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Forest Harvesting with Multi-Factor Uncertainty          

 

Abstract 

We provide a multi-factor real option model for a single harvest and then for  

perpetual forest harvesting, which extends the Faustmann (1849) approach to 

infinite rotations with multi-factor uncertainty.  We examine separately forest 

growth and timber prices (and eventually credits/penalties for CO2 uptake/release 

upon harvest), so the forester can focus on critical exogenous and partially 

endogenous factors.  While the single harvest option and its value at optimal 

harvest time are expressible as products of the timber price and forest size, the 

replanting option is not, so the principle of similarity sometimes used to reduce the 

dimensions of two factor models does not apply.  We provide a unique quasi-

analytical solution for multi-factor uncertainty in forestry to determine the multiple 

rotation value and optimal harvest size. 
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Forest Harvesting with Multi-Factor Uncertainty 

          

                           

1.   INTRODUCTION 

We provide a multi-factor real option model for a single harvest and then for  

perpetual forest harvesting (infinite rotations). In addition, we examine separately 

forest growth and timber prices, so the forester can focus on critical exogenous and 

partially endogenous factors.  We provide a unique quasi-analytical solution for 

multi-factor uncertainty in forestry to determine the multiple rotation value and 

optimal harvest size. 

 

There are several articles on single forest harvesting that are extensions of 

Tourinho (1979), except for renewable resources with both stochastic growth and 

timber prices.  Chang (2005) and the Amacher, Ollikainen and Koskela (2009) 

book extend the Faustmann (1849) deterministic approach to stochastic multiple 

rotations.  While the single harvest option and its value at optimal harvest time are 

expressible as products of the timber price and forest size, the replanting option is 

not, so the principle of similarity sometimes used to reduce the dimensions of two 

factor models does not apply. 

 

We consider separately the components of harvesting gross profit H(P,Q), where P 

is the standard (per cubic meter, or per thousand board feet) net unit profit and Q is 

the forest standard size, assuming both P and Q may be  affected by different 

factors. Also, eventually we allow for the possibility of CO2 capture, but assuming 

no subsequent release, as a function of Q in terms of a constant yield while the 

forest is growing, similar to a “convenience yield”.  Correlation between P and Q 

may vary according to exogenous or local factors, where exceptional weather 

promotes growth with then excess timber supplies and price declines, or 

alternatively inhibits harvest with supply shortfalls and price increases. 
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Norstrøm (1975) provides a transition probability matrix reflecting the fluctuating 

price of timber, with some 44 state transitions, showing advantages over the 

Bierman (1968) deterministic approach for optimal harvest timing. Samuelson 

(1976) notes that forestry economist’s “simple notion of stationary equilibrium 

needs to be …replaced by the notion of a perpetual Brownian motion” considering 

“the bouncings of the futures contracts for plywood on the organized exchanges” 

but he did not apparently reflect that the stochastic single harvest opportunity is 

similar to a perpetual American call option, solved in Samuelson (1965).  

According to Newman (2002) who surveyed hundreds of relevant articles, Miller 

and Voltaire (1980, 1983) were among the first to consider stochastic forest value, 

and infinite rotations, and provide a solution for a single factor forest stand 

evolving according to an arithmetic Brownian motion, extended to multiple 

harvests.  Clarke and Reed (1989, 1990) study prices and age-dependent growth 

evolving according to geometric Brownian motion, aggregate forest value into a 

single variable, and note that when harvest costs are non-stochastic, the optimal 

stopping solution is given in Samuelson (1965).  There are now many authors that 

have provided real option models of rotations, including Thompson (1992),  

Willassen (1998), Plantinga (1998), Sødal (2002),  Insley (2002), Saphores (2003), 

and Shackleton and Sødal (2010), among others. 

 

There are several deterministic models of forest growth, often based on empirics.  

Banks (1994) describes the Valentine (1983) logistic model and the Garcia (1983) 

Bertalanffy-Richards power law logistic model, also modified by adding an 

arithmetic Brownian motion process, fitted to heights and ages of radiate pine trees 

in the Kaingaroa Forest in New Zealand. Clarke and Reed (1989) use a cubic 

polynomial growth function fitted to the Clark (1976) data on net stumpage values 

for B.C. Douglas fir trees.   

 

CO2 is removed from the atmosphere and stored as carbon in forest biomass, but 

partially released upon harvest, particularly if wood is used as biomass fuel (or the 
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forest burns).  In order to model CO2 uptake as a function of forest growth, van 

Kooten et al. (1995) use a simple power function for timber growth f(t) = kt
a
e

-bt 

which is fitted to coastal B.C. timber, and also to black spruce in the boreal forest 

of northern Alberta.   The amount of release depends on the fraction of harvested 

timber that goes into long-term storage in structures and landfill, called “pickling”. 

Reddy and Price (1999) also consider a deterministic model for carbon 

sequestration as a function of timber growth.  Asante et al. (2010) propose 

complex deterministic models for carbon sequestration.  

 

Several authors have proposed multi-factor real option models for growth, prices 

and/or carbon sequestration. Chladná (2007) assumes a mean-reverting process for 

prices, a deterministic function for forest growth, and a geometric Brownian 

motion for CO2 prices, and apparently uses simulation to produce results.  Morck 

et al. (1998) assume a geometric Brownian motion for both timber prices and 

inventory of timber in a leasehold, but modify the timber growth by subtracting the 

quantity of timber produced.  With these separate functions in a partial differential 

equation (PDE), a numerical (Runge-Kutta) solution is used to evaluate the 

leasehold value at any time, and the optimal cutting rate (repeated partial single 

harvest, no benefit for the leaseholder from reforesting). Alvarez and Koskela 

(2003, 2006, 2007b) provide several multi-factor harvesting models covering 

interest rate variability, risk aversion and amenities.  Alvarez and Koskela (2007a) 

is closest to our approach, considering resource stock and price uncertainty, 

typically geometric Brownian motion (and also considering quantity mean-

reversion), but only for the single harvest or sequential case (where the part of the 

harvesting is postponed).   

 

The next section describes a multi-factor harvest model for a single harvest, and 

illustrates some sensitivities. Section three extends this model to multiple  

harvests, with constant prices. Section four develops the multiple infinite rotation 

model under more realistic conditions, with stochastic prices and growth, and 

provides a quasi-analytical solution. Some sensitivity analyses similar to those for 



    6 

a single harvest using comparable parameter values are shown. The last section 

concludes and offers some suggestions for further research. 

 

2.  UNIT PROFIT and GROWTH UNCERTAINTY: SINGLE HARVEST 

 

Suppose that both the profit per unit and the number of forest units follow different 

but possibly correlated geometric Brownian motion processes, following Paxson 

and Pinto (1995). Let P represent the profit per unit sold and Q the quantity of 

standing timber.  Assume that each variable follows a geometric Brownian 

motion
1
 of the form: 

1
dzPdtPdP                             (1) 

2
dzQQdtdQ                                                           (2) 

where μ and ω are the expected multiplicative trends of P and Q, σ and α are the 

volatilities, and dz1 and dz2 the increments of a Wiener process. The two variables 

may be correlated with correlation coefficient ρ.  

 

Consider a portfolio that consists of a long position in the option to harvest a given 

forest ),( QPH , and a short position consisting of 1  and 2  units of P and Q, 

respectively. Assume that the forester is risk-neutral.
2
 Applying Ito’s lemma, the 

following PDE for a forest is obtained (where r = riskfree  rate): 
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1
 There are several alternative growth functions for forests, including several deterministic models.  

Also  in equation (2) could denote net growth in Q after subtracting a proportional carbon credit 

for CO2 uptake.  A constant proportional carbon credit implies that the absolute annual CO2 

sequestration increases over time and forest size without limit, which is not consistent with many 

empirical forest studies.  
2
 The assumption of risk neutrality may be relaxed by adjusting the drifts of P and Q to account for 

a risk premium.  
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Equation (3) explains the movements in the value function of a forest with a single 

harvest opportunity (and no land value after harvest) and is subject to the usual 

boundary conditions. The first boundary condition is the value matching that gives 

the value of H(P,Q) at which the forester should harvest. The second boundary 

condition is the smooth pasting that assures that the derivatives of the two 

functions (before and after the harvest) are equal at the harvest point. 

 

Let PQX   denote the total gross harvest profit (assuming no maintenance or 

reforesting costs) implying that ),()( QPHXP  , and assume that P and Q are 

linear homogenous to the degree one, so similarity arguments are valid
3
. After the 

appropriate substitutions, equation (3) can be re-written as: 

    0)(
)(

2
)(

2

1 22
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                       (4) 

Equation (4) is an ordinary differential equation with the following characteristic 

quadratic function: 

0)()1()2(
2

1 22  r                     (5) 

Equation (5) has two roots, a positive and a negative one, given by: 
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                                       (6)     

where  2222 z . 

The solution of equation (4) is: 

21)(


BXAXXP                                                                          (7) 

 

We know that as X increases, the value function of the forest has to increase and 

that equation (7) has to be finite, thus B equals zero. Equation (7) is subject to the 

value-matching condition: 

                                                 
3
 See Paxson and Pinto (1995) appendix. 
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KXXP  **)(                                       (8) 

where *X is the harvest trigger value, K is the harvest cost plus the value of any 

CO2 release upon harvest, and is also subject to the smooth-pasting condition: 

1
*)(


dX

XdP
                                                   (9) 

Equations (7), (8) and (9) imply that: 

1
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X                                           (10) 

Thus the value function of the forest, H(P,Q), is given by: 
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Equation (11) describes the value function of the forest before and after the trigger 

is hit. Before the trigger X* is hit, the forest has not yet been harvested and its 

value function is a monopoly perpetual American option to harvest. At the trigger, 

the value function is the harvest net present value, assuming X is obtained and K 

incurred instantaneously. 

 

Table 1  

    Base Case Data.   

  

Description Parameter Value 

Timber Price per Unit Q P 1 

Quantity of Tree/Forest Q 100 

Price * Quantity X 100 

Harvest Cost K 100 

Price Volatility P   0.20 

Quantity Volatility  0.05 

Correlation  0.00 

Relevant Discount Rate r  0.04 

Price Drift  0.01 

Forest Growth  0.02 
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Using the Table 1 data, H(P,Q) using equation (11) is 42.89, the optimal harvest 

size X* is 651.06 using equation (10), or over 6.5 times the current timber size 

times a unitary price. With the specified drifts, volatilities and correlation 

parameters, the gross profit volatility z=21% and β1=1.18.  

 

The first derivative (delta) of the value function of the forest, where P and Q are 

the state variables, is: 
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Delta behaves as expected, that is as total gross profit increases the forest harvest 

option value also increases, until it reaches a constant 1 at X=X*.   

 

Since P and Q are separate items, it is useful to examine the sensitivity of X* to 

changes in separate factors.  Figure 1 shows the sensitivity of the optimal harvest 

size to changes in P volatility.   

Figure 1 
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The optimal harvest size X* is 416 using equation (10), if the price volatility is 

zero (but the drift is still 1% per annum), but this is reduced to 212 if the price is 

constant with nil drift. 

 

Figure 2 shows the sensitivity of the optimal harvest size to changes in P and Q 

correlation.   

 

Figure 2 
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timber scarcity) could be critical in forestry harvest decisions.  With high correlation 

(not shown), the harvest trigger high enough to discourage any immediate harvests. 

It is well known that discount rates are an important factor in determining optimal 

forest harvest, even for deterministic models.  Figure 3 shows the sensitivity of 

single harvest optimal size to changes in discount rates. 

 

    Figure 3 
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Finally, Figure 4 shows the sensitivity of a single harvest trigger to changes in the 
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Figure 4 
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solution in Chang (2005) is similar to an extension of the Tourinho (1979) optimal 

extraction problem, dividing the single harvest option value by: 

])
**

(1[ 10 

X

X


               (13)

 

where X0 is the forest size upon replanting. 

 

The Chang (2005) one-factor representation of tree-cutting and rotation belongs to 

the broad group of real-option replacement models, see Ye (1990), Mauer and Ott 

(1995), and Dobbs (2004), and many of its results can be derived from these works 

and by using the standard real-option method. We define X  to denote tree size, 

whose growth follows a geometric Brownian motion process. When X  attains its 

optimal threshold for cutting, denoted by X̂ , the tree is cut at a cost K   and a 

sapling with size 0X  is replanted. The tree value is denoted by  F X . The value 

matching relationship then requires that: 

   0
ˆF X F X X K                                                                                         (14) 

assuming that the timber price is constant and that K  is defined as the cost of 

cutting divided by the price (unity in this article). 

 

The valuation function, the solution to the one-factor risk-neutral valuation 

relationship is given by: 

F AX  ,                                                                                                        (15) 

where   is the positive root of the characteristic equation (also equation 6). So: 

0
ˆ ˆAX AX X K    ,                                                                                          (16) 

with smooth-pasting condition expressed as: 
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ˆ ˆAX X  .                                                                                                           (17) 

Combining (17) with (16) yields: 

 0
ˆ ˆXX X

X̂ K
X̂



 
                                                                                            (18) 

Note that (18) is identical to equation (6) in Chang (2005). The left hand side of 

(18) is the value of planting a sapling with size 0X . The right hand side is the 

value of sustaining the tree less foregone value of harvesting. Re-arranging (18) 

yields: 
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The value of a tree at the harvest threshold is equal to the value from harvesting 

adjusted upwards by a factor exceeding one, which reflects the value of the 

recursive replanting option. 

This result requires a constant tree price. It is not possible to extend the Chang 

(2005) analysis to two factors, timber price and tree size, because 0X  is treated as 

a constant in the one-factor model, but for the two-factor model, 0X  is a product 

of the timber price at harvest and the sapling size. 

 

Thus the value function of the multiple forest rotation, MH(X), is given by: 
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where X** is the solution to  0**)1(** 11

)1(

0
1 


XKXX 

               (21)
 

 

Equation (20) describes the value function of the forest before and after the trigger 

is hit. Before the trigger X** is hit, the forest has not yet been harvested and its 

value function with the first X=X(t) is a monopoly perpetual American option to 

harvest repeatedly. At the trigger, the value function is the harvest net present 

value, assuming X is obtained and K (which now includes reforesting costs) is 

incurred instantaneously, plus the infinite renewal option with X=X0, that is 

Q(t)=Q0. 

 

Using the parameter values in Table 1, X**=187.6 (if X0 =60, K=100 and price is 

constant), or 12% less than the optimal single harvest size if the price is constant.  

 

Figure 5 shows the sensitivity of the multiple harvest trigger to changes in the forest 

size volatility.  Note that size volatility is generally not high, but the optimal harvest 

size is anyway not very sensitive to size volatility changes.  

    Figure 5 
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Figure 6 shows the sensitivity of single factor multiple rotation optimal size to 

changes in forest growth.  

 

    Figure 6 
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4.  SEPARATE UNIT PROFIT and GROWTH: MULTIPLE HARVEST 

 

Although the principle of similarity conveniently transforms the two-factor 

valuation relationship (3) to a one-factor expression, applying this transformation 

relies on each of the terms in the economic boundary conditions being expressible 

as a product of price and tree size. If this condition is not met, then this 

transformation is unavailable.  Alternatives are required for solving the valuation 

relationship. This can be demonstrated by reformulating the two-factor tree-cutting 

problem by stipulating that when a tree is harvested, it is replanted immediately by 

a sapling of size 0q .  We now redefine the value of a forest stand with replanting 

as:  

2 2 2
2 2 2 21 1

2 22 2
0p q p q p q

F F F F F
p q pq p q rF

p q p q p q
     

    
     

                 (22)

  

The generic function satisfying the homogenous part of (22) is: 

  2 2

2 2F p,q A p q
 

                (23)                                                                                          

Adkins and Paxson (2011) provide a solution to such a two-factor valuation 

relationship. The generic characteristic root equation associated with (23) is: 

     2 21 1
2 2 2 2 2 2 2 2 2 2 22 2

1 1 0p q p q p qQ , r                        (24)  

Unlike a one-factor model whose characteristic root equation yields the solution to 

the option parameter, the parameters 2  and 2 are not uniquely obtainable from 

(24), but have to be evaluated by incorporating additional information available 

from the economic boundary conditions. Since a function of the form  

 2 2 2 0G ,    is obtainable from these conditions, the solution to 2  and 2  can 

be evaluated from the intersection of  2 0Q   and 2 0G  . Assuming that a point of 

intersection can occur in each quadrant, 2  and 2  can adopt any of the four 

following possibilities:  
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Quadrant I 
21 210 0,    

Quadrant II 
22 220 0,    

Quadrant III 
23 230 0,    

Quadrant IV 
24 240 0,    

This suggests that the generic solution (23) takes the extended form: 

  23 2321 21 22 22 24 24

2 21 22 23 24F p,q A p q A p q A p q A p q
      

    . 

Now, since the value of a tree stand increases with tree size and lumber price, then 

we can expect both 2  and 2  to be positive, so 22 23 24 0A A A   , and the 

specific form of (23) becomes: 

  21 21

2 21F p,q A p q
 

 .                                                                                          (25)  

The value-matching relationship describes the value conservation that has to be 

observed at the optimal tree cutting event. When it is optimal to cut the tree, the 

thresholds for the timber price and tree size are denoted by 2p̂  and 2q̂ , 

respectively. If the tree cutting option is exercised, then the stand value, which is 

given by  2 2 2
ˆ ˆF p ,q , has to compensate the net value rendered from cutting the 

tree, given by 2 2 2
ˆ ˆp q K  where 2K  denotes the cutting and replanting cost, and the 

option value of planting a sapling, given by  2 2 0
ˆF p ,q . The value-matching 

relationship becomes: 

21 21 21 21

21 2 2 21 2 0 2 2 2
ˆ ˆ ˆ ˆ ˆA p q A p q p q K   

   .                                                                    (26) 

In (26), we observe that while the option to cut the tree and its rendered value are 

expressible as products of the timber price and tree size, the replanting option is 

not, and so the principle of similarity does not apply. The two smooth-pasting 

conditions associated with (26) for 2p  and 2q  can be respectively expressed as: 

21 21 21 21

21 21 2 2 21 21 2 0 2 2
ˆ ˆ ˆ ˆ ˆA p q A p q p q      ,                                                                   (27) 

21 21

21 21 2 2 2 2
ˆ ˆ ˆ ˆA p q p q
   .                                                                                            (28) 
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Unless 21 0A   and the replanting option has a zero value, the option parameters 

2  and 
2  are not equal, as they would have been under the similarity principle. 

Two reduced-form value-matching relationships are obtainable by substituting 

(27) and (28) in (26) to yield: 

21
2 2 2

21 1
ˆ ˆp q K







,                                                                                                  (29) 

21 2
2 2

0
21

2

1

K
ˆ ˆp q

q

q̂






 

   
 

.                                                                                           (30) 

From (29) and (30), the parameters 21  and 21  are greater than one. This means 

that the value rendered by harvesting has to exceed the cutting and replanting cost, 

which is the two-factor equivalent finding of the standard real-option result.  

Further, from (27) and (28), 21  is greater than 21 , so timber prices exert a 

slightly greater influence over the harvesting option than tree size, given these 

parameter values. By setting the price threshold 2p̂  to its prevailing level, the 

optimal tree size threshold 2q̂  is obtainable from the simultaneous solution of the 

characteristic root equation  2 21 21 0Q ,    (24), and the two reduced-form value-

matching relationships, (29) and (30).  The sensitivities of the optimal tree size 

threshold 2q̂ are illustrated for a price threshold range (the comparison to the multi-

factor single harvest, and single-factor multiple harvest is made at the price 

threshold of 1.0). 

Varying Replanting Sapling Size 

Figure 7 illustrates the effect of varying the sapling size 0q  on the harvesting 

policy, assuming q0 = 60 and K2 = 100/p. This figure reveals that a negative trade-

off exists between the thresholds for the lumber price and the tree size such that a 

fall in the lumber price has to be compensated by a rise in the tree size. When the 

sapling size is set to equal zero, this compensation is complete in the sense that the 
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revenue 2 2
ˆ ˆp q  remains constant at 651.06 for all harvested tree sizes

4
. However, 

the compensation is only partial for a positive sapling size because of the revenue 

decline accompanying a lumber price increase, and this effect is most pronounced 

for higher lumber prices. Further, the harvesting policies for the various sapling 

sizes are nested. This means that irrespective of the harvesting price threshold, the 

threshold tree size decreases for increases in the sapling size. On average, the 

expected time until harvesting is shorter for higher sapling sizes not only because 

of starting at a greater size but also because of a lower harvesting size threshold. 

However, we have to temper this finding by the fact that saplings of a larger size 

tend to command higher prices that leads to an increased replanting cost.  

 

 

Figure 7 

 

 

 

 

 

                                                 
4
 As q0 tends to zero, the parameters  and  become close and the results seems to approach the 

similarity solution for the single harvest model.  The multiple rotation model form constrains the 

value of q0 to between 0 and K/p. 
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Figure 8 

 

 

 

 

 

 

The effect of variations in the cost of cutting and replanting 2K  is illustrated in 

Figure 8. This reveals that an increase in cutting and replanting cost produces a 

replanting boundary more distant from the origin. This is in line with expectations, 

since greater value has to be captured from the tree in the form of a greater lumber 

price or tree size in order to compensate the increased 2K . Clearly, a trade-off 

exists between the sapling size and 2K  that has to be acknowledged in deciding the 

appropriate 0q  level.  

 

Variations in Volatility 

 

A standard real-option finding concerning volatility is that an increase produces a 

rise in the threshold and the greater tendency for deferring exercise. In Figures 9  
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(a) and (b), we present illustrations of the effects of variations on the volatilities 

for lumber price and tree size, respectively, on the harvesting policy, whose 

profiles agree with the standard finding. However, the magnitudes of the two 

effects are very dissimilar. A change in tree size volatility produces a very modest 

impact on the harvesting policy, which is only visible in Figure 9 (b) because of a 

scale adjustment. 

  

The difference in magnitudes is due to their asymmetrical roles, since the lumber 

price influences both the harvesting and replanting option values while the tree 

size only influences the harvesting option value. Accordingly, the harvesting 

policy responds more significantly to a change in the lumber price volatility than 

the tree size volatility. 

 

The volatility of the tree revenue depends not only on the two constituent 

volatilities, but also on the correlation between the lumber price and tree size. 

Figure 10 illustrates the effect of negative variations in the correlation coefficient 

on the harvesting policy. We have chosen to select only negative variations in the 

correlation coefficient, since a period of above normal tree growth is likely to be 

accompanied by a lumber price fall. This figure reveals that a rise in the 

correlation coefficient has the effect of deferring the harvesting decision, since 

there is greater justification for cutting a tree earlier for greater negative 

correlation. Further, we know from the model using the similarity principle that 

the focal volatility measure affecting the harvesting decision is positively related to 

the correlation coefficient, so a negative correlation increase lowers the tree 

revenue volatility and advances the harvesting decision. 
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Figure 9 (a) 

 

 

 
 

 

Figure 9 (b) 
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Figure 10 

 

 

 
 

 

Variations in Discount Rate 

 

Variations in the discount rate r  are illustrated in Figure 11. This reveals that for a 

specific lumber price, the tree size at harvest varies inversely with the discount rate 

so trees are cut earlier, at smaller sizes for higher discount rates. An increase in the 

discount rate leads to a rise in the parameter values 21  and 21 , which in turn 

reduces the revenue threshold through the reduced-forms of the value-matching 

relationship.  

 

Now, a discount rate increase makes future cash flow from tree cutting less 

valuable, so for tree harvesting to be economically justified, any rise in the 

discount rate has to be compensated by an increase in the tree revenue at harvest. 

Accordingly, a rise in the discount rate advances the harvesting decision. 

 

 

 

 



    25 

 

Figure 11 

 

 

 

 

Variations in Drift Rates 

 

The effects of variations in the two drift rates, p  and q , are separately illustrated 

in Figures 12 (a) and (b), respectively. These profiles show that the tree size at 

harvest for a specific lumber price varies inversely with either drift rate, since an 

increase in either p  or q  leads to reductions in the values of 21  and 21 , which 

consequently, produce a fall in the tree revenue at harvest. Now, since a rise in the 

drift rates for either the lumber price or the tree size entails an increased value for 

deferring the harvest, it becomes economic to allow trees to grow for a longer time 

so that their tree revenue becomes higher. Faster growing trees or higher rising 

lumber prices imply greater tree revenue at harvest because of their increased 

value for waiting. 
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Figure 12 (a) 

 

 

Figure 12 (b) 

 

 

Generally, the sensitivities to changes in the parameter values are similar in sign but 

not necessarily magnitude for all three forest harvesting models. We assume the 

forester has a matrix of current prices and forest size (including replanting size and 

cost) so that at any point of time, using expected forest price and forest size drifts, 

volatilities and correlation, the value of the forest stand and the optimal forest 

harvest size can be determined.      
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5. SUMMARY and CONCLUSION 

 

This paper presents real perpetual American multi-factor forest harvesting option 

models. A forester maximises the value of the harvest decision not when the present 

value of the cash flows equals the harvest cost, but when P*Q/K is much greater 

than one, unless there is little volatility in either timber prices or forest growth. The 

multi-factor single harvest optimal time X* and the single factor multiple harvest 

optimal time X** are derived as solutions to ordinary differential equations.   

 

While the option to harvest a forest and its value at harvest are expressible as 

products of the timber price and forest stand size, the replanting option is not, so the 

principle of similarity sometimes used to reduce the dimensions of two factor 

models does not apply.  We provide a unique quasi-analytical solution involving the 

simultaneous solution of three equations for multi-factor uncertainty in forestry to 

determine the multiple rotation value and optimal harvest size. 

 

Multi-factor models are able to cover estimations of several state variables, the 

volatilities of those variables, and correlations among the variables, if warranted. 

Replicating these real harvest options along a time frame might be attempted using a 

variety of real, financial and commodity securities, or eventually synthetic or virtual 

products created by imaginative enterprises. 

 

This quasi-analytical approach can plausibly be used to incorporate more realistic 

forest growth models, especially reflecting the slower growth of older stands, and to 

consider the hypothetical subsidies and/or taxes on the other forest products 

(amenities, or the value of the uptake of CO2 during growth and partial release upon 

harvesting or burning).  Obviously the application of such models should be made 

considering the vast amount of empirics on forest growth in different areas and for 

different species, for different CO2 uptake for different species, as well as including 

the traded carbon emission prices as a separate stochastic process.  
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