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Abstract

In this work, we build on a previous real options approach that utilizes managerial cash-flow

estimates to value early stage project investments. Through a simplifying assumption, where

we assume that the managerial cash-flow estimates are normally distributed, we derive a closed-

form solution to the real option problem. The model is developed through the introduction of

a market sector indicator, which is assumed to be correlated to a tradeable market index and

drives the project’s sales estimates. Another indicator, assumed partially correlated to the sales

indicator, drives the gross margin percent estimates. In this way we can model a cash-flow process

that is partially correlated to a traded market index. This provides the mechanism for valuing

real options of the cash-flow in a financially consistent manner under the risk-neutral minimum

martingale measure. The method requires minimal subjective input of model parameters and is

very easy to implement.

Keywords: Real Options; Managerial Estimates; Closed-Form Solution; Cash-Flow Replication;

Project Valuation.

1 Introduction

Real option analysis (ROA) is recognized as a superior method to quantify the value of real-world

investment opportunities where managerial flexibility can influence their worth, as compared to

standard net present value (NPV) and discounted cash-flow (DCF) analysis. ROA stems from the

work of Black and Scholes (1973) on financial option valuation. Myers (1977) recognized that both

financial options and project decisions are exercised after uncertainties are resolved. Early techniques

therefore applied the Black-Scholes equation directly to value put and call options on tangible assets

(see, for example, Brennan and Schwartz (1985)). Since then, ROA has gained significant attention

in academic and business publications, as well as textbooks (Copeland and Tufano (2004), Trigeorgis

(1996)).

While a number of practical and theoretical approaches for real option valuation have been

proposed in the literature, industry’s adoption of real option valuation is limited, primarily due to the

inherent complexity of the models (Block (2007)). A number of leading practical approaches, some

of which have been embraced by industry, lack financial rigor, while many theoretical approaches

are not practically implementable. The work presented in this paper is an extension of an earlier

real options method co-developed by the author (see Jaimungal and Lawryshyn (2010)). In our
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previous work we assumed that future cash-flow estimates are provided by the manager in the

form of a probability density function (PDF) at each time period. As was discussed, the PDF can

simply be triangular (representing typical, optimistic and pessimistic scenarios), normal, log-normal,

or any other continuous density. Second, we assumed that there exists a market sector indicator

that uniquely determines the cash-flow for each time period and that this indicator is a Markov

process. The market sector indicator can be thought of as market size or other such value. Third,

we assumed that there exists a tradable asset whose returns are correlated to the market sector

indicator. While this assumption may seem somewhat restrictive, it is likely that in many market

sectors it is possible to identify some form of market sector indicator for which historical data

exists and whose correlation to a traded asset/index could readily be determined. One of the key

ingredients of our original approach is that the process for the market sector indicator determines

the managerial estimated cash-flows, thus ensuring that the cash-flows from one time period to

the next are consistently correlated. A second key ingredient is that an appropriate risk-neutral

measure is introduced through the minimal martingale measure1 (MMM) (Föllmer and Schweizer

(1991)), thus ensuring consistency with financial theory in dealing with market and private risk, and

eliminating the need for subjective estimates of the appropriate discount factor typically required

in a DCF calculation. We then expanded our methodology to be able to account for the fact that

when managers build their cash-flow estimates, the estimates are usually dependent on revenue and

cost estimates (Jaimungal and Lawryshyn (2011)).

In this work, we show how our method can lead to an analytical solution, if it is assumed

that the possible cash-flows are normally distributed. While this assumption may seem somewhat

restrictive, very often, when managers estimate cash-flows (or revenues or expenses) the estimate,

itself, is uncertain enough that assumptions regarding the distribution type ultimately only add

“noise” to already “noisy” assumptions. Using the model from our previous work (Jaimungal and

Lawryshyn (2011)), we show the impact of assuming the cash-flows are normally distributed, versus,

triangularly, with specific emphasis to skewed distributions.

2 Real Options in Practice

2.1 Project Valuation in Practice

According to Ryan and Ryan (2002), 96% of Fortune 1000 companies surveyed indicated that

NPV/DCF was the preferred tool for valuing capital budget decisions, and 83% chose the WACC

(weighted average cost of capital) as the appropriate discount factor. While the methodology is well

understood, we review a few important details to highlight the main assumptions regarding the DCF

approach that are often glossed over or not fully appreciated by practitioners. As discussed in most

elementary corporate finance texts (e.g. Berk and Stangeland (2010)) the WACC (equivalently the

return on assets) for a company does not change with the debt to equity ratio when there are no

tax advantages for carrying debt. Therefore, without loss of generality, in this discussion, we will

assume that the company is fully financed through equity and thus, the cost of equity, rE , will be

the WACC.

The standard approach to estimating rE is through the Capital Asset Pricing Model (CAPM),

which has a significant list of assumptions (again, the reader is referred to any standard text). The

1As we discuss in Section 3, the risk-neutral MMM is a particular risk-neutral measure which produces variance

minimizing hedges.
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CAPM expected return on equity for a given i-th company is estimated as follows,

E[rEi ] = rf + βi(E[rMP ]− r) (1)

where r is the risk-free rate, rMP is the return on the market portfolio and

βi =
ρi,MPσi
σMP

(2)

where ρi,MP is the correlation of the returns between the i-th company and the market portfolio, σi
is the standard deviation of the returns of the i-th company, and σMP is the standard deviation of

the returns of the market portfolio. The point of introducing this well known result is to highlight

the fact that by applying the WACC for the valuation of a project, by definition, the manager is

assuming that the project has a similar risk profile, compared to the market, as does the company,

i.e. that the ρ and σ for the project are identical to that of the company. Clearly, this will often

not be the case and a simple thought experiment can illustrate the point.

Consider the case where a manager needs to make two decision: the first is whether to buy

higher quality furniture with a longer lifetime versus lesser quality with a shorter lifetime; the

second is whether to invest in the development of an enhancement to an existing product line or the

development of a new product. The standard DCF approach would use the WACC to discount each

of the alternative projected future cash-flows. Clearly, this is wrong. The value of the furniture

cash-flows likely has little volatility and might, only slightly, be correlated to the market. The

product enhancement is likely more closely aligned with the risk profile of the company, while the

new product development may, or may not be, highly correlated to the market, but will likely have a

high volatility. Our proposed approach decouples the ρ and σ for each project being valued. For the

case of valuing the project as of time 0, or, as will be discussed further, for the case of a European

real option, the effective σ of the project is determined by the uncertainty in the managerial cash-

flow estimates. The ρ for the project does require estimation, however, we provide a mechanism to

estimate it as well.

2.2 Real Options in Practice

As has been well documented (Dixit and Pindyck (1994), Trigeorgis (1996), Copeland and Antikarov

(2001)), the DCF approach assumes that all future cash-flows are static, and no provision for the

value associated with managerial flexibility is made. To account for the value in this flexibility

numerous practical real options approaches have been proposed. Borison (2005) categorizes the five

main approaches used in practice, namely, the Classical, the Subjective, the Market Asset Disclaimer

(MAD), the Revised Classical and the Integrated. As discussed by Borison (2005), each method has

its strengths and weaknesses. As Borison points out, all of the five approaches at that time, had

issues with respect to implementation.

Arguably, one of the promising approaches is the MAD method of Copeland and Antikarov

(2001). A number of practitioners have utilized the MAD method (see, for example, Pendharkar

(2010)), however, the theoretical basis for the model is debated. Brando, Dyer, and Hahn (2012)

have highlighted issues with the way the volatility term is treated in the MAD approach and have

recommended an adjustment.

Both the Revised Classical (see Dixit and Pindyck (1994)) and Integrated (see Smith and Nau

(1995)) approaches recognize that most projects consist of a combination of market (systematic /
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exogenous) and private (idiosyncratic / endogenous) risk factors. The latter provides a mechanism

to value the market risk of a project through hedging with appropriate tradeable assets while private

risk is valued by discounting expected values at the risk-free rate. Properly applied, the integrated

approach is consistent with financial theory. As Borison (2005) notes, the integrated approach

requires more work and is more difficult to explain, but is the only approach that accounts for the

fact that most corporate investments have both market and private risk. As we will show, our

approach also accounts for both market and private risks, yet is easy to implement, and, in its

simplest form, easy to understand as well.

3 Model Development

A key assumption of the MAD approach, as well as the methods proposed by others, such as

Datar and Mathews (2004) and Collan, Fullér, and Mezei (2009), is that the risk profile of the

project is reflected in the distribution of uncertainty provided by managerial cash-flow estimates.

In Jaimungal and Lawryshyn (2010), we introduced a “Matching Method”, where we assumed that

there exists a market sector indicator Markov process that ultimately drives the managerial-supplied

cash-flow estimates. In Jaimungal and Lawryshyn (2011), we extended our matching approach for

the more practical case where managers provide uncertain revenue and gross margin percent (GM%)

estimates. While both models provide a mechanism to value cash-flows and real options using a

simple spreadsheet, because we assumed that the cash-flows, or revenues and GM%, estimates were

triangularly distributed, numerical methods were required to solve the project cash-flow and real

option valuations. In our work with managers in implementing our models, we realized that very

often managers prefer to provide simple estimates consisting of a particular value with a given level

of uncertainty. For example, often, managers are just as comfortable to provide a revenue estimate

of, say $100± $20, as they are to provide low, medium and high estimates, such as $70, $100, and

$120. In the former case, we can assume that the distribution of the estimate is normal. This

assumption leads to an analytical solution for our methodology.

In the following subsections we develop our methodology for the case of normally distributed

managerial estimates. First, we briefly review our Matching Method for the general case, where

we derive a function, ϕ, that links the market sector indicator process to any normally distributed

managerial cash-flow, revenue or GM% estimate. Then we utilize this function in the risk-neutral

minimum martingale measure to develop a very simple expression for the valuation of cash-flows.

Next, we develop an analytical formula to value a real option based on the cash-flow estimates, which

is essentially a simplification of the model presented in Jaimungal and Lawryshyn (2010). Finally,

we develop an analytical real options formula for the case where managers provide uncertain revenue

and GM% estimates; a simplification of Jaimungal and Lawryshyn (2011).

3.1 Matching Managerial Estimates

Our objective is to provide a consistent dynamic model that can replicate cash-flow, revenue or

GM% distribution estimates provided by managers. By applying the minimum martingale measure,

we are assured of a financially consistent valuation. As such, we assume that there exists a traded

market index It which the manager can invest in, and we assume that the price of the index follows
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geometric Brownian motion (GBM),

dIt
It

= µdt+ σdBt, (3)

where Bt is a standard Brownian motion under the real-world measure P. Here, we will assume

that the manager has provided cash-flow estimates at times Tk, where k = 1, 2, ..., n, however the

formulation for sales and GM% is similar. Specifically, we assume the manager has supplied a cash-

flow estimate of the form µFk ± 2σFk and we assume the resulting distribution to be normal, i.e.,

N(µFk , (σ
F
k )

2
). We assume the cash-flow process to be Ft.

We introduce an observable, but not tradable, market sector indicator process At which we use

to drive the cash-flow estimates provided by the manager. We assume the process to be a standard

Brownian motion (BM)

dAt = ρFIdBt +
√

1− ρ2FIdW
F
t , (4)

where dWF
t is a standard Brownian motion under the real-world measure P independent from Bt,

and ρFI is a constant (−1 ≤ ρFI ≤ 1). As discussed in Jaimungal and Lawryshyn (2011), choosing

a BM instead of a GBM will have no bearing on the results of the valuation from a European real

option perspective.

Next, we introduce the collection of functions ϕFk (At) such that at each Tk, Fk = ϕFk (ATk).

Furthermore, at each cash-flow date Tk we match the the distribution Fk to the cash-flow distribution

supplied by the manager, namely, Φ
(
a−µFk
σF
k

)
, where Φ(•) is the standard normal distribution. Thus,

we require

P(FT < a) = Φ

(
a− µFk
σFk

)
. (5)

Proposition 1. The Replicating Cash-Flow Payoff. The cash-flow payoff function ϕFk (a)

which produces the managerial specified distribution Φ
(
a−µFk
σF
k

)
for the cash-flows at time Tk, when

the underlying driving uncertainty At is a BM, and A0 = 0, is given by

ϕFk (a) =
σFk√
Tk
a+ µFk . (6)

We now have a very simple expression for ϕ which makes the valuation of risky cash-flows very

simple.

3.2 Valuation of Risky Cash-Flows

As discussed in Jaimungal and Lawryshyn (2011), the real-world pricing measure should not be

used, and instead, we propose the risk-neutral measure Q, corresponding to a variance minimizing

hedge. Under this measure, we have the following dynamics

dIt
It

= r dt+ σ dB̂t, (7)

dAt = κ̂ dt+ ρFI dB̂t +
√

1− ρ2FI dŴ
F
t , (8)
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where B̂t and ŴF
t are standard uncorrelated Brownian motions under the risk-neutral measure Q

and the risk-neutral drift of the indicator is

κ̂ = −ρFI
µ− r
σ

. (9)

We emphasize that the drift of the indicator is precisely the CAPM drift of an asset correlated

to the market index and is a reflection of a deeper connection between the MMM and the CAPM

as demonstrated in (Cerny 1999). Given this connection, our reliance on parameter estimation is

similar to those invoked by standard DCF analysis when the WACC is used to discount cash-flows

and the cost of equity is estimated using CAPM. In DCF analysis the CAPM drift is, however,

estimated based on the company’s beta, while in our approach, the CAPM drift derives from histor-

ical estimates of the sector indicator and traded index dynamics. Furthermore, the riskiness of the

project is appropriately captured by the distribution of the cash-flows. Consequently, our approach

is more robust. Given the risk measure Q, the values of the cash-flows can now be computed.

Proposition 2. Value of the Cash-Flows. For a given set of cash-flow estimates, normally

distributed with mean µFk and standard deviation σFk , given at times Tk, where k = 1, 2, ..., n, the

value of these cash-flows at time t < T1 is given by

Vt(At) =
n∑
k=1

e−r(Tk−t)
(
σFk√
Tk

(At + κ̂(Tk − t)) + µFk

)
, (10)

and for the case where t = 0,

V0 =

n∑
k=1

e−rTk
(
κ̂σFk

√
Tk + µFk

)
. (11)

Equations (10) and (11) provide a very simple alternative to valuing cash-flows using standard

DCF approaches. The inherent risk of the project is captured by the cash-flow uncertainty estimates,

rather than relying on an exogenously determined hurdle rate. We emphasize, that, while at first

glance it may appear to be difficult to estimate ρFI , historical data of the market sector indicator

to a traded asset can be utilized. Furthermore, if an assumption of ρFI is made, this is only a single

assumption compared to using the β in the CAPM formulation. If one wanted to be consistent with

the DCF CAPM based valuation, the ρ from the β could be backed out. A major advantage of our

proposed approach is that two projects with the same expected cash-flow estimates will necessarily

be valued differently if their estimated distributions are different. In our experience while working

with managers, this was a very favorable aspect of our model.

3.3 Real Option Valuation of Risky Cash-Flows Estimates

In the real options context, similar to the scenarios proposed by many others (see for example

Copeland and Antikarov (2001), Datar and Mathews (2004), Collan, Fullér, and Mezei (2009)),

we assume that at some time T0, managers can invest an amount K in a project and receive the

uncertain managerial estimated cash flows at times Tk. The value of the real option at time t < T0
can be computed under the risk-neutral measure Q as follows

ROt(A) = e−r(T0−t) EQ [(VT0(AT0)−K)+
∣∣At = A

]
, (12)

leading to the following Proposition.
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Proposition 3. Real Option Value of Risky Cash-Flows Estimates. For a given set of cash-

flow estimates, normally distributed with mean µFk and standard deviation σFk , given at times Tk,

where k = 1, 2, ..., n, the value of the option at time t < T0 to invest the amount K at time T0 < Tk
to receive these cash flows is given by

ROt(At) = e−r(T0−t)
[
(ξ1(At)−K) Φ

(
ξ1(At)−K

ξ2

)
+ ξ2 φ

(
ξ1(At)−K

ξ2

)]
(13)

where Φ(•) and φ(•) are the standard normal distribution and density functions, respectively, and

ξ1(At) =

n∑
k=1

e−r(Tk−T0)
(
σFk√
Tk

(At + κ̂(Tk − t)) + µFk

)
, (14)

ξ2 =
√
T0 − t

n∑
k=1

e−r(Tk−T0)
σFk√
Tk
. (15)

At t = 0, ξ1 reduces to

ξ1 =

n∑
k=1

e−r(Tk−T0)
(
κ̂σFk

√
Tk + µFk

)
. (16)

The result of Proposition 3 is significant for it provides a simple analytical real options valua-

tion method that is easy to apply and is consistent with financial theory. Arguably, it meets the

requirements of reducing solution complexity, minimizing parameter estimation and being intuitive

(see Block (2007)). We believe that this result can easily be embraced by practitioners.

3.4 Real Option Valuation of Risky Revenues and GM% Estimates

Following Jaimungal and Lawryshyn (2011), we introduce an underlying observable, but not trad-

able, process Xt which drives the sales St generated from the project. This underlying process can

be thought of as a market sales sector indicator. As above, we assume that the sector indicator is

a standard BM

dXt = ρSI dBt +
√

1− ρ2SI dW
S
t (17)

where WS
t is a standard Brownian motion under the real-world measure P independent of Bt of

equation (3) and ρSI is a constant (−1 ≤ ρSI ≤ 1). As well, we introduce a second underlying

observable, but not tradable, process Yt which drives the GM%, Mt. We assume that this process

is directly correlated to the traded index and only, indirectly, to the sales index, such that

dYt = ρMI dBt +
√

1− ρ2MI dW
M
t (18)

where WM
t is a standard BM under the real-world measure P independent of Bt and WS

t , and ρMI

is a constant (−1 ≤ ρMI ≤ 1). We note that the correlation between the sales process and the GM%

process becomes ρSM = ρSIρMI .

As was the case for the cash-flow analysis, the sales and GM% are determined by

Sk = ϕSk (XTk) and Mk = ϕMk (YTk). (19)
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Using Proposition 1 we can directly write

ϕSk (x) =
σSk√
(Tk)

x+ µSk , (20)

and

ϕMk (y) =
σMk√
(Tk)

y + µMk , (21)

where, similar to the cash-flow analysis, the managerial supplied sales and GM% distributions are

Φ
(
x−µSk
σS
k

)
and Φ

(
y−µMk
σM
k

)
, respectively. The cash-flow at Tk is given as

vk = ϕSk (ϕCk − κk)− αk, (22)

where αk and κk represent fixed and variable costs, also supplied by management.2 We emphasize

that the resulting cash-flow is driven by the respective sales and GM% indicators. This provides

a natural correlation between cash-flows induced by the path dependence of the indicators. If the

indicators are high at the time of one cash-flow, resulting in a large cash-flow, then the probability of

a large cash-flow at the next time-step is also high. This is a very desirable feature which has clear

economic grounding. Contrastingly, in a number of practical approaches, the cash-flow distributions

are typically assumed to be independent or correlation is introduced in a rather ad hoc manner.

As above, we propose the risk-neutral measure Q, such that

dXt = ν̂ dt+ ρSI dB̂t +
√

1− ρ2SI dŴ
S
t , (23)

dYt = γ̂ dt+ ρMIdB̂t +
√

1− ρ2MI dŴ
M
t , (24)

where B̂t, Ŵ
S
t and ŴC

t are standard uncorrelated Brownian motions under the risk-neutral measure

Q and the risk-neutral drift of the indicators are

ν̂ = −ρSI
µ− r
σ

and γ̂ = −ρMI
µ− r
σ

. (25)

The value of the cash-flows can now be computed.

Proposition 4. Value of the Cash-Flows for Managerial Estimated Sales and GM%. For

a given set of sales and GM% estimates, each normally distributed and uncorrelated with means µSk
and µMk , respectively, and standard deviations σSk and σMk , respectively, given at times Tk, where

k = 1, 2, ..., n, the value of these cash-flows at time t < T1 is given by

V SM
t (Xt, Yt) =

n∑
k=1

e−r(Tk−t)
((

σSk√
Tk

(Xt + ν̂(Tk − t)) + µSk

)(
σMk√
Tk

(Yt + γ̂(Tk − t)) + µMk − κk
)

+ρSMσ
S
k σ

M
k

Tk − t
Tk

− αk

)
(26)

2We note that the formulation given in equation (22) is slightly different than what we proposed in Jaimungal and

Lawryshyn (2011).
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which can also be written as

V SM
t (Xt, Yt) = CXYt XtYt + CXt Xt + CYt Yt + C0

t (27)

where the coefficients CXYt , CXt , CYt and C0
t are given in the Appendix. For the the case where

t = 0, equation (26) reduces to

V0 =
n∑
k=1

e−rTk
((
σSk ν̂

√
Tk + µSk

)(
σMk γ̂

√
Tk + µMk − κk

)
+ ρSMσ

S
k σ

M
k − αk

)
. (28)

Similar to Proposition 2, Proposition 4 provides a very simple result for the valuation of cash-

flows. In this case, the inherent risk of the project is captured through managerial supplied sales and

GM% estimates. Again, parameter estimation has been minimized and the only required parameters

are ρSI and ρMI . Often, sales are highly correlated to a market index, whereas GM% values are

likely low. In any event, historical analysis of data should provide reliable estimates for both of

these parameters.

Following a similar analysis as above (see equation (12)), the real option value at time t < T0 is

given by

ROt(X,Y ) = e−r(T0−t) EQ
[(
V SM
T0 (XT0 , YT0)−K

)
+

∣∣∣Xt = X, Yt = Y
]
. (29)

Unfortunately, no analytical solution exists for the solution to equation (29), however, it is possible

to reduce the equation to a single integral which can be easily solved using the Gauss-Hermite

quadrature. We present the following proposition.

Proposition 5. Real Option Value of Risky Cash-Flows Estimates. For a given set of sales

and GM% estimates, each normally distributed and correlated with ρ = ρSIρMI , with means µSk
and µMk , respectively, and standard deviations σSk and σMk , respectively, given at times Tk, where

k = 1, 2, ..., n, the value of the option at time t < T0 to invest the amount K at time T0 < Tk to

receive these cash flows is given by

ROt(Xt, Yt) = e−r(T0−t)
∫ ∞
−∞

((
B1x

2 +B3x+B0

)
Φ(B̂) + (B2x+B4)φ(B̂)

)
φ(x)dx (30)

where Φ(•) and φ(•) are the standard normal distribution and density functions, respectively, and

we have the following,

B̂ =
B1x

2 +B3x+B0

B2x+B4

B0 = CXYT0

(
XtYt + γ̂(T0 − t)Xt + ν̂(T0 − t)Yt + ν̂γ̂(T0 − t)2

)
+ CXT0(Xt + ν̂(T0 − t))

+ CYT0(Yt + γ̂(T0 − t)) + C0
T0 −K

B1 = ρ CXYT0 (T0 − t)

B2 =
√

1− ρ2 CXYT0 (T0 − t)

B3 =
(
CXYT0 (Yt + γ̂(T0 − t)) + CXT0 + ρ (CXYT0 (Xt + ν̂(T0 − t)) + CYT0)

)√
T0 − t

B4 =
√

1− ρ2 (CXYT0 (Xt + ν̂(T0 − t)) + CYT0)
√
T0 − t

and ρ ≡ ρSIρMI .

We emphasize that equation (30) consists of a single integral and all coefficients in Proposition

5 are deterministic. In the following Section we present practical examples.
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4 Practical Examples

The theoretical foundation was established in Section 3; here we provide a practical implementation

of the methodology. We assume that a company is interested in investing in an early stage R&D

project. The project will require a substantial investment of $50 million 2 years from now, at which

point sales will begin and cash-flows will be realized in years 3 to 10. The market parameters are

assumed to be as follows:

• Risk-free rate: r = 3%

• Expected market growth: µ = 9%

• Market volatility: σ = 10%.

Managers have estimated the cash-flows to be as depicted in Table 1 and the correlation of the cash-

flows to the traded index are estimated to be 0.5. Furthermore, the managers have supplied standard

deviation estimates for each of sales, cost of goods sold (COGS) and capital expenditures (CAPEX)

as a percentage of each, as presented in Table 2. As can be seen uncertainty increases farther out in

the future. Furthermore, COGS are estimated to be 60% correlated to sales and CAPEX 50%. If we

assume that the correlation between COGS and CAPEX is driven solely through their correlations

to sales, then the standard deviation of the cash-flows can be calculated as follows,

σCF =
√
σ2S + σ2C + σ2EX − 2ρS,CσSσC − 2ρS,EXσSσEX + 2ρC,EXσCσEX (31)

where σ denotes the standard deviation, ρ denotes the correlation and the subscripts “S”, “C” and

“EX” represent sales, COGS and CAPEX, respectively. The standard deviation values are provided

in Table 3.

Table 1: Managerial Supplied Cash-Flow (Millions $).

3 4 5 6 7 8 9 10

Sales 10.00 30.00 50.00 100.00 100.00 80.00 50.00 30.00

COGS 6.00 18.00 30.00 60.00 60.00 48.00 30.00 18.00

GM 4.00 12.00 20.00 40.00 40.00 32.00 20.00 12.00

SG&A 0.50 1.50 2.50 5.00 5.00 4.00 2.50 1.50

EBITDA 3.50 10.50 17.50 35.00 35.00 28.00 17.50 10.50

CAPEX 1.00 3.00 5.00 10.00 10.00 8.00 5.00 3.00

Cash-Flow 2.50 7.50 12.50 25.00 25.00 20.00 12.50 7.50

Using equation (11), the present value of the cash-flows is calculated to be $58.8 million and

using equation (16) in equation (30) with t = 0 gives a value of $16.1 million for the real option.
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Table 2: Managerial Supplied Standard Deviation Percent Estimates.

3 4 5 6 7 8 9 10

σS (Sales) % 10% 11% 12% 13% 15% 16% 18% 19%

σC (COGS) % 10% 11% 12% 13% 15% 16% 18% 19%

σEX (CAPEX) % 5% 6% 6% 7% 7% 8% 9% 10%

Table 3: Estimated Standard Deviations (Millions $).

3 4 5 6 7 8 9 10

σS (Sales) 1.00 3.30 6.05 13.31 14.64 12.88 8.86 5.85

σC (COGS) 0.60 1.98 3.63 7.99 8.78 7.73 5.31 3.51

σEX (CAPEX) 0.05 0.17 0.30 0.67 0.73 0.64 0.44 0.29

σCF (Cash-Flow) 0.78 2.58 4.73 10.40 11.44 10.07 6.92 4.57

5 Conclusions

In this work we developed a method to value cash-flows and the real option value of the cash-flows

that requires only the solution of a simple analytical formula. The model is consistent with financial

theory and properly accounts for both idiosyncratic and systematic risk. Through the introduction

of a market sector indicator, which is used to drive the cash-flows, the methodology provides a

natural mechanism to link the cash-flows from one period to the next. Furthermore, because the

market sector indicator is assumed to be partially correlated to a traded index, we are able to

develop a valuation under the risk-neutral minimum martingale measure. The method requires

minimal parameter estimation, as only the correlation between the market sector indicator and the

traded index may not be easily obtained, however, we believe, it can often be estimated based on

historical data. Managers especially like the intuitive aspect of the model where the value of the

cash-flows is linked to their estimated uncertainty. As was discussed in Jaimungal and Lawryshyn

(2010), depending on the value of the correlation of the market sector indicator to the market index,

and the strike cost, K, the method will lead to a decreasing or increasing real option value as cash-

flow uncertainty is increased. This feature is realistic, however is not often properly accounted for in

other real options methods, because many other real options approaches presented in the literature

assume the value of the cash-flows can be perfectly hedged with a traded asset – i.e. they do not

allow for idiosyncratic risk. Ultimately, we believe that our proposed method preserves the essential

elements to make it consistent with financial theory, yet simple enough to implement so that it can

be easily embraced by practitioners not versed in financial mathematics.
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Appendix: Proofs of the Propositions

Proof of Proposition 1

We seek ϕ(.) such that P(ϕ(AT ) ≤ s|F0) = Φ
( s−µ

σ

)
. Since,

AT |F0

d
=
√
TZ where Z ∼

P
N (0, 1),

we have that

P(ϕ(AT ) ≤ s|F0) = P
(√

TZ ≤ ϕ−1(s)
)

= Φ

(
ϕ−1(s)√

T

)
, Φ

(
s− µ
σ

)
.

Consequently,

ϕ(AT ) =
σ√
T
AT + µ

and the proof is complete. �

Proof of Proposition 2

The value of the cash-flows are given as

Vt(At) =

n∑
k=1

e−r(Tk−t)EQ
[
ϕFk (ATk)|At

]
=

n∑
k=1

e−r(Tk−t)EQ
[
σFk√
T k
ATk + µFk

∣∣∣∣At]

=
n∑
k=1

e−r(Tk−t)EQ
[
σFk√
T k

(
At + κ̂(Tk − t) +

√
Tk − tZ

)
+ µFk

]

=
n∑
k=1

e−r(Tk−t)
(
σFk√
T k

(At + κ̂(Tk − t)) + µFk

)
.

For the case where t = 0, A0 = 0, therefore

V0 =

n∑
k=1

e−rTk
(
κ̂σFk

√
Tk + µFk

)
and the proof is complete. �

Proof of Proposition 3

We begin with equation (12), repeated here for convenience,

ROt(A) = e−r(T0−t) EQ [(VT0(AT0)−K)+
∣∣At = A

]
,

and using the interim result from Proposition 2, with t = T0, we have

ROt(A) = e−r(T0−t) EQ

( n∑
k=1

e−r(Tk−T0)
(
σFk√
T k

(
At + κ̂(Tk − t) +

√
T0 − tZ

)
+ µFk

)
−K

)
+

 .
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Defining

ξ1(At) ≡
n∑
k=1

e−r(Tk−T0)
(
σFk√
Tk

(At + κ̂(Tk − t)) + µFk

)
,

ξ2 ≡
√
T0 − t

n∑
k=1

e−r(Tk−T0)
σFk√
Tk

we have

ROt(A) = e−r(T0−t) EQ [(ξ1(At)−K + ξ2Z)+
]
,

which simplifies to

ROt(At) = e−r(T0−t)
[
(ξ1(At)−K) Φ

(
ξ1(At)−K

ξ2

)
+ ξ2 φ

(
ξ1(At)−K

ξ2

)]
completing the proof. �

Proof of Proposition 4

The value of the cash-flows are given as

V SM
t (Xt, Yt) =

n∑
k=1

e−r(Tk−t)EQ [vk(XTk , YTk) | Xt, Yt]

=

n∑
k=1

e−r(Tk−t)EQ
[
ϕSk (XTk)

(
ϕMk (YTk)− κk

)
− αk | Xt, Yt

]
.

Given that

XT |Xt

d
= Xt + ν̂(T − t) +

√
T − t ZS (32)

YT |Yt
d
= Yt + γ̂(T − t) +

√
T − t (ρZS +

√
1− ρ2 ZM ) (33)

where ZS ∼
Q
N (0, 1), ZM ∼

Q
N (0, 1) and EQ[ZSZM ] = 0, with ρ ≡ ρSM = ρSIρMI , and using

equations (20) and (21) leads to the result (equation (27)), repeated here for convenience,

V SM
t (Xt, Yt) = CXYt XtYt + CXt Xt + CYt Yt + C0

t

where

C0
t =

n∑
k=1

e−r(Tk−t)
(
σSk σ

M
k

Tk
ν̂γ̂(Tk − t)2 +

σSk√
Tk
ν̂(Tk − t)(µMk − κk) +

σMk√
Tk
γ̂(Tk − t)µSk

+µSk (µMk − κk) + ρσSk σ
M
k

(
Tk − t
Tk

)
− αk

)
CXYt =

n∑
k=1

e−r(Tk−t)
σSk σ

M
k

Tk

CXt =
n∑
k=1

e−r(Tk−t)
(
σSk σ

M
k

Tk
γ̂(Tk − t) +

σSk√
Tk

(µMk − κk)
)

CYt =
n∑
k=1

e−r(Tk−t)
(
σSk σ

M
k

Tk
ν̂(Tk − t) +

σMk√
Tk
µSk

)
. �
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Proof of Proposition 5

We begin with equation (29), repeated here for convenience,

ROt(X,Y ) = e−r(T0−t) EQ
[(
V SM
T0 (XT0 , YT0)−K

)
+

∣∣∣Xt = X, Yt = Y
]

and using the result from Proposition 4, with t = T0, we have

ROt(Xt, Yt) = e−r(T0−t) EQ
[(
CXYT0 XT0YT0 + CXT0XT0 + CYT0YT0 + C0

T0 −K
)
+

∣∣∣Xt, Yt

]
. (34)

We utilize equations (32) and (33) to substitute for XT0 and YT0 in equation (34),

ROt(Xt, Yt) = e−r(T0−t) EQ
[(
B1(Z

S)2 +B2Z
SZM +B3Z

S +B4Z
M +B0

)
+

]
, (35)

where the coefficients B0, B1, B2, B3 and B4 are given in Proposition 5. Equation (35) can be

written in integral form as,

ROt(Xt, Yt) = e−r(T0−t)
∫ ∞
−∞

∫ ∞
−∞

(
B1x

2 +B2xy +B3x+B4y +B0

)
+
φ(y)φ(x)dy dx.

Now B1x
2 +B2xy +B3x+B4y +B0 > 0 when y > −B̂ (see Proposition 5 for the definition of B̂),

and therefore,

ROt(Xt, Yt) = e−r(T0−t)
∫ ∞
−∞

∫ ∞
−B̂

(
B1x

2 +B2xy +B3x+B4y +B0

)
φ(y)φ(x)dy dx

= e−r(T0−t)
∫ ∞
−∞

∫ B̂

−∞

(
B1x

2 −B2xy +B3x−B4y +B0

)
φ(y)φ(x)dy dx

= e−r(T0−t)
∫ ∞
−∞

((
B1x

2 +B3x+B0

)
Φ(B̂) + (B2x+B4)φ(B̂)

)
φ(x)dx

and the proof is complete. �


