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Abstract  

The simple and multiple optimal rotation harvests pine stands models under Brownian price 

diffusion and Logistic or Gompertz wood stock processes for the deterministic and stochastic case, 

are formulated and solve for a Chilean company pine stands harvests. The applications of these 

models show that the company optimal cut policy for radiate pine stands validate the simple 

rotations stochastic models. The Logistical wood stock diffusion model optimal cuts underestimate 

the company actual cut 2.3%   and the saturation volume in 4.5%. The Gompertz diffusion model   

overestimates the actual cut in a 1.2% and the saturation volume in 0.5%.  Obviously the company 

actual cut policy does not follow the theoretical multiple rotations optimal policies: The 

Faustmann stochastic models underestimate the company optimal cut by 40.4% in the Logistic 

case and by 35.8% in the Gompertz model case. These discrepancies can be explained by the fact 

that the company considers just simple rotation planning horizons to evaluate the harvesting time 

of the pine stands.  
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1 Introduction to the harvest rotation stands 

problems 

The optimal rotation forest harvest models development is marked by the 

emergence of two controversial issues. The first issue was formulated in its early 

beginning by Faustmann in 1849. He formulated the multiple rotation versions 

considering the dynamic effect that the future renovations had in the rotation 

period of the cut and plant of the trees. This issue was not considered relevant by 

researcher and forester managers, who preferred a simple rotation model. The 

model was finally rediscovered by American Nobel Economic price winner 

Samuelson in 1976. Samuelson validated Faustmann’s deterministic formula as 

the correct one, since it was the only one to consider land’s rent.  An increasing 
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number of researchers continued extending this model. Brazeer, 2001, Chang 

2001, Amacher, Brazee, Deeger, 2011, presented their works in three International 

Faustmann Symposiums, held’s in 1999, 2005 and 2009. 

The second issue was also strongly formulated by Samuelson, 1976, who called to 

replace the “simple notion of stationary equilibrium by the notion of perpetual 

Brownian motion of wood price”. Many researcher followed his recommendation, 

(see Newman, 2002), and applied the real option methodology to this problem. 

Clark & Reed, 1989, Thomson, 1992, Platinga et al., 1998, considered the single 

rotation problem as an America call considering the wood price as geometric 

Brown diffusion. Others, as Morck & Schwartz, 1989, and Insely, 2002, also 

considered wood stochastic diffusion as a geometric Brown diffusion. Alvarez & 

Koskela, 2007 and Navarrete, 2012, considered it as a logistic diffusion in 

agreement with sigmoid characteristic required by of most of the deterministic 

tree growing models (see Garcia, 2005). Willassen, 1998, was the first one to 

extend uncertainty to the Faustmann model, 1995, incorporating the forest growth 

as a stochastic Markov diffusion processes and characterizing the properties of the 

optimal solutions. Sodal, 2002, simplified Willassen approach in a closed-form 

rotation formula for the same state stochastic variables, and Insely & Rollins, 

2005, proposed a numeric algorithm to solve its Hamilton-Jacobi-Bellman 

solution.  Amacher, Ollikainen, Koskela, 2009, summarized these extensions in 

theirs seminal book. Navarrete & Bustos, 2013, extended the Faustmann model 

version under wood stock sigmoid, Logistical and Gompertz diffusion and price 

geometric Brown diffusion for risky agent, transforming the model in an 

equivalent optimal stopping problem with a single ITO wood stock diffusion 

solvable with a time parameterized Hamilton-Jacobi-Bellman equation. The 

optimal original cut volume was obtained by intersecting the volume diffusion 

equation  with the different optimal parameterized solutions of the Hamilton-

Jacobi-Bellman equation.    

The objective of the present paper   is to validate the optimal cut policies for the 

multiple and single rotation stands harvest under geometric Brown price and 

Logistical or Gompertz wood stock diffusions, with the practical optimized cut 

policy of a Chilean  forest company. 



 

2 METHODOLOGY     

2.1 Stochastic Rotations Models  

The basic model considers ITO diffusion for the wood stock and a geometric 

Brownian diffusion for the wood price respectively, given by equations (1) and 

(2).  

                                           dV = µ(V)dt + σ(V)dW,                                             (1) 

 dPt = αPtdt + βPtdW                                                 (2) 

 

Under the assumption of a weak solution (V, t) for the diffusion equations (1, 2) 

and initial conditions (V00, P00), the simple and multiple rotation functional 

objective are given in (3) and (4). 
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With:  

V          = Wood stock variable     

μ(V)      = Wood stock diffusion drift rate parameter    

σ(V)      = Wood stock volatility parameter  

Pt           = Wood stumpage spot price at time t  

Po          = Initial stumpage wood price 

α            = Wood price diffusion drift rate   

β            = Wood price volatility  

W          = Wiener diffusion 

C           = Stand regeneration cost 
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c            = C/Po 

R, Q       = Probabilistic metrics  

F,Z        = Functional Objective  

i             = Risky rate of return 

rt            = i/(1-e-it)   Capitalized rate of return 

 

2.2   Reformulation of the Simple Harvest Rotation Problem 

The stochastic model (1, 2, and 3) is difficult to solve. The Girsanov, Theorem 1,    

see appendice 1, reduces this model to a one dimensional stopping problem that is 

more amenable, see Navarrete (2012).  
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Furthermore, under the metric Q, the process V   follows the diffusion (6) 

 

                           WdVdtVVdV )()}()({                                            (6) 

 

Transforming this problem in an equivalent one dimensional diffusion optimal 

stopping problem, its solution is given by the Hamilton Jacobi Bellmann equation 

(7) see, Navarrete (2012).  

 

Max[ ½ σ2V2 F´´(V) + [µ(V)+ β σ(V)]  F´(V) – (i-α ) F(V) , V-F(V) ] = 0    (7) 

   V≥ 0 

 

Under the assumption of the existence of a frontier V* that divides the zone in 

two, a continuation (no-cutting), and stopping (immediate-cutting), the solution to 

the equation HJB is finally given, for the continuation Zone  V<V*: 

 

½ σ2 V2 F´´ (v) + [µ (V) + β σ (V)]  F´(V) - (i-α) F(V) = 0                 (8) 

 

and for the stopping region V≥V*, 

 



 

V-F (V) = 0                                                     (9) 

 

A solution of (8) is given by (10) (see Johnson T.C, 2006).   
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Where   (resp., ) is strictly increasing (resp., decreasing), (functions since the 

payoff function are bounded and small) and V is positive and should remain 

bounded and positive as V → 0, necessarily then B → 0.  The solution must also 

fulfil the so called “smooth–pasting” condition at the free boundary point V*, so 

that 

A  (V*) = V*   and    A ´ (v*) = 1                                (11) 

 

A= v*/  (V*) = 1/ ´ (V*)                                    (12) 

 

and V* must fulfil the following smooth pasting  equation : 

 

 (V*) = V*  ´(V*) .                                            (13) 

 

2.3   Reformulation of the Multiple Harvest Rotation Problems 

The condition of the application of Girsanov, theorem 1 also applies to the 

Faustmann objective functional (4), see Appendices 1, and the problem is reduced 

to the equivalent following Optimal stopping problem under metric Q.   

 

                           (14) 

                     

And dividing by the constant P0, we transform  ZM=FM/P0 

                               

                           (15)                       
)1(

(

)0(

sup
)(

)(

it
t

tiQ
M

e

cVeE

t
VZ 











)1(

)(
(

)0(

sup
),(

)(
0

it
t

tiQ
M

e

CVePE

t
tVF 













 

With the following modified wood stock diffusion under the metric Q  

 

WdVdtVVdV )()}()({                                             (16)  

 

The formulation of the Hamilton-Jacobi-Bellman equation for this problem is 

given by equation (17) for the capitalized risky rate of  rt = i/(1-e-it). 

 

)(V

Max


[½σ2V2F´´(V)+[µ(V)+βσ(V)]F´(V)–[rt-α]F(V)–c rt,(V-c)/(1-e-rt)-F(V)]=0 (17)  

 

In this case the differential equation for the continuation region (V≤V*) is given 

by the non homogenous differential equation (18).  

 

½σ2V2F´´(V)+[µ(V)+βσ(V)]F´(V) - (rt-α)F(V) –c rt = 0 with F(0) = -(rt/r)c.    (18) 

 

And by equation (19) for the stopping zone (V> V*)   

 

(V-c)/ (1-e-rt)-F (V) = 0.                                                  (19) 

 

The solution to this ordinary differential equation under the initial condition for a 

given capitalized risky rate of return rt is given in (20), with ψ(V) the positive 

increasing  solution of the homogenous part  and [ rt/r]c the  particular solution of 

equation (18).  
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 In this case the smooth pasting condition for each parameter rt is given by:  

 

AΨ (V*)-(rt/r) c = (V*-c)/ (1-e-rt) = (rt/r) (V*-c)     and Aψ´ (V*) = rt/r. 

 

 So V*t must fulfill smooth-pasting condition (21) for each parameter rt. 

 

Ψ (V*) = V* ψ´ (V*)                                                     (21) 



 

2.4   Wood stock sigmoid diffusion equations  

The basic requirement of a pine stand growing diffusion is its sigmoid pattern 

(Garcia, 2005). The logistic diffusion, equation (22) is a special case of the 

sigmoid model given by µ(V) = µV(1-γV) and σ(V) = σ V, where µ and γ are the 

drift and saturation parameters and σ is the volatility parameter. 

 

dV = µ V (1- γ V) dt  + σ Vdw                                      (22) 

 

The integration of the value of V is given by equation (23) (Kloeden& Platen, 

1991, page 125) and its expected value is given by equation (24)  
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Another important sigmoid diffusion is the Gompertz geometrical diffusion, 

which is given by the following equation 

 

                                      dV=kV[θ-ln(V)]dt + σVdW                                          (25) 

 

This equation is integrated to the following expression,  

 

                     V(t)= exp[ ln(V0)e
-kt + {(kθ-σ2/2)/k}(1-e-kt) + σe-kt ∫dW]               (26)          

 

And the expected value takes the following expression, (see Gutierrez, 2009), 

         

  E[V(t)]= exp[ln(V0)e
-kt  + {(θ-σ2/(2k)}(1-e-kt) + (σ2/(4k))(1-e-2kt)]           (27)                 

 

Geometric Brown Price diffusion is given by  

 

                               dP = αPdt+βPdW                                                                 (28) 



 

The equation integrate to     

 

                               Pt =P0 e
αt exp{βWt- 1/2β2t)                                                   (29) 

 

Being Mt= exp{βWt- 1/2β2t) a martingale  

 

  

3 EXPERIMENTAL DATA AND PARAMETERS 

FITTING  

3.1 Logistic Diffusion Fitting 

The experimental data was provided by a Chilean forest company. These data 

belong to harvest volume stock of its pine stands between 1999 and 2005 and 

came from different sample plots, with site indexes between 30 and 35 meters, 

representing  sites with high forest aptitude and a tree average initial volume of 32 

m3/ha at the first 4 years after initial seed cultivation period. The additional 20 

point for years 11 and 12 were taken from Alvarez et al., 2012.  The business 

harvest cut data for a Logistic diffusion 95% confidence range is given by data 

point plotted in figure 3.1. 

 

 

Figure 3.1 Wood Volume per hectare,   (m3/ha) versus years, single plot 



 

The logistic diffusion parameter cannot be adjusted by maximum verisimilitude  

(see Beskos et al., 2006), so it was fitted using a logistical nonlinear regression 

and a Monte Carlo/Bootstrap simulation sampling method, implemented by 

Meyer et al. (Loglet Lab.1 software, 1999).  

Choosing V0= 1/2γ  = half saturation volume, T0=Tm = time to achieve that 

volume equation (13) is transformed in the more conventional expression (27). 
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With; 1/γ= saturation volume, µ= growth rate parameter, Vs= Saturation volume 

and tm = time to achieve the midpoint of the saturation volume. The standard 

deviation is  constant  and given by  Sd(∞) = σVs = (95% saturation confidence 

interval)/(2 *1.96) , at the saturation zone.            

Since the saturation volume Vs is also constant, sigma can easily be estimated by  

 

σ = Sd(∞)/Vs .                                              (29) 

 

The summary of the parameter fitting is shown in table 3.1. 

Table 3.1  Logistic footing parameters  

Models  Drift  

Parameter µ 

Saturation  

Volume  

Saturation 

Parameter γ 

Volatility  
Parameter  σ 

Stochastic  0.191 576.0 0.00174 0.12 

Deterministic  0.191 576.0 0.00174  

 

3.2 Gompertz Diffusion Fitting  

The Gompertz model can be fitted by common statistic features, such as 

Maximum verisimilitude (see Gutierrez, et al, 2008), but the lack of even 

distribution of time data make it difficult. Therefore a quadratic fitting method 

was developed using the SSPS software. Taking natural logarithm and arranging 

it, we get 



 

                                   ln E[V(t)]=  A- Bx-Cx2                                                     (30)                       

 

with  

     A= θ-σ2/(4k)      B=θ-σ2/(2k) -ln(V0)     C=σ2/(4k) and x= e-kt 

Given a value for k, a quadratic fitting for e-kt and e-2kt was done estimating the 

value of A, B and C until a common value for θ was obtained from A and B, 

determining the estimation for θ, k and σ. The deterministic parameter only 

requires a linear fitting with e-kt,. Both fittings were done for the initial value  

V0 = 32 (m3/ha.) and the results are summarized in table 3.2.  

 

Table 3.2 Gompertz Diffusions Parameters Estimations 

Parameters Initial Saturation Drift Drift Volatility  

Models   V0 Vs K θ σ R2 

Gompertz  32.00 653.3 0.102 6.538 0.151 0.992 

Deterministic 32.00 653.3 0.102 6.538   

 

3.4 Wood Price Diffusion Fitting  

The stumpage stand price Brownian diffusion parameters were estimated by 

Navarrete, 2011. The summary of Brown diffusion parameters for the pulpwood 

and saw timber prices is given in Table 3.3.  

Table 3.3 Stumpage Price Diffusion Parameters 

Summary Stumpage logs Saw logs Pulp  logs 

Percentage 100 % 83.9 16.1 

Price drift  α 2.9% 3.08 1.79 

Price volatility β 15.9% 16.52 12.74 

Average  Actual 

Price  

39.74   

See Navarrete 2012 

3.5 Economic Cost  

The regeneration costs of Radiata Pine Stands in 2009 are given in table 3.5 

 



 

Table 3.5 Radiata Pine Stands  cost of capital and Regeneration Cost  

Risky rate of Capital ( WAAC) % 12% 

Stands regeneration cost      C US$/ha 882 

Actual stumpage log price PT US$/ha 39.74 

Initial stumpage price    P0 US$/ha 21.43 

c=C/P0  41.16 

Source: CEFOR-UACH 

4 STOCHASTIC RADIATA PINE  HARVESTING 

RESULTS  

4.1 Logistic Wood stock and Brown Stumpage price diffusion                   

 The Logistic wood stock diffusion is given by equation (22), with drift and 

volatility parameter given by µ(V) = µV (1- γV) an σ(V) = σ V.  The deterministic   

parameters of the growth models of the  wood stock  and  the Stumpage price are    

V´ = µV (1- γV)  and Pt = Poe
αt,  replacing these two equations in functional 

objectives of the simple and multiple rotations problems and maximizing this 

objective  gives the following equations (31) for the optimal deterministic cut 

volume.  

V* =(α+µ-i)/(γµ)                                                    (31) 

 

The optimal for the multiple rotation case is obtained intercepting condition (32) 

with equation (24), with To=4 and Vo= 32.  (See Navarrete, 2013)  

 

   V*t = {(α+µ-rt) + √[(α+µ-rt)
2+4µγcrte

-αt]}/(2µγ)                                (32)                       

 

The stochastic positive increasing function ψ (V) for the Faustmann Logistical 

model is the solution fo the homogenous component (33) of the differential 

equation (10).   

 

                 ½ σ2 V2F´´(v) + [µV(1-γV) + β σV] F´(V) - (rt-α) F (V) = 0             (33) 

 

The solution of equation (33) is given by the Kummer´s confluent hyper 

geometric function, expression (34), (see Navarrete, 2012). 
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 With θ the positive root is given by equation (35) 
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  The function ψ(V) in this case is parameterized by the capitalized interest rate  rt. 

The optimum is obtained by intersecting the smooth pasting condition with the 

corresponding expected value of the modify logistical diffusion for V under Q 

metric (20) for the different V*t solutions of equation (13).  

The simple stochastic solution is given by rt = i and ψ(V) must solve the 

homogenous equation  

 

½ σ2 V2F´´(v) + [µV(1-γV) + β σV] F´(V) - (i-α) F (V) = 0             (36) 

 

and the optimum V* must only satisfy the smooth pasting condition. 

 The smooth pasting and optimum condition for these problems were    

programmed in Maple 15, using its KummerM function. The summary of all 

optimal cuts results for the aggregate 30/35 site index series of the multiple and 

simple rotation harvest or Faustmann formula is given in table 4.1.  

Table 4.1 Multiple Harvest Rotation Optimal Results, Brown price Logistic 

Wood stock diffusion 

Optimum 

Policy 

Simple 

m3/ha 

% % Multiple 

m3/ha 

% % 

Company  392.9 100   100  

Deterministic 300.9 76.6 100 292.3 74.4 100 

Stochastic 383.1 97.5 127.3 347.6 88.5 118.9 

 

These results show that the simple geometric Brown price and Logistic wood 

stock rotation model is a better explanation of the company cut policy, since it 

only underestimate it by 2.5%. Both stochastic models increase the corresponding 



 

deterministic cut optimum between 27.3 % for the simple rotation and 18.9 % in 

the multiple rotation case.   

 

4.3 Gompertz Wood Stock and Brown Stumpage price Deterministic 

case  

  
In this case the parameters of the diffusion are: µ(V) = k V (θ- ln(V)),  and  

σ(V) = σ V. The deterministic optimums is obtained by replacing Pt=P0 e
αt and 

V = exp (ln (V0)e
-kT+ θ(1-e-kT) in functional objective equation of the simple and 

multiples rotation models and looking for a maximum. The optimal solution for 

the simple rotations is.  

 

V* = e(α+k θ-i)/k                                                (37) 

 

 In the multiple rotation case the optimal is obtained by intercepting condition  

(38) with  equation (22). (See Navarrete, 2013)  

 

                         ln V =(α+kθ-r)/k +( rtce-αt) /(kV)                                           (38) 

 

The stochastic increasing function ψ(V) for the multiple rotation case is given by 

the solution of the homogenous part of the differential equation (10) equation (39)   

 

     ½ σ2 V2F´´(v) + [kV(θ - ln(V)) + β σV] F´(V) - (rt - α) F (V) = 0                  (39)                       

  

Choosing θ´= θ - σ2/(2k) + βσ/k and r´ = rt - α, and replacing it in equation (39) 

give the differential equation (40) of the Exponential Ornstein-Uhlembeck  

diffusion 

 

       ½ σ2 V2F´´(v) + {k[θ´- ln(V)]+1/2 σ2}V F´(V) – r´ F (V) = 0                     (40) 

 

 The positive increasing solution ψ (V) of (40) is given by equation (41), (see 

Johnson, 2005). 
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With the following modified parameters:  

 

     a= (rt - α)/(2k)          b= 0.5   and          z= (k/σ2) [θ - σ2/(2k)+ βσ/k-ln(V)]2  

  

      The optimal solutions of the multiple rotation case must also satisfy the 

smooth pasting condition and the expected Gompertz diffusion to produce the 

optimal solution. The simple rotation ψ(V) satisfies the homogenous equation (38) 

with rt = i. The optimal condition in his case is given by the smooth pasting 

condition, programmed in Maple 15, using in this case the KummerU program 

function and its optimal value which is given in table 4.2. The results are 

summarized in table 4.2.  

 

Table 4.2 Multiple Harvest Rotation Optimal Results, Brown price Gompertz 

Wood Stock diffusion 

Optimum 

Policy 

Simple m3/ha % % Multiple 

m3/ha 

% % 

Company  392.9 100   100  

Deterministic 283.2 72.1 100 262.8 66.9 100 

Stochastic 397.6 101.2 140.4 356.8 90.8 135.8

 

These results show that the simple geometric Brown price and Gompertz wood 

stock rotation model is a better explanation of the company cut policy, since it 

only overestimates it in a 1.2%. Both stochastic models increase the 

corresponding deterministic cut optimum between a 40.4 % in the simple rotation 

and 35.8 % in the multiple rotation case.   

4.5 Summary 

Table 4.3 shows the summary of the cut policies evaluation in % of the forest 

company optimal policy.  

 



 

Table 4.3.  Cut Policies  Validations Summary  

Optimal policy Price Wood  

Stock 

Simple    

% 

Rotation 

% 

Multiple 

% 

Rotation 

% 

Saturation 

Volume 

 

% 

Company    100 130.6 100  656.7  100 

Deterministic Brown Logistical 76.6 100* 74.4 100* 576 87.7 

 Brown Gompertz 72.1 100** 59.5 100** 653.3 99.5 

Stochastic Brown Logistical 97.5 127.3* 88.5 118.9* 576 87.7 

 Brown Gompertz 101.2 140.4** 90.8 135.8** 653.3 99.5 

*Logistical % ,   ** Gompertz % 

 

The optimal cut company policy validate the use of the simple stochastic rotations 

models, being the most accurate estimation,  the Brown and Gompertz diffusions 

case which   overestimate   the company  cut policy by 1.2%  and  underestimate 

the saturation volume in 0.5%. The Brown and Logistic diffusions case 

underestimate the cut company policy in 2.5% and the saturation volume   in a 

significant 4.5%.  

The deterministic policies underestimate the   company optimal cut policy in 

significantly   23.4 % and 27.9% for the simple rotation and in 25.6% and 40.5% 

for the Multiple rotation for the Logistic and Gompertz wood stock diffusion  

case.    

Finally the Faustmann optimal cut policies underestimate the company optimal 

cut in a significantly   12.5% and 10.8%, for the Logistic and Gompertz wood 

stock   diffusion  case. 

5 CONCLUSIONS 

 
1. The optimal cut policy of the forest company validates the use of the 

simple stochastic rotations models, being the most accurate the Brown & 

Gompertz    diffusions case, which only overestimated the company cut 

policy by 1.2 %  and underestimate the  saturation volume in  5.0% . 

 

2. The optimal model policies behaved as expected, being the simple rotation 

higher than the multiple rotation cut, and the stochastic behavior produced 

bigger cuts than the deterministic case. The deterministic  models 

optimums in all   cases significantly underestimated the company actual 

average cut.  The stochastic optimum underestimate significantly the 



 

company cut in the Faustmann or multiple rotations case, but gives the 

best estimation of the company optimal cut for the simple rotation case.  

3. Obviously, the company cut policy did not agree with the theoretical 

correct multiple rotation optimal policies, such as the Faustmann models. 

This discrepancy can be explained by the lack of consideration that the 

company gave to the impact that the multiple rotation has on the harvest 

planting rotation cycle of the pine stands and to the forestry company 

preference given to the physical evaluation of the forest stands maturity 

over its stochastic diffusion in the determination of the harvesting 

decision. 

 

5 APPENDICE 1  

Theorem 1: A probabilistic measure Q exists and is equivalent to the actual metric 

P, such that it is proven (see, Jacco J.J. Thijssen, 2010) 
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(A1) Furthermore, under the metric Q, the process Vt   follows the diffusion (A2) 

 

WdVdtVVdV tttt )(})(){                                       (A2) 

Proof.      

Replacing the integral solution of (2) in this last expression (A1), Pt = P0 e
αt exp 

{βWt - 1/2β2t], since Mt = exp {βWt - 1/2β2t] is a martingale, a new metric Q 

(dQ/dP = Mt) can be defined via the Radon-Nikodym derivative. Considering that, 

in this case, β is positive, a straightforward application of Girsanov´s theorems I 

and II (Oksendal, 2000, pages155-157) yields the equivalent objective for metric 

Q, and the ITO diffusion (A2)  
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