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Abstract

The operations of merchant energy trading in wholesale markets across different locations and current and
future dates can be represented as a network where storage and transport trades compete for the capacity
of storage and transport assets. We study the tradeoff between storage and transport trading for a network
with a single storage asset and multiple transport assets, a realistic situation that we model as a Markov
decision problem (MDP). Due to the intractability of computing an optimal policy of this MDP, we leverage
our structural analysis of this model to modify a least squares Monte Carlo method to obtain a heuristic
policy, also computing both lower and upper bounds on the market value of an optimal policy. On a
realistic natural gas application, we document a substantial tradeoff between storage and transport trading.
This tradeoff is difficult to manage, as sequential storage and transport trading is considerably suboptimal,
especially when prioritizing transport over storage. In contrast, our joint policy is near optimal. A practice-
based method based on sequentially reoptimizing a deterministic model is also near optimal, but, even after
simplification, is computationally more intensive than our approach. Moreover, we highlight the operational
differences between managing storage jointly with transport assets versus as a single asset. Beyond natural
gas, our research has relevance for managing the merchant trading operations of other energy sources, natural
resources, and other storable commodities.

1 Introduction

Energy plays an important economic role. For example, natural gas served more than one quarter

of the 2012 energy consumption in the United States (EIA 2013). The availability and importance

of natural gas is growing with the shale boom (Smith 2013). It is projected that natural gas

consumption in North America will increase by 18% between 2008 and 2030 and be accompanied

by a need for 130-210 billion US dollars worth of midstream natural gas infrastructure (INGAA

2009). Eighty percent of this projected infrastructure cost is for building new natural gas pipeline

systems (INGAA 2009).

Being a commodity, energy is traded in wholesale markets (Eydeland and Wolyniec 2003, Geman

2005, and Secomandi and Seppi 2014). Specifically, merchants trade energy across different locations

and current and future dates to take advantage of positive price differentials. The operations of
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merchant energy trading can be modeled as a network where transport and storage trades compete

for the finite capacity of storage and transport assets. The magnitude and management of the

tradeoff between storage and transport trading in this setting is not well understood in the extant

literature, which has so far studied the management of these activities in isolation. For example,

work on natural gas storage includes Charnes et al. (1966), Lai et al. (2010), Secomandi (2010b),

Boogert and De Jong (2011/12), Thompson (2012), Wu et al. (2012), Boogert and Mazières (2013),

Nadarajah et al. (2014a), and Nadarajah et al. (2014b). Deng et al. (2001), Secomandi (2010a), and

Secomandi and Wang (2012) consider energy transport. The business problem that we consider is

thus novel.

We examine the tradeoff between storage and transport trading by considering a network that

consists of a single storage asset and several transport assets, a realistic setting. We formulate a

Markov decision problem (MDP) that models the trading of a merchant on such a network during

a finite horizon. In every stage, the states of this MDP include the inventory of energy available

in storage and the energy forward curves of a set of geographically interconnected wholesale energy

markets – a forward curve is a vector of futures prices (Luenberger 1998, page 278). At each stage

and state, the MDP multidimensional action is a vector of storage and transport trade amounts.

Our model extends a growing literature on the real option (Dixit and Pindyck 1994) management of

commodity conversion assets (Secomandi and Seppi 2014) by combining the management of storage

and transport assets.

Computing an optimal policy of our MDP is intractable. Based on our analysis of this model, we

obtain a heuristic policy and a lower bound on the market value of an optimal policy, modifying the

version of the least squares Monte Carlo (LSM) approach (Longstaff and Schwartz 2001, Tsitsiklis

and Van Roy 2001, Glasserman 2004, Chapter 8) studied by Nadarajah et al. (2014a). Specifically,

we approximately solve a stochastic dynamic program (SDP) that is equivalent to our MDP. Here,

we exploit our basestock target characterization of the storage component of an optimal policy

of our model, a result that extends the known optimal storage policy structure in the absence of

competing transport trades (Secomandi 2010b, Secomandi et al. 2014). We use our value function

approximation to estimate a dual upper bound on the market value of an optimal policy (see Rogers

2002, Brown et al. 2010, and references therein).

We apply our method in the context of natural gas trading. In this setting, the network assets are
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contracts that give merchant access to the capacity of interconnected pipelines and a storage facility.

Specifically, the merchant owns the natural gas that pipeline companies transport or store on the

merchant account. This contractual system describes the status quo of the natural gas industry in

the Unites States. In particular, we focus on firm contracts that give merchants guaranteed access

to natural gas storage and pipeline-transport capacity (Sturm 1997).

We consider a set of realistic natural gas instances developed in conjunction with an international

energy trading company. We document a considerable tradeoff between storage and transport

trading. This tradeoff is difficult to manage because sequential policies that favor one activity over

the other are substantially suboptimal, especially when transport is given priority over storage.

These insights appear novel. Our LSM-based heuristic policy is near optimal, a finding consistent

with the results of Nadarajah et al. (2014a) in the absence of transport. Also near optimal is a

version of the practice-based rolling intrinsic storage policy (Lai et al. 2010, Secomandi 2010b, Wu

et al. 2012, Secomandi 2014) extended to deal with both storage and transport – this method is

available in the FEA (2013) software. However, even after simplification, this policy is one order of

magnitude slower to evaluate than our policy. The near optimality of this practice-based method

is consistent with its performance observed for the no transport case (Lai et al. 2010, Secomandi

2014), but it is not obvious that such performance should persist in our network setting.

Operationally, managing storage in our natural gas network application differs from managing

storage in the absence of competing transport assets. Specifically, compared to the latter case the

storage flow rate and the average inventory are, respectively, considerably and slightly smaller in

this network setting, and, via Little’s law on average, purchased natural gas spends a longer time in

storage before being sold back to the market, that is, the average flow time is longer. Although both

this smaller flow rate and this longer average flow time are natural consequences of the substantial

tradeoff between storage and transport trading, this smaller average inventory is less obvious and,

again by Little’s law, can be explained by the reduction in flow rate being stronger than the increase

in average flow time. This analysis provides novel insights relative to the operational analysis of

Secomandi et al. (2014) for the single storage asset. Moreover, the average storage per-unit margin

is slightly smaller when storage and transport trades compete than when there are no competing

transport trades, again due to the tradeoff between these trading activities.

Our research provides us with an improved understanding of the tradeoff between storage and

3



transport trading on a network, as well as of the differences between the joint merchant management

of storage and transport in a network setting compared to managing storage in isolation. Moreover,

our work offers merchants a more efficient method to near optimally manage storage in a network

than is possible with our improved modifications of a method currently available in practice, as well

as a way to assess the suboptimality of this and other heuristics.

Beyond natural gas, our research has relevance for managing the merchant trading operations

of other energy sources, such as coal, electricity, and oil and petroleum products, natural resources,

such as water and timber, and other storable commodities, such as agricultural products and metals

(Markland 1975, Markland and Newett 1976, Smith and McCardle 1998, 1999, Deng et al. 2001,

Kleindorfer and Wu 2003, Rømo et al. 2009, Löhndorf and Minner 2010, Boyabatli 2011, Boyabatli

et al. 2011, Devalkar et al. 2011, Kim and Powell 2011, Lai et al. 2011, Arvesen et al. 2013, Löhndorf

et al. 2013, Zhou et al. 2013, 2014, Salas and Powell 2014, Scott et al. 2014, Secomandi and Seppi

2014).

In §2 we provide a context for our model by discussing the trading of natural gas. In §3 we

introduce our MDP and formalize the tradeoff between storage and transport trading. In §4 we

reformulate our MDP as an SDP and analyze the value function and the storage component of an

optimal policy of this SDP. In §5 we discuss our LSM-based policy and how to use it to estimate a

lower bound on the combined market value of the storage and transport assets. In §6 we conduct

our numerical analysis. We conclude in §7. Material in support of the discussion in §2 are in

Online Appendix A. Proofs are in Online Appendix B. The estimation of a dual upper bound on

the market value of an optimal policy of our MDP is discussed in Online Appendix C. Numerical

results supplementing those in §6 are in Online Appendix D.

2 A Specific Context: Natural Gas Trading

Our model, presented in §3, is not specific to a given energy source. However, in this section we

discuss the merchant trading of natural gas to provide a concrete context for our formulation.

Natural gas pipeline systems comprise of storage facilities, compressor stations, metering sta-

tions, and interconnect stations that link different pipelines (Pipeline Knowledge & Development

2010). Figure 1 illustrates the connections of the Bobcat storage facility, located in Louisiana,

to five major pipeline systems owned and operated by the Texas Eastern Transmission Company
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Figure 1: The Bobcat storage facility and its interconnecting pipelines (Source: Spectra Energy
website).

(TETCO; also referred to as TETLP), the Transcontinental Gas Pipeline Company (TRANSCO),

the Gulf South Pipeline Company, the Florida Gas Transmission Company, and the ANR Pipeline

Company. Natural gas can be transferred across different pipelines through interconnect stations.

Figure 1 shows that the Bobcat storage facility is an off-pipeline interconnect station. In contrast,

the TETCO and Algonquin Gas Transmission (AGT) pipelines are directly connected at on-pipeline

interconnect stations on the AGT pipeline (see Figure 9 in Online Appendix A).

Merchant trading of natural gas occurs on commercial networks, which are simplified representa-

tions of the physical pipeline systems that aggregate into zones pipeline segments, storage facilities,

and compressor and metering stations. Figure 2 displays the zones of the TETCO pipeline. The

zones of the TRANSCO and AGT pipelines are illustrated in Figures 10 and 11 in Online Appendix

A. The AGT pipeline is treated as a single zone for merchant trading purposes due to its smaller

size compared to both the TRANSCO and TETCO pipelines.

In North America, natural gas is traded on more than one hundred physical markets associated

with pipeline zones. Financial derivative contracts on natural gas are traded on organized exchanges.

Prominent examples are the New York Mercantile Exchange (NYMEX) natural gas futures contracts

with delivery at Henry Hub, Louisiana, and basis swaps for about forty locations in North America

– the price of a basis swap for a given maturity represents an offset with respect to the NYMEX

natural gas futures price for the same maturity, and hence the futures price for such location and

maturity is the sum of its corresponding basis swap price and the NYMEX futures price for this

maturity. The NYMEX futures and basis swaps are associated with the zones of major North
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American pipelines.

Figure 2: The TETCO pipeline system (Source: Rextag Strategies website).

The trading activity of merchants on natural gas commercial networks is based on acquiring

contracts on the storage and transport capacity of pipelines (Sturm 1997). A storage contract

specifies a collection of time periods during which storage can be used; the storage space accessible

at a storage facility; injection and withdrawal capacities for each time period; and variable and fuel

costs. A transport contract specifies a collection of time periods during which transport can be

performed; a set of points where natural gas can be received into the pipeline (receipt points) or

delivered from the pipeline (delivery points); capacity limits at each of these points; and variable

and fuel costs to ship natural gas from receipt to delivery points. Commercially, the transport of

natural gas is contemporaneous because natural gas is shipped by displacement using compressor

stations that maintain pressure differentials between pipeline segments. We consider firm contracts,

which give their owners guaranteed access to the reserved pipeline capacity and are associated with

liquidated damages in case of pipeline nonperformance (NAESB 2002). We refer to these contracts

as storage and transport assets. Merchants manage these assets as real options on natural gas

prices that give them the ability to change the temporal or geographical availability of natural gas

(Maragos 2002, Lai et al. 2010, Secomandi 2010a,b, Secomandi and Wang 2012).
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3 Model and Tradeoff

We formulate our MDP in §3.1 and discuss the tradeoff in this model in §3.2.

3.1 Model

A merchant owns given energy transport and storage assets. We represent the location correspond-

ing to the storage asset and the geographical markets connected by the transport assets as nodes

on a network. These markets are included in the set M. Although storage may be collocated with

one of these markets, we represent it as a separate node to be able to distinguish between storage

trades and transport trades, which we define below. Labeling storage by ST, the node set of the

commercial network is M∪ {ST}.

Figure 3 illustrates this representation using a realistic natural gas commercial network that

includes (from left to right) three markets corresponding to TRANSCO zones 3, 4, and 6 (see Figure

10 in Online Appendix A), which we label Z3, Z4, and Z6; the Bobcat storage facility located at

the interconnect station (IC) between TRANSCO and TETCO (see Figure 1); four markets on

TETCO, corresponding to its zones 1 through 3 and East Louisiana (see Figure 2), which we label

M1, M2, and M3, and ELA; and the AGT zone (see Figure 11 in Online Appendix A). An edge

linking two nodes in this network indicates the possibility of transporting natural gas between these

nodes (in both directions) using a transport asset (contract).

Z3

Z4

Z6
M1

M2

M3ELA

TRANSCO TETCO

0

ST
AGT

IC

Figure 3: Natural gas commercial network including the Bobcat storage facility (ST), the intercon-
nect station (IC), the subsets of the TRANSCO and TETCO zones (Z1-Z3, M1-M3, and ELA), and
AGT.

The storage and transport assets allow the merchant to trade energy across different markets

and dates. We define a merchant trade as an object that specifies the type of activity (storage or
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transport), a date, and a unique path (sequence of nodes) in the commercial network. Our model

is formulated based on the set of merchant trades, denoted by J . The subsets J I and JW of

J include the injection and withdrawal storage trades, respectively. We assume it is feasible to

enumerate all the merchant trades supported by the merchant’s transport and storage assets. If the

cardinality of this set is too large, then we can easily reformulate our model without listing all the

possible merchant trades by using instead the set of node-to-node flows as modeling objects.

We denote by pj the path of trade j, and by pj(n) the n-th node in this path. The number

of nodes in path pj is denoted by |pj |. In Figure 3, the paths Z3-Z6, M2-M3, Z3-IC-ELA, and

M3-AGT belong to transport trades. The path of an injection trade ends at ST. The path of a

withdrawal trade starts at ST. In Figure 3, paths Z3-IC-ST and AGT-M3-ELA-IC-ST belong to

storage injection trades and paths ST-IC-Z3-Z6 and ST-IC-ELA to storage withdrawal trades.

Trades can be performed at each of N times. Denote the i-th trading time as Ti with i belonging

to the set I := {0, 1, . . . , N − 1}. We use the set I as the stage set of our MDP. Let ȳ denote the

maximum inventory allowed in the storage asset. The inventory in storage at stage i is yi ∈ Y :=

[0, y]. We assume that a futures market is available at each market m. At time Ti the market m

futures price with maturity at time Ti′ > Ti is Fmi,i′ ∈ R+ and the forward curve of this market is

Fm
i := (Fmi,i , F

m
i,i+1, . . . , F

m
i,N−1). We denote the time Ti spot price at market m by smi ≡ Fmii . We

define the array of forward curves and the vector of spot prices across all markets at time Ti as

F i := (Fm
i , ∀m ∈ M) and si := (smi ,∀m ∈ M), respectively. We also define FN := 0. The stage i

state is the pair (yi,F i).

The cash flow of a trade includes the cost of purchasing or revenue from selling energy at the

prevailing spot price of the market where energy is transacted and two types of variables costs:

Marginal costs and in-kind losses. The merchant incurs a marginal cost on each unit of energy

transported, injected, or withdrawn. In-kind losses can model the use of energy to fuel the transport

of energy in between nodes or the injection or withdrawal of energy into or out of storage, as well as

inefficiencies when transporting energy or modifying the energy inventory. For example, compressor

stations create pressure differentials between natural gas pipeline segments, enabling the transport

of natural gas. Natural gas storage injections and withdrawals are also based on pressure differentials

obtained by the use of pumps. Merchants pay the pipeline company in kind for the fuel used for

compression.
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The marginal cost for transporting energy between node m and node m′ is denoted by cm,m
′
.

The storage injection and withdrawal marginal costs are denoted by cI and cW , respectively (I and

W abbreviate injection and withdrawal, respectively). The in-kind loss (1 − φm,m′)/φm,m′ , where

φm,m
′ ∈ (0, 1], occurs when transporting 1 unit of energy from node m to node m′: 1/φm,m

′ ≡

1 + (1 − φm,m′)/φm,m′ units of energy need to be received at node m in order to deliver 1 unit of

energy at node m′. We assume that this energy is purchased at the market corresponding to node

m. The in-kind losses incurred to inject and withdraw, respectively, 1 unit of energy into and out

of storage are (1− φI)/φI and (1− φW )/φW where φI ∈ (0, 1] and φW ∈ (0, 1] have interpretations

analogous to the transport in-kind loss. We assume that the energy used for injection or withdrawal

is monetized at the spot price of the market closest to storage.

Denote by xj the amount of energy transacted under trade j ∈ J . We define the vector of trade

amounts as x := (xj , j ∈ J ). The reward r(x, s) from executing the vector of trade amounts x

given the vector of spot prices s is defined as

r(x, s) :=
∑
j∈J

|pj |∑
n=1

[
αjn(s) + γjn

]
xj , (1)

where

αjn(s) :=



−spj(2) (1− φW )

φW
1(j ∈ JW )− spj(1)

φpj(1),pj(2)
1(j ∈ J \ JW ), if n = 1,

spj(l) (1− φpj(n),pj(n+1))

φpj(n),pj(n+1)
, if 1 < n < |pj |,

−spj(|pj |−1) (1− φI)
φI

1(j ∈ J I) + spj(|pj |)1(j ∈ J \ J I), if n = |pj |,

and

γjn :=


−cW1(j ∈ JW )− cpj(1),pj(2)

1(j ∈ J \ JW ), if n = 1,

−cpj(n),pj(n+1), if 1 < n < |pj |,

−cI1(j ∈ J I), if n = |pj |;

here, the term αjn(s) includes the per-unit cost incurred or revenue earned from buying or selling

energy, respectively, and the corresponding monetized in-kind losses when executing trade j, and

the term γjn represents the marginal cost incurred when executing trade j.
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We model capacity constraints by imposing limits on the maximum amount of energy that

can be received or delivered at node m or that can be added or removed from storage during a

single time period, that is, the time period elapsed in between two successive stages. The receipt

and delivery capacities for node m are denoted as CR,m and CD,m (R is for receipt and D is for

delivery), respectively. These capacity limits implicitly restrict the maximum amount of energy

that can be transported between two nodes or between storage and a node during a single time

period (Secomandi and Wang 2012). Natural gas storage and transport contracts (assets) specify

node capacity limits. Alternatively, one could model capacity limits along each edge. The storage

asset injection and withdrawal capacities are CI and CW , respectively.

Let J R(m) and JD(m) be the sets of trades with paths that include node m as a receipt point

and a delivery point, respectively. We denote by ∨ a logical disjunction (or). A vector of trade

amounts x is feasible at inventory level y ∈ Y if it satisfies the following conditions:

∑
j∈JR(m)

xj ≤ CR,m, ∀m ∈M, (2)

∑
j∈JD(m)

xj ≤ CD,m, ∀m ∈M, (3)


∑
j∈J I

xj ≤ min{CI , ȳ − y}

∑
j∈JW

xj = 0

 ∨


∑
j∈J I

xj = 0

∑
j∈JW

xj ≤ min{CW , y}

 , (4)

xj ≥ 0, ∀j ∈ J . (5)

The node receipt and delivery capacities are imposed by constraints (2) and (3), respectively. The

left and right hand sides of the disjunction (4) express the storage (flow) capacity constraints and

the available space and inventory constraints: When the storage decision is to inject, (4) ensures

that (i) the sum of the withdrawal trade amounts is zero and (ii) the sum of the injection trade

amounts is less than both the storage injection capacity and the available space in storage; if the

storage decision is to withdraw, (4) ensures that (i) the sum of the injection trade amounts is zero

and (ii) the sum of the withdrawal trade amounts is less than both the storage withdrawal capacity

and the available inventory in storage. Constraints (5) enforce nonnegativity of the trade amounts.

The set of feasible trade amounts for feasible inventory level y is thus defined as X (y) := {x|(2)-(5)}.
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Given the stage i spot price vector si, executing a feasible collection of trade amounts x at

inventory level yi results in an immediate reward of r(x, si) and an inventory transition from yi to

yi +
∑

j∈J I xj −
∑

j∈JW xj .

The evolution of the stage i array of forward curves F i into the stage i+1 array of forward curves

F i+1 is governed by a known stochastic process, which is assumed to be unaffected by the merchant

trades (that is, the merchant is a small player and, hence, a price taker). We model the continuous

time risk-neutral dynamics of the array of forward curves using a multi-market version of the

multifactor term structure model that is common both in the merchant energy trading literature and

practice (Cortazar and Schwartz 1994, Clewlow and Strickland 2000, Blanco et al. 2002, Secomandi

et al. 2014, and Secomandi and Seppi 2014, Chapter 4; the one and two factor models of Jaillet

et al. 2004 and Schwartz and Smith 2000, respectively, as well as the multimarket specifications

of the Jaillet et al. 2004 valuation model used by Secomandi 2010a and Secomandi and Wang

2012 are special cases of this model; Frestad 2008 and Suenaga et al. 2008 use higher dimensional

models with maturity specific shocks). In this continuous time setting, we denote by Fm(t, Ti) the

market (node) m futures price at time t ∈ [T0, Ti] with maturity on date Ti ≥ t. We let K be

the number of stochastic factors driving the evolution of this price; dWk(t) the standard Brownian

motion increment corresponding to factor k at time t (all these increments are uncorrelated, that is,

dWk(t)dWk′(t) = 0, ∀k, k′ ∈ {1, 2, . . . ,K}, k 6= k′); and σm,i,k(t) the time t loading on the k-th factor

for the market m futures with maturity at time Ti. The evolution of Fm(t, Ti), ∀(m, i) ∈M×I\{0}

and t ∈ (T0, Ti], is governed by the following stochastic differential equations:

dFm(t, Ti)

Fm(t, Ti)
=

K∑
k=1

σm,i,k(t)dWk(t), ∀(m, i) ∈M× I \ {0}, t ∈ (T0, Ti]. (6)

This model captures the seasonality in price levels via the initial (time T0) array of forward curves,

and the seasonalities in the price changes through the dependence of the loading factors on the

trading time (t). The price changes are correlated because they are functions of common factors.

Our analysis in §4 does not depend on this specific price model. In contrast, our algorithm developed

in §5 to obtain a heuristic policy and the upper bound presented in Online Appendix C rely on this

price model, of which we use a particular specification in our numerical analysis carried out in §6.

Model (6) is consistent with lack of arbitrage in futures markets. Under this model the realized
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spot prices at two markets can differ by more than the marginal cost and in-kind loss incurred when

transporting energy between these markets. An obvious modification of this statement involving

the storage marginal costs and in-kind losses applies to the spot and futures prices for two different

dates. These possibilities do not represent arbitrage opportunities; rather they are reduced form

representations of what occurs in equilibrium models of energy prices on a network when a capacity

constraint binds (see, e.g., Gabriel et al. 2005, §3.3, Secomandi 2010a, §5 and references therein).

Let E denote expectation under the corresponding risk-neutral probability measure for the for-

ward curve evolution (Secomandi and Seppi 2014, Ch. 3), which is unique when the commodity

market is complete (Björk 2004, page 122). Market completeness is a common assumption in the

real option and the merchant trading literatures (see, for example, Smith and McCardle 1998, 1999,

Lai et al. 2010, Devalkar et al. 2011). It holds in our setting when the number of traded futures

contracts equals or exceeds the number of stochastic factors in model (6), the typical case in applica-

tions. A policy π is the collection of decision rules {Aπ0 , Aπ1 , . . . , AπN−1}, where Aπi : (yi,F i) 7→ X (yi),

∀(i, yi,F i) ∈ I × Y × RM ·(N−i)+ . We let Π be the set of all feasible policies. We denote by δ the

risk-free discount factor from each time Ti back to time Ti−1, ∀i ∈ I \ {0}. Let (y0,F 0) be the time

T0 := 0 state. Maximizing the time T0 market value of operating the storage and transport assets

during the given time horizon entails solving the following MDP:

max
π∈Π

∑
i∈I

δiE [r(Aπi (yπi ,F i), si)|y0,F 0] , (7)

where yπi is the random inventory level reached in stage i when using policy π.

3.2 Tradeoff

The main tradeoff in our MDP (7) is the competition between the storage and transport trades

for the receipt and delivery capacity of the network nodes. Thus, intuitively, storage and transport

trading are substitute activities. Proposition 3.1 formally states this property. Let ΠTR and ΠST be

the subsets of policies in Π that allow only transport and storage trades, respectively. We indicate

by V0(y0,F 0) the optimal objective function value of model (7). We denote by V TR
0 (y0,F 0) and

V ST
0 (y0,F 0) the optimal objective function values of the versions of this model with the restrictions

π ∈ ΠTR and π ∈ ΠST , respectively.
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Proposition 3.1. It holds that V0(y0,F 0) ≤ V TR
0 (y0,F 0) + V ST

0 (y0,F 0).

The inequality in this proposition is consistent with the definition of substitutes in Topkis (1998,

§2.6.1). When this inequality holds as a strict inequality, storage and transport trading are strict

substitutes and jointly managing these activities is necessary to obtain an optimal policy: A pair of

optimal policies to (7) subject to the restrictions π ∈ ΠTR and π ∈ ΠST , respectively, cannot form

an optimal policy to (7) without these restrictions. When this inequality holds as an equality, there

is no substitution between storage and transport trading, and hence they can be optimally managed

independently of each other. We estimate numerically the degree of substitutability between these

activities in §6.3.

4 Analysis

In §4.1 we reformulate our MDP (7) as an SDP to facilitate our analysis in §4.2 of the value function

and the storage component of an optimal policy of this model. We use the results of this analysis

in the development of our LSM approach in §5.

4.1 Reformulation of our MDP

Our starting point is the following equivalent reformulation of our MDP as an SDP, ∀(i, yi,F i) ∈

I × Y × RM ·(N−i)+ :

Vi(yi,F i) = max
x∈X (yi)

r(x, si) + δE

Vi+1

yi +
∑
j∈J I

xj −
∑
j∈JW

xj ,F i+1

 | F i

 , (8)

with Vi(yi,F i) denoting the value function in stage i and state (yi,F i) and boundary conditions

VN (yN ,FN ) := 0, ∀yN ∈ Y. Below we simplify this SDP by explicitly optimizing the inventory

change assuming the storage and transport trading decisions are made optimally for every feasible

inventory change.

We refer to the inventory change as the storage action, which, however, may result from executing

more than one storage trade. Given the inventory levels yi and yi+1 in stages i and i+1, respectively,

define the storage action a as yi − yi+1: A negative (positive) storage action corresponds to an

addition (removal) of energy from (to) the current inventory in the storage asset, where the sign

of this action refers to the sign of the inventory addition cash flow, and a zero storage action
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corresponds to leaving the inventory in storage unchanged (doing nothing). Let X ′(a) denote the

collections of all (storage and transport) trade amounts that satisfy the receipt and delivery capacity

constraints and result in an inventory change equal to a. Given a storage action a, a vector of trade

amounts x belongs to set X ′(a) if it satisfies

∑
j∈JW

xj =

 a, if a > 0,

0, otherwise,
(9)

∑
j∈J I

xj =

 −a, if a < 0,

0, otherwise,
(10)

(2), (3), (5). (11)

Constraints (9) and (10) ensure that the sums of the withdrawal and the injection trade amounts,

respectively, are consistent with the given storage action a.

Given a spot price vector s ∈ RM+ and a storage action a, an optimal collection of storage and

transport trade amounts in set X ′(a) can be computed by solving the linear program

r̄(a, s) := max
x∈X ′(a)

r(x, s). (12)

We define aI and aW as the maximum injection and withdrawal amounts, respectively, ignoring

the storage asset (flow) capacity constraints: aI := maxx
∑

j∈J I xj s.t. (2), (3), (5), and aW :=

maxx
∑

j∈JW xj s.t. (2), (3), (5). Given a storage action a, its feasibility, that is, X ′(a) 6= ∅, can be

checked as follows: X ′(a) 6= ∅ if and only if a ∈ [−aI , aW ]. Thus, the set of feasible stage i + 1

inventory levels reachable from the stage i inventory level yi is Z(yi) := [max{0, yi − CW , yi −

aW },min{y, yi + CI , yi + aI}].

Define the continuation function Wi(yi+1,F i), ∀(i, yi+1,F i) ∈ I × Y × RM ·(N−i)+ , as

Wi(yi+1,F i) := δE [Vi+1 (yi+1,F i+1) |F i] . (13)

We can thus reformulate SDP (8) as

Vi(yi,F i) = max
yi+1∈Z(yi)

r̄(yi − yi+1, si) +Wi(yi+1,F i), (14)
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∀(i, yi,F i) ∈ I × Y × RM ·(N−i)+ , with boundary conditions VN (yN ,FN ) := 0,∀yN ∈ Y. In contrast

to SDP (8), the maximization in SDP (14) is over the feasible next-stage inventory level, and the

function r̄(·, si) in the objective function of this maximization returns the value of the optimal

storage and transport trade amounts conditional on a feasible storage action yi − yi+1.

4.2 Value and Continuation Functions and Structure of the Storage Component

of an Optimal Policy

We characterize the value and continuation functions and under a mild assumption the structure of

an optimal policy of SDP (14), that is, the storage component of an optimal policy. This analysis

leads to a substantial simplification of SDP (14).

Lemma 4.1 states the concavity of the value and continuation functions of this SDP.

Lemma 4.1. For each given (i,F i) ∈ I × RM ·(N−i)+ , the functions Vi(yi,F i) and Wi(yi+1,F i) are

concave in yi ∈ Y and yi+1 ∈ Y, respectively.

We make a mild assumption that allows us to refine Lemma 4.1 and give the structure of the

storage component of an optimal policy in Proposition 4.4.

Assumption 4.2. The parameters CR,m, ∀m ∈ M, CD,m, ∀m ∈ M, y0, ȳ, CW , and CI are

rational numbers.

Let Ḡ be the largest rational number such that the transport-related capacity values in sets

{CR,m, ∀m ∈ M} and {CD,m, ∀m ∈ M} are integer multiples of Ḡ (Ḡ exists by Assumption 4.2).

We interpret Ḡ as a lot size. Lemma 4.3 characterizes the function r̄(·, s) in terms of this lot size.

Lemma 4.3. Suppose Assumption 4.2 holds. Given the spot price vector s ∈ RM+ , the function

r̄(·, s) is piecewise linear concave on the interval [−aI , aW ] with slope changes at integer multiples

of Ḡ.

The structure of the storage component of an optimal policy given in Proposition 4.4 below relies

on the target function bi(yi,F i), defined as the smallest element of argmaxyi+1∈Y r̄(yi − yi+1, si) +

Wi(yi+1,F i). This function is qualified as a target function because it returns a stage i+1 inventory

level that might not be reachable from the stage i inventory level yi – the optimization in the

definition of this function is over the set of all feasible inventory levels, Y, which potentially strictly
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includes the set Z(yi) of feasible next-stage inventory levels for the given inventory level yi. We define

the functions bi(F i) and bi(F i) as those functions that give the smallest and largest feasible inventory

levels, respectively, for which the do nothing storage action is optimal in stage i given the array

of forward curves F i: bi(F i) := minyi∈Y yi s.t. yi = bi(yi,F i) and bi(F i) := maxyi∈Y yi s.t. yi =

bi(yi,F i). These functions exist, as stated in Proposition 4.4.

Under Assumption 4.2, Proposition 4.4, based on Lemmas 4.1 and 4.3, refines in Part (a) the

characterizations of the value and continuation functions of SDP (14) given in Lemma 4.1 and

characterizes in Part (b) the structure of the storage component of an optimal policy. This result

depends on the lot size G, defined as the largest rational number such that Ḡ, y0, ȳ, CW , and CI are

all integer multiples of G (G exists by Assumption 4.2). The lot size G is, potentially strictly, smaller

than the lot size Ḡ because it also depends on the storage injection and withdrawal capacities and

the initial (time T0) and maximum inventory levels. We denote an optimal storage decision rule as

Ā∗i (yi,F i).

Proposition 4.4. Suppose Assumption 4.2 holds.

(a) Given (i,F i) ∈ I × RM ·(N−i)+ , the value function Vi(yi,F i) and the continuation function

Wi(yi+1,F i) are piecewise linear concave in yi ∈ Y and yi+1 ∈ Y, respectively, with slope

changes at integer multiples of G.

(b) Given (i,F i) ∈ I×RM ·(N−i)+ and q ∈ {0, G, . . . , (ȳ/G)−1}, the target function bi(·,F i) equals a

constant or varies linearly with slope 1 for all yi ∈ [qG, (q+1)G]: bi(yi,F i) = bi(qG,F i)+(yi−

qG)θq,∀yi ∈ [qG, (q + 1)G], with θq ∈ {0, 1}. The functions bi(·) and bi(·) exist and partition

the feasible inventory set Y into the three regions [0, bi(F i)), [bi(F i), bi(F i)], and (bi(F i), y],

such that (i) an optimal storage action is to inject when yi ∈ [0, bi(F i)), do nothing when yi ∈

[bi(F i), bi(F i)], and withdraw when yi ∈ (bi(F i), y], and (ii) the function bi(·,F i) evaluated at

yi returns a value that lies in the region of this partition that yi belongs to. Specifically, the

storage component of an optimal policy satisfies, ∀(i, yi,F i) ∈ I × Y × RM ·(N−i)+ ,

Ā∗i (yi,F i) =


max{−CI , yi − bi(yi,F i)}, if yi ∈ [0, bi(F i)),

0, if yi ∈ [bi(F i), bi(F i)],

min{CW , yi − bi(yi,F i)}, if yi ∈ (bi(F i), y].

(15)
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Figure 4: Partition of the feasible inventory set based on the type of storage action

Part (a) of Proposition 4.4 is related to results established by Bannister and Kaye (1991) and

Nascimento and Powell (2013). Part (b) of Proposition 4.4 extends to the multiple market setting

the known double basestock target structure of an optimal storage policy in the single market case

(Secomandi 2010b, Secomandi et al. 2014).

Before interpreting our structure of the storage component of an optimal policy, we briefly

describe the structure of an optimal storage policy that is known in the single market case. This

structure includes two stage-and-forward-curve dependent basestock target functions. Given a stage

and a forward curve, it is optimal to inject up to the smaller basestock target function value for

inventory levels below this target value, withdraw down to the larger basestock target function value

for inventory levels above this target value, and do nothing for inventory levels between these target

values. Thus, for each given stage and forward curve, the feasible inventory set is partitioned into

three contiguous inject, do nothing, and withdraw regions, and the optimal storage action within

the inject and withdraw regions strictly increases in inventory. Moreover, under an assumption

analogous to Assumption 4.2, but which excludes the initial inventory level and transport-related

capacities, the latter of which are irrelevant in the single market case, these target values are integer

multiples of a given lot size.

Analogous to the single market case, for each given stage and array of forward curves, in our

case the feasible inventory set is partitioned into three contiguous inject, do nothing, and withdraw

regions (see Figure 4). However, this partition is defined by the functions bi(F i) and b̄i(F i), which

may not be target functions. In other words, in general these are only threshold functions that

define this partition. Moreover, an optimal storage action is determined by the target function

bi(yi,F i), which can be interpreted as a piecewise linear basestock target function that also depends

on the inventory level yi, and can thus take infinitely many values for each given array of forward

curves F i. Nevertheless, because the slope of the linear segment of the basestock target function

is 1, there are only finitely many, and potentially more than two, reachable target values starting
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from feasible inventory levels that are integer multiples of G. As in the single market case, however,

these basestock target functions do not bring the resulting next-stage inventory level outside of the

region a given current inventory level belongs to in the stated inject, do nothing, and withdraw

partition, and the resulting next-stage inventory level is a weakly increasing function of the current

inventory level. Moreover, different from the single market case, the optimal storage injection and

withdrawal actions in the multiple market setting can be weakly, rather than strictly, increasing

in the inventory level, that is, it is possible to have subregions where these actions are constant.

Figure 5 conceptually illustrates this structure for the injection case.

0 G 2G 3G 4G

−G

−2G

Ā∗i (yi,F i)/G

yi/G

Figure 5: Conceptual illustration of the piecewise linearity of an optimal policy structure in the
injection region with bi(F i) = 4G.

Our structure of the storage component of an optimal policy has useful computational implica-

tions. By Part (b) of Proposition 4.4, it is optimal to visit only inventory levels in the finite set Y ′ :=

{0, G, . . . , ȳ}, with ȳ/G+ 1 values, and for each inventory level yi in this set the next-stage inven-

tory level is optimally chosen from the finite set Z ′(yi) := {yi−min{CW , aW }, yi−min{CW , aW }+

G, . . . , yi+min{CI , aI}}. Thus, in principle, the structure of the optimal storage decision rules (15)

could be used, as explained below, to solve the following SDP, ∀(i, yi,F i) ∈ I × Y ′ × RM ·(N−i)+ :

Vi(yi,F i) = max
yi+1∈Z′(yi)

r̄(yi − yi+1, si) +Wi(yi+1,F i), (16)

with boundary conditions VN (yN ,FN ) := 0,∀yN ∈ Y ′. SDP (16) critically differs from SDP (14)

because it optimizes over the finite set Z ′(yi) rather than the interval Z(yi) and has a finite number

of inventory levels in its states.
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Given the pair (i,F i) and assuming knowledge of the function Wi(·,F i), the optimization on

the right hand side of (16) can be performed efficiently for all the feasible inventory levels in set Y ′.

Specifically, combining the structure of the functions r̄(·, si) and Wi(·,F i) and the decision rules

(15) allows us to efficiently compute the set of optimal next-stage inventory levels for all inventory

levels yi ∈ Y ′ by scanning once the next-stage inventory levels in the set Y ′. This efficient search

is possible because the optimal next-stage inventory level weakly increases in the current stage

inventory level. This property allows us to restrict search for the optimal next-stage inventory level

for a given current inventory level yi in set Y ′ \ {0} to the subset of Y ′ delimited below by the

optimal next-stage inventory level computed for yi −G and above by the maximum inventory level

ȳ.

Although the function Wi(·,F i) is unknown, the same scheme just described remains applicable

when this function is replaced by another piecewise linear concave function of the current inventory

level with slope changes at integer multiples of the lot size G. We use this approach in §5 to develop

our approximate solution method, which relies on approximating the unknown continuation function

Wi(·,F i) with a function that satisfies this property. Moreover, we take advantage of this property

when using our approximate continuation function to compute a heuristic policy and estimate a

lower bound on the combined market value of the storage and transport assets, as detailed in §5.

The approach presented in Online Appendix C to estimate a dual upper bound on this market value

also critically relies on our value function approximations, which we use to obtain our approximate

continuation functions, changing slope at integer multiples of the lot size G.

The lot size used to define the sets Y ′ and Z ′(yi) depends on the initial (time T0) inventory

level. This dependence implies that different initial inventory levels potentially require different

discretizations of these sets. In contrast, the lot size used to optimally discretize the feasible

inventory and storage action sets in the single market case is independent of the initial inventory

level (Secomandi 2010b, Secomandi et al. 2014).

5 LSM-based Heuristic Policy and Lower Bound

In theory, an optimal action at a given stage and state can be computed by solving the optimization

problem defined by the right hand side of SDP (16) for the optimal storage action – we suppose that

Assumption 4.2 holds in the rest of this paper – which also yields the optimal transport decisions
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from the associated optimal solution of the linear program (12). However, this approach is not

practical because computing the continuation function in the storage optimization is intractable due

to (i) the high dimensionality of the state space and (ii) the inability to compute the expectation

in the definition of this function. To overcome both these issues, we follow a common approximate

dynamic programming (ADP) approach to compute heuristic, but hopefully near optimal, decisions,

by replacing the unknown continuation function on the right hand side of SDP (16) by a tractable

continuation function approximation (Powell 2011, Bertsekas 2012). A lower bound on the market

value of the storage and transport assets can be estimated by Monte Carlo simulation of the policy

defined by these heuristic decisions. We explain the details of the lower bound estimation after we

describe the LSM approach (Longstaff and Schwartz 2001, Tsitsiklis and Van Roy 2001) that we

use to compute a continuation function approximation.

We extend the regress-later version of the LSM approach (see Nadarajah et al. 2014a and refer-

ences therein) to compute a continuation function approximation by first computing a value function

approximation, which is also remarkably useful for numerically estimating a dual upper bound on

the value of the storage and transport assets, as discussed in Online Appendix C. We consider

value function approximations that are linear combinations of a given set of basis functions. For

each stage i and inventory level yi ∈ Y ′ we specify Bi basis functions. The b-th basis function

is φi,yi,b : F i 7→ R and its linear combination weight is βi,yi,b. Defining the row and column vec-

tors Φi,yi := (φi,yi,1, φi,yi,2, . . . , φi,yi,Bi) and βi,yi := (βi,yi,1, βi,yi,2, . . . , βi,yi,Bi)
>, the value function

approximation is

V̂i(yi,F i;βi,yi) := (Φi,yiβi,yi)(F i) ≡
Bi∑
b=1

φi,yi,b(F i)βi,yi,b. (17)

We obtain a continuation function approximation by replacing Vi by V̂i on the right hand side of

(13):

Ŵi(yi+1,F i;βi+1,yi+1) = δ

Bi+1∑
b=1

E
[
φi+1,yi+1,b(F i+1)|F i

]
βi+1,yi+1,b. (18)

Following Nadarajah et al. (2014a) we choose basis functions such that the expectations in (18)

can be computed exactly when using the price model (6), as discussed in §6.2. We label modified

LSM (MLSM) our modification of the LSM variant investigated by Nadarajah et al. (2014a). Our
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modification consists of a concavification step, discussed below, which yields a continuation function

approximation ŴCN
i (·,F i;βi+1,·), where the superscript abbreviates concave, which is piecewise

linear concave with break points in set Y ′ (see Powell 2011, Ch. 13 and Nascimento and Powell

2013 for the use of a similar approach in related ADP contexts).

Algorithm 1: MLSM

Inputs: Number of sample paths H and basis functions that allow the exact computation of
the expectations in (18).

Outputs: Weights β̂i,yi , ∀(i, yi) ∈ I × Y ′.

Initialization: Generate H regression sample paths of the arrays of forward curves
{F h

i , i ∈ I \ {0}, h = 1, . . . ,H} starting from F 0; β̂N,yN := 0, ∀yN ∈ Y ′.

For each i = N − 1 to 1 do:

1. For each h ∈ {1, 2, . . . ,H} do:

(i) For each yi+1 ∈ Y ′ do:

Ŵi(yi+1,F
h
i ; β̂i+1,yi+1) := δ

Bi+1∑
b=1

E
[
φi+1,yi+1,b(F i+1)|F h

i

]
β̂i+1,yi+1,b.

(ii) Concavify Ŵi(·,F h
i ; β̂i+1,·) to obtain ŴCN

i (·,F h
i ; β̂i+1,·).

(iii) For each yi ∈ Y ′ do:

vi(yi,F
h
i ) := max

yi+1∈Z′(yi)
r̂(yi − yi+1, s

h
i ) + ŴCN

i (yi+1,F
h
i ; β̂i+1,yi+1). (19)

2. For each yi ∈ Y ′ do: Perform a 2-norm regression on the set of approximate value function
estimates {vi(yi,F h

i ),∀h ∈ {1, 2, . . . ,H}} to determine the weights β̂i,yi .

Algorithm 1 summarizes MLSM. The inputs to MLSM are the number of sample paths and basis

functions that allow the exact computation of the expectation in (18) (see §6.2 for an example).

MLSM outputs the weights β̂i,yi that define a value function approximation via (17) and then yield

a continuation function approximation via (18). MLSM starts by generating H regression sample

paths of the array of forward curves from stage 1 through N starting from F 0, which we include

in set {F h
i , i ∈ I \ {0}, h = 1, 2, . . . ,H}, and initializing the stage N weight vector β̂N,yN to zero.

At each stage i ∈ I \ {0}, starting from stage N − 1 and moving backward to stage 1: In Step

1(i), for each h ∈ {1, 2, . . . ,H}, MLSM computes the stage i continuation function approximation

using the stage i + 1 basis function weights; in Step 1(ii) MLSM concavifies this continuation
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Figure 6: Illustration of the MLSM concavification step.

function approximation by a simple scanning and modification procedure illustrated in Figure 6;

in Step 1(iii) MLSM computes the approximate value function estimates for each inventory level

yi ∈ Y ′ by solving a set of optimization problems (19) that are greedy with respect to the sum of

the immediate reward function and the continuation function approximation – these optimizations

can be performed efficiently using the scheme discussed at the end of §4.2, because the functions

ŴCN
i (yi+1,F

h
i ; β̂i+1,yi+1) and r̂(yi − yi+1, s

h
i ) are both piecewise linear concave in yi+1 with break

points Z ′(yi) given (i, yi,F
h
i ); in Step 2, MLSM executes a 2-norm regression on these value function

estimates to determine the weight vectors β̂i,yi at each inventory level yi in set Y ′.

We now explain how the continuation function approximation estimated by MLSM is used to

estimate a lower bound. At stage i and state (yi,F i), we replace the continuation function Wi on

the right hand side of SDP (16) with ŴCN
i (yi+1,F i; β̂i+1,yi+1) to obtain the following optimization

problem, which is greedy with respect to the sum of r̂ and ŴCN
i :

max
yi+1∈Z′(yi)

r̂(yi − yi+1, si) + ŴCN
i (yi+1,F i; β̂i+1,yi+1). (20)

Given the solution ygi+1 to (20), where the superscript abbreviates greedy and we break ties in favor

of the smallest maximizer, the corresponding greedy storage action is agi := yi−ygi+1. The collection

of greedy storage actions at all stages and states defines the greedy storage policy associated with

ŴCN
i . Because ŴCN

i (·,F h
i ; β̂i+1,·) is piecewise linear concave with slope changes at integer multiples

of the lot size G, each ygi+1 can be found efficiently, and the corresponding greedy storage policy has

the same structure of the storage component of an optimal policy stated in Part (b) of Proposition
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4.4. A lower bound on the value of an optimal policy can be estimated by applying the greedy

storage policy and its associated transport policy, which we obtain via (12) with agi in lieu of a,

in Monte Carlo simulation. Specifically, we apply these policies along L Monte Carlo simulation

sample paths of the array of forward curves, which we include in set {F l
i, i ∈ I \{0}, l = 1, 2, . . . , L},

starting from the time 0 inventory level y0 and the array of forward curves F 0, and estimate a lower

bound by averaging the resulting total discounted cash flows.

6 Natural Gas Application

In this section we discuss our natural gas application. In §6.1 we describe our instances. In §6.2 we

estimate bounds on the combined market value of the storage and transport assets based on our

MLSM approach. In §6.3 we analyze the tradeoff between storage and transport trading. In §6.4 we

investigate the performance of the extended rolling intrinsic policy, and simplified versions thereof.

In §6.5 we contrast the management of storage as a single asset versus jointly with transport assets.

6.1 Instances

We developed our instances in conjunction with a major multinational energy company that also

operates in the United States. These instances are based on the commercial network displayed in

Figure 3 and discussed in §3. We do not explicitly model the interconnect station IC, in addition

to ST, because the marginal costs and in-kind losses for transporting natural gas between IC and

ST are zero. We use a time horizon equal to one year subdivided into monthly periods (that is,

N = 12).

The storage asset parameters are normalized maximum inventory (ȳ) equal to 1 MMBtu; normal-

ized monthly injection capacity (CI) and withdrawal capacity (CW ) equal to 0.45 MMBtu/month

and 0.75 MMBtu/month, respectively; injection and withdrawal fuel losses (φI and φW ) equal to

1 and 0.985, respectively; and injection and withdrawal commodity charges (cI and cW ) equal to

$0.02 /MMBtu and $0.01 /MMBtu, respectively (in the natural gas industry, an in-kind loss is

known as a fuel loss and a marginal cost as a commodity charge).

The parameters of the transport assets are commodity charges and fuel losses (cm,m
′

and φm,m
′
,

respectively) as given in Tables 1-3; receipt and delivery capacities at both markets (nodes) Z3

and ELA equal to 0.45 MMBtu/month (= CW ) and 0.75 MMBtu/month (= CI), respectively;
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Table 1: Transport fuel losses (φm,m
′
) for the months April to November.

ST Z3 Z4 Z6 ELA M1 M2 M3 AGT

ST - 1 - - 1 - - - -
Z3 - 0.9823 0.9638 - - - - -
Z4 - 0.9672 - - - - -
Z6 - - - - - -

ELA - 0.9557 0.9406 0.9305 -
M1 - 0.9632 0.9531 -
M2 - 0.9602 -
M3 - 0.9907

Table 2: Transport fuel losses (φm,m
′
) for the months December to March.

ST Z3 Z4 Z6 ELA M1 M2 M3 AGT

ST - 1 - - 1 - - - -
Z3 - 0.9823 0.9638 - - - - -
Z4 - 0.9672 - - - - -
Z6 - - - - - -

ELA - 0.9523 0.9316 0.9179 -
M1 - 0.956 0.9423 -
M2 - 0.952 -
M3 - 0.99

Table 3: Commodity charges (cm,m
′
, $/MMBtu).

ST Z3 Z4 Z6 ELA M1 M2 M3 AGT

ST - 0.05 - - 0.0103 - - - -
Z3 - 0.02253 0.04454 - - - - -
Z4 - 0.04027 - - - - -
Z6 - - - - - -

ELA - 0.0353 0.0762 0.1044 -
M1 - 0.0659 0.0941 -
M2 - 0.0743 -
M3 - 0.013

receipt and delivery capacities at all the TRANSCO markets other than market Z3 equal to 0.15

MMBtu/month (= CW /3) and 0.25 MMBtu/month (= CI/3), respectively; and receipt and delivery

capacities at the AGT market and all the TETCO markets other than market ELA equal to 0.09

MMBtu/month (= CW /5) and 0.15 MMBtu/month (= CI/5), respectively. Thus, the lot size G is

equal to 0.01.

We calibrated a specification of the futures price model (6) using data made available to us by

the energy trading company that we engaged. In this specification each function σm,i′,k(t) associated

with maturity time Ti′ is right continuous and piecewise constant within a trading month, that is,
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during each interval in the set {[Ti, Ti+1), ∀i ∈ I \{N−1}} (Blanco et al. 2002 and Secomandi et al.

2014 use analogous specifications). We denote by σm,i′,k,i the value taken by each such function in the

interval [Ti, Ti+1). Pick t ∈ [Ti, Ti+1) and t′ ∈ (Ti, Ti+1] with t′ > t. Let Ii := {i+1, i+2, . . . , N−1}.

We can thus express (6) in a form suitable for Monte Carlo simulation using K independent standard

normal random variables, Zk’s, ∀(m, i, i′) ∈M× I × Ii as

Fm(t′, Ti′) = Fm(t, Ti′) exp

[
−1

2
(t′ − t)

K∑
k=1

σ2
m,i′,k,i +

√
t′ − t

K∑
k=1

σm,i′,k,iZk

]
. (21)

Our data set includes 1 year and 3 months of natural gas closing futures prices for Henry Hub,

Louisiana, and basis swaps from June 2011 to August 2012 for each of the 8 markets in Figure 3, from

which we created a futures price data set for these 8 markets. We first estimated monthly sample

variance-covariance matrices of the daily log futures price returns across maturities and markets.

We then performed a principal component analysis of these matrices and estimated the loading

coefficients σm,i′,k,i’s accordingly (see Blanco et al. 2002 and Secomandi et al. 2014 for details). We

chose the number of factors K equal to 6 because this is the smallest value that explains more than

99% of the total observed variance in each of our monthly data sets.

We created 12 instances by choosing 12 valuation dates corresponding to the first trading date

of each month from June 2011 to May 2012. We set the discount factor for each instance based on

the following one year United States Treasury rates corresponding to our valuation dates: 0.18%,

0.20%, 0.22%, 0.10%, 0.12%, 0.13%, 0.12%, 0.12%, 0.13%, 0.18%, 0.18%, and 0.19%. The details

of the estimated loading coefficients and the initial forward curves are available upon request.

6.2 MLSM-based Estimated Lower and Upper Bounds

For a given stage and inventory pair (i, yi), we implemented MLSM using the following polynomials

of futures prices as basis functions: 1, {Fmi,i′ , ∀i′ ∈ Ii}, {(Fmi,i′)2, ∀i′ ∈ Ii}, {Fmi,i′Fm
′

i,i′ , ∀i′ ∈ Ii;m,m′ ∈

M,m 6= m′}, and {Fmi,i′Fmi,i′+1, i
′ ∈ Ii \ {N − 1},m ∈M}. This choice of basis functions is common

in the LSM literature (Longstaff and Schwartz 2001) and Nadarajah et al. (2014a) use it for valuing

storage in a single market. Under price model (21), defining ∆Ti := Ti+1 − Ti, it is easy to verify

that for i′′ ≥ i′ > i the expectation in (18) for each of these basis functions is

E[Fmi′,i′′ |Fmi,i′′ ] = Fmi,i′′ ,
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E[(Fmi′,i′′)
2|Fmi,i′′ ] = (Fmi,i′′)

2 exp

{
i′−1∑
l=i

∆Tl
∑
k∈K

σ2
m,i′′,k,l

}
,

E[Fmi′,i′′F
m′
i′,i′′ |Fmi,i′′ , Fm

′
i,i′′ ] = Fmi,i′′F

m′
i,i′′ exp

{
i′−1∑
l=i

∆Tl
∑
k∈K

σm,i′′,k,lσm′,i′′,k,l

}
,

E[Fmi′,i′′F
m
i′,i′′+1|Fmi,i′′ , Fmi,i′′+1] = Fmi,i′′F

m
i,i′′+1 exp

{
i′−1∑
l=i

∆Tl
∑
k∈K

σm,i′′,k,lσm,i′′+1,k,l

}
.

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

96

98

100

Month

P
er

ce
n
t

o
f

U
B

Figure 7: Estimated MLSM-based lower bounds (percentages of UB).

We estimated the MLSM value function approximation using 10,000 regression sample paths of

the array of forward curves (H = 10,000). We used this value function approximation and 30,000

simulation sample paths of the array of forward curves (L = 30,000) to estimate the greedy lower

bound and dual upper bound, presented in §5 and Online Appendix C, respectively, on the time T0

combined market value of the storage and transport assets, V0(x0,F 0). Figure 7 reports the lower

bound estimates (LBs) as percentages of the dual upper bound estimates (UBs). The error bars in

Figure 7 are the standard errors of the LBs, which are at most 0.15% of their respective UBs (the

standard errors of the UBs are at most 0.02% of their respective values). The MLSM-based LBs

and UBs are essentially tight on all our instances, a finding consistent with the results of Nadarajah

et al. (2014a) for the case of natural gas storage with access to a single market.

Our computational setup is a 64 bits PowerEdge R515 with twelve AMD Opteron 4176 2.4GHz

processors with 64GB of memory, the Linux Fedora 17 operating system, and the gcc version 4.7.2

20120921 (Red Hat 4.7.2-2) compiler. We use the LAPACK 3.X library with a single processor

for ordinary least squares regression and Gurobi 5.0 (Gurobi Optimization 2012) for solving linear

programs. Estimating the value function approximations and the MLSM-based bounds takes about

14 minutes per instance. Roughly, 17%, 31%, and 52% of this time is used for estimating a value
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function approximation, a lower bound, and an upper bound, respectively.

6.3 Tradeoff between Storage and Transport Trading

To quantify the tradeoff between storage and transport trading we estimate the market value of the

transport-only policy, V TR
0 (x0,F 0), and a lower bound on the market value of storage-only policy,

V ST
0 (x0,F 0) (see Proposition 3.1). We estimate V TR

0 (x0,F 0) based on solving a linear program

for each decision date along a Monte Carlo sample path of the simulation of the array of forward

curves. For the estimation of a lower bound on V ST
0 (x0,F 0) we use a simplified version of our

MLSM method that ignores transport trades. There is considerable tradeoff between storage and

transport trading on our instances. Specifically, our estimates of the average values, across all our

instances, of V TR
0 (x0,F 0) and of the lower bound on V ST

0 (x0,F 0) are 75% and 55% of the LB

average, respectively, which combined amount to 130% of the LB average.

To assess the difficulty of managing this tradeoff we consider two sequential policies that pri-

oritize storage over transport trading and vice versa. At a given stage and state, the policy that

prioritizes storage over transport first optimizes the storage decisions and then optimizes the trans-

port decisions given the residual transport capacity; the second policy reverses the order of this

prioritization. We estimate lower bounds on the market values of these policies by using obvious

modifications of our MLSM method. Management of the observed tradeoff between storage and

transport trading is difficult: On average, the estimated lower bounds on the optimal values of the

policies that respectively prioritize storage over transport and transport over storage are 90% and

78% of LB, where the better performance of the first policy is due to its (intuitively) superior ability

to assess the future consequences of current decisions. This finding suggests that there is substantial

benefit in practice from jointly optimizing natural gas storage and transport trading decisions in a

network setting.

6.4 Extended Rolling Intrinsic Policy and its Simplified Versions

When managing storage in a single market setting, reoptimizing (rolling) at every stage and observed

state a policy that computes the intrinsic value of storage, that is, the market value of storage

assuming that there is no uncertainty in the evolution of the forward curve, is a near optimal

and common approach among practitioners to capture the value of storage, known as the rolling

intrinsic policy (Gray and Khandelwal 2004, Breslin et al. 2009, Lai et al. 2010, Secomandi 2010b,
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2014, Secomandi et al. 2014, Secomandi and Wang 2012). In our setting, the intrinsic value of the

storage and transport assets at the initial stage and state is the optimal value of the deterministic

version of the MDP (7) that only depends on the time T0 array of forward curves F 0. In other

words, it is the value of the optimal operating policy that relies only on this information. We denote

this intrinsic value by V I
0 (y0;F 0), which can be computed by solving the following deterministic

version of SDP (16):

V I
i (yi;F 0) = max

yi+1∈Z′(yi)
r̄(yi − yi+1,F 0,i) + δV I

i+1(yi+1;F 0), (22)

∀(i, yi) ∈ I × Y ′, with boundary conditions V I
N (yN ;F 0) := 0, ∀yN ∈ Y ′.

The extrinsic value of the storage and transport assets is the part of the value of these assets

attributable to price uncertainty, that is, the difference V0(y0,F 0)− V I
0 (y0;F 0), and measures the

incremental value that can be gained by adapting the assets’ operating policy to the uncertain

evolution of the array of forward curves. We estimate the extrinsic value of these assets on our

instances by subtracting V I
0 (y0;F0) from LB. The estimated extrinsic values are substantial, ranging

between 7.17% and 14.47% of the LBs across our instances (with standard errors smaller than 0.2%

of their respective LBs) and averaging to 10.41%. Employing a dynamic policy is thus meaningful

on these instances.

With a single storage asset, the rolling intrinsic policy aims at heuristically capturing the total

(intrinsic plus extrinsic) value of storage by sequentially updating the intrinsic policy at every stage

and observed state. We extend the rolling intrinsic policy to our setting by reformulating and

reoptimizing the deterministic dynamic program (22) in every stage and state. That is, at stage i

and state (yi,F i) this dynamic program depends on F i rather than F 0. This policy implements

only the storage and transport decisions pertaining to this stage and state. It then reoptimizes

the dynamic program (22) at the stage i + 1 state obtained from performing these decisions and

observing the new array of forward curves F i+1, implements only the storage and transport decisions

corresponding to this stage and state, and repeats this process until the end of the horizon is reached.

A version of this extended rolling intrinsic policy is part of the commercial software StoragePLUS

(FEA 2013).

We estimate the market value of the extended rolling intrinsic policy via Monte Carlo simulation
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of the array of forward curves and of the storage inventory level induced by this policy. On our

instances this policy performs near optimally, its estimated market value being within 1 standard

error of UB on every instance. This finding provides some numerical support for using the extended

rolling intrinsic policy in practice.
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Figure 8: Average estimated lower bounds corresponding to the modified extended rolling intrinsic
policies (percentages of UB).

Despite the near optimality of the extended rolling intrinsic policy, estimating the value of

this policy is computationally intensive, requiring at least 2 orders of magnitude more CPU time

compared to the estimation of (the also near optimal) LB. We thus investigate the performance of

simplified extended rolling intrinsic policies based on reoptimizing simpler, and hence less onerous to

solve, versions of the intrinsic model (22) formulated with fewer residual stages than there actually

are at a given stage. For example, if the number of residual stages is six, then each version of model

(22) that we solve includes at most six stages (fewer stages are included when the actual number

of remaining stages is less than six).

Figure 8 plots as percentages of the UBs the average estimated lower bounds for the simplified

extended rolling intrinsic policies corresponding to different choices of the number of considered

residual stages in each optimization. This simplified approach achieves near optimal performance

when using as few as 4 stages and leads to computational savings of about 1 order of magnitude

relative to the extended rolling intrinsic policy. However, it remains substantially slower than our

MLSM approach for the purpose of estimating a lower bound on the combined market value of the

storage and transport assets.
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6.5 Managing Storage Jointly with Transport Assets Versus as a Single Asset

Storage and transport trades compete for pipeline capacity. To understand the effect of this com-

petition on the management of the storage asset on our instances, we compare three performance

metrics when using near-optimal MLSM-based policies that manage the storage asset both jointly

with transport assets and as a single asset. Specifically, in both cases we measure the average

number of natural gas units flowing through storage (the flow rate, in MMBtu/month) and the

average inventory (in MMBtu), and then use Little’s law to compute the average amount of time

a unit spends in storage (the average flow time, in months). We report the values of these metrics

averaged across our instances.

Intuitively, it is expected that the flow rate and average flow time when storage and transport

assets are jointly managed will be smaller and larger, respectively, than their corresponding values

when managing storage as a single asset. These differences are substantial on our instances: The

storage flow rate and average flow time with jointly managed storage and transport assets are 63%

and 153% of their corresponding values, 0.2213 MMBtu/month and 2.2 months, respectively, when

managing a single storage asset (recall that the storage asset space is 1 MMBtu in our instances).

Less obvious is that the average inventory when storage and transport assets are jointly managed

is 95% of the average inventory when managing storage alone (0.4814 MMBtu). This reduction in

average inventory can be attributed to the flow rate reduction being stronger than the increase in

the average flow time.

As expected, competition between storage and transport trades also reduces the average storage

margin. However, this reduction is moderate. Specifically, the average storage margin with jointly

managed storage and transport assets is 96% of the average storage margin when managing storage

alone ($2.579 /MMBtu). In particular, this decrease results from a slight decrease of the average

selling price in the former case compared to the latter case, while the average purchase price remains

largely unchanged on our instances.

7 Conclusions

The operations of merchant energy trading in wholesale markets across different locations and times

can be represented as a network where storage and transport trades compete for the limited capacity
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of storage and transport assets. We investigate the tradeoff between storage and transport trades

for the realistic case of a network with a single storage asset and multiple transport assets, which

we model as an MDP. Because computing an optimal policy of this MDP is intractable, we use our

structural analysis of this model to modify an LSM-based method to compute a heuristic policy

and estimate lower and upper bounds on the market value of an optimal policy.

On a realistic natural gas application, we observe a substantial and difficult to manage tradeoff

between storage and transport trading, which our LSM-based heuristic policy, being near optimal,

manages effectively. Although equally effective, a practice-based method, based on sequentially

reoptimizing a deterministic model, is, even after simplification, considerably more computationally

intensive than our approach. We also highlight the operational differences between managing storage

jointly with transport assets versus as a single asset. Our research provides us with an improved

understanding of the tradeoff between natural gas storage and transport trading on a network, and

offers natural gas merchants both a more efficient method to near optimally manage storage in a

network than is possible with modifications of a method currently available in practice and a way

to assess the suboptimality of heuristics.

Beyond natural gas, our research has relevance for managing the merchant trading operations

of other energy sources, such as coal, electricity, and oil and petroleum products, natural resources,

such as water and timber, and other storable commodities, such as agricultural products and metals.

Further research could focus on the management of the merchant operations of energy trading for

the case of a network that includes multiple storage assets, in addition to multiple transport assets

(see Löhndorf et al. 2013 and Salas and Powell 2014 for recent related work).
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Löhndorf, N., S. Minner. 2010. Optimal day-ahead trading and storage of renewable energies: An approximate
dynamic programming approach. Energy Systems 1(1) 61–77.
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Online Appendix

A Pipeline Figures

Figures 9-10 that supplement the discussion in §2.

Figure 9: Interconnect stations between the TETCO and AGT pipeline systems (Source: Spectra
Energy website).

Figure 10: The TRANSCO pipeline system (Source: Rextag Strategies website).
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Figure 11: The AGT pipeline system (Source: Rextag Strategies website).

B Proofs

The section includes the proofs of the results stated in §3 and §4.2.

Proof of Proposition 3.1. Let π∗ be an optimal policy to (7) and πST,∗ and πTR,∗ be the storage

and transport policies, respectively, that make up π∗. The required inequality follows because πST,∗

and πTR,∗ are feasible but not necessarily optimal policies to the two model version of (7) specified

with the restrictions π ∈ ΠTR and π ∈ ΠST , respectively.

Proof of Lemma 4.1. To prove the claimed characterization we require the finiteness of the value

and continuation functions of SDP (14). It is obvious that Vi(yi,F i) ≥ 0 > −∞, which implies that

Wi(yi+1,F i) > −∞. Further, Vi(yi,F i) ≤
∑

i′∈Ii
∑

m∈MCD,msmi′ . Using this inequality we have

Wi(yi+1,F i) ≡ δE [Vi+1 (yi+1,F i+1) |F i]

≤ δE

∑
i′∈Ii

∑
m∈M

CD,msmi′ |F i


= δ

∑
i′∈Ii

∑
m∈M

CD,mE [smi′ |F i]

= δ
∑
i′∈Ii

∑
m∈M

CD,mFmi,i′
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<∞,

where the second equality follows from smi′ ≡ Fmi′,i′ and the martingale property of futures prices

(Shreve 2004, page 244). Thus, the value and continuation functions of SDP (14) are finite.

We now proceed by induction to prove the claimed result. At stage N − 1, for a given F i, we

have

VN−1(yN−1,FN−1) = max
yN∈Z(yN−1)

r̄(yN−1 − yN , sN−1).

Standard linear programming results (Bertsimas and Tsitsiklis 1997, Ch. 5) imply that the function

r̄(yN−1 − yN , sN−1) is concave in the pair (yN−1, yN ), which belongs to a convex (polyhedral)

feasible set. Further, the interval Z(yN−1) is nonempty for each given yN−1 ∈ Y. The concavity

of VN−1(·,FN−1) follows from Proposition B-4 in Heyman and Sobel (2003). The continuation

function at stage N − 1 is zero by definition and is therefore concave.

Make the induction hypothesis that the value and continuation functions are concave in their

first arguments also for stages i+1, i+2, . . . , N−2. We proceed to prove the claim at stage i. From

the finiteness of the continuation function in every stage and the induction hypothesis, it is easy to

verify that the continuation function is concave in its first argument at stage i. This property and

Part (a) of this lemma imply the concavity of r̄(yi − yi+1, si) + Wi(yi+1,F i) in the pair (yi, yi+1),

which belongs to a convex (polyhedral) feasible set. Since Z(yi) is nonempty for each given yi ∈ Y,

the concavity of Vi(·,F i) follows from Proposition B-4 in Heyman and Sobel (2003). The claimed

concavity of the value and continuation functions at all stages for a given array of forward curves

follows from the principle of mathematical induction.

Proof of Lemma 4.3. The piecewise linear concavity of r̄(·, s) follows from standard linear program-

ming results (Bertsimas and Tsitsiklis 1997, Ch. 5). We proceed to show that the slope of r̄(·, s)

changes at integer multiples of Ḡ. Our proof relies on reformulating the maximum profit flow prob-

lem (12), defined over the set of trade paths, as a maximum profit network flow problem on an edge

network.

We begin by describing the edge network construction. Figure 12 illustrates the edge network

assuming a nonnegative storage action, a ≤ 0. An analogous network exists for the case a > 0.
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Figure 12: Edge network formulation for the feasible set of (12) when a ≤ 0.

Recall that CR,m and CD,m are the receipt and delivery capacities of node m, respectively. The

nodes in this figure are (i) a dummy source node and a dummy sink node; (ii) nodes m1
j -m

4
j for

modeling market mj ; (iii) nodes ST 1-ST 5 for modeling storage; and (iv) the node labeled “rest of

graph” that is an aggregation of nodes and edges not represented explicitly in this figure. Thin

edges denote actual edges in the network with their capacities as edge labels, while thick edges

denote a collection of edges to or from the node labeled “rest of the graph”. The supply of the

source node is the storage action a. The demand of node ST 3 is −a. All other nodes have zero

demand. It can be verified that each path in this network corresponds to the path of a trade in set

J . To help verify this assertion, the labels within parentheses on the edges of this figure indicate

the edge modeling purpose. For example, the label “(Buy)” on the edge (Source,m3
j ) indicates that

this edge models the purchase of energy from market mj . Thus, each term that makes up the cash

flow of a trade can be represented as a profit on one of the edges in this network.

We introduce some generic notation to formulate the stated maximum profit flow problem on

this edge network. Part of this notation uses with a different meaning notation used elsewhere in

this paper, but this confined reuse of notation should not give rise to any confusion. The pair (N , E)

includes the node and edge sets of this network. Let the capacity and profit on edge e = (u, v) be

Ce and ce, respectively (c is the column vector of all edge profits). Denote the demand on node v

by dv. By construction, we have dsource = a, dST 3 = −a, and all other node demands equal to zero.
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We use we to represent the flow variable associated with edge e (w is the column vector of all these

flow variables). The maximum profit flow problem is

max
w

c> · w (23)∑
e∈E:e=(·,v)

we −
∑

e∈E:e=(v,·)

we = 0, ∀v ∈ N \ {Source, ST 3}, (24)

w(Sink,Source) −
∑

e∈E:e=(Source,·)

we = a, (25)

w(ST2,ST3) = −a, (26)

0 ≤ we ≤ Ce,∀e ∈ E . (27)

The claimed equivalence between (23)-(27) and (12) holds because an optimal solution of (23)-(27)

can be decomposed into amounts corresponding to trades in set J by removing the edge from the

sink to the source if a 6= 0 (all cycles that do not include the edge (Sink, Source) have a negative

profit).

Make the change of variable ŵe := we/Ḡ in (23)-(27) (ŵ is the column vector of scaled flow

variables on all edges). This change yields the linear program

max
ŵ

Ḡ(c> · ŵ) (28)∑
e∈E:e=(·,v)

ŵe −
∑

e∈E:e=(v,·)

ŵe = 0,∀v ∈ N \ {Source, ST 3}, (29)

ŵ(Sink,Source) −
∑

e∈E:e=(Source,·)

ŵe = a/Ḡ, (30)

ŵ(ST2,ST3) = −a/Ḡ, (31)

0 ≤ ŵe ≤ Ce/Ḡ,∀e ∈ E . (32)

From the definition of Ḡ it follows that the scaled capacity Ce/Ḡ is integer for all the edges that

have finite capacity. The integrality of the scaled capacities and the unimodularity of the constraint

matrices of network flow problems (see Theorems 11.11 and 11.12 in Ahuja et al. 1993) imply that

the optimal solution to the linear program (28)-(32) with a = 0 is integer. Let this optimal solution

be ŵ∗(0). Recall the definition of aI on Page 14. Suppose that we increase the injection amount
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from 0 to ε such that 0 < ε < Ḡ and ε ≤ aI , that is, a = −ε. This corresponds to increasing

the injection amount by less than 1 unit in (28)-(32). Note that ŵ∗(0) defines a pseudo flow (see

page 320 of Ahuja et al. 1993) for the problem with a = −ε, that is, this solution violates mass

balance by ε only at the nodes Source and ST 3. Since ε ≤ aI there exists a shortest path from the

node Source to the node ST 3 in the residual network (see §9.1 in Ahuja et al. 1993). Augmenting

by ε the flow along this path yields an optimal solution to (28)-(32) by Lemma 9.12 in Ahuja

et al. (1993). This shortest path has capacity at least 1 since ŵ∗(0) is an integral flow and all

edge capacities in (28)-(32) are integral. Thus, when changing a/Ḡ between 0 and −1 an optimal

solution to the resulting problem can be found by augmenting by the same amount the flow along

the same shortest path. Consequently, the optimal solution value of the problem (28)-(32) is linear

for values of a/Ḡ between 0 and −1, which implies that the optimal solution to (23)-(27) is linear

for a ∈ [0,−Ḡ]. This argument can be repeated to prove an analogous result when the injection

amount ε is between any two consecutive integers η and η + 1 such that (η + 1)Ḡ ≤ aI . These

arguments prove the claimed result for the injection case. Symmetric arguments can be used to

show the claimed result for withdrawals.

Proof of Proposition 4.4. By induction.

Stage N − 1.

By Lemma 4.3, r̄N−1(·, sN−1) is piecewise linear concave with slope changes at integer multiples of

Ḡ, and thus at integer multiples of G as well. Thus, maxa∈R r̄N−1(a, sN−1) has a maximizer a∗N−1

that is an integer multiple of G, where we suppress the dependence of this maximizer on sN−1.

This maximizer is also finite, for every given sN−1, because, as discussed in §4.1, the linear program

(12) is infeasible when a 6∈ [−aI , aW ]. Notice that a∗N−1 ≥ 0 since injecting (a < 0) incurs an

additional cost compared to doing nothing (a = 0). If a∗N−1 = 0, then bN−1(yN−1,FN−1) = yN−1

for all yN−1 ∈ [0, ȳ], which is a linear function in yN−1 with slope equal to 1. Suppose that

a∗N−1 > 0, that is, withdrawal is optimal. Then, it holds that bN−1(yN−1,FN−1) = 0 for all

yN−1 ∈ [0,min{a∗N−1, ȳ}] and bN−1(yN−1,FN−1) = yN−1 − a∗N−1 for all yN−1 ∈ (min{a∗N−1, ȳ}, ȳ].

This target function is piecewise linear in yN−1 with possible slopes equal to 0 and 1. Thus, we

have established the claimed structure of the target function at stage N − 1. This structure implies
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(d) Case (ii): yi = 0.5G

Figure 13: Conceptual illustration of cases (i) and (ii) in the proof of Part (b) of Proposition 4.4.

that bN−1(FN−1) = 0, while bN−1(FN−1) = ȳ if a∗N−1 = 0 and bN−1(FN−1) = 0 if a∗N−1 > 0,

which is consistent with our claimed partitioning of the feasible inventory set Y. Finally, the target

function structure also implies that the difference yN−1 − bN−1(yN−1,FN−1) is not increasing in

yN−1 and the values returned by this function lie in the same region of the inventory partition that

yN−1 belongs to.

By definition, WN−1(·,FN−1) is constant at zero, and thus trivially satisfies the claimed prop-

erty. By Lemma 4.1, VN−1(·,FN−1) is concave. We proceed to prove that this function is piece-

wise linear concave with breakpoints at integer multiples of G. Recall from above that a∗N−1 ≡

argmaxa∈R r̄N−1(·, sN−1). Define ā := min{CW , aW , a∗N−1, ȳ}, which is an integer multiple of G.

For yN−1 ∈ [0, ā) it holds that VN−1(yN−1,FN−1) = r̄N−1(yN−1, sN−1), and for yN−1 ∈ [ā, ȳ] we

have VN−1(yN−1,FN−1) = r̄N−1(ā, sN−1). The function VN−1(yN−1,FN−1) inherits the slope of

r̄N−1(yN−1, sN−1) for yN−1 ∈ [0, ā] and has a slope of zero for yN−1 ∈ [ā, ȳ]. Because the function
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r̄N−1(·, sN−1) is piecewise linear concave with slope changes slope at integer multiples of G, so is

VN−1(·,FN−1).

Induction hypothesis. Suppose that the value function Vi(·,F i) is piecewise linear concave with

slope changes at integer multiples of G for stages i′ = i+ 1, . . . , N − 2.

Stage i. Because Vi+1(yi+1,F i+1) is finite (see the proof of Lemma 4.1), for a fixed F i+1, the induc-

tion hypothesis implies that Wi(yi+1,F i) ≡ δE[Vi+1(yi+1,F i+1)|F i] is a piecewise linear function

with slope changes at integer multiples of G.

For a given yi, note that dr̄(yi − yi+1, si)/dyi+1|yi+1=y′i+1
= −dr̄(a, si)/da|a=yi−y′i+1

. Moreover, it

holds that dr̄(a, si)/da|a=yi−y′i+1
is a nondecreasing function of y′i+1 because the function r̄(·, si)

is concave. Since Wi(·,F i) and r̄(·, si) are piecewise linear concave functions, we can state the

optimality condition that determines bi(yi,F i) as follows: bi(yi,F i) is the smallest y′i+1 ∈ Y such

that dr̄(a, si)/da|a=yi−y′i+1
≥ dWi(yi+1,F i)/dyi+1|yi+1=y′i+1

.

Before using this optimality condition to formally prove the structure in yi of the target function,

we provide the intuition behind our proof. Observe that as yi increases the slope of the continuation

function Wi(·,F i) does not change but the slope of the reward function r̄i(·, si) weakly decreases.

In other words, dWi(·,F i)/dyi+1|yi+1=y′i+1
is a nonincreasing step function with changes at integer

multiples of G that does not depend on yi, whereas dr̄(a, si)/da|a=yi−y′i+1
is a nondecreasing step

function with changes at integer multiples of G that shifts to the right by the same proportion

by which yi is increased. Figure 13 provides illustrative examples of this property. Our proof of

the basestock target function structure relies on two possible types of optima. The first type of

optimum, illustrated in panels (a) and (b) of Figure 13 occurs when the slope of the reward function

is “bracketed” above and below by the slopes of the continuation function as yi is increased starting

from a value that is an integer multiple of G. In this case, the target function is a constant until the

reward function slope is no longer bracketed. The second type of optimum, illustrated in panels (c)

and (d) of Figure 13 occurs when the continuation function slope is bracketed between the reward

function slopes as yi is increased. In this case, the target function increases proportionately to the

increase in yi until the continuation function slope is no longer bracketed. We now make these

intuitive arguments formal.
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Let dW (q) be the slope of the functionWi(·,F i) in the interval [qG, (q+1)G) for q = 0, 1, . . . , (ȳ/G)−

1. By Lemma 4.3, r̄i(·, si) changes slope at integer multiples of Ḡ, and thus at integer multiples of

G as well. Define dr̄(q) := dr̄(a, si)/da|a=(q−1)Ḡ for q = −(aI/G) + 1,−(aI/G) + 2, . . . , aW /G. We

define these slope functions to be right continuous at breakpoints, except for the right boundary

point, where these functions are defined to be left continuous. Because the function r̄i(−yi+1, si) +

Wi(yi+1,F i) changes slope in yi+1 at integer multiples of G, it holds that bi(0,F i) = q̄G for some

nonnegative integer q̄ ≤ min{aI/G, ȳ/G}. Suppose that 0 < q̄ < min{aI/G, ȳ/G} (we discuss the

boundary cases later). The optimality condition stated above implies that the following conditions

must hold for q̄G to be optimal at yi = 0:

dr̄(bq̄G/Ḡc) ≥ dW (q̄), (33)

dr̄(b(q̄G− ε)/Ḡc) < dW (q̄ − 1), for some ε > 0, (34)

where bc is the floor function. In addition, we could either have: (ai) dr̄(b(q̄G−ε)/Ḡc) ≥ dW (q̄) (see

Figure 13(a) for an example) or (aii) dr̄(b(q̄G− ε)/Ḡc) < dW (q̄) (see Figure 13(c) for an example).

We now characterize an interval [0, ηG) ⊆ Y by suitably defining a positive integer η such that the

target function has slope 0 or 1 if case (i) or (ii) holds, respectively.

Case (i). Find the smallest positive integer η such that dr̄(b(q̄− η)G/Ḡc) < dW (q̄). When such an

η does not exist, set η equal to q̄/G (that is, we reach the left boundary of Y). Therefore, for all

yi ∈ [0, ηG) it holds that dr̄(b(q̄G− yi)/Ḡc) ≥ dW (q̄). Further, it holds that there exists an ε′ > 0

such that dr̄(b(q̄G− yi − ε′)/Ḡc) < dW (q̄− 1). This inequality follows from (34) and the concavity

of r̄i(·, si). Thus, we have bi(yi,F i) = q̄G, ∀yi ∈ [0, ηG]. Panels (a) and (b) of Figure 13 provide

illustrative examples.

Case (ii). Find the smallest positive integer η such that dr̄(b(q̄G− ε)/Ḡc) ≥ dW (q̄+η). When such

an η does not exist, set η equal to (ȳ− q̄G)/G (that is, we reach the right boundary of Y). Therefore,

for all yi ∈ [0, ηG), there exists an ε′ > 0 such that dr̄(b(q̄G − ε)/Ḡ) < dW (b(q̄G + yi − ε′)/Gc).

Moreover, by (33) and the concavity of Wi(·,F i) we have dr̄(bq̄G/Ḡc) ≥ dW (b(q̄G+yi)/Gc). Thus,

it holds that bi(yi,F i) = q̄G + (yi − q̄G), ∀yi ∈ [0, ηG]. Panels (a) and (b) of Figure 13 provide

illustrative examples.
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Irrespective of case (i) or (ii), bi(ηG,F i) = q̄G. However, at yi = ηG the type of optimum changes

from the type of optimum at yi = 0, that is, if case (i) is true at yi = 0 then case (ii) holds at

yi = ηG, and if case (ii) is true at yi = 0 then case (i) holds at yi = ηG. We then repeat the

procedure described above to identify a positive integer η′ such that the target function either is

constant or increases within the interval [ηG, η′G] ⊂ Y. This process is iterated until we reach the

right boundary of Y.

Now we consider the boundary cases. When q̄ = 0 a proof analogous to the interior case handled

above, omitted for brevity, establishes the claimed result. When q̄ = min{aI/G, ȳ/G}, we have

bi(yi,F i) = q̄G, ∀yi ∈ Y. We have thus proved the claimed piecewise linearity of the target function

at stage i.

We now show the partitioning of the feasible inventory set into the stated inject, do nothing, and

withdraw regions. It is obvious that −bi(0,F i) ≤ 0 and ȳ − bi(ȳ,F i) ≥ 0. Our characterization of

bi(yi,F i) as a piecewise linear function of yi with slopes 0 or 1 implies that (i) bi(yi,F i) is continuous

and nondecreasing in yi, and (ii) yi− bi(yi,F i) is a nondecreasing function of yi. The first property

implies that the set {yi|yi = bi(yi,F i)} is a nonempty closed interval. Thus, the functions bi(F i)

and bi(F i) are well defined. The second property implies that an optimal storage action does not

increase in yi, which proves the partitioning of the inventory interval into the inject, do nothing,

and withdraw regions and the target function returns values that lie in the region of this partition

that yi belongs to.

When yi is within an interval [qG, (q+ 1)G] the target function is either (i) equal to a constant,

which implies that an optimal storage action increases at rate 1 in yi and the value function Vi(·,F i)

inherits the slope of r̄i(·, si) or (ii) increases with slope 1, the optimal action is a constant, and the

value function Vi(·,F i) inherits the slope of the continuation function Wi(·,F i). Since both r̄i(·, si)

and Wi(·,F i) are piecewise linear functions with slope changes at multiples of G, the claimed result

follows.

The claimed properties hold for all the stages by the principle of mathematical induction. The

decision rule (15) tries to change the current storage inventory level to the basestock target function

value while accounting for the storage injection and withdrawal capacities.
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C Dual Upper Bound

In this section we discuss the estimation of a dual upper bound on the market value of an optimal

policy of our MDP (Brown et al. 2010 and references therein). Such a bound is based on performing

hindsight optimizations in which knowledge of future information is penalized using dual penalties.

We denote by ui(yi+1,F i,F i+1) the dual penalty in stage i given yi+1, F i, and F i+1. Specifically,

these penalties penalize knowledge in stage i of the array of forward curves F i+1 and must satisfy the

feasibility condition E[ui(yi+1,F i,F i+1)|F i] ≤ 0 (see Brown et al. 2010 for details). Once feasible

dual penalties are specified, we estimate dual upper bounds in Monte Carlo simulation using the

same set of L simulation sample paths {F l
i, i ∈ I \ {0}, l = 1, 2, . . . , L} employed for lower bound

estimation. A point estimate U l0(y0) of an upper bound on V0(y0,F 0) can be computed based on

the l-th sample path of the arrays of forward curves by solving the following dynamic program,

∀(i, yi) ∈ I × Y ′:

U li (yi) = max
yi+1∈Z′i(yi)

r̄(yi − yi+1, s
l
i)− ui(yi+1,F

l
i,F

l
i+1) + δU li+1(yi+1),

with boundary conditions U lN (yN ) := 0, ∀yN ∈ Y ′. An upper bound estimate on the optimal policy

value V0(y0,F 0) is obtained by averaging the point estimates U l0(y0), ∀l ∈ {1, 2, . . . , L}. We consider

the following feasible dual penalties defined using the MLSM value function approximation (17):

V̂i+1(yi+1,F i+1; β̄i+1,yi+1)− E
[
V̂i+1(yi+1,F i+1; β̄i+1,yi+1)|F i

]
. (35)

As alluded to in §5, our choice of basis functions allows the exact computation of the expectation

in (35), which is critical to keep the CPU time required for numerically estimating a dual upper

bound to a manageable level.

D Additional Numerical Results

Table 4 includes the LB and UB values, their standard errors, and the LB and UB ratios.
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Table 4: LB and UB values with standard errors in parentheses and the LB/UB percentages

Year Month LB/UB (%) LB ($/MMBtu) UB ($/MMBtu)

2011 Jun 99.770 12.596 (0.019) 12.625 (0.001)
2011 Jul 99.731 10.377 (0.019) 10.405 (0.002)
2011 Aug 99.764 11.396 (0.021) 11.423 (0.002)
2011 Sep 99.914 12.778 (0.023) 12.789 (0.002)
2011 Oct 100.015 12.997 (0.023) 12.995 (0.002)
2011 Nov 99.978 13.634 (0.023) 13.637 (0.002)
2011 Dec 99.986 14.758 (0.021) 14.760 (0.002)
2012 Jan 99.949 13.637 (0.019) 13.644 (0.002)
2012 Feb 99.880 14.126 (0.014) 14.143 (0.001)
2012 Mar 99.859 12.715 (0.012) 12.733 (0.001)
2012 Apr 99.917 11.986 (0.011) 11.996 (0.001)
2012 May 99.914 10.463 (0.012) 10.472 (0.001)
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