Σ2

m. The perpetuity value of the constant amount is Σ2
m/r. For terms that trend upwards, we

employ the (continuous-time) Gordon formula: the present value of receiving a cash flow starting at y and growing
in perpetuity at a rate g (< r) is y/(r− g). The growth rate for (Xt; t≥ 0) is r− δ; it is 2δ− r− σ2 for (X2

t ; t≥ 0).
This confirms the v̄i expression in Proposition 3.
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constrained producing at full capacity q̄i, earning a linear profit. The present value of sustaining

the initial industry structure for x∈ [x̄m−1, x̄m) forever is

v̄i(x;m) =Ex
[ˆ ∞

0

q̄i (Xt−Σm)

k−m+ 2
dt

]
.

Again, for a flexible firm that will not follow this committed strategy, value adjustments are needed.

Amx
β1 corresponds to the upside potential resulting from flexible expansion strategies in case

of increased future demand, while Bmx
β2 captures the risk-mitigation strategy of contracting or

discontinuing production at low demand.

4.2. Numerical illustration

Before proceeding with deriving the Nash-equilibrium, let assume a set industry capacity vector Q̄

to illustrate various results on, e.g., firm values and demand thresholds. We adopt two approaches.

First, we graph the value of a triopolist firm endowed with a fixed capacity, while the capacities of

its two rivals vary (x- and y-axes). Second, we build upon the well-established Zipf’s (power) law

to “draw” a distribution of firm capacities.

First approach: Consider three firms A,B and C, assume q̄A = 2.5 and let q̄B and q̄C vary on

[0; 5]. By construction, constraint (2.3) on capacity ordering is relaxed. We may distinguish several

industry configuration archetypes in figure 1. Firm A is largest in size in I (qB ≤ qC ≤ qA in Ia,

qC ≤ qB ≤ qA in Ib); it is intermediate in II (qC ≤ qA ≤ qB) and III (qB ≤ qA ≤ qC) and smallest

in IV (qA ≤ qB ≤ qC in IV a, qA ≤ qC ≤ qB in IV b). Besides varying rivals’ capacities, Figure 1

illustrates the effect on firm A’s value of increasing volatility σ (from left to right) and initial

demand x (from top to bottom).

We can derive general insights:

• a steady, risk-free world is “quadratic” as (nearly) illustrated in the top left panel. Larger

demand and volatility yields smoother results.

• Firm value increases with initial demand

• Firm value increases with volatility

• The contour gradient is steepest in the area of low to intermediate capacities: large production

capacities at rivals flats out firm A’s “strategic” convexity by limiting its ability to exert market

power for large demand.

• Since larger volatility favors extremely large demand values, the latter effect arising from

increased competitor capacities is exacerbated in the right panels.

In summary we can distinguish convexity arising from operating risk (driven by volatility) and

convexity arising from strategic risk (driven by increased initial demand or firm A’s ability to exert

market power vis-a-vis its rivals). However, the two are intertwined because under large volatility

the extreme demand case where capacity constraints are binding are more likely.
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Figure 1 Firm value VA for different capacity configurations, initial demand and volatility levels. (k = 3, c =

1, q̄A = 2.5, b= 5, µ= 0, r= δ= 0.05)

Second approach: We now draw results on industry values based on an empirically approved

capacity distribution law. Suppose firm capacities are distributed according to Zipf’s law (Ijiri et al.

1977, Axtell 2001, Fujiwara et al. 2004). Hereby, a single heterogeneity parameter, h, drives the

industry structure. Firm heterogeneity ranges from homogeneity at h= 0 to virtual monopoly for

h→∞, with firm i’s capacity share given by16

si(h)≡ i−h∑k

m=1m
−h
, i= 1, · · · , k. (4.2)

Based on this capacity distribution, we can determine firm values for different heterogeneous

industry configurations as given by the heterogeneity parameter. Figure 2 depicts firm values in

triopoly as well as the corresponding first-order derivatives and the critical demand thresholds x̄1,

x̄2 and x̄3, for different combinations of the volatility parameter σ and the heterogeneity parameter

16Note that
∑k
i=1 si(h) = 1 for all h≥ 0.



Chevalier-Roignant et al.: Dynamic Asymmetric Cournot Oligopoly under Capacity Constraints
16

h. When the 3 firms are close to being homogeneous (small h), firm values and critical threshold

levels are within a small range. Firm values are strictly increasing in initial demand x; yet, whenever
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Figure 2 Firm value Vi(x; Q̄) and first-order partial derivative V ′i (x; Q̄) for different capacity heterogeneity

levels h and demand volatility σ. (k= 3, c= 1, |Q̄|= 2, b= 5, µ= 0, r= δ= 0.05)

a firm faces a capacity constraint, the value growth rate declines smoothly.17 The firm exerts market

power (convex payoff) until it faces capacity constraints and only benefits from market-clearing

price upsurge with no possibility to expand production (linear profit function). Conversely, other

unconstrained firms benefit from this specific firm being pushed to the fringe, with their profits

increasing at a greater rate as if competition were involving fewer rivals exerting market power

(see Proposition 2).

Figure 3 illustrates the industry value differential between a heterogeneous oligopoly (h > 0)

and a symmetric one (h= 0). Clearly, capacity concentration enhances total industry value as a

17Indeed, the value of standard call options is continuously differentiable despite the payoff being kinked at the
strike price. Similarly, here the firm values are continuously differentiable although the Cournot profit functions have
multiple kinks.
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dominant firm with larger (slack) capacity can exert greater market power once the smaller firms

become capacity-constrained. This basic effect is moderated by the current demand level: For low

demand levels capacity constraints are not binding, hence, there is a limited value differential.

Analogously, for very high demand any industry will produce at full capacity. The effect of volatility

on this value differential is ambiguous: At both the low and the high demand level the differential is

largest for high volatility as this increases the probability of demand entering a domain where the

dominant firm can exert market power. Conversely, in the intermediate demand area low volatility

is value-enhancing since demand is less likely to leave the range where the dominant firm can exert

market power.
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Figure 3 Industry value differential ∆
∑
Vi =

∑
Vi(h)−

∑
Vi(0) for different σ and h values (k= 3, c= 1, |Q̄|=

2, b= 5, µ= 0, r= δ= 0.05)

5. Capacity selection game

We next consider how multiple firms select their capacities in a non-cooperative manner, with the

capacity vector being a set of ex-ante strategic decisions. The capacity choice directly influences

firm values through, e.g., the demand partitioning (see Proposition 3), hence basic calculations,

e.g., first and second-order derivatives, become intricate. In other words, it becomes cumbersome

to pursue an analytic solution to the general capacity selection game. Here, we provide a numerical

solution that satisfies (2.9) while preserving the monotone weak capacity ordering (2.1).

5.1. Capacity best response

Given the semi-analytical form of firm values (4.1) for given capacity configuration, we can deter-

mine a firm’s best response to competitor capacity choices. Formally, firm i’s capacity best response

q̄∗i (x; Q̄−i) is given by

q̄∗i (x; Q̄−i) = arg max
q̄i∈[q̄i−1,q̄i+1]

Vi(x; q̄i; Q̄−i). (5.1)

This best response function reflects the capacity ordering required by (2.3). Hence, the concrete

form of the best response function is conditional on the firm index i. This is illustrated in Figure
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Figure 4 Capacity best responses conditional on capacity ordering in duopoly for different x (Ci = 25, k =

2, c= 1, b= 5, σ= 0.2, µ= 0, r= δ= 0.05)

4 for a duopoly. The two lines illustrate the case where firm i is the smaller firm (i= 1), or larger

firm (i= 2).

Before, we noted that competitor capacities are “bad news” for a given firm reducing its value.

This is reiterated here with higher capacities of the incumbent firms inducing firm i to invest with

less intensity (lower q̄∗i )
18—additional capacity is less valuable in the presence of large capacity

stocks owned by competitors. Consequently, firm capacities in this setting are strategic substitutes.

This observation is the main building block for characterizing the competitive capacity equilibrium

by means of a tâtonnement process.

5.2. Competitive capacity equilibrium

Having established an individual firm’s best response to competitor capacity endowments, we now

want to explore the industry capacity configuration arising under strategic competition. Requiring

strict capacity rankings corresponding to the ordered capacity expansions costs Ci, a tâtonnement

process allows us to identify a valid capacity equilibrium. That is, we iteratively apply the firms’

best response correspondences to pin-point a equilibrium capacity configuration where firm capacity

choices are mutual best responses. We describe an algorithm for this purpose in Appendix D.

Figure 5 presents numerical comparative statics on the capacity equilibrium industry concen-

tration for different values of cost differential χ, volatility σ, and initial demand x. As would be

expected, cost heterogeneity χ amplifies capacity heterogeneity. However, the effect of χ is aug-

mented by volatility as illustrated by the right panels of Figure 5.

While greater volatility enhances the output option granted by capacities for all firms, a cost-

advantaged firm will expand more decisively than its competitors as the bet on future demand

potentials is markedly cheaper. The converse is true for the initial demand level x—sufficiently

lucrative current markets will attract also less cost-effective companies to invest at larger scale.

18Except for those cases where the constraint q̄∗2 ≥ q̄∗1 is binding.
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Figure 5 Herfindahl index for different χ and σ values (k= 3, c= 1, b= 5,C1 = 100, µ= 0, r= δ= 0.05)

This is because the embedded call options of additional capacities will be closer to being “in the

money.” The demand effect is not “smooth” but rather exhibits changes in curvature whenever

the underlying industry structure changes—monopoly, duopoly and finally triopoly. This illus-

trates that our model implicitly reflects blockaded entry in settings where the market demand is

insufficient to support a larger number of active firms.

Finally, we can make observations on the arising industry structure. Figure 6 provides log-rank-

log-capacity-share plots for capacity equilibria with a large number of firms as obtained by our

model. These plots illustrate that simple linear capacity cost functions gives rise to highly non-

linear oligopoly capacity configurations. Consequently, our analysis provides an analytic approach

based on strategic interaction and investment under uncertainty to characterize probable market

structures.

●
●

●
● ● ● ● ● ● ●

■
■

■
■

■
■

■
■

■
■
■ ■■■■

◆
◆

◆
◆

◆
◆

◆
◆
◆
◆
◆
◆◆◆◆◆◆◆◆◆

▲
▲

▲
▲

▲
▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲

1 2 5 10 20
log(k-i)

0.5

1

5

10

log(qi )

● n=30

■ n=20

◆ n=15

▲ n=10

Figure 6 Capacity rank-share correspondence for different oligopolies (c = 1, b = 5,C1 = 100, χ = 1, σ =

0.225, µ= 0, r= δ= 0.05)
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6. Conclusion

We obtain a general closed-form expression for the value of flexible assets accounting for demand

uncertainty, competitive rivalry and capacity constraints. The value of outputs adjustments to the

demand shock depends on the number of rivals pushed to the competitive fringe, i.e., on whether or

not other firms are capacity constrained. This value reflects a steady-state component as well as risk-

mitigation and upside potential values for the cases in which firms contract or expand production

up to the capacity constraints. Furthermore, we characterize a numerical solution approach for the

general game where firms select capacities. In summary, our analysis reinforces the link between

the literature on investment under uncertainty and the theory of industrial organization.

Our modeling approach allows to address in an integrative manner various intertwined issues of

strategic relevance. The analytic results in this study simultaneously account for demand uncer-

tainty, capacity constraints and strategic interaction. Capacity has value from two perspectives as

it creates growth potential with respect to the two risk sources: operating and strategic risks. First,

slack capacity creates option value with the unconstrained firm profiting from a demand upsurge

in a convex manner (i.e., through price increase and quantity expansion). Slack capacity also helps

unconstrained firms to exert market power on the residual market, while constrained firms benefits

from price increases in a linear manner. Firms with larger (slack) capacity face a more convex

payoff (in the demand shock) reflecting an option value to short-run output adjustment.

Numeric analysis highlights which factors matter for the first-stage capacity choices and illus-

trates how ex-ante heterogeneity (in terms of cost structures) may translate into ex-post capacity

asymmetry. Under capacity constraint, demand volatility favors heterogeneity. Indeed under larger

volatility, firms with smaller capacity are more likely to face capacity constraints, creating a larger

incentive for firms with a preferential cost position to invest heavily in capacity since (i) the stand-

alone expansion option appreciates and (ii) the latter firms are more likely to exert market power,

while smaller rivals drop out. Because advantaged firms adopts this stance while deciding on their

production capacity, less cost-efficient firms backs off.

Natural and interesting extensions to our models include more diverse cost functions (including

fixed entry costs), the opportunity of repeated and/or delayed investment as well as disinvest-

ment. The managerial insights from our analysis can be leveraged to examine situations faced in

many capital-intensive industries such as the electricity, telecommunications, chemicals or natural

resources sectors. Porter (1980) highlighted the strategic importance of investment decisions for

understanding the inner mechanics of these industries. These insights relate also to other general

questions of strategic management, such as market entry or R&D investment.
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Appendix A: Capacity-constrained Cournot Output

In MNE, the quantity-setting problem is

max
qi

πi
(
x, qi,Q

C
−i

)
=
(
x− b

(
qi +QC

−i

))
qi− cqi, (A.1)

subject to the non-negativity constraint, qi ≥ 0, and the production capacity constraint, q̄i− qi ≥ 0.

The objective function in (A.1) is concave. The feasible region is convex. The Karush-Kuhn-Tucker (KKT)

conditions are thus both necessary and sufficient. Denote the KKT multipliers by λ1 and λ2. In MNE, the

Lagrangian is given by

L (qi, λ1, λ2) =
(
x− b

(
qi +QC

−i

))
qi− cqi +λ1qi +λ2 (q̄i− qi) .

Solving the optimization problem yields individual quantity as a function of industry output:

qCi (x) =


0 if x≤ bQC

−i + c,
x−bQC

−i−c
2b

if bQC
−i + c < x< 2bq̄i + bQC

−i + c,

q̄i if x≥ 2bq̄i + bQC
−i + c.

(A.2)

The results in Proposition are obtained by substitution and change of variables.

Appendix B: Capacity-constrained Cournot Profits

Equation (3.5) obtains by pinning down the MNE, verifying that each firm is playing its best response, for

each case in (A.2). We do so by expressing Q−i as the sum of q−i. To characterize firm profits, we first express

total industry output as a function of x (in the following formulae m− 1 firms are capacity constrained).

Q(Xt) =

{
0 if Xt ∈ (0, c),
(k−m+1)(Xt−Σm)

b(k−m+2)
+
∑m−1

i=1 q̄i if Xt ∈ [x̄m−1, x̄m),m= 1, ..., k+ 1.
(B.1)

Substituting (B.1) into (2.4) yields

p(Xt) =

{
Xt if Xt ∈ (0, c),
Xt+(k−m+1)c−b

∑m−1
i=1

q̄i

(k−m+2)
if Xt ∈ [x̄m, x̄m+1),m= 1, ..., k.

(B.2)

Firm profits then obtain as

πi =

{
0 if Xt ∈ (0, c),

qi
Xt−Σm

(k−m+2)
if Xt ∈ [x̄m, x̄m+1),m= 1, ..., k.

(B.3)

Appendix C: Firm Values

Let Vx and Vxx denoting the first and second-order derivatives of x 7→ Vi(x; Q̄). Applying the Feynman-Kac

Theorem for function x 7→ Vi(x; Q̄) would yield second-order differential equation (ODE)

rVi(x; Q̄) = πCi (x) +µx Vx(x; Q̄) +
1

2
σ2x2 Vxx(x; Q̄), (C.1)

with πCi (x) given in Proposition 2 and Vi(0; Q̄) = 0. Note that ODE (C.1) is defined without ambiguity

if x 7→ Vi(x; Q̄) is continuously differentiable everywhere (C1) and twice continuously differentiable almost

everywhere (piecewise C2). These smoothness conditions are similar to the ones used for optimal stopping

problems (according to the functional approach): there, one searches for a (strong) solution to a variational

inequality that is C1 and C2 almost everywhere; hence, the value matching (continuity) and smooth-pasting
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conditions (continuity of the derivative). Note, however, that in optimal stopping problems as well as in the

present problem, the value function happens not to be C2 at the thresholds x̄m.

Functions x 7→ xβ1 and x 7→ xβ2 represent two independent solutions of the homogenous ODE

rf(x) = µx f ′(x) +
1

2
σ2x2 f ′′(x), (C.2)

where β1 and β2, given in Proposition 3, are the positive and negative roots of the quadratic function

Q(β) = r−βµ− 1

2
β(β− 1)σ2, β ∈R. (C.3)

We have Q(1) = r−µ (> 0) and Q(0) = r (> 0).

Consider first a contingent claim θ with payoff structure

θ(x) =

{
0 if x< z,

(x− c)2 if x≥ z,

and z ≥ c. Note that θ is not C1 if z > c. If one finds a solution Θ of

rΘ(x) = θ(x) +µx Θ′(x) +
1

2
σ2x2 Θ′′(x) (C.4)

that is C1 and piecewise C2, it corresponds to the discounted stream of contingent claims θ,

Θ(x) = Ex
[ˆ ∞

0

e−rtθ(Xt) dt

]
.

Suppose Q(2)> 0. One can verify that

Ex
[ˆ ∞

0

e−rt(Xt− c)2 dt

]
=

x2

Q(2)
− 2cx

r−µ
+
c2

r
, (C.5)

is a particular solution of (C.4) for x≥ z. The general solution of (C.4) is

Θ(x) =

{
g1(x, z, c) if x< z,
x2

Q(2)
− 2cx

r−µ + c2

r
+ g2(x, z, c) if x≥ z, (C.6)

where g1(x, z, c) = xβ1g1(z, c) and g2(x, z, c) = xβ2g2(z, c). Θ in (C.6) is piecewise C2. We look for a solution

of (C.4) such that Θ is C1. The smoothness conditions at z are:

zβ1g1(z, c) =
z2

Q(2)
− 2zc

r−µ
+
c2

r
+ zβ2g2(z, c)

β1z
β1−1g1(z, c) =

2z

Q(2)
− 2c

r−µ
+β2z

β2−1g2(z, c).

It easily obtains that

g1(x, z, c) =
(x
z

)β1 { 2−β2

β1−β2

z2

Q(2)
− 1−β2

β1−β2

2cz

r−µ
− β2

β1−β2

c2

r

}
g2(x, z, c) =−

(x
z

)β2 { β1− 2

β1−β2

z2

Q(2)
− β1− 1

β1−β2

2cz

r−µ
+

β1

β1−β2

c2

r

}
.

We know that θ(x)≥ 0 for all x∈R+ and θ(x)> 0 for x≥ z. Thus by probabilistic arguments, Θ(x)> 0 for

all x ∈R+. In particular, g1(x, z, c)> 0 for x < z. Besides, θ(x)≤ (x− c)2 for all x ∈R+ and θ(x)< (x− c)2

for 0<x< z. Hence,

Θ(x)<
x2

Q(2)
− 2cx

r−µ
+
c2

r
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for all x∈R+. In particular, g2(x, z, c)< 0 for x≥ z. Here g1(x, z, c) is the value of the adjustment made to

(zero) present value to account for the optionality to receive positive profit (Xt − c)2 when future demand

Xt exceeds a certain demand threshold z. The term g2(x, z, c) is the (downward) value adjustment needed

to account for the fact that the firm will not receive profit (Xt − c)2 ≥ 0 for low demand (Xt < z), but

instead receive zero. The term (x/z)β1 in the expression for g1(x, z, c) corresponds to the present value of

a bond that pays $1 when demand Xt exceeds demand level z (> x) for the first time at (stopping) time

τA(x, z)≡ inf {t≥ 0 |Xt ≥ z}. The second term in {·} corresponds to the positive forward value received when

the firm earns positive profit for the first time at τB(x, z)≡ inf {t≥ 0 |Xt ≤ z}. (x/z)β2 is the present value

of a bond that pays $1 at stochastic time τB(x, z) with z < x, while the term in {·} is the forward value of

losing the positive profit stream from time τB(x, z) onwards.

Similarly, we consider a simple contingent claim with payoff structure

ψ(x) =

{
0 if x< z,

x− c if x≥ z,

with z ≥ c. x 7→ x/[r−µ]− c/r is a particular solution of

rΨ(x) =ψ(x) +µx Ψ′(x) +
1

2
σ2x2Ψ′′(x)

on [z,∞). The general solution of the second-order ODE is

Ψ(x) =

{
h1(x, z, c) if x< z,
x
r−µ −

c
r

+h2(x, z, c) if x≥ z,

where h1(x, z, c) = xβ1h1(z, c) and h2(x, z, c) = xβ2h2(z, c), obtained by appropriate smoothness conditions,

are given by

h1(x, z, c) =
(x
z

)β1 { 1−β2

β1−β2

z

r−µ
+

β2

β1−β2

c

r

}
h2(x, z, c) =−

(x
z

)β2 { β1− 1

β1−β2

z

r−µ
− β1

β1−β2

c

r

}
.

We know that ψ(x)≥ 0 for all x ∈R+ and ψ(x)> 0 for x > z. Thus, Ψ(x)> 0 for all x ∈R+. In particular,

h1(x, z, c) > 0 for x < z. Besides, ψ(x) ≥ x − c for all x ∈ R+ and ψ(x) > x − c for x < c. Hence, Ψ(x) >

x/[r − µ]− c/r for all x ∈ R+. In particular, h2(x, z, c) > 0. Here, h1(x, z, c) corresponds to the value of a

call option to earn Xt− c when current demand Xt is sufficiently high, i.e., when Xt ≥ z, while h2(x, z, c) is

the value of the put option to stop producing, earning zero profit, when demand is not sufficiently high, i.e.,

when Xt < z.

We next consider the nonhomogenous ODE (C.1). The general solution is

Vi(x; Q̄) =


A0x

β1 +B0x
β2 , if x∈ (0, x0) ,

1
b(k−m+2)2

[
x2

Q(2)
− 2Σmx

r−µ +
Σ2

m

r

]
+Amx

β1 +Bmx
β2 , if x∈ [x̄m−1, x̄m) ,m= 1, . . . , i,

q̄i
(k−m+2)

[
x
r−µ −

Σm

r

]
+Amx

β1 +Bmx
β2 , if x∈ [x̄m−1, x̄m) ,m= i+ 1, . . . , k+ 1,

(C.7)

where Am and Bm, m = 0, . . . , k + 1 are constants determined by “enforcing” the solution of the second-

order differential equation to be C1. Note that x 7→ Vi(x; Q̄) given in (C.7) is piecewise C2 in (−∞, x̄0)
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and [x̄m−1, x̄m) for m= 1, . . . , k+ 1. It remains to select values for Am and Bm, m= 0, . . . , k+ 1, such that

x 7→ Vi(x; Q̄) is C1 at x̄m, m= 0, . . . , k.

To ensure that Vi(0; Q̄) = 0 and avoid bubble solutions, we set B0 =Ak+1 = 0. The smoothness conditions

at x̄0 = c read

(A0−A1) x̄β10 + (B0−B1) x̄β20 =
1

b(k+ 1)2

[
x̄2

0

Q(2)
− 2cx̄0

r−µ +
c2

r

]
β1(A0−A1)x̄β1−1

0 +β2(B0−B1)x̄β2−1
0 =

1

b(k+ 1)2

[
2x̄0

Q(2)
− 2c

r−µ

]
.

It obtains

A0 =A1 +
g1(x̄0, c)

b(k+ 1)2
(>A1) and B1 =B0 +

g2(x̄0, c)

b(k+ 1)2
(<B0).

The smoothness conditions at x̄m, m= 1, . . . , i− 1, are

(Am−Am+1)x̄β1m + (Bm−Bm+1)x̄β2m =
1

b(k−m+ 1)2

[
x̄2
m

Q(2)
− 2Σm+1xm

r−µ +
Σ2
m+1

r

]
− 1

b(k−m+ 2)2

[
x̄2
m

Q(2)
− 2Σmx̄m

r−µ +
Σ2
m

r

]
β1(Am−Am+1)x̄β1−1

m +β2(Bm−Bm+1)x̄β2−1
m =

1

b(k−m+ 1)2

[
2x̄m
Q(2)

− 2Σm+1

r−µ

]
− 1

b(k−m+ 2)2

[
2x̄m
Q(2)

− 2Σm
r−µ

]
We thus have

Am =Am+1 +
g1(x̄m,Σm+1)

b(k−m+ 1)2
− g1(x̄m,Σm)

b(k−m+ 2)2
, and Bm+1 =Bm+

g2(x̄m,Σm+1)

b(k−m+ 1)2
− g2(x̄m,Σm)

b(k−m+ 2)2
, m= 1, . . . , i−1.

The smoothness conditions at xi are

(Ai−Ai+1) x̄β1i + (Bi−Bi+1) x̄β2i =
q̄i

(k− i+ 1)

[
x̄i
r−µ −

Σi+1

r

]
− 1

b(k− i+ 2)2

[
x̄2
i

Q(2)
− 2Σix̄i
r−µ +

Σ2
i

r

]
β1 (Ai−Ai+1) x̄β1−1

i +β2 (Bi−Bi+1) x̄β2−1
i =

q̄i
(k− i+ 1)

1

r−µ −
1

b(k− i+ 2)2

[
2x̄i

Q(2)
− 2Σi
r−µ

]
.

Similarly, we obtain

Ai =Ai+1 + q̄i
h1(x̄i,Σi+1)

(k− i+ 1)
− g1(x̄i,Σi)

b(k− i+ 2)2
and Bi+1 =Bi + q̄i

h2(x̄i,Σi+1)

(k− i+ 1)
− g2(x̄i,Σi)

b(k− i+ 2)2
.

Finally, the smoothness conditions at xm, m= i+ 1, . . . , k, read

(Am−Am+1) x̄β1
m + (Bm−Bm+1) x̄β2

m =
q̄i

(k−m+ 1)

[
x̄m
r−µ

− Σm+1

r

]
− q̄i

(k−m+ 2)

[
x̄m
r−µ

− Σm

r

]
β1 (Am−Am+1) x̄β1−1

m +β2 (Bm−Bm+1) x̄β2−1
m =

q̄i
(k−m+ 1)

1

r−µ
− q̄i

(k−m+ 2)

1

r−µ
.

It thus obtains

Am =Am+1 + q̄i

[
h1(x̄m,Σm+1)

k−m+ 1
− h1(x̄m,Σm)

k−m+ 2

]

Bm+1 =Bm + q̄i

[
h2(x̄m,Σm+1)

k−m+ 1
− h2(x̄m,Σm)

k−m+ 2

]
, m= i+ 1, . . . , k.
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Appendix D: Numerical algorithm for capacity choice equilibrium

The algorithm proceeds as follows in iteration steps l≥ 0; to each iteration corresponds a tentative

MNE noted Q̄l. At the outset (l= 0) firm capacities are set to zero with Q̄0 = (0, · · · ,0)
>

. In each

iteration l≥ 1, one firm i determines the best response q̄li to the industry capacity vector Q̄l−1
−i , i.e.,

q̄li = arg max
qli∈[qli−1,q

l
i+1]

Vi(x; qli, Q̄
l−1
−i )−Ci(qli)

such that q̄li ∈ [q̄l−1
i−1, q̄

l−1
i+1]. The latter constraint is due to the posited capacity ordering (2.1). The

algorithm calculates the best response of firm k at l= 1, of firm k−1 at l= 2,..., of firm 1 at l= k.

At step l= 1, firm k selects the monopoly capacity. At step l= 2, firm k−1 reacts as a Stackelberg

follower... At l= k+1, firm k brings down its monopoly capacity to account for capacity expansions

by firms k−1 to 1. At l= k+1, firm k−1 proceeds similarly. The left panel of Figure D summarizes

this procedure.

Iteration (l) Optimizing firm i Conjectured MNE

0 n/a Q̄0 = (0,0,0)
1 3 Q̄1 = (0,0, q̄1

3)
2 2 Q̄2 = (0, q̄2

2 , q̄
1
3)

3 1 Q̄3 = (q̄3
1 , q̄

2
2 , q̄

1
3)

4 3 Q̄4 = (q̄3
1 , q̄

2
2 , q̄

4
3)

...
...

...

By this procedure one narrows down progressively the space of MNE candidates. One obtains a

fixed point once convergence is achieved at iteration step l? given by

l? = inf

{
l ∈N

∣∣∣∣∣
k∑
i=1

| q̄li− q̄l−1
i |≤ ε

}
.

Convergence of the algorithm is ensured by existence and unicity of a Nash equilibrium preserving

weak capacity ordering (2.1). Our numerical analysis uses ε= 0.1.
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