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Abstract

In this paper, we develop a model that allows evaluating the finan-
cial effects of leveraged buyouts (LBOs) from the perspective of the
investor. We provide explicit form solutions for all payoffs from acqui-
sition to exit and therefore feature the determination of net present
value (NPV) and internal rate of return (IRR). The model is based
on a boundary crossing approach where the default of the target firm
is represented as a lower piecewise linear barrier. Those default bar-
riers either consist of debt repayment and interest expenses or are
contractually-fixed by covenants like debt-to-EBITDA. Our approach
features the typical LBO debt repayment schedules: fixed and cash
sweep. Furthermore, the model captures all drivers of performance
and leverage identified by empirical studies: firm-specific ones like
profitability, cash flow growth, volatility, and liquidation value as well
as external ones like credit risk spreads and pricing discounts for debt
overhang.
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1 Introduction

Leveraged buyouts (LBOs) are a specific type of corporate transactions in

which the buyer, often private equity (PE) funds, acquires the target com-

pany with a small portion of equity but a large portion of debt for a limited

period of time (on average three to five years, see e.g. Kaplan and Strömberg

2008). The initial debt level is reduced stepwise over the holding period ei-

ther through predefined fixed repayments or depending on the generated cash

flows (“cash sweep” repayment). The role of debt in these transactions is dis-

cussed highly controversial: critics claim that high leverage exposes target

firms to high bankruptcy risks and allows PE investors to reap unjustifiably

high tax savings (e.g. Rasmussen February 2009). Proponents point towards

lower agency costs due to the discipline imposed by corporate debt (based on

Jensen and Meckling 1976) and efficiency gains (see e.g. Berg and Gottschalg

2005) increasing the value of the target firm and allowing to bear a higher

sustainable debt level to create tax savings.

This paper develops a model to evaluate the financial effects in LBOs.

Based on a boundary crossing approach, the model allows to include default

risk and captures the particular feature of dynamic, cash flow dependent debt

redemption in LBOs. The model provides an explicit form solution for the

value of the entire investment, allows for the determination of the internal

rate of return (IRR) and features the distinct evaluation of certain value

drivers like the tax shield.

Some peculiarities of debt in LBOs provide challenges when modelling

its financial effects: first, the level and the portion of debt change over the

holding period. In general, target firms in LBOs carry higher debt levels

and pursue a different redemption policy than their industry peers (Axelson

et al. 2013). Under “cash sweep” redemption a certain percentage of the

realized cash flow after interest and taxes is used to repay debt, a feature

considered to be exclusive to LBOs (Jenkinson and Stucke 2011). Thus,

future debt levels are turned into path dependent stochastic parameters.

Second, default risk is important in the evaluation of LBOs: The public

opinion combines the observed higher debt levels with higher default risks
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for the target firms. While the empirical evidence on this question is mixed
1, there is agreement among researchers that the higher debt levels put more

weight on the importance of default risk when valuing financial effects of

LBO investments.

Since our model combines particular features of debt in LBOs with a

boundary crossing approach introducing potential default, it has to be couched

into the literature on the impact of debt policies on corporate value. There

is a well established body of literature discussing the impact of different

“financing policies”, i.e. strategies of redeeming, taking on new debt and

adapting the level of debt to changes of the economic conditions reflected by

the value of the firm (e.g. Miles and Ezzell (1980), Myers (1974), Cooper

and Nyborg (2010)). These financing policies drive the risk properties of

future debt levels and by doing so, the risk of the tax savings attached to

them. None of the established models reflects completely the debt dynamics

in LBOs: on the one hand, the policy of Miles and Ezzell (1980) assumes

that firms regularly adjust the level of outstanding debt to changes in the

firm value by adapting a state-independent optimal leverage ratio based on

market values. On the other hand, state-independent absolute debt levels, as

first proposed by Myers (1974), also do not properly reflect the “cash sweep”

(path dependent) redemption dynamics of corporate debt often employed in

LBOs. Some models capture the debt dynamics described but do not al-

low for potential default: Arzac (1996) provides two potential solutions, a

recursive APV and an European call option approach. He shows that the

recursive APV still leads to valuation errors since the tax shield needs to be

valued explicitly but the rate of discount is unknown. The option approach

overcomes this difficulty but requires another simplifying assumption: the

firm cannot default on its debt prior to the end of the holding period.

Other models allow for potential default but are unable to capture the

dynamics of debt typically employed in LBOs. The most recent and ad-

vanced model is a barrier option approach developed by Couch et al. (2012).

1Tykvová and Borell (2012) do not find evidence for bankruptcy rates of PE owned
firms being different to their peers. In contrast, Hotchkiss et al. (2014) find a higher
bankruptcy probability. Strömberg (2007) finds roughly 6% of the PE target firms in his
sample to default; however this study does not cover the effects of the financial crisis.
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The model defines the event triggering default as the EBIT hitting a certain

lower constant barrier. In an extension, it allows for one time refinancing

over the infinite lifetime of the firm. Braun et al. (2011) also use a barrier

option approach to introduce potential default in LBOs. In their model, de-

fault occurs when the firm value drops below the face value of debt which is

described by an exponentially declining function. Both models include po-

tential default but do not allow for the specific redemption policies typically

employed in LBOs: First, a fixed and stepwise redemption of debt requires

a stepwise adjustment of the default barrier, imposing technical problems

due to the non-differentiable nature of the barrier. Second, the ”cash sweep”

redemption case even necessitates multiple path-dependent adjustments.

Our paper fills the gap described above: (1) the model allows for fixed,

stepwise redemption and also captures a dynamic, path dependent “cash

sweep” policy. (2) At the same time, it is able to reflect potential default.

We use a boundary crossing approach to construct a default condition. The

mechanics are equivalent to a down-and-out barrier option with rebate. De-

fault occurs either if a cash obligation consisting of repayment plus interest

(fixed redemption) or a cash flow dependent covenant, e.g. allowed interest

coverage or debt-to-EBITDA ratio, is hit within the holding period. While

the classic barrier option literature (e.g. Merton (1973), Cox and Rubin-

stein (1985), Kunitomo and Ikeda (1992), Roberts and Shortland (1997), Lo

et al. (2003)) deals with boundaries that follow a certain differentiable func-

tion, they cannot be used to capture the debt dynamics of LBOs. Hence,

we apply the basic idea of Wang and Pötzelberger (1997) of using piecewise

linear boundaries. This approach offers the opportunity to model any kind of

boundary, also discontinuous ones. Wang and Pötzelberger (2007) extended

their early approach to work also for geometric Brownian motions (gBm).

Our model equations are in explicit form, but complex default boundaries

require numerical integration to solve them (e.g. by Monte Carlo simulation).

Beyond this main contribution, our model meets the requirements for a

realistic evaluation of an LBO. Colla et al. (2012) prove that firm-specific

drivers such as profitability performance (EBITDA) and cash flow volatility

are important determinants for leverage. We reflect these drivers through
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a stochastic cash flow process following a gBm and allowing for changes in

drift and standard deviation. Axelson et al. (2013) identify another feature

that should be introduced in an LBO model: the external conditions of debt

markets. Particularly, they identify the credit risk premium of leveraged

loans as a robust predictor of leverage. We incorporate this feature by the

cost of debt and a penalty term for debt overhang at exit. Finally, the

performance evaluation of LBOs for PE sponsors is different to most other

financial assets. PE investors steer target companies rather by IRR than

by net present value (NPV) (see e.g. Kaplan and Schoar 2005). Our LBO

valuation formulas allow for inversion, thus enabling us to determine the IRR

of the investment.

The remainder of the paper is organized as follows. Section 2 introduces

the model, with section 2.1 stating the basic assumptions, section 2.2 il-

lustrating the specific debt structure requirements and section 2.3 deriving

payoff and present value components. Section 3 presents the stochastics be-

hind the model resulting in solution formulas for the default probability for

specific cases of debt obligations (explicit form solution) and for general ones

(integral solution). In Section 4, we use the stochastic attributes derived

to develop solution formulas for all NPV and IRR components. Section 5

illustrates the results by providing numerical examples. Section 6 concludes

the paper. An extensive appendix is provided to underpin our results.

2 The Model

2.1 Basics of the Model

Let (Ω, F , P) be a probability space and [0, T ] a time interval, where T →
∞ is possible. We assume that the market is free of arbitrage. For each

subjective probability measure P exists an equivalent measure P̂ called the

risk-neutral probability measure. Consider a levered firm whose value in t is

given by V L
t . According to Myers (1974), the value of the levered firm can

be determined by adding the present value of the tax savings from interest

payments on debt, V TS
t , to the value of an otherwise identical but unlevered
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firm V U
t . In every arbitrary period t, the operations of the firm generate

an uncertain unlevered free cash flow stream after taxes of Xt. We assume

that Xt with an initial value of X0 > 0 follows a geometric Brownian motion

(gBm) with constant drift rate µ and constant standard deviation σ according

to

dXt = µX0dt+ σX0dBt, (1)

with Bt =
√
t · Z where Z ∼ N(0, 1) and

Xt = X0 · e(µ−
σ2

2
)·t+σ·Bt . (2)

Others used the gBm for example for modelling the income metric EBIT

(see e.g. Hackbarth et al. 2007, Sundaresan and Wang 2007). In our setting

it suffices to use this assumption for modelling the unlevered after-tax cash

flows.

The corporate tax rate τc and the risk-free rate rf are assumed to be

deterministic and constant. The firm’s debt is subject to the risk of a possible

default. The firm pays interests and redemption on the outstanding total

amount of debt, Dt. The credit risk-adjusted cost of debt is denoted by rD.

In the subsequent analysis we pursue a risk-neutral pricing approach.

2.2 The LBO specific debt structure

Developing our model, we start with the debt structure that is imposed by

the PE sponsor on the target firm since several other variables are directly

linked to this.

Figure 1 shows a development of the LBO firm’s debt level typically

employed in LBOs throughout the holding period in detail. Prior to the

buyout in t = Pre (Pre-LBO) the target firm has a certain total amount

of debt outstanding, D∗Pre, that implies a capital structure which can be

regarded as optimal for the then prevailing business strategy of the firm.

One rationale for the pre-LBO capital structure could be for example the
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trade-off theory. In t = 0, the deal or PE sponsor buys the target firm for a

fixed price (later referred to as initial investment) and imposes a new debt

structure upon the target by redeeming the pre-LBO debt issue. The newly

imposed capital structure in t = 0 with an initial amount of debt D0 implies

in most cases an increased debt level. During the holding period the LBO

induced debt is stepwise reduced by the target. At the end of the holding

period T , the realized total amount of debt is DT . Equivalent to the pre-LBO

phase, there is a certain debt level for the post-LBO phase, D∗T , reflecting an

optimal capital structure (e.g. according to the trade-off theory) for the then

prevailing state of the firm. While the PE sponsor might intend to arrive at

D∗T at the end of the holding period, it is uncertain whether this is achieved.

Realizing a debt level DT > D∗T results in higher tax savings over the holding

period but comes with higher default risk and an increased present value of

future costs of financial distress at exit. We need to reflect this fact when we

derive the payoffs of the model in section 2.3.

Figure 1: Capital Structure Development in an LBO

We analyze two major redemption cases popular in LBOs: fixed and cash

sweep repayment. In the fixed case, there is a predetermined redemption, ft,

in each time point t during the holding period. Hence, the debt levels over
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the holding period can be determined by

Dfixed
t+1 = Dt − ft+1

Dfixed
t+2 = Dt − ft+1 − ft+2

...

Dfixed
T = Dt −

T∑
s=t+1

fs.

(3)

In the cash sweep case, redemption is defined as a proportion a (a ∈ [0, 1])

of the firm’s realized unlevered after-tax cash flow Xt increased by the tax

savings, rD · τc · Dt−1, and reduced by interest payments, rD · Dt−1.
2 The

firm’s future debt levels under such a regime are given as follows:

Dsweep
t+1 = Dt − a · (Xt+1 − (1− τc) · rD ·Dt)

Dsweep
t+2 = Dt − a · (Xt+1 − (1− τc) · rD ·Dt)

− a · (Xt+2 − (1− τc) · rD ·Dsweep
t+1 )

...

Dsweep
T = Dt · (1 + a · (1− τc) · rD)T

− a ·
T∑

s=t+1

Xs · (1 + a · (1− τc) · rD)s−t

(4)

In general, the total debt related cash obligations equal the sum over

redemption and after-tax interest payments, here referred to as cot per period.

This definition is congruent for the fixed and the cash sweep case.

cot = rD ·Dt−1 · (1− τc) + (Dt−1 −Dt) (5)

cofixedt = rD ·Dt−1 · (1− τc) + ft (6)

cosweept = rD ·Dt−1 · (1− τc) + (Dt−1 − a · (Xt − rD ·Dt−1 · (1− τc)))

= Dt−1 · (1 + (1 + a) · rD · (1− τc))− a ·Xt (7)

2For simplicity, we assume a to be a constant parameter. Note that a time dependent
at can be easily implemented into the model.
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If the firm follows a fixed debt redemption, a default/refinancing event will

be triggered if the realized cash flows, Xt, do not cover the cash obligations.

Therefore, we define a default boundary, dbfixedt , as follows:

dbfixedt = cofixedt (8)

In the cash sweep case, debt contracts usually contain also some minimum

requirements, called covenants, for the firm’s cash flows. A typical covenant

is a certain ratio, b, of debt-to-cash flow or debt-to-EBITDA.3 We define the

default boundary, dbsweept , in such a case by

dbsweept =
Dt−1

b
(9)

Using the equations (8) and (9), yields the following going concern and

default/refinancing conditions:

Going concern (gc) : Xt ≥ dbt, for ∀ 0 < t ≤ T, (10)

Default (def) : Xt < dbt, for ∃ 0 < t ≤ T. (11)

We denote the point in time where a default/refinancing happens as d.

Figure 2 illustrates possible scenarios of an LBO. Hitting the default bound-

ary triggers default or refinancing whereas the going concern condition is met

as long as the cash flow stays above the default boundary.

2.3 Payoff Structure and Evaluation of an LBO

In the following we examine the evaluation of an LBO in more detail. We

regard the typically considered financial decision making principles: the net

present value (NPV) approach and in turn the internal rate of return (IRR).

As we want to take the perspective of the deal sponsor, we evaluate the LBO

purely on an equity basis.

An LBO basically generates three different payoffs that can be identified

3For simplicity, we assume b to be a constant parameter. Note that a time dependent
bt can be easily implemented into the model.

9



Figure 2: Potential Cash Flow Paths vs. Default Boundary

by the time of their occurrence: the initial investment to purchase the target

(I0), equity cash flows at each time point during the holding period (POHP ),

and the exit equity value from selling the target company (POExit).

Figure 3: Payoff Structure of an LBO

The initial equity investment I0 is equal to the enterprise deal value V L
0

minus the entry debt D∗Pre. The enterprise deal value is the sum of the

unlevered firm value, V U
0 , and the tax shield value, V TS

0 . For simplicity, we

define V U
0 as a multiple, mEntry, of the unlevered after-tax cash flow to firm,

X0:

I0 = V L
0 −D∗Pre

= V U
0 + V TS

0 −D∗Pre
= mEntry ·X0 + V TS

0 −D∗Pre. (12)

The equity cash flows as payoffs over the holding period depend on

whether the target company is a going concern or is in default. As long
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as the default boundary has not been hit, the equity payoff, POt, is deter-

mined as the difference between the unlevered after-tax cash flow to firm,

Xt, and the cash obligations, cot, as given in equation (6) for the fixed and

in equation (7) for the cash sweep case. After default, in period d, no fu-

ture unlevered after-tax cash flows are generated. The firm only realizes a

liquidation payoff in period d defined as the maximum of zero and the cash

flow in the default period, Xd, plus asset value, Ad, minus current debt, Dd,

minus current cash obligations, cod, minus some default or refinancing costs,

cd.

POt =


POgc

t = Xt − cot, if Xt ≥ dbt (0 < t < d)

POdef,+
t = (Xt + At −Dt − cot − ct)+, if Xt < dbt (t = d ≤ T )

PO0
t = 0, if t > d

(13)

At exit, there is an equity payoff from selling the target company. We

derive the exit equity value based on the following components: the sum

over the unlevered value of the firm (V U
T ) and value of the tax shield (V TS

T ),

reduced by a penalty term for potential debt overhang (V Pen
T ) and the realized

debt level at exit (DT ). Consistent to the entry valuation, we define V U
T =

mExit ·XT as a multiple of the realized unlevered after-tax cash flow at exit,

and attach V TS
T to the target debt level, D∗T , which can be regarded as optimal

for the target firm after exit depending on the then prevailing state of the firm

(e.g. following the trade-off theory). The realized amount of debt at exit can

be potentially higher than the target debt level (DT > D∗T ) which translates

in higher tax savings over the holding period, an increased default risk, and

a higher present value of future costs of financial distress at exit. To reflect

the adverse effect of increased costs of financial distress at exit, we include a

penalty, V Pen
T = k·(DT−D∗T )+. k denotes the penalty cost for each unit of too

high debt. Note that under both redemption regimes (fixed and cash sweep)

differences between DT and D∗T are possible, because D∗T is path dependent4.

4We assume D∗
T to be dependent on the state of the firm at exit, thus implying an

active debt policy (e.g. based on the realized cash flow level). The model also captures
the easier case of D∗

T being a deterministic absolute amount of debt. In this case, fixed
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The PE sponsor can only plan to hit DT = D∗T on expected values. Finally,

DT needs to be subtracted for arriving at an equity payoff. Due to the fact

that the penalty payoff (POPenalty) has an additional condition (DT > D∗T ),

we separate it from the exit payoff (POExit) to facilitate later calculations.

POExit =

{
POgcExit = mExit ·XT + V TS

T −DT , if Xt ≥ dbt (0 < t ≤ T )

POdefExit = 0, if Xt < dbt (0 < t ≤ T )
(14)

POPenalty =


POgcPenalty,+ = k · (DT −D∗T ), if Xt ≥ dbt ∧DT −D∗T > 0

POgcPenalty,− = 0, if Xt ≥ dbt ∧DT −D∗T ≤ 0

POdefPenalty = 0, if Xt < dbt (0 < t ≤ T )

(15)

PE funds identify worthwhile investment projects and measure their perfor-

mance based on their IRR. This in turn requires calculating the NPV as discounted

value of all payoffs from the investment over the holding period until exit.

NPV = −I0 + PVHP + PVExit − PVPenalty, (16)

where PV(Exit)−PVPenalty denotes the price of the firm’s equity at exit, PVHP the

present value of all payoffs during the holding period and I0 the initial investment.

The IRR is then a function g of the aforementioned variables by setting NPV = 0.

IRR = g(NPV = 0, I0, PVHP , PVExit, PVPenalty) (17)

Following a risk-neutral pricing approach with continuously changing cash

flows, we use e−r·t for discounting the payoffs. The distinction between going

concern and default is captured with an indicator function, Icondition, that by def-

inition is equal to one if the specified condition is satisfied and zero if it is not.

With these notations at hand, we can derive the components of the NPV:

I0 = mEntry ·X0 + V TS
0 −D0 (18)

debt redemption should always lead to DT = D∗
T .

12



PVHP =

T∑
t=1

e−r·t · E
(
POgct · I{Xt≥dbt,0<t≤d}

)
+ e−r·d · E

(
POdef,+d · I{Xd<dbd,0<d≤T}

)
=

T∑
t=1

e−r·t · E
(
POgct · I{Xt≥dbt,0<t≤d}

)
+ e−r·d · E

(
POdefd · I{Dd+cod+cd−Ad≤Xd<dbd,0<d≤T}

)
(19)

PVExit = e−r·T · E
(
POgcExit · I{Xt≥dbt,0<t≤T}

)
(20)

PVPenalty = e−r·T · E
(
POgcPenalty,+ · I{Xt≥dbt,0<t≤T}

)
= e−r·T · E

(
POgcPenalty · I{Xt≥dbt,XT<D∗

T
l
,0<t≤T}

)
(21)

In the next section, we develop an approach to transform the indicator func-

tions in explicit form solutions allowing to evaluate the financial effects of an LBO

by simple numerical integration.

3 Derivation of Useful Stochastic Properties

In our model a default/refinancing is triggered by the unlevered after-tax cash

flow, Xt, hitting the default barrier, dbt. For both redemption cases examined,

such a structure is equivalent to a down-and-out barrier option where the default

barrier is the lower boundary.

As our model captures dynamic redemption schedules, it needs to allow for

stepwise changing and/or path dependent boundaries. Thus, the Black Scholes

Merton framework requiring constant or exponential boundaries cannot be used

to derive explicit analytic formulae. Roberts and Shortland (1997) and Lo et al.

(2003) find valuable approximation approaches for any kind of boundary that can

be expressed as a continuous and differentiable function throughout the examined

interval. The redemption cases analyzed here need to allow for discontinuous

boundaries (see figure 2). Therefore, we follow the idea of Wang and Pötzelberger

(1997) to apply piecewise linear boundaries. The equations under this approach

are in explicit form and can be solved by the repeated application of numerical

integration (e.g. through Monte Carlo simulation).

We proceed in three steps: first, we present an explicit analytic solution for the

default probability of a standard (arithmetic) Brownian motion with drift versus

13



a constant default barrier. Second, we replace the standard Brownian motion by

the geometric one described in equation (2). This solution will still be in explicit

analytic form. Finally, we use the results of Wang and Pötzelberger (1997) to

arrive at an equation in explicit integral form for any kind of piecewise linear

default barriers.

3.1 Standard Brownian Motion versus Constant De-

fault Barrier

We start from a Brownian motion without drift, Bt, and adjust it to one with

drift, B̂t:

B̂t = α · t+Bt (22)

The minimum M̂t of such a process under the prerequisites M̂t ≤ 0 and B̂t ≥
M̂t is defined by:

M̂t = min
0≤t≤T

B̂t (23)

Hence, M̂t and B̂t take values in the set {(m, b);w ≥ b,m ≤ 0}. This allows

to derive the joint density function of M̂t and B̂t under the real world probability

measure P (a detailed derivation can be found in appendix 7.1):

fM̂t,B̂t
(m, b) =

2 · (b− 2 ·m)

t ·
√

2 · π · t
· eα·b−

1
2
·α2·t− (2·m−b)2

2·t (24)

On the basis of this density function, we are able to derive P
{
M̂t ≥ m

}
which

is the probability that the lower boundary, m, is not crossed during the holding

period:

P
{
M̂t ≥ m

}
=

1√
2 · π · t

·
∞∫
m

e−
1
2·t ·(b−α·t)

2

db

− 1√
2 · π · t

· e2·α·m ·
∞∫
m

e−
1
2·t ·(b−2·m−α·t)

2

db (25)

= N

(
α · t−m√

t

)
+ e2·α·m ·N

(
α · t+m√

t

)
(26)
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The complementary probability is the default probability:

P
{
M̂t < m

}
=

1√
2 · π · t

·
m∫

−∞

e−
1
2·t ·(b−α·t)

2

db

− 1√
2 · π · t

· e2·α·m ·
m∫

−∞

e−
1
2·t ·(b−2·m−α·t)

2

db (27)

= N

(
m− α · t√

t

)
+ e2·α·m ·N

(
m+ α · t√

t

)
(28)

3.2 Geometric Brownian Motion versus Constant De-

fault Barrier

Replacing the standard Brownian motion with drift α by our cash flow process,

Xt, following a gBm yields:

P
{
X0 · e

(
r−σ

2

2

)
·t+σ·Mt < db

}
(29)

=P
{

1

σ
·
(
r − σ2

2

)
· t+Mt < ln

(
db

X0

)
· 1

σ

}
(30)

Transforming equation (29) into (30) reveals a structure equivalent to the one

from equation (22). The term 1
σ (r − σ2

2 ) in equation (30) is equivalent to α in

equation (22). Also, the lower boundary m from equations (24) to (27) has been

adjusted to ln( dbX0
) · 1σ for the gBm process used in our model:

P
{
α · t+Mt = M̂t < m

}
(31)

with :

α =
1

σ
·
(
r − σ2

2

)
(32)

m =
1

σ
· ln

(
db

X0

)
(33)

To conclude, pasting α and m from equations (32) and (33) into equations (24)

and (27) yields formulas for the joint density function of M̂t and B̂t under the real

world probability measure P and for the default probability, if the process follows

a gBm.
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3.3 Geometric Brownian Motion versus Piecewise Lin-

ear Default Barriers

In this section we generalize equations (24) and (27) for a default boundary that

is a polygonal function over the holding period. We extend the approach of Wang

and Pötzelberger (1997) for standard Wiener Processes without drift towards a

gBm with drift.

For providing a general solution, we proceed on the assumption that the holding

period (0 ≤ t ≤ T ) can be divided in n-intervals (0 = t0 < t1 < ... < tn = T ) and

set the lower boundary, mt, constant on each of the intervals [tj−1, tj ], j = 1, 2, ..., n

and m0 < 0. For our specific problem of LBO valuation, it is important to note

that t0 = 0, t1 = 1, ..., tn = T , and t is the parameter describing the points in time

within the holding period.

The probability that the modified Wiener Process B̂t does not cross mt on

the interval [0, T ] can be split into n conditional events that B̂t does not cross

mt on the interval [tj , tj+1] given that B̂(t) has not crossed m(t) on the interval

[tj−1, tj ]. For each of these intervals, the conditional probability can be calculated

by equation (25). For connecting the intervals, we restate equation (25) in a form

with only one integral:

P
{
M̂t ≥ m

}
=

1√
2 · π · t

·
∞∫
m

e−
1
2·t ·(m−α·t)

2

db

− 1√
2 · π · t

· e2·α·m ·
∞∫
m

e−
1
2·t ·(m−2·m−α·t)

2

db

=

∞∫
m−α·t

(
1− e−

2·m·(m−α·t−x)
T

)
· 1√

2 · π · t
· e−

x2

2·tdx

=

∞∫
m−α·t

(
1− e−

2·m·(m−α·t−x)
T

)
· f(x)dx (34)

with :

f(x) =
1√

2 · π · t
· e−

x2

2·t (35)

Next, we apply and adjust Theorem 1 from Wang and Pötzelberger (1997) to

derive the crossing probability for a piecewise linear boundary mt and a Brownian
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Motion with drift α. For easier expression, we define tj − tj−1 = ∆tj .

P
{
M̂t < mt, t ≤ T

}
= 1− E {g (Bt1 , ..., Btn ,mt1 , ...,mtn)} , (36)

with :

g (x1, ..., xn,m1, ...,mn)

=

n∏
j=1

I(xj+α·∆tj≥mj) ·

(
1− e−

2·(mj−1−α·∆tj−1−xj−1)·(mj−α·∆tj−xj)
∆tj

)
(37)

By applying equation (34) on all time steps, we can transform equation (36)

into an integral function of the form:

P
{
M̂t < mt, t ≤ T

}
= 1−

∞∫
m−α·t

 n∏
j=1

(
1− e−

2·(mj−1−α·∆tj−1−xj−1)·(mj−α·∆tj−xj)
∆tj

)

·
n∏
j=1

1√
2 · π ·∆tj

· e−
(xj−xj−1)

2

2·∆tj

 dx
= 1−

∞∫
m−α·t

[h(m,x) · k(x)] dx (38)

with :

h(m,x) =
n∏
j=1

(
1− e−

2·(mj−1−α·∆tj−1−xj−1)·(mj−α·∆tj−xj)
∆tj

)
(39)

k(x) =
n∏
j=1

1√
2 · π ·∆tj

· e−
(xj−xj−1)

2

2·∆tj (40)

Plugging in the equations for α and m from (32) and (33), allows to arrive at

an explicit formula for the default probability reflecting a gBM versus piecewise

linear default barriers, thus, reflecting the dynamics of the redemption policies of

LBO investments.

For n = 1, equation (36) can be solved analytically, otherwise numerical in-

tegration is required, e.g. via Monte Carlo simulation in MATLAB or MATHE-
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MATICA. We provide an application example in chapter 5.

4 Explicit Form Solution

With equation (36) from the previous section we can solve the expected values of

the NPV components (equations (18) to (21)) for both redemption cases analyzed

(cash sweep or fixed). For cash sweep redemption, our model yields stochastic

default boundaries. The structure of the nested integrals in our model allows to

find solutions for this problem.

In general, we use the common relationship for continuous random variables,

E(X) =

∫ ∞
−∞

X · f(x)dx (41)

where f(x) is the density function of the random variable X. The indicator

functions in PVHP , PVExit and PVPenalty change the regions of the integrals. In

the cash sweep case, the stochastic default boundary complicates the numerical

integration and requires a further adjustment of the integral regions as presented

in this section.

We illustrate the necessary transformations of equations (18) to (21) for the

example of PVExit. We start with equation (20) and transform it by using equation

(41) to

PVExit = e−r·T · E
(
POgcExit · I{Xt≥dbt,0<t≤T}

)
(42)

= e−r·T ·
∞∫
−∞

POgcExit · I{Xt≥dbt,0<t≤T} · h(db, x) · k(x)dx (43)

In preparation for the adjustment of the integral regions, we solve the indicator

function for the random variable x:

I{Xt≥dbt,0<t≤T} = I{X0·eα·σ·t+σ·x≥dbt,0<t≤T}

= I{x≥ 1
σ
·ln
(
dbt
X0

)
−α·t,0<t≤T} (44)

To facilitate our notation, we define an adjusted default boundary, dbt:

dbt =
1

σ
· ln
(
dbt
X0

)
− α · t (45)
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Finally, we cancel out the indicator function from equation (43) by adjusting

the lower bound of the integrals according to equation (44):

PVExit = e−r·T ·
∞∫

dbt

POgcExit · h(db, x) · k(x)dx. (46)

Equation (46) is valid for both types of debt redemption. In the cash sweep

case dbt is stochastic which might inflate the numerical integration. To facilitate

the calculation, we take a closer look at dbt. The expression contains a natural

logarithm which is not defined for values smaller or equal to zero. We note that

dbsweept

X0
=
Dt−1
b ·X0

> 0. (47)

By developing this non-negative condition for the first periods, we derive a

general rule for our random variables xt. As shown in appendix 7.2 the upper

boundaries to the integrals with a lag of one time period are

ubt−1 =
1

σ
· ln

(
D0 · (1 + a · rD · (1− τc))t−1

a ·X0 · e
∑t−2
s=1(µ−

σ2

2
)·s

−
t−2∑
s=1

eσ·xs · (1 + a · rD · (1− τc))s
)
− αt−1 · ((t− 1)− (t− 2)). (48)

To conclude, for cash sweep debt repayment we can adjust the upper boundaries

of the integral regions from +∞ to ubt−1.

For the next term in our analysis, PVPenalty, we perform the same transfor-

mations as for PVExit but have to note that one additional adjustment has to be

considered with respect to the indicator condition of the exit period: XT <
D∗
T
l .

Hence, the integral for the exit period comprises an upper boundary in addition

to the lower one. The present value PVPenalty is determined via

PVPenalty = e−r·T · POgcPenalty · I{Xt≥dbt,XT<D∗
T
l
,0<t≤T}

(49)

= e−r·T ·
∞∫

dbt
for t<T

D∗
T
l∫

dbT

POgcPenalty · h(db, x) · dx. (50)
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Again, we adjust the upper boundaries under cash sweep debt repayment from

+∞ to ubt−1 for all periods prior to the exit period.

For the remaining term, PVHP , we perform the same transformations as before

and reflect the default case within each time period. The default probability for

each period is derived as the difference between the going concern probability up

to the previous period and the going concern probability up to the current period.

Multiplying this default probability with the default payoff, POdefd , yields the

expected default payoff.

PVHP =
T∑
t=1

e−r·t · POgct · I{Xt≥dbt,0<t≤d}

+ e−r·d · POdefd · I{Dd+cod+cd−Ad≤Xd<dbd,0<d≤T} (51)

=

T∑
t=1

e−r·t ·
 ∞∫
dbt

POgct · h(db, x) · k(x)dx

+ POdefd ·

 ∞∫
dbt−1

h(db, x) · k(x)dx−
∞∫

dbt

h(db, x) · k(x)dx



 (52)

As being certain, the last component of our NPV formula, I0, does not need

any adjustment. Thus, our model contains explicit valuation equations for all

NPV components allowing to evaluate any kind of leveraged buyout from a buyer

perspective. Particularly, our model allows to determine the IRR of any investment

by choosing the discount rate r = IRR that meets the condition NPV = 0.

For simpler redemption schedules, where the default boundary is a linear or

exponential function, the equations of our model even allow for explicit analytic

solutions.

5 Example

In order to demonstrate the capabilities of our model, we present an illustrative

example. Our target firm is called Illu Corp. The buyer, PREQ Funds, has a

projected holding period of three years and strives to increase the current unlevered

after-tax cash flow to firm of USD 100 m by 5% in year one, 15% in year two, and

10% in year three. The firm’s operating risk is proxied by the industry average

20



with a standard deviation of the cash flow’s relative change of 10%. Furthermore,

the initial debt level is USD 650 m. Over the three years holding period, the

fund is following a fixed redemption with annual down payments of USD 70 m,

USD 55 m and USD 80 m, respectively. The risk-adjusted cost of debt for such a

plan is 7% p.a. The corporate tax rate is at 40%. Illu Corp has assets valued at

USD 300 m that are kept constant over the next three years. In case of a default,

PREQ Funds expects costs of financial distress of USD 50 m. The acquisition price

PREQ Funds negotiated is at USD 920 m reflecting a multiple of 8 in relation to

the current unlevered after-tax cash flow and a tax shield of USD 120 m based on

the corporate tax rate and a pre-deal debt of USD 300 m.

Table 1: Assumptions for the Exemplary LBO

Assumptions

After-tax Cash Flow Assets Debt and Tax

X0 $100 m A0 $300 m D0 $650 m

µ1 5% A1 $300 m f1 $70 m

µ2 15% A2 $300 m f2 $55 m

µ3 10% A3 $300 m f3 $80 m

σ 10% rD 7%

τ 40%

Multiples Others

mEntry 8x rf 5%

mExit 8x c $50 m

l∗ 3x k $1.50

Conservatively, PREQ Funds projects an exit price in three years time based

on the same multiple. The target debt level at exit is determined as a multiple,

l∗ = 3, of the unlevered after-tax cash flow at exit. In case the realized debt level

will be higher than the target level at exit, PREQ Funds faces a cost of USD 1.5 for

each dollar of debt above the target level. Table 1 provides all relevant information

of the example.

The fixed redemption schedule results in debt levels of D1 = $580m, D2 =

$525m, and DExit = $445m. Based on this information, the cash obligations per

year, cofixedt , can be determined by equation (6): cofixed1 = $97.30m, cofixed2 =

$79.36m, and cofixed3 = $102.05m. In our example, we consider the obligations to

determine the default boundary. Hence, we look at a default boundary as in figure

4.
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Figure 4: Cash Obligation of Exemplary LBO vs. one Potential Cash Flow Path

Having calculated the default probability and the NPV based on the equations

of our model, we control the results by an extensive simulation with 200,000 cash

flow paths that follow a gBm with the µ and σ parameters defined above. In order

to smooth the simulation process towards a steady gBm, we use 500 time steps per

year. Figure 5 illustrates the cash flow paths produced by the simulation model

and their relationship to the cash obligations.
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Figure 5: Cash Obligation of Exemplary LBO vs. 200,000 Cash Flow Paths

Based on equation (36), we find the cumulative default probability over the

holding period to be 30.28%, while the extensive simulation results in 30.37% with

a standard error of 0.10%pts. Hence, our solution lies well within a one standard

error range. Figure 5 depicts the cumulative default probability over the holding

period.

Figure 6: Cumulative Distribution Function of Default Probability - Fixed Debt Repay-
ment
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Table 2 compares the results of our model (equations (46), (49) and (52))

against the ones derived based on the simulation model. Our explicit form solution

arrives at a final NPV for the equity investors of USD 286.2793 m while the

extensive simulation results in USD 285.6018 m with a standard error of USD

1.1711 m. Again, the explicit form solution stays within a one standard error

range.

Table 2: Results for the Exemplary LBO - Fixed Debt Repayment

Summary

NPV Explicit Simulation

Components Form Solution Mean -2 Std. Errors +2 Std. Errors

I0 -$270.0000 m -$270.0000 m -$270.0000 m -$270.0000 m

PV1 $8.6552 m $8.6476 m $8.6080 m $8.6872 m

PV2 $31.4998 m $31.4741 m $31.3593 m $31.5889 m

PV3 $24.3173 m $24.2981 m $24.1819 m $24.4143 m

PVExit $524.2060 m $523.6416 m $521.7312 m $525.5520 m

PVPenalty -$32.3990 m -$32.4596 m -$32.6208 m -$32.2984 m

NPV $286.2793 m $285.6018 m $283.2596 m $287.9440 m

The corresponding IRRs for both calculations are determined via iteration.

For the explicit form solution, the IRR is 29.9544% while the extensive simulation

yields 29.9468%.

Looking at cash sweep as the second redemption case analyzed here, we as-

sume a = 80% as the ratio of the cash flows after interests being used to repay

debt during the holding period. With respect to the debt covenant, the multiple

triggering the default case is b = 7.0 meaning that the debt level Dt−1 should never

exceed Xt · b.
We use equation (36) to determine the default probability and perform the

adjustments to the upper boundary as described in the previous section. Our

model derives a default probability over the holding period of 16.93%. The highest

fraction of this risk is generated in the first period (11.90% default risk in the first

year) due to the ambitious covenant chosen in the example. After the first period,

the incremental default risk is significantly lower than under fixed redemption.

Figure 7 depicts the development of the cumulative default probability over time.
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Figure 7: Cumulative Distribution Function of Default Probability - Cash Sweep Debt
Repayment

Based on equations (46), (50), and (52), the NPV of this deal under cash sweep

redemption is equal to USD 357.5129 m (extensive simulation: USD 358.9494),

while the IRR amounts to 33.9314% (extensive simulation: 33.9038%). Table 3

illustrates the results for the different components and compares the results of the

model against the extensive simulation.

Table 3: Results for the Exemplary LBO - Cash Sweep Debt Repayment

Summary

NPV Explicit Simulation

Components Form Solution Mean -2 Std. Errors +2 Std. Errors

I0 -$270.0000 m -$270.0000 m -$270.0000 m -$270.0000 m

PV1 $13.4192 m $13.3725 m $13.3479 m $13.3971 m

PV2 $15.2391 m $15.2874 m $15.2512 m $15.3236 m

PV3 $16.8727 m $16.9290 m $16.8856 m $16.9724 m

PVExit $620.2090 m $622.1391 m $620.4851 m $623.7931 m

PVPenalty -$38.2271 m -$38.9874 m -$38.9874 m -$38.5698 m

NPV $357.5129 m $358.9494 m $356.9824 m $360.9164 m

The explicit form solutions for all NPV components lie within ±2 standard

errors of the extensive simulation.
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Finally, the model can also be used to optimize the debt policy of the portfolio

firm. It can be applied to calculate the default probability and the IRR as a

function of D0 and a. Figure 8 and 9 depict the results.

Figure 8: Default Probability for Combinations of D0 and a

Figure 9: IRR for Combinations of D0 and a

As expected, increasing the initial debt level, D0, yields a higher default proba-

bility. If the buyer decides to increase the cash sweep ratio, a, the default probabil-
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ity slightly decreases. Figure 9 illustrates that there is an optimal leverage scenario

in our example maximizing the IRR at 34.5223% with D0 = 625 and a = 70%. The

default probability of this scenario is 9.2654%. Appendix 7.3 provides tables with

default probabilities (Table 4) and IRRs (Table 5) for the different debt scenarios.

Additionally, the model also supports in optimizing the risk-return relationship

for any given investor’s risk appetite by combining explicit default probabilities and

IRRs. Figure 10 shows the risk-return relationships for all calculated combinations

of D0 and a in our example.

Figure 10: IRR vs. Default Probability for all Combinations of D0 and a

Removing all dominated and non-efficient combinations of D0 and a yields the

trade-off relation shown in figure 11.
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Figure 11: IRR vs. Default Probability for Dominant Combinations of D0 and a

Table 6 in appendix 7.3 provides a table with the top 100 combinations of D0

and a ordered by descending IRR. The table also depicts the corresponding default

probabilities and efficient combinations.

The example highlights the ability of our model to evaluate and compare dif-

ferent structures of an LBO deal by combining return measures with default prob-

ability. Hence, the model offers support for optimizing risk-return trade-offs for

different levels of investors’ risk appetites.

6 Conclusion

In this paper, we derive a novel model for evaluating LBOs based on boundary

crossing probabilities. It captures both types of debt redemption: the fixed pre-

determined one and the dynamic, path dependent one known as ”cash sweep”.

Our model incorporates lower boundaries to the stochastic cash flow process that

trigger default if they are hit. These boundaries can be either derived from cash

obligations (redemption plus interest payments) or covenants (e.g. debt-to-cash

flow ratio). Elaborating further on the idea of Wang and Pötzelberger (1997),

the model allows to determine default probabilities by applying nested integrals

that can be solved numerically. While attaching default probabilities to different
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redemption schedules, it also provides explicit form solutions for the valuation of

an LBO. Thus, the risk-return relationship for any kind of LBO structure can be

determined. Applying the model to an exemplary LBO deal shows that it works

accurate and delivers insightful results.
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7 Appendix

7.1 Density Function of Brownian Motion with Drift

and its Minimum

In this chapter, we derive the joint density function of a Brownian motion with

drift Ŵ (t) and its minimum M̂(t).

First, we start from a Brownian motion without drift W̃ (t) and adjust it in a

way that a Brownian motion with drift Ŵ (t) is generated:

Ŵ (t) = α · t+ W̃ (t) (53)

Next, we define the minimum M̂(t) of such a process under the prerequisites

M̂(t) ≤ 0 and Ŵ (t) ≥ M̂(t):

M̂(t) = min
0≤t≤T

Ŵ (t) (54)

According to the Girsanov Theorem, we define a new probability measure P̂
under which Ŵ (t) has zero drift:

Ẑ(t) = e−α·W̃ (t)− 1
2
·α2·t = e−α·Ŵ (t)+ 1

2
·α2·t (55)

P̂ (A) =

∫
A

Ẑ(T )dP̃ (56)

For a process without drift, we know the joint density function with its mini-

mum from the Reflection Principle (for detailed derivation see for example Shreve

2004):

f̂M̂(t),Ŵ (t)(m,w) =
2 · (w − 2 ·m)

t ·
√

2 · π · t
· e

−(2·m−w)2

2·t (57)

Knowing all this, we can finally derive the density of M̂(t) and Ŵ (t) under P̃,

the real-world probability:

P̃{M̂(t) ≥ m, Ŵ (t) ≥ w} = Ẽ{I{M̂(t)≥m,Ŵ (t)≥w}}
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= Ê{ 1

Ẑ(t)
· I{M̂(t)≥m,Ŵ (t)≥w}}

= Ê{eα·Ŵ (t)− 1
2
·α2·t · I{M̂(t)≥m,Ŵ (t)≥w}}

=

∞∫
m

∞∫
w

eα·Y−
1
2
·α2·T · f̂M̂(t),Ŵ (t)(x, y)dxdy

δ2P̃{M̂(t) ≥ m, Ŵ (t) ≥ w}
δmδw

= eα·w−
1
2
·α2·t · f̂M̂(t),Ŵ (t)(m,w)

=
2 · (w − 2 ·m)

t ·
√

2 · π · t
· eα·w−

1
2
·α2·t− (2·m−w)2

2·t (58)

7.2 Upper Boundaries to the Integral Regions under

Cash Sweep Debt Repayment

For cash sweep debt repayment we face a default barrier, dbt, that is stochastic:

dbt =
1

σ
· ln
(
dbsweept

X0

)
− α · t (59)

with : (60)

dbsweept =
Dt−1
b

(61)

Dt−1 = Dt−2 − a · (Xt−1 − (1− τc) · rD ·Dt−2) (62)

Such an expression complicates numerical integrations. Hence, we look for

additional limits to our integral regions in order to facilitate the calculation. By

examining the term within the natural logarithm, we note that

dbsweept

X0
=
Dt−1
b ·X0

> 0. (63)

We develop this non-negative condition for the first periods and derive a general

rule for our random variables xt:

t=1:
dbsweep1

X0
=

D0

b ·X0
> 0

D0 > 0 (64)
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t=2:
dbsweep2

X0
=
D0 − a · (X0 · e(µ−

σ2

2
)·1+σ·x1 − (1− τc) · rD ·D0)

b ·X0
> 0

1

σ
· ln
(
D0 · (1 + a · rD · (1− τc))

a ·X0

)
− α1 · 1 > x1 (65)

...

t=T:
dbsweepT

X0
=
DT−2 − a · (X0 · e(µ−

σ2

2
)·((T−1)−(T−2))+σ·xT−1 − (1− τc) · rD ·Dt−2)

b ·X0
> 0

ln

(
D0·(1+a·rD·(1−τc))T−1

a·X0·e
∑T−2
t=1 (µ−σ2

2 )·t
−
∑T−2

t=1 e
σ·xt · (1 + a · rD · (1− τc))t

)
σ

− αT−1 · ((T − 1)− (T − 2)) > xT−1 (66)

What we find are upper boundaries to our integrals with a lag of one time

period. Therefore, we define:

ubt−1 =
1

σ
· ln

(
D0 · (1 + a · rD · (1− τc))t−1

a ·X0 · e
∑t−2
s=1(µ−

σ2

2
)·s

−
t−2∑
s=1

eσ·xs · (1 + a · rD · (1− τc))s
)
− αt−1 · ((t− 1)− (t− 2))

(67)

To conclude, for cash sweep debt repayment we can adjust the upper bound-

aries of the integral regions from +∞ to ubt−1.
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7.3 Comparison of Leverage Scenarios

Table 4: Default Probability for Combinations of D0 and a

Cash sweep ratio

12.5% 15.0% 17.5% 20.0% 22.5% 25.0% 27.5% 30.0% 32.5% 35.0% 37.5% 40.0% 42.5% 45.0% 47.5% 50.0% 52.5% 55.0%

D
e
b
t

le
v
e
l

a
t

e
n
tr

y

387.5 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

400 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

412.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

425 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

437.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

450 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

462.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

475 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

487.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

500 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

512.5 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

525 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%

537.5 0.5% 0.5% 0.5% 0.5% 0.5% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.3% 0.3% 0.3% 0.3% 0.3%

550 0.9% 0.9% 0.9% 0.8% 0.8% 0.8% 0.8% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.6% 0.6% 0.6% 0.6% 0.6%

562.5 1.5% 1.5% 1.4% 1.4% 1.4% 1.3% 1.3% 1.3% 1.3% 1.2% 1.2% 1.2% 1.2% 1.1% 1.1% 1.1% 1.1% 1.1%

575 2.5% 2.4% 2.4% 2.3% 2.3% 2.2% 2.2% 2.1% 2.1% 2.0% 2.0% 2.0% 1.9% 1.9% 1.9% 1.9% 1.8% 1.8%

587.5 3.8% 3.8% 3.7% 3.6% 3.5% 3.5% 3.4% 3.4% 3.3% 3.3% 3.2% 3.2% 3.1% 3.1% 3.0% 3.0% 3.0% 2.9%

600 5.7% 5.6% 5.5% 5.4% 5.4% 5.3% 5.2% 5.1% 5.1% 5.0% 4.9% 4.9% 4.8% 4.7% 4.7% 4.6% 4.6% 4.5%

612.5 8.3% 8.1% 8.0% 7.9% 7.8% 7.7% 7.6% 7.5% 7.4% 7.3% 7.2% 7.2% 7.1% 7.0% 6.9% 6.9% 6.8% 6.8%

625 11.5% 11.4% 11.2% 11.1% 11.0% 10.8% 10.7% 10.6% 10.5% 10.4% 10.3% 10.2% 10.1% 10.0% 9.9% 9.8% 9.8% 9.7%

637.5 15.5% 15.3% 15.2% 15.0% 14.9% 14.7% 14.6% 14.4% 14.3% 14.2% 14.1% 14.0% 13.9% 13.7% 13.6% 13.5% 13.5% 13.4%

650 20.2% 20.0% 19.9% 19.7% 19.5% 19.4% 19.2% 19.1% 18.9% 18.8% 18.6% 18.5% 18.4% 18.3% 18.1% 18.0% 17.9% 17.8%

662.5 25.7% 25.5% 25.3% 25.1% 24.9% 24.7% 24.6% 24.4% 24.2% 24.1% 23.9% 23.8% 23.7% 23.5% 23.4% 23.3% 23.1% 23.0%

675 31.7% 31.5% 31.3% 31.1% 30.9% 30.7% 30.5% 30.3% 30.2% 30.0% 29.8% 29.7% 29.5% 29.4% 29.3% 29.1% 29.0% 28.9%

687.5 38.1% 37.9% 37.7% 37.5% 37.3% 37.1% 36.9% 36.7% 36.6% 36.4% 36.2% 36.1% 35.9% 35.8% 35.6% 35.5% 35.4% 35.2%

700 44.8% 44.6% 44.4% 44.2% 44.0% 43.8% 43.6% 43.4% 43.3% 43.1% 42.9% 42.8% 42.6% 42.5% 42.3% 42.2% 42.1% 41.9%

712.5 51.5% 51.3% 51.1% 50.9% 50.7% 50.6% 50.4% 50.2% 50.0% 49.9% 49.7% 49.6% 49.4% 49.3% 49.1% 49.0% 48.9% 48.7%

725 58.1% 57.9% 57.7% 57.6% 57.4% 57.2% 57.0% 56.9% 56.7% 56.6% 56.4% 56.3% 56.1% 56.0% 55.9% 55.7% 55.6% 55.5%

737.5 64.4% 64.2% 64.1% 63.9% 63.7% 63.6% 63.4% 63.3% 63.1% 63.0% 62.8% 62.7% 62.6% 62.4% 62.3% 62.2% 62.1% 62.0%

750 70.2% 70.1% 69.9% 69.8% 69.6% 69.5% 69.3% 69.2% 69.1% 69.0% 68.8% 68.7% 68.6% 68.5% 68.4% 68.3% 68.1% 68.0%

762.5 75.5% 75.4% 75.2% 75.1% 75.0% 74.8% 74.7% 74.6% 74.5% 74.4% 74.3% 74.2% 74.1% 74.0% 73.9% 73.8% 73.7% 73.6%

775 80.2% 80.0% 79.9% 79.8% 79.7% 79.6% 79.5% 79.4% 79.3% 79.2% 79.1% 79.0% 78.9% 78.8% 78.8% 78.7% 78.6% 78.5%

787.5 84.2% 84.1% 84.0% 83.9% 83.8% 83.7% 83.6% 83.5% 83.5% 83.4% 83.3% 83.2% 83.2% 83.1% 83.0% 82.9% 82.9% 82.8%

800 87.6% 87.5% 87.4% 87.4% 87.3% 87.2% 87.1% 87.1% 87.0% 86.9% 86.9% 86.8% 86.7% 86.7% 86.6% 86.6% 86.5% 86.4%

812.5 90.4% 90.3% 90.3% 90.2% 90.2% 90.1% 90.0% 90.0% 89.9% 89.9% 89.8% 89.8% 89.7% 89.7% 89.6% 89.6% 89.5% 89.5%

Cash sweep ratio

57.5% 60.0% 62.5% 65.0% 67.5% 70.0% 72.5% 75.0% 77.5% 80.0% 82.5% 85.0% 87.5% 90.0% 92.5% 95.0% 97.5% 100.0%
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387.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.4% 0.6%

400 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.3%

412.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1%

425 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%

437.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

450 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

462.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

475 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

487.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

500 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

512.5 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

525 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

537.5 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2%

550 0.6% 0.6% 0.6% 0.6% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5%

562.5 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.8%

575 1.8% 1.8% 1.7% 1.7% 1.7% 1.7% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%

587.5 2.9% 2.9% 2.8% 2.8% 2.8% 2.7% 2.7% 2.7% 2.7% 2.6% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.5%

600 4.5% 4.4% 4.4% 4.4% 4.3% 4.3% 4.2% 4.2% 4.2% 4.1% 4.1% 4.1% 4.0% 4.0% 4.0% 4.0% 3.9% 3.9%

612.5 6.7% 6.6% 6.6% 6.5% 6.5% 6.4% 6.4% 6.3% 6.3% 6.2% 6.2% 6.2% 6.1% 6.1% 6.0% 6.0% 6.0% 5.9%

625 9.6% 9.5% 9.5% 9.4% 9.3% 9.3% 9.2% 9.1% 9.1% 9.0% 9.0% 8.9% 8.9% 8.8% 8.8% 8.7% 8.7% 8.6%

637.5 13.3% 13.2% 13.1% 13.0% 12.9% 12.9% 12.8% 12.7% 12.7% 12.6% 12.5% 12.5% 12.4% 12.3% 12.3% 12.2% 12.2% 12.1%

650 17.7% 17.6% 17.5% 17.4% 17.3% 17.3% 17.2% 17.1% 17.0% 16.9% 16.8% 16.8% 16.7% 16.6% 16.6% 16.5% 16.4% 16.4%

662.5 22.9% 22.8% 22.7% 22.6% 22.5% 22.4% 22.3% 22.2% 22.1% 22.0% 21.9% 21.9% 21.8% 21.7% 21.6% 21.5% 21.5% 21.4%

675 28.8% 28.6% 28.5% 28.4% 28.3% 28.2% 28.1% 28.0% 27.9% 27.8% 27.7% 27.6% 27.5% 27.4% 27.4% 27.3% 27.2% 27.1%

687.5 35.1% 35.0% 34.9% 34.7% 34.6% 34.5% 34.4% 34.3% 34.2% 34.1% 34.0% 33.9% 33.8% 33.7% 33.6% 33.5% 33.5% 33.4%

700 41.8% 41.7% 41.5% 41.4% 41.3% 41.2% 41.1% 41.0% 40.9% 40.8% 40.7% 40.6% 40.5% 40.4% 40.3% 40.2% 40.1% 40.0%

712.5 48.6% 48.5% 48.4% 48.3% 48.1% 48.0% 47.9% 47.8% 47.7% 47.6% 47.5% 47.4% 47.3% 47.2% 47.1% 47.0% 46.9% 46.9%

725 55.4% 55.2% 55.1% 55.0% 54.9% 54.8% 54.7% 54.6% 54.5% 54.4% 54.3% 54.2% 54.1% 54.0% 53.9% 53.8% 53.8% 53.7%

737.5 61.9% 61.7% 61.6% 61.5% 61.4% 61.3% 61.2% 61.1% 61.0% 60.9% 60.9% 60.8% 60.7% 60.6% 60.5% 60.4% 60.4% 60.3%

750 67.9% 67.8% 67.7% 67.6% 67.5% 67.5% 67.4% 67.3% 67.2% 67.1% 67.0% 66.9% 66.9% 66.8% 66.7% 66.6% 66.6% 66.5%

762.5 73.5% 73.4% 73.3% 73.2% 73.1% 73.1% 73.0% 72.9% 72.8% 72.8% 72.7% 72.6% 72.5% 72.5% 72.4% 72.3% 72.3% 72.2%

775 78.4% 78.4% 78.3% 78.2% 78.1% 78.1% 78.0% 77.9% 77.9% 77.8% 77.7% 77.7% 77.6% 77.5% 77.5% 77.4% 77.4% 77.3%

787.5 82.7% 82.7% 82.6% 82.5% 82.5% 82.4% 82.4% 82.3% 82.2% 82.2% 82.1% 82.1% 82.0% 82.0% 81.9% 81.9% 81.8% 81.8%

800 86.4% 86.3% 86.3% 86.2% 86.2% 86.1% 86.1% 86.0% 86.0% 85.9% 85.9% 85.8% 85.8% 85.8% 85.7% 85.7% 85.6% 85.6%

812.5 89.4% 89.4% 89.3% 89.3% 89.3% 89.2% 89.2% 89.1% 89.1% 89.1% 89.0% 89.0% 89.0% 88.9% 88.9% 88.8% 88.8% 88.8%
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Table 5: IRR for Combinations of D0 and a

Cash sweep ratio

12.5% 15.0% 17.5% 20.0% 22.5% 25.0% 27.5% 30.0% 32.5% 35.0% 37.5% 40.0% 42.5% 45.0% 47.5% 50.0% 52.5% 55.0%
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387.5 27.7% 27.5% 27.5% 27.3% 27.2% 27.1% 27.0% 26.8% 26.7% 26.5% 26.4% 26.2% 26.1% 25.9% 25.8% 25.6% 25.4% 25.3%

400 28.1% 28.0% 27.9% 27.8% 27.7% 27.6% 27.5% 27.3% 27.2% 27.1% 26.9% 26.8% 26.6% 26.5% 26.3% 26.2% 26.0% 25.8%

412.5 28.5% 28.5% 28.4% 28.3% 28.2% 28.1% 28.0% 27.9% 27.7% 27.6% 27.5% 27.3% 27.2% 27.0% 26.9% 26.7% 26.6% 26.4%

425 28.9% 28.9% 28.8% 28.8% 28.7% 28.6% 28.5% 28.4% 28.3% 28.2% 28.0% 27.9% 27.7% 27.6% 27.5% 27.3% 27.1% 27.0%

437.5 29.3% 29.3% 29.2% 29.2% 29.1% 29.1% 29.0% 28.9% 28.8% 28.7% 28.6% 28.4% 28.3% 28.2% 28.0% 27.9% 27.7% 27.6%

450 29.6% 29.6% 29.6% 29.6% 29.6% 29.5% 29.5% 29.4% 29.3% 29.2% 29.1% 29.0% 28.9% 28.7% 28.6% 28.5% 28.3% 28.2%

462.5 29.9% 30.0% 30.0% 30.0% 30.0% 30.0% 29.9% 29.9% 29.8% 29.7% 29.6% 29.5% 29.4% 29.3% 29.2% 29.1% 28.9% 28.8%

475 30.2% 30.3% 30.3% 30.4% 30.4% 30.4% 30.4% 30.3% 30.3% 30.2% 30.1% 30.1% 30.0% 29.9% 29.8% 29.6% 29.5% 29.4%

487.5 30.5% 30.6% 30.7% 30.7% 30.7% 30.8% 30.8% 30.8% 30.7% 30.7% 30.6% 30.6% 30.5% 30.4% 30.3% 30.2% 30.1% 30.0%

500 30.8% 30.9% 31.0% 31.0% 31.1% 31.1% 31.2% 31.2% 31.2% 31.2% 31.1% 31.1% 31.0% 31.0% 30.9% 30.8% 30.7% 30.6%

512.5 31.0% 31.1% 31.2% 31.3% 31.4% 31.5% 31.5% 31.6% 31.6% 31.6% 31.6% 31.6% 31.5% 31.5% 31.4% 31.3% 31.3% 31.2%

525 31.2% 31.4% 31.5% 31.6% 31.7% 31.8% 31.9% 31.9% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0% 31.9% 31.9% 31.8% 31.7%

537.5 31.4% 31.6% 31.7% 31.9% 32.0% 32.1% 32.2% 32.3% 32.3% 32.4% 32.4% 32.4% 32.5% 32.4% 32.4% 32.4% 32.4% 32.3%

550 31.6% 31.8% 31.9% 32.1% 32.2% 32.4% 32.5% 32.6% 32.7% 32.7% 32.8% 32.8% 32.9% 32.9% 32.9% 32.9% 32.9% 32.8%

562.5 31.7% 31.9% 32.1% 32.3% 32.4% 32.6% 32.7% 32.8% 32.9% 33.0% 33.1% 33.2% 33.2% 33.3% 33.3% 33.3% 33.3% 33.3%

575 31.8% 32.0% 32.2% 32.4% 32.6% 32.7% 32.9% 33.0% 33.2% 33.3% 33.4% 33.5% 33.6% 33.6% 33.7% 33.7% 33.7% 33.7%

587.5 31.8% 32.1% 32.3% 32.5% 32.7% 32.8% 33.0% 33.2% 33.3% 33.5% 33.6% 33.7% 33.8% 33.9% 33.9% 34.0% 34.0% 34.1%

600 31.8% 32.0% 32.2% 32.4% 32.6% 32.8% 33.0% 33.2% 33.4% 33.5% 33.7% 33.8% 33.9% 34.0% 34.1% 34.2% 34.2% 34.3%

612.5 31.5% 31.8% 32.0% 32.2% 32.5% 32.7% 32.9% 33.1% 33.3% 33.4% 33.6% 33.7% 33.9% 34.0% 34.1% 34.2% 34.3% 34.4%

625 31.1% 31.4% 31.6% 31.9% 32.1% 32.4% 32.6% 32.8% 33.0% 33.2% 33.3% 33.5% 33.7% 33.8% 33.9% 34.1% 34.2% 34.3%

637.5 30.5% 30.8% 31.1% 31.3% 31.6% 31.8% 32.0% 32.3% 32.5% 32.7% 32.9% 33.1% 33.2% 33.4% 33.6% 33.7% 33.8% 33.9%

650 29.6% 29.9% 30.2% 30.5% 30.7% 31.0% 31.2% 31.5% 31.7% 31.9% 32.2% 32.4% 32.6% 32.7% 32.9% 33.1% 33.2% 33.3%

662.5 28.4% 28.7% 29.0% 29.3% 29.6% 29.9% 30.1% 30.4% 30.7% 30.9% 31.1% 31.4% 31.6% 31.8% 32.0% 32.1% 32.3% 32.5%

675 26.9% 27.2% 27.5% 27.8% 28.1% 28.4% 28.7% 29.0% 29.3% 29.5% 29.8% 30.0% 30.2% 30.5% 30.7% 30.9% 31.1% 31.2%

687.5 25.0% 25.3% 25.6% 26.0% 26.3% 26.6% 26.9% 27.2% 27.5% 27.8% 28.0% 28.3% 28.5% 28.8% 29.0% 29.2% 29.5% 29.6%

700 22.6% 23.0% 23.4% 23.7% 24.0% 24.4% 24.7% 25.0% 25.3% 25.6% 25.9% 26.2% 26.5% 26.7% 27.0% 27.2% 27.5% 27.7%

712.5 19.9% 20.3% 20.7% 21.0% 21.4% 21.7% 22.1% 22.4% 22.8% 23.1% 23.4% 23.7% 24.0% 24.3% 24.6% 24.8% 25.1% 25.3%

725 16.7% 17.1% 17.5% 17.9% 18.3% 18.7% 19.1% 19.4% 19.8% 20.1% 20.5% 20.8% 21.1% 21.4% 21.7% 22.0% 22.3% 22.6%

737.5 13.2% 13.6% 14.0% 14.4% 14.9% 15.3% 15.7% 16.0% 16.4% 16.8% 17.2% 17.5% 17.9% 18.2% 18.5% 18.8% 19.1% 19.4%

750 9.2% 9.6% 10.1% 10.6% 11.0% 11.4% 11.9% 12.3% 12.7% 13.1% 13.5% 13.9% 14.2% 14.6% 14.9% 15.3% 15.6% 15.9%

762.5 4.9% 5.3% 5.8% 6.3% 6.8% 7.2% 7.7% 8.1% 8.6% 9.0% 9.4% 9.8% 10.2% 10.6% 11.0% 11.4% 11.7% 12.1%

775 0.2% 0.7% 1.2% 1.8% 2.3% 2.7% 3.2% 3.7% 4.2% 4.6% 5.1% 5.5% 5.9% 6.3% 6.7% 7.1% 7.5% 7.9%

787.5 -4.7% -4.2% -3.6% -3.1% -2.5% -2.0% -1.5% -1.0% -0.5% 0.0% 0.4% 0.9% 1.3% 1.8% 2.2% 2.6% 3.1% 3.4%

800 -9.8% -9.3% -8.7% -8.1% -7.5% -7.0% -6.5% -5.9% -5.4% -4.9% -4.4% -3.9% -3.4% -3.0% -2.5% -2.1% -1.6% -1.2%

812.5 -15.1% -14.5% -13.9% -13.3% -12.7% -12.1% -11.5% -11.0% -10.4% -9.9% -9.3% -8.8% -8.3% -7.8% -7.3% -6.9% -6.4% -6.0%

Cash sweep ratio

57.5% 60.0% 62.5% 65.0% 67.5% 70.0% 72.5% 75.0% 77.5% 80.0% 82.5% 85.0% 87.5% 90.0% 92.5% 95.0% 97.5% 100.0%
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387.5 25.1% 25.0% 24.8% 24.6% 24.5% 24.3% 24.2% 24.0% 23.8% 23.7% 23.5% 23.4% 23.2% 23.0% 22.8% 22.6% 22.4% 22.1%

400 25.7% 25.5% 25.4% 25.2% 25.0% 24.9% 24.7% 24.5% 24.4% 24.2% 24.1% 23.9% 23.7% 23.6% 23.4% 23.2% 23.0% 22.7%

412.5 26.2% 26.1% 25.9% 25.8% 25.6% 25.4% 25.3% 25.1% 24.9% 24.8% 24.6% 24.4% 24.3% 24.1% 23.9% 23.8% 23.6% 23.4%

425 26.8% 26.7% 26.5% 26.3% 26.2% 26.0% 25.8% 25.7% 25.5% 25.3% 25.2% 25.0% 24.8% 24.7% 24.5% 24.3% 24.2% 24.0%

437.5 27.4% 27.3% 27.1% 26.9% 26.8% 26.6% 26.4% 26.3% 26.1% 25.9% 25.8% 25.6% 25.4% 25.3% 25.1% 24.9% 24.7% 24.6%

450 28.0% 27.9% 27.7% 27.5% 27.4% 27.2% 27.0% 26.9% 26.7% 26.5% 26.4% 26.2% 26.0% 25.9% 25.7% 25.5% 25.3% 25.2%

462.5 28.6% 28.5% 28.3% 28.2% 28.0% 27.8% 27.7% 27.5% 27.3% 27.2% 27.0% 26.8% 26.7% 26.5% 26.3% 26.1% 26.0% 25.8%

475 29.2% 29.1% 28.9% 28.8% 28.6% 28.5% 28.3% 28.1% 28.0% 27.8% 27.6% 27.5% 27.3% 27.1% 26.9% 26.8% 26.6% 26.4%

487.5 29.9% 29.7% 29.6% 29.4% 29.3% 29.1% 29.0% 28.8% 28.6% 28.5% 28.3% 28.1% 28.0% 27.8% 27.6% 27.4% 27.2% 27.1%

500 30.5% 30.3% 30.2% 30.1% 29.9% 29.8% 29.6% 29.5% 29.3% 29.1% 29.0% 28.8% 28.6% 28.5% 28.3% 28.1% 27.9% 27.7%

512.5 31.1% 31.0% 30.8% 30.7% 30.6% 30.4% 30.3% 30.1% 30.0% 29.8% 29.7% 29.5% 29.3% 29.1% 29.0% 28.8% 28.6% 28.4%

525 31.7% 31.6% 31.5% 31.3% 31.2% 31.1% 31.0% 30.8% 30.7% 30.5% 30.3% 30.2% 30.0% 29.9% 29.7% 29.5% 29.3% 29.1%

537.5 32.2% 32.2% 32.1% 32.0% 31.9% 31.7% 31.6% 31.5% 31.3% 31.2% 31.0% 30.9% 30.7% 30.6% 30.4% 30.2% 30.0% 29.9%

550 32.8% 32.7% 32.6% 32.6% 32.5% 32.4% 32.2% 32.1% 32.0% 31.9% 31.7% 31.6% 31.4% 31.3% 31.1% 30.9% 30.8% 30.6%

562.5 33.3% 33.2% 33.2% 33.1% 33.0% 33.0% 32.9% 32.7% 32.6% 32.5% 32.4% 32.2% 32.1% 31.9% 31.8% 31.6% 31.5% 31.3%

575 33.7% 33.7% 33.7% 33.6% 33.6% 33.5% 33.4% 33.3% 33.2% 33.1% 33.0% 32.9% 32.7% 32.6% 32.4% 32.3% 32.1% 32.0%

587.5 34.1% 34.1% 34.1% 34.0% 34.0% 33.9% 33.9% 33.8% 33.7% 33.6% 33.5% 33.4% 33.3% 33.2% 33.0% 32.9% 32.7% 32.6%

600 34.3% 34.3% 34.3% 34.3% 34.3% 34.3% 34.3% 34.2% 34.1% 34.0% 34.0% 33.9% 33.8% 33.6% 33.5% 33.4% 33.2% 33.1%

612.5 34.4% 34.5% 34.5% 34.5% 34.5% 34.5% 34.5% 34.4% 34.4% 34.3% 34.3% 34.2% 34.1% 34.0% 33.9% 33.7% 33.6% 33.5%

625 34.3% 34.4% 34.5% 34.5% 34.5% 34.5% 34.5% 34.5% 34.5% 34.4% 34.4% 34.3% 34.2% 34.1% 34.0% 33.9% 33.8% 33.7%

637.5 34.0% 34.1% 34.2% 34.2% 34.3% 34.3% 34.3% 34.3% 34.3% 34.3% 34.3% 34.2% 34.2% 34.1% 34.0% 33.9% 33.8% 33.7%

650 33.5% 33.6% 33.7% 33.7% 33.8% 33.9% 33.9% 33.9% 33.9% 33.9% 33.9% 33.9% 33.8% 33.8% 33.7% 33.6% 33.6% 33.5%

662.5 32.6% 32.7% 32.8% 32.9% 33.0% 33.1% 33.2% 33.2% 33.2% 33.3% 33.3% 33.2% 33.2% 33.2% 33.1% 33.1% 33.0% 32.9%

675 31.4% 31.5% 31.7% 31.8% 31.9% 32.0% 32.1% 32.2% 32.2% 32.2% 32.3% 32.3% 32.3% 32.3% 32.2% 32.2% 32.1% 32.1%

687.5 29.8% 30.0% 30.2% 30.3% 30.4% 30.6% 30.7% 30.8% 30.8% 30.9% 30.9% 31.0% 31.0% 31.0% 31.0% 31.0% 30.9% 30.9%

700 27.9% 28.1% 28.3% 28.4% 28.6% 28.7% 28.9% 29.0% 29.1% 29.2% 29.2% 29.3% 29.3% 29.3% 29.3% 29.3% 29.3% 29.3%

712.5 25.6% 25.8% 26.0% 26.2% 26.4% 26.5% 26.7% 26.8% 26.9% 27.0% 27.1% 27.2% 27.3% 27.3% 27.3% 27.4% 27.4% 27.3%

725 22.8% 23.1% 23.3% 23.5% 23.7% 23.9% 24.1% 24.2% 24.4% 24.5% 24.6% 24.7% 24.8% 24.9% 24.9% 25.0% 25.0% 25.0%

737.5 19.7% 20.0% 20.2% 20.5% 20.7% 20.9% 21.1% 21.3% 21.5% 21.6% 21.8% 21.9% 22.0% 22.1% 22.2% 22.2% 22.3% 22.3%

750 16.2% 16.5% 16.8% 17.1% 17.3% 17.6% 17.8% 18.0% 18.2% 18.4% 18.5% 18.7% 18.8% 18.9% 19.0% 19.1% 19.2% 19.2%

762.5 12.4% 12.7% 13.0% 13.3% 13.6% 13.9% 14.1% 14.3% 14.6% 14.8% 14.9% 15.1% 15.3% 15.4% 15.5% 15.6% 15.7% 15.8%

775 8.2% 8.6% 8.9% 9.2% 9.5% 9.8% 10.1% 10.4% 10.6% 10.8% 11.0% 11.2% 11.4% 11.6% 11.7% 11.9% 12.0% 12.1%

787.5 3.8% 4.2% 4.6% 4.9% 5.2% 5.5% 5.8% 6.1% 6.4% 6.6% 6.9% 7.1% 7.3% 7.5% 7.7% 7.8% 7.9% 8.1%

800 -0.8% -0.4% 0.0% 0.4% 0.7% 1.0% 1.4% 1.7% 2.0% 2.2% 2.5% 2.7% 3.0% 3.2% 3.4% 3.5% 3.7% 3.8%

812.5 -5.5% -5.1% -4.7% -4.3% -3.9% -3.6% -3.2% -2.9% -2.6% -2.3% -2.0% -1.7% -1.5% -1.3% -1.1% -0.9% -0.7% -0.5%
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Table 6: Dominance Criterion for Top 100 Combinations of D0 and a

Rank D0 a IRR Defprob Dominant? Rank D0 a IRR Defprob Dominant?

1 625 70.00% 34.52% 9.27% Yes 51 625 52.50% 34.17% 9.75% No

2 625 72.50% 34.52% 9.20% Yes 52 637.5 87.50% 34.17% 12.40% No

3 625 67.50% 34.51% 9.33% No 53 625 90.00% 34.14% 8.83% No

4 612.5 67.50% 34.51% 6.48% Yes 54 600 77.50% 34.13% 4.17% Yes

5 612.5 65.00% 34.51% 6.53% No 55 637.5 60.00% 34.12% 13.18% No

6 625 75.00% 34.50% 9.15% No 56 612.5 47.50% 34.11% 6.95% No

7 612.5 70.00% 34.50% 6.43% Yes 57 637.5 90.00% 34.09% 12.34% No

8 612.5 62.50% 34.49% 6.58% No 58 600 47.50% 34.09% 4.69% No

9 625 65.00% 34.49% 9.39% No 59 612.5 87.50% 34.08% 6.12% No

10 612.5 72.50% 34.48% 6.38% Yes 60 587.5 60.00% 34.07% 2.85% Yes

11 625 77.50% 34.47% 9.09% No 61 587.5 57.50% 34.07% 2.89% No

12 612.5 60.00% 34.46% 6.64% No 62 625 50.00% 34.06% 9.83% No

13 625 62.50% 34.45% 9.46% No 63 587.5 62.50% 34.06% 2.82% Yes

14 612.5 75.00% 34.44% 6.33% Yes 64 587.5 55.00% 34.06% 2.92% No

15 625 80.00% 34.43% 9.03% No 65 600 80.00% 34.05% 4.14% No

16 612.5 57.50% 34.42% 6.70% No 66 625 92.50% 34.04% 8.78% No

17 625 60.00% 34.40% 9.53% No 67 587.5 65.00% 34.03% 2.79% Yes

18 612.5 77.50% 34.39% 6.29% Yes 68 637.5 57.50% 34.03% 13.27% No

19 625 82.50% 34.37% 8.98% No 69 587.5 52.50% 34.03% 2.96% No

20 612.5 55.00% 34.36% 6.76% No 70 637.5 92.50% 34.01% 12.28% No

21 600 62.50% 34.35% 4.40% Yes 71 600 45.00% 34.00% 4.74% No

22 637.5 75.00% 34.34% 12.72% No 72 612.5 45.00% 34.00% 7.02% No

23 600 65.00% 34.34% 4.36% Yes 73 587.5 67.50% 34.00% 2.76% Yes

24 637.5 72.50% 34.34% 12.79% No 74 587.5 50.00% 33.99% 2.99% No

25 600 60.00% 34.34% 4.44% No 75 612.5 90.00% 33.98% 6.08% No

26 625 57.50% 34.34% 9.60% No 76 600 82.50% 33.96% 4.11% No

27 637.5 77.50% 34.33% 12.65% No 77 587.5 70.00% 33.94% 2.73% Yes

28 612.5 80.00% 34.33% 6.24% No 78 625 47.50% 33.94% 9.92% No

29 600 67.50% 34.32% 4.32% Yes 79 625 95.00% 33.93% 8.74% No

30 637.5 70.00% 34.32% 12.87% No 80 650 77.50% 33.93% 17.00% No

31 600 57.50% 34.32% 4.49% No 81 637.5 55.00% 33.93% 13.36% No

32 637.5 80.00% 34.31% 12.59% No 82 587.5 47.50% 33.93% 3.03% No

33 625 85.00% 34.31% 8.93% No 83 650 80.00% 33.93% 16.93% No

34 600 70.00% 34.29% 4.28% Yes 84 650 75.00% 33.92% 17.08% No

35 637.5 67.50% 34.29% 12.94% No 85 637.5 95.00% 33.92% 12.22% No

36 612.5 52.50% 34.29% 6.82% No 86 650 82.50% 33.91% 16.85% No

37 600 55.00% 34.28% 4.53% No 87 650 72.50% 33.90% 17.17% No

38 637.5 82.50% 34.27% 12.52% No 88 600 42.50% 33.90% 4.80% No

39 625 55.00% 34.26% 9.68% No 89 650 85.00% 33.89% 16.78% No

40 612.5 82.50% 34.26% 6.20% No 90 587.5 72.50% 33.88% 2.71% Yes

41 600 72.50% 34.25% 4.24% Yes 91 612.5 42.50% 33.87% 7.09% No

42 637.5 65.00% 34.25% 13.02% No 92 650 70.00% 33.86% 17.25% No

43 600 52.50% 34.23% 4.58% No 93 587.5 45.00% 33.86% 3.07% No

44 625 87.50% 34.23% 8.88% No 94 612.5 92.50% 33.86% 6.04% No

45 637.5 85.00% 34.23% 12.46% No 95 600 85.00% 33.86% 4.08% No

46 612.5 50.00% 34.21% 6.88% No 96 650 87.50% 33.84% 16.70% No

47 600 75.00% 34.19% 4.21% Yes 97 637.5 52.50% 33.82% 13.45% No

48 637.5 62.50% 34.19% 13.10% No 98 625 97.50% 33.82% 8.69% No

49 612.5 85.00% 34.17% 6.16% No 99 637.5 97.50% 33.81% 12.17% No

50 600 50.00% 34.17% 4.63% No 100 625 45.00% 33.81% 10.00% No
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