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Abstract

Most real options models are American-type options involving a free boundary
problem which can be modeled in the form of variational inequalities. In this paper,
we provide a viable mathematical formulation and promising computational approach
for the valuation of real options. We study an equivalent optimization problem with
an inequality constraint and boundary conditions, whose necessary conditions are the
variational inequality articulation of an American option. The objective functional is
defined in a Hilbert space and includes a partial differential operator. We propose
gradient projection methods for both infinite and finite time horizon real option prob-
lems, while we approximate the partial derivatives by finite differences. We test the
performance and accuracy of the proposed algorithm, and compare with an existing
method, the projective successive over-relaxation.

1 Introduction

The real options approach has become a workhorse in modern economics and Finance.
However, many real options studies have focused on relative simple option model. While
this type of model has been successful in literature, real problems may involve more complex
and realistic situations.

A conventional approach to solve real options problem involving a free boundary is to
use value matching, smooth pasting and high contract conditions (Karatzas and Shreve
[12], Dixit and Pindyck [6], Dumas [7], Guo et al. [11], Yao [23]). This approach reduces
a real option problem to tractable nonlinear equations and is particular useful to derive
closed form solutions. However, it is difficult to apply this approach to real options problem
when more practical situations such as finite time horizon and generalized Ito process are
considered (Nagae and Akamatsu [16]).

In this paper, we study an equivalent optimization problem with an inequality constraint
and boundary conditions, whose necessary condition for the optimality is the variational
inequality presentation of real options. Our approach considers the practical aspects of real
world problems and provides an efficient computational algorithm.

The remainder of this paper is structured as follows. This section concludes with a brief
review of the literature, while §2 describes the option to invest problem with finite time hori-
zon and its variational inequality formulation. Section 3 provides an equivalent formulation
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as the form of an extremal problem. Section 4 studies the gradient projection algorithm, and
section 5 presents the numerical results. Section 6 and 7 analyze the investment problem
for infinite time horizon and provide the numerical results. Section 8 concludes.

The free boundary problem involving in the valuation of an American option occurs
in many systems. This property was first pointed out by McKean [14]. The valuation of
American options with dividends has been studied by many scholars. Geske [8], Roll [18],
and Whaley [20] derived analytical solutions for the case of known discrete dividends. Finite
difference approximation approach, which includes log-transformation, was introduced by
Brennan and Schwartz [1] and Brennan and Schwartz [2]. This approach approximates
differential terms of the value function by discretizing the time and the state space. The
finite difference method is one of popular methods because the method is easily implemented
and flexible, so that non-standard forms of options can be computed.

Cox et al. [5] introduced the binomial method for the valuation of American options.
The binomial method is implemented easily and flexibly by the discretizations of the both
spaces as well. Geske and Shastri [10] summarized and compared these early methods.
Later, Geske and Johnson [9] presented an analytic solution to American put option with or
without dividends. However, their formula is an infinite series that has to be approximated
by numerical methods. Kim [13] and Carr et al. [4] provided an integral representation
of the option price. These methods are compared by Broadie and Detemple [3], who also
derived the lower bound and upper bound for the value of American options.

2 Optimal Timing to Invest within Finite Time Horizon

In this section, we analyze the option to invest, a typical real option problem, and show that
the real option problem can be transformed to a linear complementarity problem (LCP).
The LCP is then articulated into a variational inequality (VI). A gradient projection method
will be developed to solve this VI and to obtain investment strategy.

We develop a simple option to invest model as in Pindyck [17]. Let S(t) be the project
cash flow after the investment.

dS

S
= (r − δ)dt + σdW

for r > δ > 0, where W is a standard Wiener process, r is the rate of interest, δ is the
continuous time dividend rate, and σ is the volatility of the asset price.

Denote the investment cost by K, the option value to invest by C(S).

C(S, t) = max
τ∈[t,T ]

E
[
e−r(τ−t)(S(τ)−K)+

]

where T is the expiration time for the option to invest. In addition, C(S, t) need to satisfy
the following boundary conditions:

C(0, t) = 0
lim

S→∞
C(S, t) = ∞

C(S, T ) = (S(T )−K)+

Simply, using Ito’s lemma, C(S, t) should satisfy:

LBS(C(S, t)) =
∂C

∂t
+

1
2
σ2S2 ∂2C

∂S2
+ (r − δ)S

∂C

∂S
− rC ≤ 0 (1)
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2.1 Variational Inequality Formulation

It is well known that an American call option can be stated as a linear complementarity
problem (LCP):

LBS(C(S, t)) · [C(S, t)− Φ(S)] = 0 (2)
C(S, t)− Φ(S) ≥ 0 (3)
−LBS(C(S, t)) ≥ 0 (4)

with boundary conditions

C (S, t) ≥ Φ(S)
C (S, T ) = Φ(S)
C (0, t) = 0

lim
S→∞

C (S, t) →∞

where we defined the Black-Scholes operator as

LBS ≡ ∂

∂t
+

1
2
σ2S2 ∂2

∂S2
+ (r − δ)S

∂

∂S
− r

and the pay-off function as
Φ(S) = max(S − E, 0)

Now we wish to formulate an American call option in a variational inequality problem.
We define the class of variational inequality problems as following:

Definition 1 Given a nonempty set, Ω, and a function, F : Ω → Rn, the variational
inequality problem V IP (F, Ω) is to find a vector y such that

y ∈ Ω
〈F (y), x− y〉 ≥ 0 ∀x ∈ Ω

where 〈·, ·〉 denotes the corresponding inner product.

Let us define a set of functions

Ω = {G(S, t)|G(S, t)− Φ(S) ≥ 0 S ∈ R+, t ∈ [0, T ]} ,

and pick U ∈ Ω so that

− LBS(C(S, t)) · [U(S, t)− Φ(S, t)] ≥ 0
∀S ∈ R+, t ∈ [0, T ]. (5)

We have also from (2)
−LBS(C(S, t)) · [C(S, t)− Φ(S)] = 0 (6)

Subtraction (6) from (5), we get

− LBS(C(S, t)) · [U(S, t)− C(S, t)] ≥ 0
∀S ∈ R+ ∀t ∈ [0, T ], (7)
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or, equivalently,

∫ ∞

0

−LBS(C(S, t)) · [U(S, t)− C(S, t)] dS ≥ 0

∀t ∈ [0, T ], (8)

which is a variational inequality formulation of an American call option.

2.2 Log Transformation

Let us consider the following transformation:

y ≡ log S

τ ≡ T − t

u(y, τ) ≡ C(S, t),

Then (1) becomes

−∂u

∂τ
+

1
2
σ2 ∂2u

∂y2
+

(
r − δ − 1

2
σ2

)
∂u

∂y
− ru ≤ 0. (9)

Defining an operator

Ψ =
∂

∂τ
− 1

2
σ2 ∂2

∂y2
−

(
r − δ − 1

2
σ2

)
∂

∂y
+ r,

and the payoff function
φ(y) = max(ey − E, 0),

,we obtain a linear complementarity problem and variational inequality problem for this
case; it is to find u(y, τ) such that, for all v ∈ Ω

Ψ(u) [u− v] = 0,Ψ(u) ≥ 0, u− v ≥ 0

and the variational inequality problem is to find u ∈ Ω for each time instant τ ∈ [0, T ] such
that ∫ ∞

−∞
Ψ(u) [v − u] dy ≥ 0 ∀v ∈ Ω, (10)

where

Ω = {v : v − φ ≥ 0, v(y, 0) = φ(y),
v(−∞, τ) = φ(−∞), v(∞, τ) = φ(∞)}. (11)

Note we denoted f(∞) = limx→∞ f(x). In the next section, we will develop an equivalent
reformulation as of the form in an extremal problem.
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3 An Extremal Problem in Continuous Time for Finite
Time Horizon Problems

Now we are interested in the articulation and direct solution of a functional mathematical
program whose solutions are also solutions of (10). We show through numerical examples
that such an approach is numerically efficient. Consider the extremal problem:

min J (u) =
∫ ∞

−∞

∫ u

0

Ψ (v) dvdy s.t. u ∈ Ω (12)

where Ω is defined as (11). By deriving a necessary condition for this extremal problem,
we recover variational inequality (10), thereby verifying that any solution of (12) is also a
solution of (10). Therefore, any solution to (12), provided one exists, is a solution to the
linear complementarity problem.

We will need some results of functional analysis to derive the necessary condition. First,
we introduce the Gateaux-differentiability.

Definition 2 A functional J is Gateaux differentiable or G-differentiable at v ∈ V in the
direction ϕ ∈ V , if the limit

lim
θ→0

J(v + θϕ)− J(v)
θ

exists. This limit is denoted by δJ(v, ϕ).

The famous Riesz’s representation theorem is presented without proof (see, for example,
[22]):

Theorem 3 Let V be a Hilbert space and L ∈ V ∗ a continuous linear form on V . Then
there exists a unique element uL ∈ V such that

∀v ∈ V : L(v) = 〈uL, v〉

and
‖ L ‖V ∗=‖ uL ‖V .

Conversely, we can associate with each u ∈ V the continuous linear form Lu defined by

∀v ∈ V : Lu(v) = 〈u, v〉 .

Using Definition 2 and Theorem 3, we provide the following result::

Theorem 4 Let V be a Hilbert space. If J is G-differentiable at v ∈ V , and if δJ(v, ϕ) is

a continuous linear form with respect to ϕ, then, there exists an element
∂J

∂v
∈ V such that

∀ϕ ∈ V : δJ(v, ϕ) =
〈

∂J

∂v
, ϕ

〉
.

Moreover,
∂J

∂v
is called the gradient of J at v.
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Proof. It is immediate from Theorem 3.
The validity of the extremal problem (12) may now be established. To this end, we must

establish that the functional J (u) is G-differentiable and the set Ω is convex. The relevant
results are:

Lemma 5 The functional

J(u) =
∫ ∞

−∞

∫ u

0

Ψ(v)dvdy

is everywhere G-differentiable and

∂J(u)
∂u

= Ψ(u)

Proof. We construct the G-derivative as

δJ(u, ϕ) = lim
θ→0

J(u + θϕ)− J(u)
θ

=
∫ ∞

−∞
lim
θ→0

∫ u+θϕ

0
Ψ(v)dv − ∫ u

0
Ψ(v)dv

θ
dy

=
∫ ∞

−∞
lim

θϕ→0

∫ u+θϕ

0
Ψ(v)dv − ∫ u

0
Ψ(v)dv

θϕ
ϕdy

=
∫ ∞

−∞
Ψ(u)ϕdy

Since

δJ(u, ϕ) .=
〈

∂J

∂u
, ϕ

〉
.=

∫ ∞

−∞

∂J

∂u
ϕdy,

we have
∂J

∂u
= Ψ(u)

To give the equivalence of the extremal problem and the variational inequality problem
we will need:

Lemma 6 The set Ω defined by (11) is convex.

Proof. Pick v̄, v̂ ∈ Ω so that

v̄ − φ ≥ 0, v̂ − φ ≥ 0

and define
vλ = λv̄ + (1− λ)v̂ λ ∈ [0, 1].

Then vλ ∈ Ω.
Finally, we obtain the following theorem:

Theorem 7 Any solution of the extremal problem (12) is a solution of the variational
inequality (10).
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Proof. Let v ∈ Ω be arbitrary. Since Ω is convex, and u ∈ Ω implies

u + θ(v − u) ∈ Ω ∀θ ∈ [0, 1].

Hence for u to be a minimum of J on Ω it is necessary that ∀v ∈ Ω
[

d

dθ
J(u + θ(v − u))

]

θ=0

= δJ(u, v − u) ≥ 0.

Since J is G-differentiable at u and δJ is well-defined by Lemma 5, we have

δJ(u, v − u) =
∫ ∞

−∞
Ψ(u)(v − u)dy ≥ 0 ∀v ∈ Ω.

(10) follows immediately.
By the above theorem, the solution for the extremal problem obtained by any method

is indeed a solution to the variational inequality problem.

4 The Gradient Projection Algorithm in Hilbert Spaces

We study in this section the following projected gradient method:

Step 0. Initialization. Set k = 0. Pick u0 (y, τ) ∈ Ω.

Step 1. Determine gradient. Calculate

∂Jk

∂u
≡ ∂J

(
uk

)

∂u
= Ψ(uk)

=
[
∂uk

∂τ
− 1

2
σ2 ∂2uk

∂y2

−
(

r − δ − 1
2
σ2

)
∂uk

∂y
+ ruk

]

Step 3. Update iterate. Calculate

uk+1 = PΩ

{
uk − θk

∂Jk

∂u

}
= max

{
φ, uk − θk

∂Jk

∂u

}

where PΩ denotes the minimum norm projection onto Ω and θk is a variable scalar step.

Step 4. Stopping test. If an appropriate stopping test is satisfied, halt execution and declare

u∗ (y, τ) ≈ uk+1 (y, τ)

Otherwise set k = k + 1 and go to Step 1.

For the convergence of this scheme and the detailed discussion, see the Chapter 10 in
[15].
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4.1 Finite Difference Approximation and Time Stepping

Now we are interested in a finite approximation of infinite dimensional variational inequality
problem (10). To recall

∫ ∞

−∞
Ψ(u) [v − u] dy ≥ 0 ∀v ∈ Ω, ∀τ ∈ [0, T ] (13)

We limit the domain of space y by an interval [yL, yU ] instead of (−∞,∞) and discretize
the interval by M sub intervals so that

yi = yL + iδy, i = 0, ..., M

δy =
yU − yL

M

Also we discretize the time by L intervals so that

τj = jδτ, j = 0, ..., L

δτ =
T

L

Then (13) is approximated to

M∑

i=0

Ψ(ui,j) [vi,j − ui,j ] ≥ 0 ∀v ∈ Ω, ∀j ∈ {0, ..., L} (14)

where ui,j = u (yi, τj). By its nature, the finite difference approximation has an instability
property which depends on the mesh sizes, δy and δτ . Because of the higher derivatives
with respect to y, M should be much bigger than L, which means more meshes on y-axis.

Note that, for j = 0, that is τ = 0, the VI (14) has the solution ui,0 = φi = φ (yi) from
the initial condition. Starting from this solution for j = 0, we may solve (14) for the entire
time domain step by step. Our next interest is, of course, how to approximate the parabolic
operator Ψ (·). We may consider following approximations

∂ui,j

∂τ
≈ ui,j − ui,j−1

δτ
∂ui,j

∂y
≈ θ

(
ui+1,j − ui−1,j

2δy

)

+ (1− θ)
(

ui+1,j−1 − ui−1,j−1

2δy

)

∂2ui,j

∂y2
≈ θ

(
ui+1,j − 2ui,j + ui−1,j

(δy)2

)

+ (1− θ)

(
ui+1,j−1 − 2ui,j−1 + ui−1,j−1

(δy)2

)

where we used θ-approximation for the derivatives with respect to the space y. For θ =
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0, 1
2 , 1, the approximation becomes explicit, Crank-Nicolson, and implicit, respectively.

Ψ (ui,j ;ui,j−1) ≈ ui,j − ui,j−1

δτ

− 1
2
σ2

[
θ

(
ui+1,j − 2ui,j + ui−1,j

(δy)2

)

+(1− θ)

(
ui+1,j−1 − 2ui,j−1 + ui−1,j−1

(δy)2

)]

−
(

r − δ − 1
2
σ2

)[
θ

(
ui+1,j − ui−1,j

2δy

)

+(1− θ)
(

ui+1,j−1 − ui−1,j−1

2δy

)]

+ rui,j

where we denote Ψ (ui,j ; ui,j−1) the approximation of the operator Ψ (·) at ui,j given ui,j−1

for all i and j.
As discussed above, the algorithm will be of the form:

1. For j = 0, have the solution of the VI (14), that is, ui,0 = φi = φ (yi). Set j = 1.

2. Given the solution ui,j−1 for the current value of j and for all i, solve the following VI

M∑

i=0

Ψ(ui,j ; ui,j−1) [vi,j − ui,j ] ≥ 0 ∀vi,j ∈ Ω (15)

to obtain ui,j for the current j and for all i.

3. Set j = j + 1 and repeat Step 2 until j = L.

In this paper, the VIP (15) will be solved by the gradient projection method for the
equivalent extremal problem.

4.2 Estimation of the Optimal Timing to Invest

In an optimal timinig to invest, i.e., for S > S∗, the option value C (S, t) becomes Φ (S) =
max (E − S, 0). By this argument, we can have an estimate for the optimal timing by
computing S∗ such that

|C (S∗, t)− Φ(S∗)| < ε

for a given t ∈ [0, T ] and the pre-set tolerance ε > 0.

5 Numerical Results

We have tested the gradient projection algorithm with discretizations both in time and
space for several American call options. Broadie and Detemple [3] studied upper and lower
bounds for the values of American option, with which we compared our result in Table 1.
The binomial method with 15,000 steps ([3]) is used to compare. To have accurate result, in
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Option Asset Lower Upper Binomial Gradient
Parameters Price Bound Bound Method Projection

r = 0.03 80.000 0.218 0.220 0.219 0.218
σ = 0.20 90.000 1.376 1.389 1.386 1.382
δ = 0.07 100.000 4.750 4.792 4.783 4.777

110.000 11.049 11.125 11.098 11.093
120.000 20.000 20.061 20.000 20.001

r = 0.03 80.000 2.676 2.691 2.689 2.678
σ = 0.40 90.000 5.694 5.727 5.722 5.708
δ = 0.07 100.000 10.190 10.250 10.239 10.223

110.000 16.110 16.201 16.181 16.166
120.000 23.271 23.392 23.360 23.347

r = 0.00 80.000 1.029 1.039 1.037 1.033
σ = 0.30 90.000 3.098 3.129 3.123 3.115
δ = 0.07 100.000 6.985 7.051 7.035 7.026

110.000 12.882 12.988 12.955 12.947
120.000 20.650 20.779 20.717 20.713

r = 0.07 80.000 1.664 1.664 1.664 1.657
σ = 0.30 90.000 4.495 4.495 4.495 4.483
δ = 0.03 100.000 9.251 9.251 9.251 9.237

110.000 15.798 15.798 15.798 15.784
120.000 23.706 23.706 23.706 23.695

Table 1: American call options with the expiry T = 3(year) and the strike price E = 100.
We discretized in 400 intervals in time and 2000 intervals in space. (Step size 0.0003 is
used.)

Asset Price 80 90 100 110

Number of Meshes Option Value
(L, M)

(50, 300) 0.213 1.343 4.705 11.038
(100, 500) 0.214 1.361 4.741 11.067
(150, 700) 0.215 1.369 4.755 11.077

(200, 1000) 0.217 1.377 4.768 11.087
(300, 1500) 0.218 1.381 4.774 11.092

Binomial Method 0.219 1.386 4.783 11.098

Table 2: Values of an American call option with T = 0.5, E = 100, r = 0.03, σ = 0.20,
δ = 0.07 by different mesh sizes (The step size 0.001 is used.)

the experiments represented in Table 1, we used very small mesh sizes. Also, the convergence
property of the gradient projection algorithm is tested by experiments changing the mesh
sizes. The result provided in Table 2 indeed shows the scheme converges as the number of
meshes increases.

The performance of a popular method for the valuation of American options, the pro-
jected successive over-relaxation (PSOR) (see [21]), is compared with that of the gradient
projection method. The computation result shown in Table 3 says that the gradient pro-
jection method is a competitive method in terms of accuracy and speed. Note that bigger
step sizes are possible for more meshes in the gradient projection method; the bigger step
size enables the algorithm to achieve the optimum faster. The over-relaxation parameter
ω = 1.1 is used for the PSOR methods.

The valuation of an American call option is presented graphically in Figures 1 and 2. All
the computation in this paper was performed by Matlab 7.0 at a generic desktop computer
with dual Intel Xeon processors and 2GB RAM.

So far, we have studied and test the validity of our numerical method by comparing our
results to results from other methods. In the Figure 3, the optimal timinig to invest and
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Figure 1: The result for an American call option when E = 100, r = 0.03, σ = 0.2, and
δ = 0.07.
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Figure 2: The result for an American call option when T = 0.5, E = 100, r = 0.03, σ = 0.2,
and δ = 0.07.
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Asset Binomial (L, M) = (20, 100) (L, M) = (50, 300)
Price Method Grad Proj PSOR Grad Proj PSOR
80.000 0.219 0.2476 0.2476 0.2134 0.2134
90.000 1.386 1.2855 1.2855 1.3437 1.3437

100.000 4.783 4.5515 4.5515 4.7068 4.7068
110.000 11.098 10.9719 10.9719 11.0389 11.0389
120.000 20.000 20.0382 20.0382 19.9730 19.9730

Cal Time 0.047 0.063 0.187 0.282
Step Size 0.03 0.01

Asset Binomial (L, M) = (100, 500) (L, M) = (200, 1000)
Price Method Grad Proj PSOR Grad Proj PSOR
80.000 0.219 0.2141 0.2142 0.2171 0.2171
90.000 1.386 1.3613 1.3616 1.3773 1.3774

100.000 4.783 4.7415 4.7420 4.7686 4.7687
110.000 11.098 11.0669 11.0672 11.0875 11.0876
120.000 20.000 19.9957 19.9957 19.9975 19.9975

Cal Time 0.485 0.797 3.36 4.375
Step Size 0.005 0.002

Table 3: A Comparison between Gradient Projection Method and PSOR. T = 0.5, E = 100,
r = 0.03, σ = 0.20, and δ = 0.07. (Binomial method with 15,000 steps is used to compare
the values.)

r σ δ E T1 T2 T3 T4
0.07 0.2 0.06 100 0.5 5 10 100

Table 4: Parameters

the values of investments for different time horizon were provided. The numerical examples
were conducted based on the parameters in Table 4. And optimal timings corresponding to
each expiration date which were obtained from the rule in the Section 4.2 is shown in Table.
The results show that valuation of investment increases when the expiration date increases.
Also, the investment value with a large expiration date tends to be close to the value with
infinite expiration date. The optimal timing for infinite expiration date was obtained from
a closed form solution, which will be discussed later.

6 Optimal Timing to Invest for Infinite Time Horizon
Real Option Problems

If the expiration time of the option is infinite for the optimal investment timing problem, we
can take an advantage of time independence in optimal solutions. And as shown in many
literatures like Pindyck [17] and Weeds [19], a special form of optimal timing problems for
infinite time horizon has a closed form solution for the investment decision. Similar to finite
time horizon problem, C (S, t) should satisfy:

1
2
σ2S2 ∂2C

∂S2
+ (r − δ)S

∂C

∂S
− rC = 0

Herein, note that the time derivative term

Expiration Date(T ) 0.5 5 10 100 ∞
Optimal Investment timing (S∗) 141 165 183 183 187.9

Table 5: Change of Optimal Investment Timing
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Figure 3: Numerical solutions for the different expiration date

∂C

∂t
= 0

when T = ∞. Since C is not dependent on time t any more, we can write C(S).
In addition, C(S) need to satisfy the following boundary conditions:

C(0) = 0
C(S∗) = S∗ − E

∂C

∂S
= 1

The closed form solution are as follows:

C(S) =
{

aSβ for S ≤ S∗

S − E for S ≤ S∗

where

β = 1/2− (r − δ)/σ2 +
{(

(r − δ)/σ2 − 1/2
)2

+ 2r/σ2
}1/2

S∗ =
β

1− β
E

a = (S∗ − E) (S∗)β

To derive LCP for infinite time horizon investment problem, let
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LBS(C(S) =
1
2
σ2S2 ∂2C

∂S2
+ (r − δ)S

∂C

∂S
− rC

We can considered LBS(C(S) ≤ 0 because of no arbitrage assumption. We have the following
two statements:

If C(S) > max(S − E, 0), then LBS(C(S) = 0. (16)

If C(S) = S − E = max(S − E, 0), then LBS(C(S) < 0 since
∂C

∂S
= 1 (17)

Therefore, from these two inequality conditions, our optimal timing problem
is formulated as a linear complementarity problem (LCP):

LBS(C(S)) · [C(S)− Φ(S)] = 0
C(S)− Φ(S) ≥ 0
−LBS(C(S)) ≥ 0

with boundary conditions

C (S) ≥ Φ(S)
C (0) = 0

lim
S→∞

C (S) →∞

where we defined the Black-Scholes operator as

LBS ≡ 1
2
σ2S2 ∂2

∂S2
+ (r − δ)S

∂

∂S
− r

and the pay-off function as
Φ(S) = max(S − E, 0)

Now we state that the solution to the LCP is indeed a solution to the real option problem
of interest.

Lemma 8 Solution of the LCP under assumption r > δ > 0 always has the optimal thresh-
old. The LCP is equivalent to the option to invest problem.

Proof. In the LCP equation (16), the optimal timing is the expiration date which implies
infinite time. However, if the condition r > δ > 0 is satisfied, we know LCP can have
a solution only from (16) by Wilmott et al. [21]. And we know that the exercise occurs
immediately before the expiration date if the solution is obtained from (16). Therefore,
the optimal threshold always exists within the finite time horizon. Since we know that the
investment real option problem is the same as (16), our problem is equivalent to LCP.

We now ready to develop an extremal problem.
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6.1 Variational Inequality and Extremal Problem

With the transformation introduced in Section 2.2, we have the following variational in-
equality problem for real option problems with infinite time horizon: to find u ∈ Ω for each
time instant τ ∈ [0, T ] such that

∫ ∞

−∞
Ψ(u) [v − u] dy ≥ 0 ∀v ∈ Ω, (18)

where the domain set is

Ω = {v : v − φ ≥ 0, v(y, 0) = φ(y),
v(−∞, τ) = φ(−∞), v(∞, τ) = φ(∞)}, (19)

the principal operator is

Ψ = −1
2
σ2 ∂2

∂y2
−

(
r − δ − 1

2
σ2

)
∂

∂y
+ r,

and the payoff function is
φ(y) = max(ey − E, 0),

With the similar analysis as in Section 3, we have an equivalent extremal problem:

min J (u) =
∫ ∞

−∞

∫ u

0

Ψ (v) dvdy s.t. u ∈ Ω (20)

where Ω is defined as (19). Also, we can show that the derivative of J (u) is

∂J(u)
∂u

= Ψ(u)

Note that for the infinite time horizon problems, the option value u (·) is not time-dependent
but only depedent on the transformed asset price y.

6.2 A Numerical Method for Solving Infinite Time Horizon Prob-
lems

As the valuation function u (·) is not time-dependent, the finite difference approximation
leads us to a one-dimensional problem, that is, we only discretize the y-axis. When we
discretize the y-axis in M number of meshes limiting the domain of space y by an interval
[yL, yU ] so that

yi = yL + iδy, i = 0, ..., M

δy =
yU − yL

M

Then the corresponding variational inequality is approximated to

M∑

i=0

Ψ(ui) [vi − ui] ≥ 0 ∀v ∈ Ω (21)
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r σ δ E
0.07 0.2 0.06 100

Table 6: A Comparison between Gradient Projection Method and PSOR. T = 0.5, E = 100,
r = 0.03, σ = 0.20, and δ = 0.07. (Binomial method with 15,000 steps is used to compare
the values.)

where ui = u (yi).
To approximate the parabolic operator Ψ (·), we consider finite difference approximations

which leads

Ψ (ui) ≈ −1
2
σ2

(
ui+1 − 2ui + ui−1

(δy)2

)

−
(

r − δ − 1
2
σ2

)(
ui+1 − ui−1

2δy

)
+ rui (22)

Then the gradient projection algorithm becomes similar to the numerical scheme intro-
duced in Section 4, but at this time with the gradieint information (22).

7 Numerical Example

We have tested the gradient projection method proposed in the previous section for a real
option problems with infinite time horizon for the parameters in Table 6. The numerical
results produced are plotted in Figure 4, in which the closed-form solution is plotted in a
solid line while the numerical solution is plotted in a dotted line.

The optimal timing to invest is obtained by the method in Section 4.2 as following:

S∗numerical = 187.0000
S∗closed-form = 187.9153

and the size of error is

error = |Vnumerical − Vclosed-form| = 0.7544

where the subscripts ‘numerical’ and ‘closed-form’ denote the values obtained by the nu-
merical method and the closed-form solution, respectively.

8 Conclusion

In this paper, we constructed an extremal problem equivalent to the variational inequality
formulation and discuss the gradient projection method for the extremal problem. To this
end, we first studied the linear complimentarily problem form for real options, and basic
algebraic manipulations enabled us to have the variational inequality formulations. We
used some results of functional analysis such as G-differentiability and Riesz’s Representa-
tion theorem to derive an extremal problem whose necessary condition coincides with the
variational inequality formulation of American options.

Among infinite-dimensional optimization problems, the extremal problem we investi-
gated has a few distinctive properties: (1) the domain set of the decision variable is defined
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Figure 4: Comparison of Closed-form Solution and Numerical Solution for a Infinite Time
Horizon Real Option Problem

by boundary conditions and an inequality, which is called an obstacle in traditional engineer-
ing problems, (2) the objective functional involves parabolic partial derivatives, and (3) the
evaluation of the objective needs an integration from −∞ to +∞. These properties make a
numerical approach to the solution difficult. We overcame the difficulties by iterative pro-
jections onto the domain, the Crank-Nicolson finite-difference approximations, and a finite
length sub-interval approximation, respectively. We discovered that, when compared with
binomial methods and projective successive over relaxation methods, the proposed gradi-
ent projection method gives fast and accurate solutions for several different American call
options.

Since we approach the problem by optimizations, our method to the valuation of real
options has an advantage: we can still value real options when different constraints to
the value of options and/or the asset price are added. A straightforward method to the
problem, then, is probably that we discretize and solve by nonlinear programming. These
developments of solution algorithms are left for the future research works.
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