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Abstract

This paper proves the optimality of an (S, s) policy in a discrete-time model of in-
vestment with fixed adjustment costs and complete irreversibility. Investment is shown
to depend simultaneously on marginal and average Q, which are sufficient statistics
of, respectively, marginal and total gains of adjustment. Cash-flows are not a correct
proxy for the marginal value of capital, the latter being a non-monotonic function of
profitability. Neither functional forms nor calibration are imposed and there is no need
for numerical procedures. The result holds for a wide class of shocks and technologies.
Proofs use the concept of K-convexity introduced by [Scarf, 1960].
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1 Introduction

This paper proves the optimality of an (S, s) policy in a discrete-time model of invest-
ment with fixed adjustment costs and complete irreversibility under a minimal set of
restrictions on technology and uncertainty. It is a well-known fact that investment is
lumpy at the plant-level with long periods of inactivity punctuated by infrequent and
large adjustment. For example in continuing and large U.S. manufacturing establishments,
[Doms and Dunne, 1998] documents that more than half of them exhibit capital growth
close to 50 percent in a single year and between 25 and 40 percent of an average plant’s
gross investment over the seventeen year period considered is concentrated in a single year
period. To satisfyingly replicate observed microeconomic investment patterns, it is neces-
sary to consider fixed adjustment costs and irreversibility 1. The former are independent
of the level of investment and are incurred whenever investment is nonzero. Thus a firm
can avoid them by not investing at all. The latter depicts a resale price of capital inferior
to its current acquisition price 2. This paper considers that installed capital is valuable

∗nicolas r@ifs.org.uk. I would like to thank without implications Jean-Marc Robin, Cuong Le Van,
François Gourio, Rabah Amir, Russell W. Cooper and Dan Hamermesh. Very useful feedback was also
received from seminar and conference participants at the University of Paris 1, the University of Texas at
Austin and the Society for Computational Economics.

1[Hamermesh and Pfann, 1996] and [Khan and Thomas, 2006]) survey the literature on adjustment
costs. While still widely used for their tractability, convex adjustment costs models have fare poorly to
account for observed investment behavior. The failure of the class of so-called partial adjustment models
comes from the implied smooth and continual adjustment to shocks.

2because of lemons effects, capital specificity and market thiness.
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only to the extent that it is used in production ; a situation called complete irreversibility.
It describes many observed situations since plants sell capital very rarely. Instead, they re-
duce their capital stocks to lower desired levels by letting them depreciate. Scarce episodes
of negative investment are usually interpreted as depreciation and obsolescence of existing
capital stock. It may also concerns firms in distressed (see [Ramey and Shapiro, 2001] for
a concrete example). In this case, capital sales and investments are two separate activ-
ities that do not interact. Only the second is part of regular productive activities. In
most empirical analysis of investment, the dynamics of dis-investment is either estimates
separately (see [Abel and Eberly, 2002] for example) or neglected.

The following definition gives a formal derivation of observed investment policy. I
introduce the notation which will be more precisely defined in the rest of the paper.

Definition 1 An investment policy, denoted i, is an (S, s) policy if there exists a target
function and a threshold function, denoted S and s, that do not depend on past level of
capital, denoted k, and such that

i(A, k) =

{
0 if k > s(A)
S(A) − k if k < s(A)

where A denote the state of the world

[Eberly and Van Mieghem, 1997] studies a special case where S = s 3. Such a situation
arises when adjustment costs are linear but not fixed.

In an influential paper, [Abel and Eberly, 1994] develops a unified model of investment
under uncertainty. Results are obtained once a precise stochastic process and an analytic
profit-function are imposed. A drawback is the unavoidable normality assumption which
renders the problem manageable. But in many economic situations, fat tails and asymme-
tries suggest that normality is too restrictive. And as stated by [Ackerberg et al., 2007]:
estimation of production functions has a long history in applied economics (...) Unfortu-
nately, this history cannot be deemed an unqualifed success, as many of the econometric
problems that hampered early estimation are still an issue today. Characterizing optimal
policies without relying on any functional forms is thus desirable. In comparison, the
results hold here for a wide-class of technologies and with very few restrictions on the
uncertainty confronting the firm. Also many of the subsequent papers use a geometric
brownian motion as it is highly tractable. But the recent development of tests for units
roots using panel data (see for example [Hall and Mairesse, 2003]) demonsrates that in
most situations the presence of a unit root is rejected in favor of a process with very
high persistence but inferior to unity. And the analysis is done in continuous-time. Yet,
there is a growing literature that demonstrate the interests and advantages to work in
discrete time. [Boyarchenko and Levendorskii, 2007] discusses that point: discrete time is
more natural for economics, and it allows one to obtain analytical results in some situ-
ations, where continuous-time models are either not applicable, or do not lead to simple
analytical results. For example, large investment episodes are often spread across two or
three years ([Doms and Dunne, 1998]). While it is certainly involved to reproduce this in
a continuous-time model, it emerges naturally by considering an appropriate time-interval
in a discrete-time framework.

The empirical literature on investment dynamics is vast4. Since observations are avail-
able at equally spaced moments in time, it is naturally in discrete-time. In reduced-form

3This paper deals with positive and negative demand for inputs and an arbitrary number of factors.
4see [Bond and Reenen, 2007] for a recent survey.
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empirical papers, it is customary to say that an (S, s) policy is optimal but the theoret-
ical references are always continuous-time models. In structural models, several studies
discuss the optimality of inaction and jumps in the investment process using numerical
procedures5. But there is no formal proof: the (S, s) policy is rather observed in numerical
examples. Here, no functional forms are imposed and there is no need for numerical proce-
dures nor their associated calibration and simulations exercises. The characterization of an
optimal policy with a state-dependent target and threshold can potentially help the iden-
tification strategy. Using indirect-inference, it helps understanding the crucial moments
to match. Using maximum likelihood estimators, variants of the framework developed
here were reduced to a dynamic discrete choice model to be amenable to a structural
estimation6. A notable exception is [Pakes, 1994]. He showed how to handle both dis-
crete and continuous control variables in a structural estimation. However, his methods
involves considerable selection as it only considers adjustment periods in the estimation.
With a full-characterization of the optimal policy, it is possible to structurally esimate
the model using a generalized selection model where the value functions are approximated
with Chebyshev Polynomials7.

Despite the non-differentiability and the discontinuity of the one-period profit function,
the value function is shown to be continuous and to be differentiable everywhere except at
the threshold level where it admits unequals left and right derivatives. This is of interest
since many authors have erroneously stated that the value function is non-differentiable.
An analytical expression for the marginal value of capital is derived and interpreted. Two
notable findings emerge: (i) the optimal investment policy depends simultaneously on the
marginal value of capital and the total value of capital and (ii) the marginal value of
capital is shown to be a non-monotonic function of profitability. These are strongly re-
lated to the litterature on investment - cash flows sensitivities. Most empirical work takes
[Hayashi, 1982] neoclassical investment model as its point of departure. In this model,
the firm is perfectly competitive, has a constant-returns-to-scale production function, and
faces convex investment adjustment costs that are linearly homogeneous in investment and
capital. [Hayashi, 1982]’s model implies that the optimal investment-capital ratio depends
only on Tobin’s average Q, defined as the ratio of the value of the firm to its capital stock.
This prediction has generally been rejected by empirical studies, which show that cash
flows and other measure of current profitability have a strong predictive power for invest-
ment after controlling for Tobin’s Q. The common interpretation of these findings is the
presence of financial frictions. Recent papers have challenged this interpretation. They
compute dynamic general equilibrium models with financial frictions, calibrate them and
look at the relation between Tobin’s Q and investment in simulated series. [Gomes, 2001]
show that financial frictions are neither necessary nor sufficient for significant cash-flow ef-
fects in standard regressions. [Cooper and Ejarque, 2001] and [Cooper and Ejarque, 2003]
establish that decreasing returns and market power help to generate realistic correlations
while financial frictions do not. [Bayraktar et al., 2005] show that the impact of external
finance constraints on investment is relatively modest compared to the role of adjustment
costs. Then much of the significance of cash flow variables in conventional estimates of
Tobin’s Q investment equations occurs because the strong assumptions necessary to make
investment depend only on average Q do not hold in the data. If one follows this liter-

5the optimal decision is usually found after discretization of the state space by value function iteration.
6For example, [Rota, 2004] estimate a labor demand model with fixed costs using

[Hotz and Miller, 1993]’s estimator. The former is suited for discrete decision processes (the deci-
sion to adjust or not). The continuous decision (how much to invest) is estimated non-parametrically.

7this is the approach of [Fuentes et al., 2006] in a model of investment with linear adjustment costs
only.
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ature, a solution (actually infeasible) would be to replace average Q by marginal Q in
regressions. The present paper establishes, under very few assumptions, and whitout any
financing constraints that it would still not be enough. Investment is shown to depends
simultaneously on marginal and average Q, which are sufficient statistics of, respectively,
marginal and total gains of adjustment. Further, the marginal value of capital is shown to
be a non-monotonic function of profitability. This can explains why when one allows for
non-linearity and/or uses measurement-error consistent estimators, the investment-cash
flows correlations are significantly reduces.

Some results partly duplicate or generalize earlier related findings reported by [Caballero and Leahy, 1996].
This very insightful paper solve a model with fixed costs and address many of the questions
of the present paper. Yet, this is done with a very specific shock process and by impos-
ing homogeneity assumptions. But many empirical studies show that assumptions about
constant return to scale profits may not be correct. And they consider a scale-dependent
fixed cost (proportional to capital) while this paper consider a true fixed costs. Recent
empirical papers show that the latter are necessary to reproduce the different patterns of
investment in large versus small firms (see below).

Even in times of growing computer power, the computational interest of this paper
derserves attention. Under the assumptions made, when one solve numerically a model,
he can restricts his attention to policies of the (S, s) form. For example, if one solves the
model with value function iteration, it is sufficient to look at the first point of the capital
sate space to find the optimal target (S). To find the threshold (s) it is sufficient to look
at values below the target. Further, one can infer the value function at any point below
the target from the computation of the value function at the target exactly.

This paper can also be of interest in two other fields. A lively litterature study how
lumpy microeconomic investment decisions impact aggregated investment. A consensus
has not yet been reached. The results found rely on simulations and are oftenly criticized
regarding functional forms and calibration assumptions. This paper is a first step toward a
less simulation-dependent analysis of this subject. Finally, a recent line of research relates
stock return dynamics to firms’ real investment decisions8. Using the results of this paper
it would be possible to do so without assuming normality (which is strongly rejected when
using commodity prices data).

The rest of the paper is organized as follows. Section 2 presents the model. Section
3 derives the optimal decision rule in the case of complete irreversibility and provides a
comparative statics analysis of the model. Section 4 establishes the differentiability of the
value function and re-formulates investment policy in terms Tobin’s average and marginal
Q. Section 5 extends the results to non-stationary and multivariate shocks, a horizon of
arbitrary length, time-varying parameters and flexible inputs. Section 6 concludes. All
proofs are in the Appendix.

2 The Model

In this section, I introduce the model and impose assumptions under which the (S, s)
policy is optimal but that are strong enough to be tractable for empirical work. In Section
5, I will relax some assumptions that have appeared too strong.

8For example, high book-to-market stocks benefits more than low book-to-market stocks from a forth-
coming expansion in real activity. [Cooper, 2006] shows that this result is consistent with the presence of
non-convex adjustment costs
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2.1 Assumptions

Time is discrete and indexed by t. At each period, the firm decides to invest9 or not (it ≥ 0)
over an infinite time horizon. Under the risk-neutral assumption, the firm’s objective is
to maximize its expected net present value which is the discounted sum of one-period
profits net of adjustment costs . Her decision depends on At, an observable shock to the
profitability10 of the firm at the beginning of period t and kt the level of capital inherited
from the previous period. The one-period profit function is:

π(A, k, i) = R(A, k + i) − C(i) (1)

R(A, k) represents reduced-form profits and incorporates the optimal choice of flexible
factors. It is based on an underlying production and costs functions where all flexible
factors of production (labor, working time,...) have been optimized out (see Section 5.5.2
for a formal analysis). The simplest representation is: R(A, k) = Akα − rk where α is the
curvature of the production function and r is the user-cost of capital. Usually, it is assumed
that investment becomes productive with one period lag. Since it would complicate the
notation without reversing the results11, assume it is immediately productive.

C(i) is the adjustment costs function:

C(i) =

{
F + pi if i > 0
0 if i = 0

(2)

where F and p represent, respectively, fixed and linear adjustment costs. The fixed
cost creates a discontinuity in C(·) at 0: C(0) = 0 while lim|k′−k|→0C(k′ − k) > 0. To
extend the analysis to general equilibrium and to consider heterogeneity in adjustment
costs firms face, it is possible to consider the fixed cost as random accross firms so that
the inaction range vary accross firms.

In a similar model, [Caballero and Leahy, 1996] consider a scale-dependent fixed cost.
This is meant to reflect forgone profits due to the loss of production associated with
installation of capital. Instead, this paper considers a true fixed-cost which means that
it does not depend on the scale of operation. The main motivation is the stylised fact
that smaller units are characterized by a substantially more intermittent investment. For
example, [Nilsen and Schiantarelli, 2003] found that the frequency of zero investment for
small units is more than two times than for large units12. And the evidence suggests
that financial constraints are not the most likely explanation 13. They conclude that the
econometric evidence support the existence of a purely fixed cost component, unrelated to
plant size14.

I present the timing of the model and then the technical assumptions that will be used
in the proofs.

9The results of the paper can be applied to a labor demand context. However, the assumed constancy
of quits and adjustments costs (see below) would then be problematic since there is empirical evidence of
their variations over the business cycle. That it why my focus is more on investment.

10Product demand, productivity of inputs and prices of flexibles factors (wages, energy prices,...) condi-
tions are combined into this univariate shock. Multivariate extensions are considered in Section 5.1

11The consequences of a delay between the purchase and the availability of investment are well-
understood. It increases the expected gap between actual and desired capital. When deciding whether to
invest (or not) and the optimal amount of investment, the level of profitability considered is not the actual
value but rather the expected value at the time where investment will be productive.

12This is also true for labor. [Nilsen et al., 2007] found that the frequency of episodes characterized by
no employment changes decreases markedly with size.

13Precisely, they a found a similar pattern in small plant belonging to multi-plants large firms and also
when they split the sample according to criteria correlated with the probability of financing constraints

14indivisibilities may also play a role

5



Assumption 1 Timing of the model and State Space

1. At the beginning of the period, the manager knows his past input level (kt ∈ K ⊂ R+∗)
and current level of profitability (At ∈ A) where A is a compact subset of R

2. Given (kt, At) the manager invests or not (it ≥ 0)

3. The level of capital at the start of the next period, t+ 1, is:

kt+1 = (1 − δ)(kt + it) (3)

where δ is a positive and constant depreciation rate 15.

4. New value of profitability is generated by a Markov process with transition function
given by Q : A×A −→ [0, 1] where (A,A) is a measurable space.

Assumption 2 The firm discounts future profits at a constant rate β ∈ (0, 1)

Assumption 3 Q(At+1, ·) is a continuous and strictly decreasing function for every At+1 ∈
A

Assumption 4 R is jointly continuous and concave for each (A, k) ∈ (A,K), R(·, k) is
increasing for every A ∈ A and R(A, ·) is single-peaked.

A follows an exogenous and stationary markov process. An eventually assumed exoge-
nous technological progress would render the problem nonstationary. However, [Bertsekas and Shreve, 1978]
show how nonstationary models can be reduced to stationary ones by appropriate refor-
mulation. Technology improvements and adoption can easily be introduced in the model.
[Buettner, 2004] develops a parsimonious framework to analyse the distribution of future
productivity conditional on R&D and current productivity. There is R&D investments
by firms which influence the stochastic evolution of profitability at a cost that depend on
the current level of profitability. Formally let the distribution of future profitability be
Q̃(A′, ψ) and be stochastically increasing in R&D investments (denoted ψ). And, the cost
of R&D investments is increasing in A. The results of the paper are unchanged to such a
transformation. The assumption of exogeneity may appear as an important restriction on
the learning process. Yet, it is consistent with the empirical literature16. An empirically
relevant interpretation of Assumption 4 is that at the beginning of its life, the manager
draw a permanent level of profitability from which actual profitability can deviates ac-
cording to a markovian process. Precisely, Q can be thought as parametrized by this
permanent level of profitability. Further, in Section 5.1, it is shown that the optimality of
an (S, s) policy holds with almost no restrictions on the form of uncertainty.

From Assumption 3, Q(At+1, ·) is stochastically increasing in the first-order stochastic
dominance sense. There is a positive persistence of the shocks: high values of profitability
today are more likely to be associated with high values of profitability tomorrow. It seems
realistic and will allow comparative statics analysis. The transition function Q(A′, A)
satisfies the Feller property. It guarantees that the expectation function, used later in

15for analytical convenience, depreciation is proportional to both accumulated capital and investment.
This is consistent with the assumption that investment is immediately productive.

16[Pakes and Ericson, 1998] find that manufacturers sales appears to Markovian whereas retailers do
not. As pointed by [Abbring and Campbell, 2005], Non-Markovian dynamics can not only arise from
Bayesian learning but also from permanent and unobservable differences across entrepreneurs’ choices of
their firms’ intended scales. Empirically, they find that heterogeneity across firm’s pre-entry scale decisions
and transitory shocks observed by entrepreneurs can fully explain surviving bars’ long history dependence
and no evidence of entrepreneurial learning.
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the Bellman equation, is bounded and continuous. Note that the normality assumption is
not necessary. It represents an improvement compared to continuous-time models where
Brownian shocks and boundary conditions are necessary to obtain solutions.

The profit function includes flows payments on capital like for example maintenance
costs or commitments associated to purchase of capital. Combined with decreasing returns
and/or some degree of monopoly power, R is an increasing and then decreasing function
of k. The more widely used functional forms is Akα − rk where α is the curvature of the
revenue function and r is the cost of capital.

2.2 The Dynamic Programming Problem

Given the law of motion of capital, the sequence of investment {it}
∞
t=0 is chosen to maximize

the present discounted value of current and future profits:

sup
{it}∞t=0

E

[
∞∑

t=0

βtπ(At, kt, it)

]
(4)

such that kt+1 = (1 − δ)(kt + it) and with k0 given.
Before writing the model as a dynamic programming problem and its standard recursive

formulation, it is necessary to deal with two technical issues: the objective function defined
in (4) has to be well-defined and the capital state space to be compact. In the appendix,
Proposition 8 guarantees the first and Proposition 9 deals with the second. Precisely,
Proposition 9 shows that choices of kt above a particular value (noted k̃) can not be
optimal: an upper-bound to the capital state space exists. Since the capital stock can
not take negative values, it has a natural zero lower bound. The compacity of the capital
state (denoted K) is derived from the optimal behavior of the firm and is not an ad-hoc
assumption.

Define the value function at period t, V(At, kt) as the discounted expected value of
current and future cash-flows:

V (At, kt) = sup
{ij}∞j=t

E





∞∑

j=t

βj−tπ(Aj , kj , ij)|kt, At



 (5)

From standard results in dynamic programming theory, I can focus on stationary and
markovian policies and the value function V (A, k) is given by the solution to Bellman’s
equation:

V (A, k) = sup
0≤i≤k̃−k

{W (A, k + i) − C(i)} (6)

where

W (A, k) ≡ R(A, k) + β

∫

A
V (A′, k(1 − δ))Q(dA′, A) (7)

In a sense, W can be interpreted as the value of the firm when in the considered period
investment is not possible and the optimal policy is followed in all future periods. While
next Proposition may appear technical, it is of interest because it shows that the presence
of the fixed costs does not affect the existence and unicity of a solution Bellman’s equation
and more importantly the value function is continuous despite the discontinuity in the one-
period profit function. Note that Proposition 1 requires little assumption on the stochastic
process.

Proposition 1 V is unique, jointly continuous in (A, k) and increasing in A
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Proof see Appendix A �

Following a standard argument, in the remaining of the paper, the operator sup is
replaced by the operator max. Let O : A×K → K denote the policy correspondence that
corresponds to the set of solution to (6):

O(A, k) =
{
k′ ∈ [k, k̃]|V (A, k′) = W (A, k′) − C(k′ − k)

}
(8)

Corollary 1 O(A, k) is non-empty, compact-valued and upper-hemi-continuous

3 Optimal Decision Rule

3.1 Mathematical Background

The discontinuity of the one-period profit function (due to the fixed adjustment cost) im-
plies that the value function is not concave. Traditional dynamic programming arguments
are not available. Nevertheless the concept of K-concavity introduced by [Scarf, 1960] can
be successfully used17. There is two equivalent ways to define K-concavity.

Definition 2

1. a real-valued function g is called F -concave for F ≥ 0, if for any z ≥ 0, b > 0 and
any y,

g(y + z) − F ≤ g(y) +
z

b
(g(y) − g(y − b))

2. a real-valued function g is called F -concave for F ≥ 0, if for any x0 ≤ x1 and
λ ∈ [0, 1],

g((1 − λ)x0 + λx1) ≥ (1 − λ)g(x0) + λg(x1) − λF

Next Proposition proof can be found in [Bertsekas and Shreve, 1978], except the last
property whose proof is in apprendix B.

Proposition 2

1. A concave function is 0-concave and hence also F -concave for all F ≥ 0

2. If {gn(x)} is a sequence of F -concave functions and g = limn→∞ gn is the pointwise
limit of these functions, and if |g(x)| <∞ for all x, then g is F -concave

3. If f(x) is F -concave in x ∈ [0, x̄], where F ≥ 0, then the function

g(x) = max
y≥x

{f(y) − FI{y > x}}

is also F -concave

17in the remaining of the paper, I use the term F -concavity instead of K-concavity to avoid any confusion
with k.
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3.2 Optimality of an (S, s) Policy

Essentially, I tailor the arguments for a class of commodity price speculation problems in
[Hall and Rust, 2005] to derive the optimality of an (S,s) policy in the investment problem.

Proposition 3 For any (A, k) ∈ A×K, the functions V and W are F -concave in k and
the optimal decision rule i(A, k) takes the form of a state-dependent (S, s) policy:

i(A, k) =

{
0 if k > s(A)
S(A) − k if k < s(A)

(9)

where the functions S(A) and s(A) are given by:

S(A) = min arg max
0≤k≤k̃

[W (A, k) − pk] (10)

s(A) = min
(
k ∈ [0, k̃]|W (A, k) ≥W (A,S(A)) − p[S(A) − k] − F

)
(11)

The value function V can be expressed as:

V (A, k) =

{
W (A,S(A)) − F − p[S(A) − k] if k ∈ [0, s(A)]
W (A, k) otherwise

(12)

Proof see Apprendix C �

Recall that the optimal policy depicts in Proposition 3 coincides with the observed
patterns of investment: several periods of inaction, when k < s(A), followed by bursts of
capacity adjustment, when k jumps to S(A).

Defining a target S(A) and a threshold s(A) is noteworthy. With this in mind, the
optimization problem is separated in two parts: choosing an optimal level of investment
ignoring the fixed cost18, and deciding whether or not to incur the fixed costs and invest
at all. Note that s(A) ≤ S(A) because s(A) is defined as the smallest point where optimal
investment is zero. An important contribution of this paper is that no functional forms
(nor calibration) are imposed and there is no need for numerical procedures to obtain the
result.

To deal with multiple maximas, the target S(A) is defined as the smallest value of the
policy correspondence O(A). In Section 4, it turns out that the target is unique. But
differentiability of the value function will be proven first.

3.3 Interpretation and Graphical Illustration

For illustrative purposes, I plot the value of inaction (noted W or V i) as a concave function
of k (the green line). The value of ordering (noted V a) is a linear function of k (the blue
line). The value function is the maximum of the two curves. The linearity is due to linear
adjustment costs. At the target level, the gap between the value of inaction and the value
of an (optimal) adjustment is exactly equals to the fixed adjustment cost. If there is only
fixed adjustment costs, the value of ordering would equate the value of inaction evaluated
at the target level.

If there is an adjustment, the level of capital is chosen independently of its lagged
value. In other words, there is no partial adjustment: if the manager decides to ad-
just, he directly jumps to the target without smoothing. To understand this property,

18it does not appear in the definition of S(A). Yet it impacts on S(A) through its effects on the value
function.
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Figure 2: Value Function and Optimal Decision Rule

consider the definition of the investment policy when there is an adjustment: i(A, k) =
min arg max0<i≤k̃−k[W (A, k + i) − pi]. Using a simple variable change k′ = k + i, k does
not appear in the objective function maxk<k′≤k̃ [W (A, k′) − pk′] but it does in the set over

which to optimize: k′ ∈]k, k̃]. Indeed, this is a problem only if S(A) < k. A situation
like the one in the following picture is conceivable: if a negative investment level were
allowed, it would be the arg max of the objective function). But as it is not, the firm
prefers to invest (and go to the maximum over the state space considered, say k∗∗) rather
than staying inactive.

However this situation is not possible. For all (A, k, i) ∈ A × (S(A), k̃] × (0, k̃ − k],
W (A, k) − pk being F -concave, it holds:

W (A, k + i) − p(k + i) − F = W (A, k) − pk +
z

k − S(A, k)
[W (A, k) − pk −W (A,S(A)) + pS(A)]

Since the term on the right hand side of the above inequality is non-positive, the value
of inaction W (A, k) is bigger than the value of investing any positive amount.

Between s(A) and S(A), the marginal gain of adjusting employment is superior to its
marginal costs (p). Graphically, the slope of the green curve is bigger than the slope of the
blue curve 19. However, inaction is optimal because the total gain of adjusting employment
is inferior to its total cost. After S(A), both total and marginal gains are inferior to their
respective costs.

19The differentiability of the value function is established in Section 4

10



At the level of previous capital in which the firm is indifferent between adjustment
and non-adjustment, the level of capital chosen, if the firm adjusts, is superior to previous
capital. Linear adjustment costs (or complete irreversibility) alone do not produce this
phenomena. This is really due to the presence of a fixed cost the firm aims to avoid
incurring too frequently. Further the magnitude of adjustment (when it occurs) must be
large enough to create a total profit gain sufficient to offset the total cost. When there is
no fixed cost, the decision-marker evaluates marginal gains only.

3.4 Comparative Statics

This section looks at the reply of the optimal invesment and the probability of investing
to an increase in profitability using the general theory developed by [Topkis, 1978]. The
following supermodularity assumption says that the marginal productivity of capital is
increasing in profitability.

Assumption 5 R is supermodular for each (A, k) ∈ (A,K)

Proposition 4 S and s are non-decreasing functions.

Proof see Appendix D �

Proposition 4 illustrates a simple principle: when profitability is high, the optimal level
of investment and the probability of investing is higher. The intution is that the marginal
value of capital increases in productivity and that a firm with higher current productivity
is more likely to have better realisations of productivity in the future. Following a positive
shock, the firm becomes more willing to invest (the threshold s rises) and wants to invest
more (the target S rises).

A full-analysis of the effects of exit and outside options on the investment behavior
would go beyond the scope of the present paper. A simple way to incorporate exit is to
consider that firms face a probability of receiving a shock to the profitability level (say π)
which would cause an exit of the market or the realloction of capital to any other outside
activities. The gains from such a situation can be any function of the capital stock. Then
the effects of a rise in this probability or of the gains of such a situation can be analysed
as the impact of a decrease in the discount rate β.

Proposition 5 If β1 < β2, S(A;β1) ≤ S(A;β2) and s(A;β1) ≤ s(A;β2) for each A ∈ A.

Proof see Appendix D �

Using Proposition 5, a firm which anticipate a rise in its probability of leaving the
market reduces its optimal level of investment and its probability of investing.

4 Marginal and Average Value of Capital

The aim of this section is to characterize the optimal policy in terms of the marginal
and average value of capital, also known as marginal and average Q. As an intermediary
step, the value function is shown to be differentiable a.e. except at the threshold level
where it admits unequals left and right derivatives. This is an interesting result per se
since it holds despite the non-differentiability and the discontinuity of the one-period profit
function. Further many authors have erroneously stated that the value function is non-
differentiable.

It is obviously necessary to assume differentiability of the one-period profit function to
expect differentiability of the value function.

11



Assumption 6 R is differentiable and strictly concave

Proposition 6 The value function V is continuously differentiable in k almost everywhere
on the domain K\s(A) for every A ∈ A. The partial derivative obeys the equation:

Vk(A, k) = Rk(A, k + i(A, k)) + β(1 − δ)

∫
Vk(A

′, (1 − δ)(k + i(A, k)))Q(dA′, A) (13)

which can be decomposed as:

Vk(A, k) =

{
p if k < s(A)
Rk(A, k) + β(1 − δ)

∫
Vk(A

′, (1 − δ)k)Q(dA′, A) if k > s(A)
(14)

Corollary 2 For every A ∈ A, the target S(A) is unique and satisfies

Rk(A,S(A)) + β(1 − δ)

∫
Vk(A

′, S(A)(1 − δ))Q(dA′, A) = p (15)

Corollary 3 The functions S and s are unique, continuous and increasing

Proof see Appendix E �

The interpretation of Corollary 2 is the usual one. If the firm decides to invest, it
equates marginal gains from adjustment to its marginal costs. Note that the fixed cost
does not appear explictly in the preceding equation. However, it impacts the target indi-
rectly through its effects on the value function. Corollary 3 establishes the unicity of the
target for each level of profitability. Thus the optimal decision rule is a policy and not
a correspondence. This is an improvement compared to [Caballero and Leahy, 1996] and
[Caballero and Engel, 1999] where the strict concavity of the one-period profit function do
not imply unicity.

To compute the derivative with respect to capital of the value function, I solve recur-
sively the function W . Since for every A ∈ A, |W (A, 0)| <∞, when j goes to infinity:

lim
j→∞

βj

∫
W (Aj , k(1 − δ)j)

j−1∏

l=1

Q
(
dAl, Al−1|k(1 − δ)l ≥ s(Al)

)
= 0

and since s(·) is invertible (using Corollary 3), it holds:

W (A0, k) = R(A0, k)

+
∞∑

j=1

βj

(
j−1∏

l=1

Q([A, s−1(k(1 − δ)l)], Al−1)

)
(

∫ s−1(k(1−δ)j )

A

R(Aj , k(1 − δ)j)Q(dAj , Aj−1)

+

∫ Ā

s−1(k(1−δ)j )

[
W (Aj , S(Aj)) − pS(Aj) + pk(1 − δ)j − F

]
)Q(dAj , Aj−1) (16)

The marginal value of capital can be written:
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Wk(A0, k)

= Rk(A0, k) +

∞∑

j=1

(β(1 − δ)j)(

j−1∏

l=1

Q([A, s−1(k(1 − δ)l)], Al−1) ·

[

∫ s−1(k(1−δ)j )

A

Rk(Aj , k(1 − δ)j) +

∫ Ā

s−1(k(1−δ)j )
p]Q(dAj, Aj−1)

+ s−1
k (k(1 − δ)j)q(s−1(k(1 − δ)j), Aj−1) · [R(s−1(k(1 − δ)j), k(1 − δ)j)

−[W (s−1(k(1 − δ)j), S(s−1(k(1 − δ)j))) − pS(s−1(k(1 − δ)j)) + pk(1 − δ)j − F ]]

+

j−1∏

l=2

q(s−1(k(1 − δ)l), Al−1)

Q([A, s−1(k(1 − δ)l)], Al−1)
· (

∫ s−1(k(1−δ)j )

A

R(Aj, k(1 − δ)j)Q(dAj, Aj−1)

+

∫ Ā

s−1(k(1−δ)j )
[W (Aj , S(Aj)) − pS(Aj) + pk(1 − δ)j − F ]Q(dAj , Aj−1))

Using the preceding equation, the marginal value of capital can be separated in three
components. The first component is the discounted sum of marginal product of capital
times the probability of non-adjustment. The effect of an additional unit of capital lasts
when the firm adjusts and chooses a new level of capital, the target, which has been
proven independent of past values of capital. So one additional unit of capital has an
effect until the point in time where there is another adjustment. At this exact point in
time, one additional unit of capital reduces by p the amount of linear adjustment costs.
The preceding effect would be the only one if probabilities of investing in the future were
constant. However, changes in k alter the time of the next adjustment. The two other
effects takes this into account. An increase in capital decreases the probability of an
adjustment in the future. There is a lost of the future marginal gains to adjust. Yet by
definition, if the firm actually adjusts both total gains of adjustment and the marginal
gains of adjustment are superiors to their respective costs and are positive. So if there
is an adjustment, the first effect dominates the second one. The third effect is positive.
By increasing capital, the firm reduces its probabilities of adjusting in the future which
increase the number of period where the accumulated capital will have an impact on the
marginal value of the firm.

The optimal policy can be formulated in terms of the marginal and the average value
of capital. Define the average value of capital, also know as Tobin’s Q: Q(A, k) = W (A,k)

pk
.

Define the marginal value of capital, also known as marginal q, as q(A, k) = Wk(A,k)
p

. Using
the preceding results, it holds:

Proposition 7 For every (A, k) ∈ A×K

i(A, k) =

{
0 if Q(A, k) > 1 +Q(A,S(A)) − S(A)

k
− F

pk

q−1(A, 1) otherwise
(17)

The interpretation is the following. The probability of an adjustment depends only
on Tobin’s average Q. The latter is a sufficient statistics for total gains of an adjustment.
It entirely explains the decision to adjust or not. Note that the fixed cost is divided by
the level of the capital stock which captures the level of operation. It would then follows
that fixed cost matters more for small firms. The model repoduces the stylised facts that
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frequency of inaction decreases with size (cf. supra). The optimal amount of investment is
entirely determined by Tobin’s marginal q, which is a sufficient statistics for the marginal
gains of an adjustment.

An important question is the link between marginal q and cash-flows. Given the level of
capital at the beginning of the period, these two statistics are correlated with profitability.
It is fair enough to say that cash-flows are positively correlated with profitability for a
given value of capital at the beginning of the period. In the presence of fixed cost, the link
between marginal q and profitability is ambiguous. While this paper proves it formally
and in a very general framework, the intuition comes from [Caballero and Leahy, 1996]: a
positive profitability shock raises the marginal profitability of capital and the incentive to
invest. It is the future marginal profits that do not necessarily rise. Because investment
is lumpy, future marginal profits fall when investment is imminent, so that q falls as
investment approaches. The preceding discussion can be formally stated by looking at the
effect of an increase in profitability on the marginal value of capital. The marginal value
of capital can be re-written:

Wk(A, k) = Rk(A, k)

+ β

∫ S−1(k(1−δ))

A

Wk(A, k)Q(dAj , Aj−1)

+ β

∫ s−1(k(1−δ))

S−1(k(1−δ))
Wk(A, k)Q(dAj , Aj−1)

+ β

∫ Ā

s−1(k(1−δ))
pQ(dAj, Aj−1) (18)

A positive profitability shock increases reduced-form profits. This is the standard
intuitive effect. The three other effects are related to the impact on future profitabil-
ity distribution. Given that higher values of profitability are more likely in the near
future, the probability of an adjustment in the near future increases. However, if the
firm adjusts, the marginal value of capital is equated to p. And given A, for every
k ∈ [s(A), S(A)),W (A, k) > p: the marginal value of capital is higher than p. So be-
cause of the fixed costs, it may happen that the marginal value of capital is higher in a
non-adjustment situation compared to a situation where the firm adjusts. An increase in
profitability today put more weights to profitability levels in which the firm adjust and
less weights to profitability levels in which the marginal value of capital is higher than p.
Then, the marginal value of capital may decrease with the level of profitability in some
portions of the state space. Precisely this situation is more likely when the firm is already
close to an adjustment i.e. k is higher than s(A) but very close to. Consequently, the link
between the marginal value of capital and profitability is non-monotonic. This translates
into a non-monotonic relationship between the marginal value of capital and cash-flows.

This theoretical point gives a possible explanation for the non-robust correlation be-
tween cash flows and - investment. High cash-flows are a proxy for high values of profitabil-
ity. If high cash-flows correspond to a situation of high profitability and low accumulated
capital, then investment will effectively be high if the firm cross the threshold. But high-
cash flows may also reflect a situation where both profitability and accumulated are at
their average level. This idea is that when capital at the beginning of the period is close
to the threshold level s(A), the link between cash-flows and investment may be negative.
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5 Extensions

5.1 A More General Framework

The degree of generality in the main text is chosen to be amenable to a structural estima-
tion of the model. I show how to transpose all the results of this paper in a more general
framework which allows non-stationary and multivariate shocks, a horizon of arbitrary
length and time-varying parameters. Consider the probability space (Ω,F , P ) and filtra-
tion F =

⋃
t Ft where Ft represents the information available at time t. Given the choice of

factor kt ∈ R
+ and the state of the world w ∈ Ω 20 The one-period profit function in period

t is denoted Rt(ω, kt). For each t ∈ {1, . . . , T}, the function Rt(·, ·) is jointly measurable,
Rt(·, kt) is Ft-measurable for each kt ∈ R

+ and Rt(ω, ·) is concave for each ω ∈ Ω. The
adjustment costs function can be generalized to a function with time-varying parameters:
C(it) = ptit + FtI{it 6= 0}. It is however necessary to assume that the discounted fixed
cost sequences {βt−1Ft}

T+1
t=1 are non-increasing in t 21.

Under standard regularity conditions, for all t ∈ {1, . . . , T}, the value function Vt(·, ·)
is Ft-measurable and is given by the solution to Bellman’s equation:

Vt(wt, kt) = sup
it≥0

{Rt(wt, kt + it) − Ct(it) + βE [Vt+1 (wt+1, (kt + it)(1 − δ)) |Ft]}

The final-period value function VT+1(·, ·) is assumed jointly measurable and VT+1(A, ·) is
FT+1-concave for each A ∈ A. To avoid end-of-horizon investment effects, it is possible to
assume: VT+1(·, ·) = 0. It is straightforward to see that all the results of the paper still
holds in the more general framework presented here.

Finally, it may seem restrictive to require that R(A, ·) is concave in that it is imposed for
every level of profitability. [Amir, 1997] presents a generalization of stochastic technology
where the production process exhibits decreasing returns to scale in some average sense
but it may enjoy increasing returns for some favorable resolutions of the uncertainty. To
the price of further notations and regularity assumptions, the results of the present paper
can be extended to such a situation.

5.2 Flexible Inputs

For the optimal investment policy analysis, flexible (in the sense of adjusted at no costs) in-
puts are unimportant because their choice is purely static: it has no dynamic implications.
Since every period the firm chooses its optimal level at no cost, past level of these inputs
will not impact on their current level. However, It is necessary to assume that after having
made the optimal choice of these factors, the one-period profit function remains concave in
(A, k) jointly. For example, add to the preceding model a single flexible factor (say l) which
enter the one-period profit function and is costless to adjust. Also to be more realistic22,
assume that some part of the shock is not observed until after the investment decision is
made and that the flexible factor is chosen after the rigid one. Formally, consider a point
in time t+ b between period t and t+ 1 ie. b ∈ (0, 1). Assume, that during t and t+ b, the
firms gets new informations on the profitability of the current period: an i.i.d shock that
affect profits (say µ) occurs. Denote by R̃(A, k, l, µ) the considered profit-function and
assumed it is jointly continuous and concave in its arguments. The first-order condition

for l is Rl = 0. Using the implicit function theorem, l∗k(A, k, µ) = − R̃lk(A,k,l,µ)

R̃ll(A,k,l,µ)
. When

20So far, I have assumed a univariate stochastic process A = {At(ω) : ω ∈ Ω, t ≥ 0}.
21It holds trivially when these costs are fixed over-time.
22Notably, it avoids a deterministic relatonship between the two factors.
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the profit function has positive (negative) crosspartials so that its inputs are economic
complements (substitutes), a higher optimal level of the dynamic inputs justifies a higher
(lower) level of the static input. This can explain the negative correlation of hours and
employment growth at the plant level observed in [Cooper et al., 2004]. Applied to this
framework, the number of employees is the rigid factor and working time is the flexible
one. Following a positive shock, if the number of employees stays constant (because of
adjustment costs), then working time increases to accomodate the shocks. But if the firm
hires new workers then workng-time eventually stays at its regular-level.

5.3 Multi-factors

The generalization to a multi-factors situation requieres important restrictions on the profit
and adjustment costs functions. It is necessary to generalize the concept of K-concavity
to a n-dimensional Euclidean space. [Gallego and Sethi, 2005] propose the following defi-
nition:

Definition 3 A function g : Rn → R is (F0, F1, . . . , Fn)-concave if

g ((1 − λ)x0 + λx1) ≥ (1 − λ)g(x0) + λg(x1) − λF (x1 − x0)

for all x0, x1 with x0 ≤ x1 and all λ ∈ [0, 1] and where the function F : Rn
+ → R+ is

defined as follows:

F (x) = F0I{x > 0} +
n∑

l=1

FlI{xl > 0}

The key question is the following. Does (F0, F1, . . . , Fn)-concavity persists after a
dynamic programming iteration ? Consider the model of the present paper where i, k ∈Rn

+∗ and n is the number of inputs. The adjustment costs function becomes: C(i) =
F0I{i > 0} +

∑n
l=1 FiI{il > 0} + pi where p is the vector of inputs prices. The other

assumptions and notations are unchanged. Using the results of [Gallego and Sethi, 2005],
the answer is positive in two specific cases:

1. F (x) = F0I{x > 0}

2. F (x) =
∑n

l=1 FlI{xl > 0} and R(A, k) =
∑n

l=1Rl(A, kl) where Rl(A, kl) satisfies
Assumption 4 for every l ∈ 1, . . . , n

In the first case, the same fixed cost is payed whenever an input is changed: F0 ≥ 0
and Fi = 0, i = 1, . . . , n. So there is no input-specific fixed-cost. In the second-case, there
is no joint-fixed cost: F0 = 0 and the demands are independent. Both are very strong
restrictions and more results are expected in the future. Yet, the results of the paper hold
straightforwardly in the two depicted situations.

It is then possible to transpose the analysis of [Eberly and Van Mieghem, 1997] and
[Dixit, 1997]. The interaction between dynamic factors is similar to the interaction be-
tween flexible and dynamic factors (see section 5.2). An adjustment in one dynamic input
increases the marginal productivity of all the others inputs. Then the likelihood of ad-
justing every other inputs increases. The following figure illustrates the determination of
the optimal decision rule in the case of two dynamic inputs (say k1 and k2). This is a
generalization of [Eberly and Van Mieghem, 1997] to a case with positive fixed costs but a
drawback of the analysis here is that negative demand for inputs are not allowed. Figure
3 shows the space is divided in 4 regions. When the level of the two inputs is low, the
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Figure 3: Optimal decision rule with n = 2

optimal policy is to invest in both inputs up to reach the red point. In the region in the
upper-right, inaction is optimal with respect to both inputs because the reward of chang-
ing the input quantities is insufficient. The figure shows that a firm will be all the more
willing to invest in one input when it holds a relatively important quantity of the other
input.

6 Conclusion

The main contribution of the paper must be found as a stepping-stone for future work.
By proving the high degree of generality of (S, s) policies, it provides a parsimonious
framework to study and estimate various problem of investment and capital accumulation.
Unicity, continuity and differentiability (except at the threshold) of the value function is
established. The optimal policy is unique and fully characterized. Investment is shown
to depends simultaneously on marginal and average Q, which are sufficient statistics of,
respectively, marginal and total gains of adjustment. The marginal value of capital is
shown to be a non-monotonic function of profitability. The former forbide the use of cash-
flows coefficients as a test of financing constraints and re-estalish in a simple and relevant
model that marginal Q is different from average Q.

References

[Abbring and Campbell, 2005] Abbring, J. H. and Campbell, J. R. (2005). A firm’s first
year. Tinbergen Institute Discussion Papers 05-046/3, Tinbergen Institute.

[Abel and Eberly, 1994] Abel, A. B. and Eberly, J. C. (1994). A unified model of invest-
ment under uncertainty. American Economic Review, 84(5):1369–84.

17



[Abel and Eberly, 2002] Abel, A. B. and Eberly, J. C. (2002). Investment, q with fixed
costs: An empirical analysis. mimeo.

[Ackerberg et al., 2007] Ackerberg, D., Benkard, L., Berry, S., and Pakes, A. (2007).
Econometric Tools for Analyzing Market Outcomes, volume 6, chapter Handbook of
Econometrics.

[Amir, 1997] Amir, R. (1997). A new look at optimal growth under uncertainty. Journal
of Economic Dynamics and Control, 22(1):67–86.

[Bayraktar et al., 2005] Bayraktar, N., Sakellaris, P., and Vermeulen, P. (2005). Real
versus financial frictions to capital investment. Working Paper Series 566, European
Central Bank.

[Bertsekas and Shreve, 1978] Bertsekas, D. P. and Shreve, S. E. (1978). Stochastic Optimal
Control: The Discrete Time Case.

[Bond and Reenen, 2007] Bond, S. and Reenen, J. V. (2007). Microeconometric Models
of Investment and Employment, volume 6 of Handbook of Econometrics.

[Boyarchenko and Levendorskii, 2007] Boyarchenko, S. and Levendorskii, S. (2007). Prac-
tical guide to real options in discrete time. International Economic Review, 48(1).

[Buettner, 2004] Buettner, T. (2004). Rd and the dynamics of productivity. mimeo,
London School of Economics.

[Caballero and Engel, 1999] Caballero, R. J. and Engel, E. M. R. A. (1999). Explaining
investment dynamics in u.s. manufacturing: A generalized (s,s) approach. Econometrica,
67(4):783–826.

[Caballero and Leahy, 1996] Caballero, R. J. and Leahy, J. V. (1996). Fixed costs: The
demise of marginal q. NBER Working Paper 5508, National Bureau of Economic Re-
search, Inc.

[Cooper, 2006] Cooper, I. (2006). Asset pricing implications of nonconvex adjustment
costs and irreversibility of investment. Journal of Finance, 61(1):139–170.

[Cooper and Ejarque, 2001] Cooper, R. and Ejarque, J. (2001). Exhuming q: Market
power vs. capital market imperfections. NBER Working Papers 8182, National Bureau
of Economic Research, Inc.

[Cooper and Ejarque, 2003] Cooper, R. and Ejarque, J. (2003). Financial frictions and
investment: Requiem in q. Review of Economic Dynamics, 6(4):710–728.

[Cooper et al., 2004] Cooper, R. W., Haltiwanger, J. C., and Willis, J. (2004). Dynamics
of labor demand: Evidence from plant-level observations and aggregate implications.
NBER Working Papers 10297, National Bureau of Economic Research, Inc.

[Dixit, 1997] Dixit, A. (1997). Investment and employment dynamics in the short run and
the long run. Oxford Economic Papers, 49(1):1–20.

[Doms and Dunne, 1998] Doms, M. E. and Dunne, T. (1998). Capital adjustment patterns
in manufacturing plants. Review of Economic Dynamics, 1(2):409–429.

18



[Eberly and Van Mieghem, 1997] Eberly, J. C. and Van Mieghem, J. A. (1997). Multi-
factor dynamic investment under uncertainty. Journal of Economic Theory, 75(2):345–
387.

[Fuentes et al., 2006] Fuentes, O., Gilchrist, S., and Rysman, M. (2006). Discrete adjust-
ment costs and investment dynamics: a maximum likelihood approach. mimeo, Boston
University.

[Gallego and Sethi, 2005] Gallego, G. and Sethi, S. P. (2005). K-convexity in rn. Journal
of Optimization Theory and Applications, 127(1):71–88.

[Gomes, 2001] Gomes, J. F. (2001). Financing investment. American Economic Review,
91(5):1263–1285.

[Hall and Mairesse, 2003] Hall, B. H. and Mairesse, J. (2003). Testing for unit roots in
panel data: An exploration using real and simulated data. mimeo, UC Berkeley.

[Hall and Rust, 2005] Hall, G. and Rust, J. (2005). The (s,s) policy is an optimal trad-
ing strategy in a class of commodity price speculation problems. Economic Theory,
forthcoming.

[Hamermesh and Pfann, 1996] Hamermesh, D. S. and Pfann, G. A. (1996). Adjustment
costs in factor demand. Journal of Economic Literature, 34(3):1264–1292.

[Hayashi, 1982] Hayashi, F. (1982). Tobin’s marginal q and average q: A neoclassical
interpretation. Econometrica, 50(1):213–24.

[Hotz and Miller, 1993] Hotz, J. V. and Miller, R. A. (1993). Conditional choice proba-
bilities and the estimation of dynamic model. Review of Economic Studies, 69:497–529.

[Khan and Thomas, 2006] Khan, A. and Thomas, J. K. (2006). Adjustment Costs. The
New Palgrave Dictionary of Economics. Palgrave Macmillan.

[Nilsen and Schiantarelli, 2003] Nilsen, O. and Schiantarelli, F. (2003). Zeros and lumps
in investment: Empirical evidence on irreversibilities and nonconvexities. The Review
of Economics and Statistics, 85(4):1021–1037.

[Nilsen et al., 2007] Nilsen, O. A., Salvanes, K. G., and Schiantarelli, F. (2007). Employ-
ment changes, the structure of adjustment costs, and plant size. European Economic
Review, 51(3):577–598.

[Pakes, 1994] Pakes, A. (1994). Dynamic structural models, problems and prospects: mixed
continuous discrete controls and market interaction, volume 2 of Advances in Econo-
metrics, Sixth World Congress. C A Sims, cambridge university press edition.

[Pakes and Ericson, 1998] Pakes, A. and Ericson, R. (1998). Empirical implications of
alternative models of firm dynamics. Journal of Economic Theory, 79(1):1–45.

[Ramey and Shapiro, 2001] Ramey, V. A. and Shapiro, M. D. (2001). Displaced capital:
A study of aerospace plant closings. Journal of Political Economy, 109(5):958–992.

[Rota, 2004] Rota, P. (2004). Estimating labor demand with fixed costs. International
Economic Review, 45(1):25–48.

[Scarf, 1960] Scarf, H. E. (1960). The optimality of (S,s) policies in the dynamic inventory
problem. Mathematical Methods in the Social Sciences. Stanford University Press.

19



[Stokey et al., 1989] Stokey, N. L., Lucas, R. J. E., and Prescott, E. C. (1989). Recursive
Methods in Economic Dynamics. Harvard University Press.

[Topkis, 1978] Topkis, D. M. (1978). Minimizing a submodular function on a lattice.
Operations Research, 26(2):305–321.

A Proof of Proposition 1

Proposition 8 (4) exists and is less than infinity

Proof Consider a plant which faces no adjustment costs. Then, It easy to see that solving
(4) is equivalent to solve a sequence of static decision problems. R(A, ·) has a global
maximizer for every A ∈ A (by the Weierstrass Theorem) and the expected discounted
profits of such a plant is finite (R being bounded). Since it represents an upper-bound of
the supremum, if it exists, the latter must be finite. To show that the supremum exists, it
is sufficient to show that there exists one investment sequence which yields a value greater
than −∞. The sequence it = 0 for all t ≥ 0 yields a return of 0. �

Given Proposition 8, I can define the supremum function associated to (4), say v∗.

Proposition 9 For every A ∈ A, k never exceed k̃(A) defined as R(A, k̃) − F − pk̃ +
E
[∑∞

t=1 β
tR(At, kt + it)

]
= 0.

Proof Let {kt(At)}
∞
t=0 be a sequence such that Pr

[
kt(At) > k̃(At)

]
> 0 for some t > 0.

Then I prove that v∗ >
∑∞

j=0 β
jΠ(Aj , kj , ij). Without loss of generality, suppose that k1 =

i0 > k̃(A1). From the definition of k̃(A1), R(A1, k1)−F−pk1+E
[∑∞

t=1 β
tR(At, kt + it)

]
<

0. Because sup
{it}∞t=1

E
[∑∞

t=1 β
tΠ(At, kt, it)

]
≤ E

[∑∞
t=1 β

tR(At, kt + it)
]

and v∗ ≥ 0 (see

Proof of Proposition 8), it follows:

v∗ > R(A1, k1) − F − pk1 + sup
{it}∞t=1

E

[
∞∑

t=1

βtΠ(At, kt, it)

]

�

The following set are defined under the usual sup-norm ‖ ·‖. Let BAK be the set
of bounded function V : A × K −→ R . Let CAK be the set of continuous func-
tion V : A × K −→ R. Denote T the operator associated to Bellman equation 6:
T (V ) = V . The value function can be re-written as: V = max

{
V a, V i

}
where V a(A, k) =

sup0≤i≤k̃−k {W (A, k + i) − C(i)} and V i(A, k) = W (A, k). I show that the operator T
maps CAK into itself a unique fixed point V in CAK. It is easy to show that T satisfies
Blackwell’s sufficient conditions for a contraction mapping. Since BAK is complete, T has
a unique fixed point V in BAK. Consider V ∈ CAK. By Lemme 9.5 in [Stokey et al., 1989]
and Assumption 3, V ∈ CAK ⇒

[∫
A V (A′, (1 − δ)(k + i))Q(dA′, A)

]
∈ CAK ⇒ V i ∈ CAK.

By the theorem of the maximum, V a(A, k) ∈ CAK. The operator maxbeing continuous,
T (V ) ∈ CAK and T maps CAK into itself. Under Assumptions 3 and 4, V (·, k) is increasing
for every A ∈ A.
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B Proof of Proposition 7.3

Define m(xi) = inf arg maxy≥xi
(f(y)) , i ∈ {0, 1} and xλ = (1 − λ)x0 + λx1.

The proof uses repeateadly the following inequalities:

m(xi) ≥ xi for all i ∈ (0, 1)

g(x) ≥ f(x) for all x ∈ [0, x̄]

g(x) > f(y) − k for all y > x

It is necessary to consider four different cases.
(1) m(xi) = xi, i ∈ {0, 1}. In this case, g(xi) = f(xi), i ∈ {0, 1}. f(x) being F -concave,

it holds:

g(xλ) ≥ f(xλ)

≥ (1 − λ)f(x0) + λf(x1) − λF

(2) m(xi) > xi, i ∈ {0, 1}. In this case, (1 − λ)m(x0) + λm(x1) ≥ xλ, g(xi) = f(m(xi)) −
F, i ∈ {0, 1} and m(x0) ≤ m(x1). With this in mind and using the F -concavity of f , it
holds:

g(xλ) ≥ f((1 − λ)m(x0) + λm(x1)) − F

≥ (1 − λ)f(m(x0)) + λf(m(x1)) − F − λF

≥ (1 − λ)(f(m(x0)) − F ) + λ(f(m(x1)) − F ) − λF

(3) m(x0) = x0 and m(x1) > x1. In this case, g(x0) = f(x0) and g(x1) = f(m(x1)) − F .
There exists µ ≤ λ s.t. xλ = (1 − µ)x0 + µm(x1). Then,

g(xλ) ≥ f(xλ)

≥ (1 − µ)f(x0) + µf(m(x1)) − µF

= (1 − λ)g(x0) + λ(g(m(x1) + λF − λF + (λ− µ)(g(x0) − f(m(x1)) + F )

(4) m(x1) = x1 and m(x0) > x0. In this case, g(x1) = f(x1) and g(x0) = f(m(x0)) − F

(4.1) xλ ≤ m(x0)

g(xλ) ≥ f(m(x0)) − F

≥ (1 − λ)f(m(x0)) − F ) + λf((m(x0)) − λF

≥ (1 − λ)g(x0) + λf((m(x0)) − λF

The proof is completed by noting that f((m(x0)) = maxy>x0
f(y) ≥ f(x1) = g(x1)

(4.2) xλ > m(x0). There exists µ ≤ λ s.t. xλ = (1 − µ)x0 + µm(x1). Then,

g(xλ) ≥ f(xλ)

≥ (1 − µ)f(m(x0)) + µf(x1) − µF

= (1 − λ)g(x0) + λg(x1) + λF − λF + (λ− µ)(g(x0) − f(m(x1)) + F )
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C Proof of Proposition 3

Lemmas 1-4 constitute Proposition 3’s Proof. Define the operators Γ and Λ by:

Γ(W )(A, k) = max
0≤i≤k̃−k

[W (A, k + i) − C(i)] (19)

Λ(V )(A, k) = R(A, k) + β

∫

A
V (A′, k)f(dA′|A)

Let FAK denote the class of functions V (A, k) which are continuous 23 in A and k, and
F -concave as a function of k ∈ K for all A ∈ A. Lemma 1 proves that if W (A, k) is
F -concave, so is V . Lemma 2 proves the optimality of an (S, s) policy. Lemmas 3 and 4
show that the composition operators Λ ◦ Γ and Γ ◦ Λ map FAK into FAK. The proof of
Lemma 2 directly follows from Lemma 3 in [Hall and Rust, 2005] and is therefore omitted.

Lemma 1 Γ : FAK → FAK. That is, if W(A,k) ∈ FAK, then V(A,k) ∈ FAK.

Proof Consider W(A,k) ∈ FAK. It implies W (A, k) − pk ∈ FAK. Note that

V (A, k) = (max
k′

[
W (A, k′) − pk′ − FI{k′ > k}

])
+ pk

where the first term is F -concave as a function of k ∈ K for all A ∈ A by Lemma ?? and
so is the second term. �

Lemma 2 Suppose the function W(A,k) is continuous and F-concave in k for all A. Then
the solution to the functional equation (6) has the following decision rule:

i(A, k) =

{
0 if k > s(A)
S(A) − k if k < s(A)

(20)

where the functions S(A) and s(A) are given by:

S(A) = min arg max
0≤k≤k̃

[W (A, k) − pk] (21)

s(A) = min
{
k ∈ [0, k̃]|W (A, k) ≥W (A,S(A)) − p[S(A) − k] − F

}
(22)

Lemma 3 Under the preceding assumptions, Λ ◦ Γ : FKC → FKC

Proof By Lemma 1 if U ∈ FKC , then V = Γ(U) ∈ FKC . By Lemma ??, there exist
functions S and s : A → R satisfying 0 ≤ s(A) ≤ S(A) ≤ k̃ for which V = Γ(U) can be
represented as

Γ(U)(A, k) =

{
U(A,S(A)) − F − p(S(A) − k) ifk ∈ [0, s(A)]
U(A, k) otherwise

Since positive linear combinations and point-wise limits of F -concave functions are F -
concave, it follows that

∫
A V (A′, k(1 − δ))f(dA′|A) is F -concave in k over K. Given that

Λ ◦ Γ(U)(A, k) = AR(k) + β
∫
A V (A′, k(1 − δ)f(dA′|A), Λ ◦ Γ(U)(A, k) is F -concave in

k ∈ K for all A ∈ A. �

23Note that continuity of V and W has already been proved.
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Lemma 4 Under the preceding assumptions, the function V and W are F -concave func-
tion of k ∈ K for all A ∈ A.

Proof

Since Γ◦Λ(V ) is a contraction mapping, the fixed point V = Γ◦Λ(V ) can be uniformly
approximated by the method of successive approximations starting from an initial guess,
V0 = 0. Λ(V0) = AR(k) is concave in k by assumption 4. So, Λ(V0) ∈ FKC . Lemma 1
implies that V1 = Γ ◦ Λ(V0) ∈ FKC . Lemma 3 implies that Λ(V1) = (Λ ◦ Γ) ◦ Λ(V0) ∈
FKC . Continuing inductively, we see that for each t ≥ 0 in the sequence of successive
approximations, Vt ∈ FKC . Since the fixed point V is a uniform limit of functions in FKC

it follows that V ∈ FKC . Since W = Λ ◦ Γ(V ), Lemma 3 also implies that W ∈ FKC . �

D Proof of Proposition 4 and Proposition 5

The proof establishes that the value function is supermodular in (A, k) and is supermodular
in (k, β). The results then follows from Theorem 6.1 in [Topkis, 1978].

Lemma 5 C̃(k′, k) = C(k′ − k) is submodular in (k′, k) for every k′ ≥ k

Proof the proof directly follows from the linearity of C(k′−k) for every k1 < k2 ≤ k′1 < k′2
�

Lemma 6 V (A, k) is supermodular in (A, k)

Proof Let SAK ⊂ CAK be the set of continuous, supermodular function V : A×K −→ R

and such that V (·, k) is non-decreasing for every A ∈ A and each k ∈ K. I show
that T maps SAK into itself. Consider V ∈ SAK. V can be written as V (A, k′) =
max

k′∈[k,k̃]W (A, k′)−C(k′ − k). For a function on R2, increasing differences is equivalent

to supermodularity. I need to show that
∫
V (A′, k′)F (dA′, A) satisfies increasing differ-

ences in (A, k′). Consider A1 > A2 and k′2 > k′1. It holds: V (A2, k
′
2) − V (A2, k

′
1) ≥

V (A1, k
′
2)− V (A1, k

′
1) which means that the function V (·, k′2)− V (·, k′1) is non-decreasing

for every A ∈ A and k′2 > k′1. Combined with F (A′, ·) is stochastically increasing, it
follows:

∫ [
V (A′, k′2) − V (A′, k′1)

]
Q(dA′, A2) ≥

∫ [
V (A′, k′2) − V (A′, k′1)

]
Q(dA′, A1)

∫
V (A′, k′2)Q(dA′, A2) −

∫
V (A′, k′1)Q(dA′, A2) ≥

∫
V (A′, k′2)Q(dA′, A1) −

∫
V (A′, k′1)Q(dA′, A1)

which means that
∫
V (A′, k′)Q(dA′, A) satisfies increasing differences in (A, k′). Combined

with R(A, k′) supermodular in (A, k′) (by assumption) and−C(k′ − k) is supermodular in
(k, k′) (by Lemma 5), W (A, k′)−C(k′ − k) in (A, k′, k). Maximizing over k′ preserves
supermodularity in the remaining variables (A, k) ([Topkis, 1978]). Consequently, V =
T (V )(A, k) is supermodular in (A, k). �

Following a similar approach it can be shown that:

Lemma 7 W (A, k) − pk is supermodular in (A, k)

Lemma 8 V (A, k;β) is supermodular in (β, k) for each A ∈ A
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Proof Using the definition of the value function, it is obvious that V (A, k;β1) ≤ V (A, k;β2).
Following the logic of Lemma 6, consider V (A, k;β) supermodular in (k, β). Then, for each
A ∈ A and for every k1 < k2,

V (A, k2;β
2) − V (A, k1;β

2) ≥ V (A, k2;β
1) − V (A, k1;β

1)

Multiplying the left-hand-side by β2 and the right-hand-side by β1 preserves the inequality
and shows that βV (A, k1;β) is supermodular in (k, β). R and C being independent of β,
the result follows by induction. �

From [Topkis, 1978], the set of optimal solutions is non-decreasing in A and in β. S(A)
being the lowest element of the set, Proposition 4 and Proposition 5 follow.

Consider A′ ∈ A, there exists Ã ∈ A such that S(Ã) = s(A′). It follows that for every
A ∈ [0, Ã], s(A) ≤ S(A) ≤ S(Ã) ≤ s(A′).

E Proof of Proposition 12

Consider a sequence of j+1 period problems, j = 0, 1 . . . , J ∈ N with value functions sat-
isfying: V j+1(A, k) = max

{kt}
j+1

t=0

E0
∑j

t=0 β
tπ(At, kt, kt+1 − kt). The sequence V j+1(A, k)

is generated by iterating on V 0(A, k) with the operator T , i.e.,

V j+1(A, k) = max
kj≥k

R(A, kj) −C(kj − k) + β

∫
V j(A′, kj)Q(dA′, A) = T j+1V 0 (23)

where kj is the optimal choice of capital for the j+1 period problem. Clearly V 0(A, k) = 0.
For each j = 0, 1, . . . , J define W j(A, k) = R(A, k) + β

∫
V j(A′, k)Q(dA′, A) and accord-

ingly Sj(A, k) and sj(A). Using Proposition 3, it holds:

V j+1(A, k) =

{
W j(A,Sj(A)) − F − pSj(A) + pk if k ≤ sj(A)
W j(A, k) if k ≥ sj(A)

kj(A, k) =

{
Sj(A) if k < sj(A)
k if k > sj(A)

Lemma 9 For j ≥ 0, V j+1(A, k) is continuously differentiable with respect to k almost
everywhere on the domain K\sj(A) for every A ∈ A with a partial derivative V j+1

k (A, k)
satisfying:

V
j+1
k (A, k) = Rk(A, k

j) + β(1 − δ)

∫
V

j
k (A′, kj)Q(dA′, A) (24)

and can be decomposed as:

V
j+1
k (A, k) =

{
p ifk < sj(A)

Rk(A, k) + β(1 − δ)
∫
V

j
k (A′, (1 − δ)k)Q(dA′, A) ifk > sj(A)

(25)

Proof I shall show that V j+1(A, k) is continuously differentiable in k for each fixed A

provided that V j(A, k) is continuously differentiable in k for each fixed A.
If kj(A) > k, the first-order necessary condition for the maximum problem on the

right-hand side is:

Rk(A, k
j) − p+ β(1 − δ)

∫
V

j
k (A′, (1 − δ)kj)Q(dA′, A) = 0
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and [?]’s theorem implies that V j+1(A, k) is differentiable in k with derivative given by:
V

j+1
k (A′, k) = p. Combined with the first-order condition, it gives Equation 9.

If kj(A) = k, V j+1(A, k) = R(A, k)+β
∫
V j(A′, k)F (dA′, A) and consequently, V j+1(A, k)

is differentiable in k with derivative given by Equation 24. �

Corollary 4 For all j ≥ 0, Sj(·) and sj(·) are increasing

Proof For j ≥ 0, for every A ∈ A, the target Sj(A) satifies:

Rk(A,S
j(A)) + β(1 − δ)

∫
V

j
k (A′, (1 − δ)Sj(A))Q(dA′, A) = p

Consider the case j = 0. Since RkA > 0andRkk < 0, S0′(A) = −RkA(A,S0(A))
Rkk(A,S0(A))

> 0 and

s0′(A) = −RA(A,s0(A))−RA(A,S0(A))
Rk(A,s0(A))−p

> 0. Now consider j ≥ 0. Provided that V j
kk(A, k) ≤ 0,

using Proposition 9 and Rkk(A, k) < 0,

V
j+1
kk (A, k) = Rkk(A, k

j) + β

∫
V

j
kk(A

′, kj)F (dA′, A) < 0

Differentiating the first-order condition, it holds:

Sj ′(A) = −
W

j
kA(A,Sj(A))

W
j
kk(A,S

j(A))
> 0

Differentiating W j(A, sj(A)) −W j(A,Sj(A)) + F + pSj(A) − psj(A) = 0, it holds:

sj ′(A) = −
W

j
A(A, sj(A)) −W

j
A(A,Sj(A))

W
j
k (A, sj(A)) − p

> 0

�

Proposition 10 The value function V is continuously differentiable in k almost every-
where on the domain K
{s(A)} for every A ∈ A. The partial derivative obeys the equation:

Vk(A, k) = Rk(A, k + i(A, k)) + β(1 − δ)

∫
Vk(A

′, (1 − δ)(k + i(A, k)))Q(dA′, A) (26)

which can be decomposed as:

Vk(A, k) =

{
p ifk < s(A)
Rk(A, k) + β(1 − δ)

∫
Vk(A

′, (1 − δ)k)F (dA′, A) ifk > s(A)
(27)

Proof It is necessary to prove that the sequence of functionsW j
k (A, k) converges uniformly

to a continuous function W̃k(A, k) for every (A, k, j) ∈ A×K×N. Solving W j recursively,
the following expression can be computed:

W J+1(A0, k) −W J(A0, k)

= βJ+1(
∏J

l=1Q([A, sl,−1(k(1 − δ)l)], Al−1))
∫ sJ+1,−1(k(1−δ)J+1)
A

R(AJ+1, k(1 − δ)J+1)

+
∫ Ā

sJ+1,−1(k(1−δ)J+1)[W
J+1(AJ+1, S

J+1(AJ+1)) − pSJ+1(AJ+1) + pk(1 − δ)J+1 − F ]Q(dAJ+1, AJ )
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Differenting with respect to k:

W J+1
k (A0, k) −W J

k (A0, k)

= (β(1 − δ))J+1(

J∏

l=1

Q([A, sl,−1(k(1 − δ)l)], Al−1)) · [

∫ sJ+1,−1(k(1−δ)J+1)

A

Rk(AJ+1, k(1 − δ)J+1) +

∫ Ā

sJ+1,−1(k(1−δ)J+1)
p

+

J∏

i=1

q(si,−1(k(1 − δ)i), Ai−1)

Q([A, sl,−1(k(1 − δ)l)], Al−1)
· (

∫ sJ+1,−1(k(1−δ)J+1)

A

R(AJ+1, k(1 − δ)J+1)

+

∫ Ā

sJ+1,−1(k(1−δ)J+1)
[W (AJ+1, S

J+1(AJ+1)) − pSJ+1(AJ+1) + pk(1 − δ)J+1 − F ])}Q(dAJ+1, AJ)

+ (sJ+1,−1
k (k(1 − δ)J+1)q(sJ+1,−1(k(1 − δ)J+1), AJ )) ·

[
R(sJ+1,−1(k(1 − δ)J+1), k(1 − δ)J+1) −

W (sJ+1,−1(k(1 − δ)J+1), SJ+1(sJ+1,−1(k(1 − δ)J+1))) − pSJ+1(sJ+1,−1(k(1 − δ)J+1)) + pk(1 − δ)J+1

(29)

From the preceding expression and the boundedness of W j
k (A0, k) for every (A, k, j) ∈

A × K × N, the sequence
{
W

j
k (A0, k)

}∞

j=0
converges uniformly. From the point-wise

convergence of
{
W j(A0, k)

}∞
j=0

, the result follows.
�

The necessary condition satisfied by the optimal stock of capital when there is an
adjustment is:

Rk(A,S(A)) + β(1 − δ)

∫
Vk(A

′, (1 − δ)S(A))Q(dA′, A) = p

Using the strict concavity of R and the concavity of the integral, it follows that there
exist a single value of k that satisfies the preceding equation. Since O a single-valued
upper-hemi continuous correspondence, it is continuous. It is then straightforward to see
that S(A) and s(A) are continuous.

Applying the implicit function theorem to the first-order condition and to the definition
of s(A) gives:

S′(A) = −
WkA(A,S(A))

Wkk(A,S(A))
> 0 (30)

s′(A) = −
WA(A, s(A)) −WA(A,S(A))

Wk(A, s(A)) − p
> 0 (31)
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