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Abstract 

A main issue in valuation modeling is the correct choice of the stochastic process that better 
describes the asset price performance. Particularly, in investment projects that show a high level 
of managerial flexibility in conditions of uncertainty – for which it would be proposed the real 
option valuation models – the assumption of a specific process can have an impact not only on 
the project value, but also on the investment rule. This work discusses the choice of stochastic 
process in real options valuation and the main useful tests and theoretical considerations to give 
support to this task.  
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1 Introduction 
The investment decisions in stocks, financial derivatives and corporate projects are influenced 
by uncertainties of different types. One way to deal with these uncertainties is to research the 
stochastic process that better describes the random behavior of the assets prices in time.  

Typically in the financial derivatives valuation the Geometric Brownian Motion (GBM) is 
assumed as appropriate to describe the behavior of stock prices and stock indexes, as in Black & 
Scholes (1973) and Cox, Ross & Rubinstein (1979). The GBM is also largely used to describe 
the uncertainties in corporate project valuation by real options analysis. As a contrast, in the 
valuation of commodities and derivatives related to them, it is common to use Mean Reversion 
Models (MRM) (Gibson & Schwartz, 1990; Dixit & Pindyck, 1994; Schwartz, 1997),    
assuming that the commodities price might wander randomly in short term, but that they tend to 
converge to an equilibrium level in the long run regarding their marginal cost of production. 
Nevertheless, commonly it is not so easy to determine which one – GBM or MRM – is the more 
applicable stochastic process. Besides statistical tests, some questions must be considered in the 
stochastic process choice, such as: the economical features and the asset lifetime, the difficulty 
in the parameters calibration of the selected stochastic model, the applicability of the chosen 
process in solutions (analytical or numerical) of the models used to valuation, among other 
factors. 

This paper discusses the choice of stochastic process in real option valuation and the main 
useful tests and considerations to give support to this task. The work is structured as follows: 
after this introduction (i), in (ii) a bibliographical revision of stochastic processes applied to real 
option analysis is presented, in (iii) we describe some statistical tests that can be used to support 
the stochastic process choice, in (iv) we will present some theoretical considerations and (v) we 
conclude.  

 

2 Stochastic Process and Real Options Theory Applications  

We can define stochastic process as variables that move discretely or continuously in time 
unpredictably or, at least, partially randomly. Formally, be Ω a set that represents the 
randomness, where w ∈ Ω denotes a state of the world and f a function which represents a 
stochastic process. The function f depends on x∈ ∈R e w Ω: R×Ω→R or f(x,w), and it has the 
following property: given w∈Ω,  f ( º ,w) becomes a function of only x. Thus, for different 
values of w∈Ω we get different functions of x. When x represents time, we can interpret f(x,w1) 
and f(x,w2) as two different trajectories that depend on different states of the world, as we can 
see in figure 1: 

 

Figure 1 – Stochastic process trajectories. 
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With the aim at representing the uncertainties related to the investments, the choice of the 
stochastic process is an issue of great relevance in the assets valuation modeling. In the case of 
real options valuation – in which the uncertainties are straightforward considered in the future 
cash flow of the assets – the relevance is even greater.   

A class of stochastic process that plays an important role in financial modeling is Markov 
Processes. In Markov Processes only the latest observed value is considered to forecast the 
future values, which is consistent with the Weak Form of Market Efficient. Among many types 
of Markov Processes, one of the most popular is Geometric Brownian Motion, which is the base 
case used in the modeling of financial options (Black & Scholes, 1973) and real option 
(Brennan & Schwartz, 1985; McDonald & Siegel, 1985, 1986; Paddock, Siegel, & Smith, 
1988). GBM is usually defined by the equation: 

dx =αxdt + σxdz 

Where: 

x is the asset price; 

α is the drift parameter; 

σ is the volatility parameter;  

dz is a Wiener increment. 

Among other pros, the main advantages of GBM are: its mathematical simplicity, the small 
number of parameters to be estimated and the fact that it is easy to obtain analytical solutions to 
asset valuation. In some way, these characteristics can be considered the main reason to explain 
its popularity. As a contrast, it has as major con the fact that the prices tend to diverge when the 
time goes to the infinite, which could create unrealistic scenarios and it is an undesirable 
property in cases of long run assets. In figure 2 we present a price projection supposing it 
follows a GBM.  

 

Figure 2 – Price forecast supposing prices follow a GBM. 

 In other situations, when the uncertainties in prices depend on an equilibrium level, such as in 
case of commodities and interest rates, it is debated if the use of GBM would be appropriate 
(AL-HARTHY, 2007, GEMAN, 2005, PINDYCK, 2001, 1999, METCALF & HASSET, 1995, 
SMITH & MCCARDLE, 1998, BRENNAN & SCHWARTZ, 1985, BHATTACHARYA, 
1978). In case of commodities – such as oil, copper, sugar and ethanol – it is usual to assume 
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that the price is driven, at least partially, by a mean reversion component, which makes the 
prices wander randomly in short term, but, in the long run tend to converge to the equilibrium 
level of the prices associated to the marginal cost of production. The most traditional MRM is 
called Ornstein Uhlenbeck, which is defined by the equation: 

dx = η( x − x)dt + σdz 

Where: 

x is the price of commodity;  

x is the equilibrium level to which the process reverts in the long run;  

η is the speed of reversion parameter; 

σ is the volatility parameter; 

dz is a Wiener increment. 

Although MRM is a Markov Process it does not have independent increments, considering that 
the expected changes of x are a function of the difference between the long run equilibrium 
level and the last observation of the process. The straightforward application of Ornstein-
Uhlenbeck model in the prices may generate an inconvenience that is the appearance of negative 
values, which is an undesirable characteristic to price representation. An alternative that can be 
used to solve this problem is not directly applying the Ornstein-Uhlenbeck model in the prices 
but in the logarithm of the prices, as in model 1 of Schwatz (1997). In figure 3 we present a 
price projection supposing it follows a MRM.  

 

Figure 3 – Price forecast supposing prices follow a MRM. 

A third type of process that is commonly used in finance is the Poisson Processes that is also 
known as Jump Diffusion Processes. Poisson Processes also belong to Markov Processes class 
and they are characterized by the occurrence of discrete and infrequent jumps in time. This type 
of process is frequently used in the modeling of rare events, such as the occurrence of accidents 
in insurance industry and the effect on crisis in the oil prices. In the Poisson Process the jump´s 
appearance follows a Poisson distribution and it may work with jumps of fixed or variable sizes. 
As we will see later, it is common to mix Poisson Process with other types of processes as GBM 
and MRM, in order to model the uncertainties in a more realistic way in the real options 
valuation.  
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As a formal definition: Be x a Poisson Process, in which all the randomly of the process is 
concentrated on the appearance of jumps that have their sizes determined by the function g(x,t). 
The Poisson Process can be described by the differential equation:  

dx = f(x,t)dt + g(x,t)dq 

Where: 

f(x,t) and g(x,t) are deterministic known functions; 

dq is a Poisson increment. 

The typical parameters of the Poisson Process are:  

λ which corresponds to the average rate of the jump occurrence for a time period;  

λdt corresponding to the probability of jump occurrence;  

1 – λdt is the probability of the non-occurrence of the jump;  

u indicating the size of the jump;  

q representing the randomness of the Poisson Process.   

There are different types of the Poisson Processes. They can be homogeneous, in which the 
events are random and the increments are independent and stationary or non-homogenous, in 
which the jumps are not stationary. There are also Poisson Processes in which the randomness is 
observed in the size of the jumps and they follow a specific probability distribution. Finally, 
among the mentioned processes, there are the Compensated Poisson Processes, which are 
obtained by subtracting the drift determining its conversion in a Martingal. In figure 4 it can be 
seen a Homogeneous Poisson Process with upward fixed size jumps. 
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Figure 4 – Homogeneous Poisson Process with upward fixed size jumps.  

The task of determining which is the most appropriated process in order to represent the main 
uncertainties involved in a valuation is usually not a trivial question and, in some cases, analysts 
realize that these uncertainties have elements of more than one type of process. As a result, in 
order to generate more realistic models, several authors presented papers in recent decades to 
propose models of multiple factors that mix different types of processes. One of the pioneer 
works that presented a multiple factors model was Merton (1976) in which is mixed GBM and 
Poisson Process. The author justified this model to stocks, in which the effect of common news 
in the stock prices would be represented by GBM, while in case of rare event occurrence there 
would be a Poisson jump. Using a Compensated Poisson Process, in which the jumps were 
considered non-systematic and using a lognormal distribution for the size of jumps, Merton 
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(1976) managed to find a close formula to European call options. The differential formula of the 
model is represented by the equation:   

dx/x = [α – λk]dt + σdz + dq  

Where: 

x is the stock price,   

E[dq]=E[ɸ]λdt=kλdt;   

α is the drift parameter; 

σ is the volatility parameter;  

dz is a Wiener increment; 

q is a Independent Poisson Process with non-systematic jumps. 

Another work that presents a Multiple Factors Model with Jump Diffusion Process is Dias & 
Rocha (1999), in which the authors proposed the mix of Poisson Process and MRM to represent 
the stochastic behavior of oil prices in real options valuation, as it can be seen in the equation:    

dx/x = [η( x − x)dt – λk] + σdz + dq 

Where: 

x is the oil price;  

dz is a Wiener increment; 

η is a speed of reversion parameter; 

x  is the equilibrium level to which the process reverts in the long run; 

k=E[ɸ-1]; 

dq is a Poisson Process increment which can assume value zero with  1-λdt of probability and  
ɸ-1 with λdt of probability.  

Since k=E[ɸ-1] implies that E[dx/x]= η( x − x)dt.  

In this model, similar to Merton (1976), the common news would cause marginal adjusts in oil 
prices, while abnormal events – such as crisis, wars and economic booms – would cause 
discrete jumps on time. The uncertainty about the size and direction of the jump is represented 
by ɸ. The jumps can be systematic, which do not allow to obtain a risk neutral portfolio, or 
non-systematic, which allow the use of contingent claims. 

Other papers (Gibson & Schwartz, 1990; Schwartz, 1997; Pindyck, 1999; Schwartz & Smith, 
2000) are focused on the stochastic behavior of commodity prices. These works claim that 
besides MRM factor price processes of some commodities may also have a stochastic upward 
trend factor. In practical terms, this trend factor would tend to increase the equilibrium level to 
which the process reverts in the long run as time passes. These increases would have additional 
motivations to momentary mismatches of supply and demand (captured by MRM) and they 
would be caused by the progressive exhaustion of natural resources and incremental costs 
related to new requirements of environmental laws, among other issues. As a contrast, the 
improvements in the exploration and production technologies could imply in a downward trend 
of the commodity prices. Among other works that share the same concept, one that has a huge 
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popularity is Schwartz & Smith (2000) which proposes a two stochastic factor model  – GBM1 
and MRM – correlated and non-observable to describe the behavior of commodity prices. The 
sum of these two stochastic factor forms the logarithm of the asset price (lnSt), as it can be seen 
in the equation: 

tttS  ln  

Where: 

St is the spot price of the commodity; 

t is the factor which represents the changes of the prices in short term; 

 is the factor which represents the tendency of the prices in the long run. 

The differential equations of the two stochastic processes are: 

 dzdtd t   

  dzdtd t   

dzξ.dzχ = ρdt. 

Where: 

 is the speedy of reversion parameter of MRM; 

 is the volatility parameter of the short run changes in prices;  

dz is the Wiener increment of the short run changes in prices;  

 is the drift parameter of the long run price tendency; 

  is the volatility parameter of the long run price tendency; 

dz  is the Wiener increment of the long run price tendency; 

ρ is the correlation parameter of the two factor increments. 

In order to estimate the parameters of Schwartz & Smith (2000), the authors used future prices 
of commodities and applied the State-Space approach combined with Kalman Filtering2. 

An interesting way to summarize and categorize the stochastic models used in the real options is 
presented by Dias (2009), in which the processes are classified in three levels, as it can be seen 
in the table 1.  

                                                      
1 The model proposes an Arithmetic Brownian Motion (AMB) for the long run tendency of the price 

logarithm, which would be equivalent to a GBM for the prices.  
2 The Space-State approach is an adequate tool to deal with state variables that are not observable; 

nevertheless it is known that those are generated by a Markov process. When the model is placed in the Space-State 

approach, the Kalman Filter combined with maximum likelihood estimators can be used to estimate the parameters of 

unobservable state variables, which in the case of Schwartz & Smith (2000) would be the spot price of commodities. 
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Type of Stochastic Process Model Name References 

Unpredictable Model 
Geometric Brownian Motion 

(MGB) 
Paddock, Siegel & Smith (1988) 

Predictable Model Pure Mean Reversion (MRM) 
Dixit & Pindyck (1994),  

Schwartz (1997, model 1) 

More Realistic Models 

Two or Three factor models, 
and Mean reversion to 

uncertain long term mean 

Gibson & Schwartz (1990),  
 Schwartz (1997, models 2 & 3),  

Baker, Mayfield & Parsons (1998), 
Schwartz & Smith (2000) 

Mean Reversion with Jumps 
Dias & Rocha (1999, 2001),  
Aiube, Tito & Baidya (2008) 

Table 1 - More Usual Stochastic Processes  

3 Tests for Determination of Stochastic Processes  
Some statistical tools can be useful to research which stochastic process would be prevalent in 
the asset prices and other type of uncertainties. One of the most used approaches in this task is 
the Unit Root Test, also known as Dickey-Fuller Test. This test consists of the analysis of the 
hypothesis that the slope (b) of the regression between the log-returns and lagged log-returns of 
the prices is different from 1, as shown in the equation: 

ln(xt)  = a + b ln(xt-1) + εt  

Where xt is the asset price in the time t.  

Failure to reject the null hypothesis would strengthen the idea of the presence of GBM. The 
critical values of Dickey-Fuller Test can be seen in the table 2. 

Significance Level 1% 2.5% 5% 10% 

Critical Values -3.43 -3.12 -2.86 -2.57 
 Source: Wooldridge, 2000, p. 580 

Table 2 - Asymptotic Critical Value of the t-test for the Unit Root with no trend. 

In case of autocorrelation between the log-returns of prices and residues of the regression it is 
recommended the use of Augmented Dickey-Fuller Test. In this test it should be included 
sufficient lagged log-returns so that the residues become a white noise.   

In case log-returns do not present stationarity, it is recommended the Dickey-Fuller Test with 
Tendency. This test consists of applying a regression between log-returns and lagged log-returns 
including a drift as can be seen in the equation:  

 ln(xt)  = a + b ln(xt-1) + ct + εt  

Where c is the coefficient of the tendency. 

The critical values of Dickey-Fuller Test with Tendency can be seen in the table 3. 

       Significance Level 1% 2.5% 5% 10% 

Critical Values -3.96 -3.66 -3.41 -3.12 

Source: Wooldridge, 2000, p. 583 

Table 3 - Asymptotic Critical Value of the t-test for the Unit Root with trend  



9 

 

Generally, it is difficult to reject the hypothesis that the process follows a GBM, nevertheless it 
does not mean that there would be another process more suitable to describe the prices behavior. 
An interesting result is when b<1, which would indicate the possibility of MRM presence, even 
in the cases that GBM has not been rejected. In order to illustrate this difficulty, we can mention 
Dixit & Pindyck (1994), in which the authors expose that tests made with 30 and 40 year price 
series did not allow to reject the hypothesis that oil prices would follow GBM. It was necessary 
to make tests with 120 year series to manage the rejection of the unit root.  

Other approach that can be used to support the choice of the stochastic process is to verify if the 
level of the shocks is persistent, which could be more relevant than the unit root research. In the 
autoregressive processes – such as MRM – the shocks tend to dissipate when there is permanent 
reversion strength. As a contrast, in case of GBM – which is not an autoregressive process – the 
shocks in prices are persistent. In order to verify this condition, Pindyck (1999) proposes a 
Variance Ratio Test, which consists of verifying if the log-return variance increases 
proportionally in time, that is one of the main important hypothesis of GBM. The test measures 
the level to where the variance converges with the increase of the lags in the log returns. The 
Variance Ratio can be measured by the equation: 

 
 1

1 t k t
k

t t

Var P P
R

k Var P P








   

The term Var (.) in the formula represents the variance of the series of the differences between 
the log-returns of prices: Pt, with lag of k periods. In case of GBM, it would be expected that 
variance would increase proportionally and linearly to k, which implies that Rk should converge 
to 1 when k grows. As a contrast, in case of MRM the variance is limited to a certain level even 
considering the growth of k which implies that Rk should decrease when k grows.   

In addition to Dickey-Fuller and Variance Ratio Tests, analysis can be made with Adherence 
Measures in sample, which compares one step ahead results estimated by the models and the 
observations of the price series correspondents. Among other measures, 3 approaches typically 
used in this analysis are: Pseudo R2, Mean Quadratic Error (MQE) and Mean Absolute 
Percentage Error (MAPE).  

The Pseudo R2 consists of the square of the correlation between the values of the price series 
and the forecasts one step ahead, both related to the same period. Larger values (closer to 1) of 
the Pseudo R2 indicate a higher adherence of the model. The Pseudo R2 can be calculated by the 
equation: 

 21
2 ))(,(  ttt SSESRPseudo   

Where: 

),( ba is the correlation between a and b; 

tS  is an observation of the price series; 

)( 1tt SSE is the estimated value one step ahead of the price series. 

The Mean Quadratic Error is the average of the square of the difference between the values of 
the price series and the estimated prices one step ahead. Lower values for the MQE indicate a 
better predictive ability of the model. The MQE can be calculated by the equation: 

   2

1)(  ttt SSESAverageMQE  

Where: 

tS  is an observation of the price series; 
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)( 1tt SSE  is the estimated value one step ahead of the price series. 

Mean Absolute Percentage Error is the average of the modulus of the difference between the 
values of the price series and the estimated prices one step ahead, standardized by the values of 
the price series. Similarly to MQE, lower values of MAPE indicate a better predictive ability of 
the model. The MAPE can be calculated by the equation: 













 

t

ttt

S

SSES
AverageMAPE

)( 1  

Where: 

tS  is an observation of the price series; 

)( 1tt SSE  is the estimated value one step ahead of the price series. 

4 Theoretical Considerations about the Stochastic Process 
Choice in the Real Option Valuation 

Beyond the statistical tests, the choice of the stochastic process to represent the uncertainties in 
the real options valuation can be supported by theoretical considerations referenced in the 
economic theory. An example would be the assumption of the equilibrium mechanism in the 
prices of commodities which would justify the use of MRM to represent the behavior of the 
price of these assets. In the same vein, the supposition of the gradual increase in the production 
marginal cost and the occurrence of rare events (such as crisis and wars) would support the mix 
of MRM with GBM and Poisson Process, respectively, in the search for more realistic models.  

Another relevant issue is the lifetime of the assets. Generally, if the lifetime is relatively short, 
further research to determine the best stochastic process could be considered as a matter of 
minor relevance, allowing the choice of the process to be guided by such issues as the ease in 
calibration of parameters and construction of the valuation model. Dixit & Pindyck (1994) show 
that in short periods of time, price processes of GBM type are mainly guided by the stochastic 
shocks, while as time passes the drift component becomes more relevant. Thus, as in most 
models the randomness is represented by increments of Wiener – that is, treated similarly as 
GBM – the search for a more appropriate process to represent the stochastic behavior of prices 
could be considered an expensive task, taking into consideration the benefits to be obtained. As 
a contrast, in cases of long lifetime of the assets, the research to obtain a process with more 
adherence to the performance of the asset prices could be crucial to its valuation and the 
definition of investment rule. Bastian-Pinto, Brandão & Hahn (2009) show that in a switch 
option valuation in the sugar-ethanol industry, the difference in the option value could change 
from 20% to 70% in relation to the base case, when the uncertainties are modeled by MRM and 
GBM, respectively. Kerr, Martin, Pereira, Kimura & Lima (2009) estimated the optimum time 
to cut trees in the forest products investments considering that uncertainties could be modeled 
by MRM and GBM. The authors concluded that the critical prices to decide the cut in relation to 
the time, would change substantially when a different type of process is used. In the case 
studied by the authors, the use of MRM could anticipate the exercise decision of the option 
when the results are compared to GBM.   

Although the mixing of processes can generate more realistic models, this implies in a greater 
difficulty in the parameters estimation. Usually, the multiple factor models require future price 
series of the assets for the parameters estimation, as in Schwartz (1997) and Schwartz & Smith 
(2000). In these works the authors used the Space-State approach mixed with the Kalman Filter 
applied in series of future prices of commodities to estimate jointly the parameters of the 
models. Nevertheless, in most cases of commodities prices and other kind of uncertainties, 
future prices are not available, such as ethanol prices and the volume of traffic on a toll road. In 



11 

 

these cases, despite the advantages of using multiple factor models, the choice of stochastic 
process might be influenced by limitations related to the database availability.   

Regarding the quality of the available databases to calibrate the parameters of the models it is 
important to consider the extension and periodicity of the price series. Generally, it is 
recommended to use long time series for estimating the drift parameters. Taking into account 
that the variance of the drift estimator is proportional to time, the longer the series the more 
efficient will be the estimator. Nevertheless, the information periodicity is relevant to calibrate 
the volatility parameters. The higher the information frequency the better the estimator quality.      

Finally, an issue that should be considered in the choice of the stochastic process is its 
applicability on close formulas and numerical solutions used in real options valuation. 
Comparing GBM with other models, one of its biggest advantages is the small number of 
parameters to calibrate and the ease of obtaining analytical solutions, which are huge incentives 
to its use. Generally, the use of MRM does not allow the achievement of analytical solutions to 
the decision rule, which implies in the use of numerical solutions such as Monte Carlo 
Simulation (MCS) and Binomial Lattices3. Usually, it is possible to obtain solutions for multiple 
factor models using MCS and when there is more than one uncertainty to be considered in the 
analysis. It is important to observe that before 1993 MCS was only used in the solution of 
European options and since then, with the development of optimization methods pluggable to 
MCS, it became possible to value American options (Dias, 2008).  

5 Conclusions 
In this work a discussion is raised about the alternatives of stochastic processes for applying in 
the real options valuation. Besides the main types of pure stochastic models, more contemporary 
models were presented, which mix different kinds of processes in order to provide a more 
realistic in the characterization of the uncertainties involved in the analysis.   

In several situations – mainly in projects with long lifetime – the choice of stochastic process 
can be relevant in the real options valuation, with influences on the value and optimal rule of the 
investment. Typically, it is recommended the Dickey-Fuller Test as a support to the choice of 
stochastic processes; nevertheless in most cases the results of the tests are inconclusive. In 
section 3 were presented some tools that can improve Dickey Fuller Test and other statistical 
approaches, in order to obtain more conclusive results in the analysis. In addition to statistical 
tests, some theoretical considerations based on microeconomics and some restrictions caused by 
the availability of the database were considered relevant to define the most appropriate 
stochastic model.   

As further research in the same field, it is suggested the study of other types of statistical tests 
for the analysis of adherence of multiple factor models and the analysis of implications related 
to the use of these models on the several kinds of managerial flexibilities.  
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