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1 Introduction 
 
Industrial and agricultural applications frequently exhibit inherent options to choose 

between the best of two commodities. If these options are well established, the 

probability is high that the markets of these commodities are co-integrated to some 

degree. If prices drift apart, suppliers would exercise the option and switch from the 

less favourable to the more favourable product, typically by incurring a switching 

cost, until the equilibrium is re-established which is reflected in a mean-reverting 

price spread. In these cases, a two-factor valuation problem could then be reduced to a 

problem with a single stochastic factor. These co-integrated markets are found 

particularly when commodities have similar applications and can be substituted rather 

easily for one another or when the production cost of one commodity is heavily 

influenced by another commodity. Examples include dry (bulk) and wet (oil) markets 

in the shipping industry (see Sodal et al., 2007), commercial and residential uses of 

real estate, industrial plants with flexibility on the product mix, refining margins and 

other conversion processes in the chemical industry, such as the production of 

polyethylene which is created by polymerisation of ethylene. Both ethylene and 

polyethylene are traded products, so that the conversion can be considered a real 

rainbow option. The valuation of this rainbow option based on the conversion spread 

will be the subject of the empirical application. 

Kulatilaka and Trigeorgis (2004) discuss the general approach of valuing 

switching options, including options additivity and asymmetric switching costs. Stulz 

(1982) and Johnson (1987) develop closed-form solutions for a European option on 

the maximum or minimum of two or more assets. A quasi-analytical solution to a 

two-factor problem, where the option is not homogenous of degree one in the 

stochastic variables, is provided by Adkins and Paxson (2010a) and elaborated into a 
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general switching model for two alternative energy inputs (2010b). Dockendorf and 

Paxson (2009) develop real option models on the best of two commodity outputs with 

both single and continuous switching, including the option of temporary suspension, 

and apply the models to value a flexible fertilizer plant. All of the above mentioned 

models are based on uncertainty represented by geometric Brownian motion. The 

Schwartz (1997) analysis on the behaviour of commodity prices reveals that 

commercial commodity prices exhibit strong mean reversion. Also, Geman (2007) 

tests energy commodity prices for mean reversion and finds that oil and natural gas 

prices are mean-reverting during one period and random walk during another. Tvedt 

(2000) values a vessel with lay-up option in a shipping market with freight rate 

equilibrium and acknowledges in his conclusion that mean-reversion should be 

considered in the freight rate dynamics to improve the model for practical valuation. 

The option pricing theory on co-integrated assets has been explored by Duan and 

Pliska (2004), who value finite spread options on stock indices subject to time-

varying volatility by means of Monte Carlo simulations. Dixit and Pindyck (1994) 

provide a solution to the investment problem on an asset which follows a geometric 

mean-reverting stochastic process, i.e. where the variable has an absorbing barrier at 

zero. Option valuation on mean-reverting assets is applied by Pinto et al. (2007) to the 

Brazilian sugar industry by approximating the prices of sugar and ethanol as discrete 

binomial mean-reverting processes and determining the value of switching between 

the two commodities within a bivariate lattice option framework. Näsäkkälä and 

Fleten (2005) value a flexible gas fired power plant on the basis of a spark spread with 

mean-reverting variations in the short term and a gBm equilibrium price in the long-

term, but ignoring switching costs. 
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Sodal et al. (2007) value the switching option for combination carriers 

between the co-integrated dry and wet bulk markets by modelling the price spread as 

mean-reverting. The approach is based on the Bellman equation which uses for the 

solution of the maximisation problem a rate ρ to discount the future option values. 

However, such a discount rate cannot be reasonably estimated because of the options-

specific risk characteristics. Sodal's empirical application confirms that the option 

value is highly sensitive to this discount rate ρ. The option value almost triples if ρ is 

reduced from 0.15 to 0.05. Furthermore, the cash flows of the static project with no 

switching option, which includes non-stochastic cash flows, have been discounted at 

the same rate ρ. We develop an option model based on the contingent-claims and the 

risk-neutral valuation approach and show how Sodal's solution can be transformed to 

be independent of ρ. 

The remaining part of this paper is organised as follows: Section 2 introduces 

the characteristics of the mean-reverting spread, provides the present value of 

perpetual cash flows without switching option and then develops a model for the 

continuous rainbow option. Section 3 applies the continuous rainbow option to value 

a polyethylene plant based on an econometric model of the polyethylene-ethylene 

conversion spread. Specific and general implications are discussed in Section 4. 

Section 5 concludes and raises issues for further research. 

 

2 Valuing the Switching Opportunity 

2.1 Modelling uncertainty as a mean-reverting spread 
 
We assume that the asset can be operated in two different modes where each 

operating mode is associated with a different commodity produced. The flexibility to 

switch between two operating modes – the base mode (denoted by '0') and the 
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alternative mode (denoted by '1') – means that we are faced with two underlying 

uncertainties, which are the prices of the two commodities. In integrated markets, 

however, the prices of the two commodities are bound to one another by economic 

reasons, so that the complexity can be reduced to only one underlying uncertainty by 

modelling the difference between the two commodity prices as mean-reverting. Let 

(p) be the weighted spread of the commodity prices, 

 0
1

0
1 p

k

k
pp −= , (1) 

where p0 and p1 are the commodity prices in the base and alternative mode, 

respectively, and k0 and k1 the capacities. The capacities enter into the equation in 

order to account for the fact that product units and output capacities of the asset may 

be different in the two operating modes. Hence, we unitise the spread with regard to 

the product sold in the alternative mode. The spread of two co-integrated commodities 

can be both positive or negative so that the mean-reverting process needs to be 

modelled as an arithmetic Ornstein-Uhlenbeck process: 

 ( ) dzdtpmdp σ+−η= , (2) 

where η is the speed of reversion, m the long-run mean of the spread, σ the volatility 

and dz a standardised Wiener process. The expected value of p at time t is given by: 

 [ ] ( ) t
t empmpE η−−+=  (3) 

and the variance of pt: 

 [ ] ( )t2
2

t e1
2

pVar η−−
η

σ=  (4) 

Dixit and Pindyck (1994) determine the convenience yield (δ) of a mean-reverting 

process where both the drift rate and the volatility are proportional to the current level 

of the underlying variable (geometric mean-reversion). Applying the same logic, the 
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parameters of the arithmetic mean-reverting process can be derived. The expected 

return (µ) of p is determined by the systematic risk in the stochastic fluctuations in p 

and is equal to the sum of convenience yield (δ) and expected increase in the level of 

p (α). The expected percentage change of p is the relative drift rate: 

 ( ) δ−µ=−η=α
p

pm , (5) 

While the required return µ is constant, the yield δ varies with p. Solving for the 

convenience yield provides 

 ( )
p

pm −η−µ=δ . (6) 

The dividend yield is the same in the risk-adjusted and risk-neutral world (denoted by 

*). With the risk-neutral drift rate δ−=α r*  and the expected absolute drift being 

α*p*, the risk-neutral process of the mean-reverting process can be specified. An 

alternative way of deriving the risk-neutral process is to adjust the Wiener process for 

the market price of risk (λm), dtdz*dz mλ−= , as outlined by Bjerksund and Ekern 

(1995). We deviate from the latter reference insofar as λm cannot be kept constant for 

the arithmetic mean-reversion because the relative volatility depends on p. Applying 

the definition provided by Hull (2006), the market price of risk for the arithmetic 

mean-reversion is
p

r
m σ

−µ=λ , which provides: 

 ( )[ ] *dzdt*prm*dp σ+η+−µ−η= . (7) 

 

2.2 Discounted cash flow with no flexibility 
 
Assuming no operating flexibility, the present value of the asset can be calculated as 

the discounted cash flow. The cash flow is given by the spread less the variable 
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operating cost, k1(p-c), where (c) is the weighted difference in variable operating cost 

between the two operating modes: 

  0
1

0
1 c

k

k
cc −= . (8) 

The discount factor for the volatile spread consists of a risk component and a time 

component. For the mean-reverting process, the risk dissipates over time so that the 

applicable risk discount factor would be different for each time period. This is in 

contrast to a geometric Brownian motion where the risk increases with time and the 

risk discount factor is compounded in the same way as the time discount factor. 

Instead of calculating the time-dependent risk discount factor for the mean-reverting 

process, the risk can be incorporated in the growth rate of p, as demonstrated by 

Bhattacharya (1978), which results in the risk-neutral process of p. Let 
r

m
M

−µ+η
η= , 

then from (2): 

 ( )( ) dzdtpMrdp σ+−−µ+η=  (9) 

In analogy to equation (3), the expected value of p in the risk-neutral scenario is then 

given by: 

 [ ] ( ) ( )tr
t eMpMpE −µ+η−−+=  (10) 

The risk-neutral cash-flow could either be discounted at the risk-free rate of return for 

an asset lifetime of T years, or be discounted in perpetuity at a higher rate taking into 

account the asset depreciation in the form of exponential decay. We take the latter 

approach since we also need to consider technological, political and environmental 

risk. Let the arrival rate λ of a Poisson event incorporate both, depreciation and 

technological risk, so that the risk-neutral cash-flow is discounted at the rate (r+λ): 
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+
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
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



η
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=−= ∫
∞

λ+−

r

cp

1r

m
kdtecpEk)p(PV 1

0

tr
t11 . (11) 

The discounted cash flow consists of three parts. Firstly, the long-term average (m) is 

discounted at a rate of r(1+(µ+λ)/η). This discount rate increases with the systematic 

risk in the stochastic fluctuations of p, represented by µ, and decreases with the speed 

of mean-reversion (η), because the faster p returns to its long-run average the faster 

the risk is dissipated. With η>>(µ+λ), the discount rate will be only slightly above the 

risk-free rate. Secondly, the current value of p is discounted at (µ+η+λ) which 

corresponds to discounting the η-decaying exponential function of p at the discount 

rate µ and accounting for depreciation and political/technical risk. Thirdly, the 

operating cost is discounted at the risk-free rate augmented by the Poisson probability. 

 

2.3 Continuous rainbow option 
 
We now allow for flexibility between the two operating modes. In the base mode, the 

commodity spread is foregone (zero cash flow). In the alternative mode, the spread is 

earned and variable operating costs are incurred (positive or negative cash flow). 

V0(p) and V1(p) represent the values of being in the respective state, each with the 

option to switch to the other mode. The Ornstein-Uhlenbeck process is a special case 

of the general Itô process of the form dz)p(dt)p(dp σ+α= . Starting from this 

general approach, the value of an option on p, V(p), is described by the partial 

differential equation below: 

 ( ) ( ) 0Vr
p

V
pr

p

V
)p(

2

2
2

2
1 =λ+−

∂
∂δ−+

∂
∂σ  (12) 
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The convenience yield from equation (6) is substituted for V0 and V1 in the above 

equation. In the base mode, no cash flow is earned and V0 is solely determined by the 

option value. 

 ( )[ ] ( ) 0Vr
p

V
prm

p

V
0

0
2
0

2
2

2
1 =λ+−

∂
∂

η+−µ−η+
∂

∂
σ  (13) 

When operating in the alternative mode, a cash flow is earned equal to the commodity 

spread net of variable operating cost. 

 ( )[ ] ( ) ( ) 0cpkVr
p

V
prm

p

V
11

1
2
1

2
2

2
1 =−+λ+−

∂
∂

η+−µ−η+
∂
∂

σ  (14) 

A more general form of equation (13) is obtained by substituting ( ) 2r2a ση−µ−= , 

2m2b ση=  and ( ) 2r2d σλ+−= : 

 ( ) 0Vd
p

V
bpa

p

V
0

0
2
0

2

=⋅+
∂

∂
++

∂
∂

 (15) 

With µ>r and η>0, parameter (a) will always be negative. For a<0, Kampke (1956, p. 

416) suggests substituting ( )xFV0 =  and 






 +=
a

b
pax  to obtain: 

 0F
a

d

x

F
x

x

F
2

2

=−
∂
∂−

∂
∂

 (16) 

Appendix A demonstrates how the above equation can be further transformed into the 

Weber equation by substituting ( )
2

4
1x

exGF =  (see also Kampke, 1956, p. 414): 

 G
2

1

a

d

4

x

x

G 2

2

2











−+=

∂
∂

 (17) 

Spanier and Oldham (1987, p. 447) establish that the above Weber differential 

equation is satisfied by the parabolic cylinder function of order (-d/a) and argument 

(x) and (-x), represented by ( )xD ad−  and ( )xD ad −− , so that G(x) is determined by: 
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 ( ) ( ) ( )xDBxDAxG adad −⋅+⋅= −− , (18) 

where A and B are constant parameters and the parabolic cylinder function is defined 

by: 

 ( ) 

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2
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22

, (19) 

with M the Kummer function: 

 ( ) ( )
( )

( )
( )

( )
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∞

= Γ
Γ

+Γ
+Γ=+

+
+++=

0k

k2

!k

z

a

b
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ka
...

!2

z

1bb

1aa
z

b

a
1z,b,aM   (20) 

The asset in the base model is therefore valued as: 

 ( )
2

4
1

a

b
pa

ad0ad00 e
a

b
paDB

a

b
paDApV


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









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













 +⋅=  (21) 

Concerning the asset in the alternative operating mode, the value is determined by the 

non-homogenous partial differential equation (14). The solution consists of the sum of 

the general solution to the homogeneous PDE and a particular solution to the non-

homogeneous PDE. A particular solution to the non-homogeneous equation is the 

present value of the perpetual cash flow k1(p-c) which is the value of the operating 

asset without flexibility and given by equation (11), repeated below. 

 ( )( ) 








λ+
−

λ+µ+ηλ+
η+

λ+η+µ
=

r

c

r

mp
k)p(V 1P1  (22) 

With the substitutions 
λ+η+µ

= 1k
u  and ( )( ) 









λ+
−

λ+η+µλ+
η=

r

c

r

m
kw 1 , the value 

of the asset operating in the alternative mode is determined by the function below: 

( ) wpue
a

b
paDB

a

b
paDApV

2

4
1

a

b
pa

ad1ad11 +⋅+






















 +−⋅+














 +⋅=















 +

−−

  (23) 
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The reader can verify, that the solution to the homogenous partial differential equation 

based on a Bellman equation with the unspecified discount rate ρ, as provided by 

Sodal et al. (2007), can be transformed into the above equation by substituting 

r−µ+η→η , 
r

m
m

−µ+η
η→  and r→ρ  in the former, where notations apply as used 

in this paper. Their solution to the non-homogenous differential equation cannot be 

transformed in a similar way since all stochastic and non-stochastic components of the 

perpetual cash flows have been uniformly discounted at the rate ρ. 

As Kulatilaka and Trigeorgis (2004, p. 195) state, the "valuation of the flexible 

project must be determined simultaneously with the optimal operating policy". So we 

can expect the coefficients A and B to depend on the switching boundaries given by 

the spread levels of pH and pL, where pH triggers a switch from the base operating 

mode to the alternative operating mode and pL vice versa. In order to determine the 

coefficients, the general form of the value functions needs to be investigated. The 

option value of switching from the base mode to the alternative mode needs to 

increase with the spread, since the spread can only be earned in the alternative mode, 

and to tend towards zero for large negative spreads. When operating in the alternative 

mode and earning the cash flow p-c, the option to switch and forego the cash flow 

needs to increase in value with lower (more negative) p-values and should be almost 

worthless for very high values of p. Figure 1 below depicts the general form of the 

value functions. 

 

FIGURE 1 

 

The parabolic cylinder function Dv(x) tends towards infinity for large negative values 

of x and towards zero for large positive x for all v<0. It is a monotonically decreasing 
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function in x for (v < -0.20494) and has one local maximum for (-0.20494 < v < 0). 

The exponential multiplier term in the option value in V0 and V1 makes the option 

values monotonically increasing and decreasing respectively for all v<0. For V0, the 

option value of switching increases with p and becomes negligible for large negative 

values of p. Hence A0 must be zero and B0 positive. For V1, it is the other way round, 

so that A1 must be positive and B1 zero. 

Switching between operating modes occurs when the value in the new 

operating mode exceeds the value in the incumbent mode by the switching cost. These 

rules are formalised by two boundary conditions, 

 01H1H0 S)p(V)p(V −=  (24) 

 10L0L1 S)p(V)p(V −=  (25) 

where S01 and S10 are the respective switching costs. V0 and V1 must also comply with 

the smooth pasting conditions at the trigger levels, pH and pL. 

 
p

)p(V

p

)p(V H1H0

∂
∂=

∂
∂

 (26) 

 
p

)p(V

p

)p(V L1L0

∂
∂=

∂
∂

 (27) 

The four equations, (24), (25), (26), (27), enable us to determine the four unknown 

parameters B0, A1, pH and pL. The procedure to solve the system of equations is as 

follows: 

1. Solve equation (24) for B0 as a function of A1, pH and pL 

2. Solve equation (25) for A1 as a function of pH and pL  

3. Guess pH and pL (based on the general shape of the value functions) 

4. Change pH and pL until both equations (26) and (27) are satisfied 

simultaneously 
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5. Check that both B0 and A1 are positive 

Step 4 is a minimization problem which is solved numerically. The solution is 

therefore not available in closed-form. Appendix B provides the detailed equations. 

 

 

3 Empirical Application: Valuing a polyethylene plant 
 
In this empirical section, the continuous rainbow option is applied to determine the 

market value of a polyethylene plant which converts ethylene into polyethylene. The 

latter product is a plastic which is widely used in film, pipes, blow and injection 

moulding applications and fibres, while ethylene is the main product from the 

petrochemical naphtha cracking process. At first glance, this seems to be an 

input/output option rather than an option on the best of two outputs (rainbow option). 

However, both commodities are traded and ethylene could be sold to the market 

instead of converting it to polyethylene. In that sense, the polyethylene plant can be 

considered a rainbow option on ethylene and polyethylene. The flexibility is given by 

the option to choose between not operating the plant (base mode) and operating the 

plant (alternative mode). Figure 2 below depicts a simplified scheme of the 

transformation. 

 

FIGURE 2 

 

While various patented polyethylene processes are used in industry, we will focus on 

the slurry process for the production of high-density polyethylene (HDPE). The asset 

under consideration is assumed to be in Europe with an annual production capacity of 

250,000 tons of HDPE, with an initial investment of an estimated €200 million. 
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Meyers (2004) provides specific consumption data for the slurry process which 

requires about 1,017 kg of ethylene for the production of 1,000 kg of polyethylene. 

The conversion spread is therefore defined as: 

 ethylenenepolyethyle p017.1pp ⋅−=  (28) 

Although other materials are required for the chemical transformation, prices of 

polyethylene are largely determined by ethylene as the dominant feedstock. This 

suggests that both prices are co-integrated, i.e. they are bound in the longer term and 

the difference between the two tends to revert to a long-term average which should 

cover operating costs of converting ethylene to polyethylene, capital costs and profit. 

To further explain this mechanism, consider the following scenarios. An increase in 

ethylene prices means higher production costs of polyethylene which will eventually 

lead to an increase in the market price of the latter. The extent of this price increase 

depends on whether the market price is more cost-driven or demand driven at that 

time. A cost-driven market price is much more responsive to a change of production 

costs than a demand-driven market price (see Figure 3). This relationship is inverse 

for a change in demand of polyethylene. A change of demand will lead to significant 

adjustments in polyethylene prices in a demand-driven market but less so in a cost-

driven market. Furthermore, a polyethylene demand change will also impact on the 

prices of ethylene since about 60% of the global ethylene production output is used to 

produce polyethylene, according to estimates of Deutsche Bank (2009). While most 

of the remaining share is used to produce other chemical products, ethylene also has 

some direct applications (e.g. fuel gas for special applications or ripening of fruit). 

 

FIGURE 3 
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3.1 Econometric model for the stochastic spread 
 
As Dixit and Pindyck (1994) acknowledge, both theoretical considerations and 

statistical tests are important to determine whether a variable follows a mean-

reverting stochastic process. Following the discussion on equilibrium mechanisms 

above, this section intends to econometrically test the spread for mean-reversion and 

then to estimate the parameters of this stochastic process. According to Brooks (2009) 

and Duan and Pliska (2004), a linear combination of non-stationary variables of 

integration order one will be stationary if the variables are co-integrated. In other 

words, the spread of polyethylene and ethylene prices is stationary and can be 

modelled as an autoregressive mean-reverting process if the two commodity prices 

are co-integrated. Hence, we first test the commodity prices for co-integration and the 

spread for stationarity. If these tests confirm the mean-reverting nature of the spread, 

the parameters of the Ornstein-Uhlenbeck process are determined by means of an 

Ordinary Least Squares regression and statistical tests are performed on the validity of 

the regression. 

Time series with monthly data for ethylene and polyethylene prices from Jan 

1991 to Dec 2009 are the basis for the empirical analysis. These prices are for 

delivery within Europe, i.e. gross transaction prices. Figure 4 gives a graphical 

representation of the historical commodity prices as well as the conversion spread. It 

can be seen from the figure that the two commodity prices tend to move together and 

the spread is more stationary although volatile. 

 

FIGURE 4 
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3.1.1 Test for mean-reversion 

 
The purpose of this chapter is to test whether the spread follows a mean-reverting/ 

stationary process. This can be done either directly by demonstrating that the spread is 

stationary or indirectly by showing that ethylene and polyethylene prices are co-

integrated, because according to the Granger representation theorem, this implies that 

a linear combination of the two (such as the conversion spread) is stationary. 

Two variables are co-integrated if their levels are non-stationary and the 1st 

difference in levels is stationary. An Augmented Dickey-Fuller (ADF) unit root test 

assumes that the series is non-stationary under the null hypothesis. Hence, the two 

variables are co-integrated if the ADF test statistic for each variable is not rejected on 

the levels but rejected on the 1st difference in levels. Co-integration is confirmed for 

ethylene and polyethylene prices by considering the probabilities of making an error 

when rejecting the null hypothesis of unit roots, as shown in Table 1: When the p-

value is below 5%, the null hypothesis can be rejected with a confidence level of more 

than 95%. For ethylene and polyethylene prices, the null hypothesis of unit roots 

cannot be rejected at the 1% level but possibly at the 5% level. The hypothesis of unit 

roots in the 1st difference of the two commodity prices can be rejected with certainty. 

This means that the commodity prices tend to be non-stationary, but the change in 

prices is stationary. 

 

TABLE 1 

 

The same table also provides the ADF statistic for the spread (which is a linear 

combination of ethylene and polyethylene prices), for which the null hypothesis of 

non-stationarity is strongly rejected. Because there is the possibility that the null 
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hypothesis might be rejected due to insufficient information, we also perform a 

stationarity test to confirm the above analysis. A KPSS test assumes the series is 

stationary under the null hypothesis. The KPSS test statistic for the spread series is 

0.72, which means that the null hypothesis of stationarity is rejected at the 5% level 

(0.46) but not rejected at the 1% level (critical value: 0.74). 

 

3.1.2 Regression model 

 
The Ornstein-Uhlenbeck process for the spread (p) is specified in continuous time. In 

order to estimate the parameters (η, m, σ), the model needs to be converted to its 

discrete time equivalent. The  corresponding discrete-time process of the spread is a 

first-order autoregressive model and can be derived from (2) and (3), see also Dixit 

and Pindyck (1994): 

 ( ) t1tt pee1mp ε++−= −
η−η−  (29) 

where εt is normally distributed with mean zero and standard deviation σε 

 ( )η−
ε −

η
σ=σ 2

2
2 e1

2
 (30) 

It should be noted, that the parameters η and σ depend on the chosen time interval ∆t 

which is one month. The regression is then run on equation 

 t1tt pp ε+β+α= − , (31) 

with 

 β−=η
))

log , (32) 

 
β−

α= )

)
)

1
m

,
 (33) 
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1

log
2

2 −β
βσ=σ ε )

)

))

.
 (34) 

To transform the parameters η and σ from a monthly to an annual scale, multiply the 

mean-reversion rate by twelve and the volatility by the square root of twelve. Table 2 

provides the parameter estimates of the regression model, based on the 1991-2009 

monthly data of the price spread, as well as the transformed parameters for the 

Ornstein-Uhlenbeck process. Both parameters, α and β, are statistically significant (p-

values: 0.00), thereby confirming that the model is auto-regressive. The regression 

estimates the mean of the spread (m) at €317/mt, the annual volatility (σ) at €198 and 

the mean-reversion rate (η) at 1.35. 

 

TABLE 2 

 

3.1.3 Statistical tests 

 
The above regression model needs to undergo a number of diagnostic tests in order to 

verify its validity. The residuals of the regression should be homoscedastic, not 

autocorrelated and normally distributed. Further tests on the stability of the 

parameters and the linearity in the functional form are performed. The results of these 

tests are given in Table 3 and are discussed below. 

 

TABLE 3 

 

The distribution of the residuals ought to be of constant variance over time, i.e. 

homoscedastic. If this is not given, the standard error of the parameter estimates 

would be flawed and so would be any inference on the significance of the parameters. 



19 

 

However, the parameter values would be unbiased even in the presence of 

heteroscedasticity. The White test indicates that the probability of making an error 

when rejecting the null hypothesis of homoscedasticity is 0.49. We adopt the 0.05 

probability level as the threshold between rejection and non-rejection. Hence, the 

residuals are not heteroscedastic. The autoregressive regression model already takes 

into account autocorrelation in the spread. We still need to test whether the model 

covers all of the autocorrelation. The consequences of ignoring autocorrelation in the 

residuals are the same as for heteroscedasticity, i.e. the parameters would be 

inefficient but unbiased. The Breusch-Godfrey test confirms that the residuals are not 

correlated. The Bera-Jarque test for normal distribution of the residuals rejects the 

hypothesis of normality at the 1% significance level, meaning the residuals are not 

normally distributed. While the residuals distribution is not skewed, it is leptokurtic 

(peaked relative to the normal) with a kurtosis of 4.07 (3.0 for a normal distribution). 

Since the kurtosis does not impact on the mean of the residuals distribution, this non-

normality has no practical consequences for the validity of the regression model. 

The functional form of the chosen regression model is linear. The 

appropriateness of this form can be tested by means of Ramsey's RESET test which 

adds exponential terms of the dependent variable to the regression model. With one 

fitted term (square of the dependent variable), the alternative hypothesis of a non-

linear functional form can be rejected at the 0.05 significance level so that our chosen 

linear functional model is appropriate. 

Parameter stability tests are intended to verify if the parameter estimates are 

stable over time or whether they change significantly. Performing a series of Chow 

tests with different breakpoints over the sampling period suggests that there might be 

breakpoints at the end of 1998 and 2000, as can be seen from Figure 5. Hence, 
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parameter estimates based on data before the breakpoint would be significantly 

different from estimates thereafter. In the long-run the polyethylene-ethylene 

conversion spread depends on the conversion ratio and needs to cover operating and 

fixed/capital costs. With existing plants being distributed globally, any changes in 

these factors would happen slowly which is why there seems to be no economic 

justification for a sudden change in the long-term behaviour of the spread. Recursive 

coefficient estimates indicate that both α and β converge to stable values (see Figure 

6). A CUSUM test also shows that the cumulative sum of the recursive residuals is 

within the 0.05 significance range at all times, suggesting that the parameters are 

stable. 

 

FIGURE 5 

 

FIGURE 6 

 

3.2 Asset-specific parameters 
 
The key characteristics of the polyethylene plant are given in Table 4 together with 

the calculation of the operating margin based on the spread as of December 2009. 

 

TABLE 4 

 

TABLE 5 

 

The variable cost of production is composed of consumption material cost (see cost-

breakdown provided in Table 5 above), logistics cost for the delivery of the final 
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product within Europe, and personnel cost. About 30 people are required to operate 

the shifts next to a management team of about 4-6. This is under the assumption that 

the plant is part of a larger petrochemical complex, so that general services can be 

shared. Assuming annual personnel cost of €50,000 per employee, the total personnel 

cost amounts to €1.75 m. In case of temporary suspension of the plant operations, 

following a fire-and-hire strategy would endanger the know-how base. However, 

many European countries provide for some flexibility with regard to personnel 

deployment, such as flexible working-time accounts and short-time allowance. 

Therefore we consider 2/3 of the shift personnel cost to be variable (€1 million) so 

that the variable personnel cost per ton of polyethylene produced is €4. Annual 

maintenance cost for this kind of chemical plant is estimated at 1.5% of the 

investment cost (€3 million). Together with the fixed personnel cost, the total fixed 

operating cost amounts to €3.75 million. 

As was said earlier in this paper, limited lifetime of the asset (depreciation) 

and specific technological and political risks associated with the investment are 

accounted for by a Poisson event with the arrival rate λ. The limited lifetime is 

modelled in the form of exponential decay, where dte
T

0t

t
T ∫

=

λ−λ=φ  is the probability 

that the asset has reached the end of its lifetime before T. Assuming an expected 

lifetime of 20 years, use 20T =  and 5.020 =φ  to get the corresponding arrival rate 

for depreciation as 035.0D =λ . Investing in, owning and operating a chemical plant 

is associated with significant technological risks, ranging from non-compliance of the 

chemical processes, patent conflicts, to product obsolescence. Furthermore, political 

risks persist over the asset lifetime, such as terrorist attacks, environmental issues or 
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health concerns. We choose 045.0T =λ , and get the Poisson arrival rate for the asset 

as TD λ+λ=λ . 

 

3.3 Asset valuation 
 
The theoretical models developed in Section 2 are now applied to value a 

polyethylene plant with the empirical data from above. As an extension, we introduce 

a hypothetical tax rate γ on the cash flow, so that the cash flow in the alternative 

operating mode becomes ( ) ( )cpk1 1 −γ− . The total asset value in the respective 

operating mode is then given by AV0 and AV1, according to 

( ) ( )taxPVcPVVAV fix1/01/0 +−= , where ( )
λ+

=
r

c
cPV fix

fix  is the present value of the 

annual fixed operating cost and PV(tax) the present value of the tax break. Assuming 

the investment cost (I) is linearly depreciated over the depreciation period (T) for 

accounting purposes, as is the case in many European countries, the annual tax break 

during T years is TIγ  and its present value ( )
( )∑

= +
γ=

T

1t
tr1

1

T

I
taxPV . The asset 

values as a function of the spread and the switching boundaries are represented in 

graphical form in Figure 7 below. 

 

FIGURE 7 

 

Considering first the alternative operating state, when the plant is operated and the 

spread is earned, it can be seen that the asset value (AV1) increases linearly in p for 

very high levels of p while the function is convex for lower levels of p. This is 

explained by the option to switch to the base operating mode which is relevant for 
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lower p-values and negligible for high p-values. The value function increases steeply 

beyond the switching boundary pL because the switching option would largely exceed 

the discounted cash flows. However, the function AV1 is not relevant for p<pL since 

the operating mode is changed at pL. AV0 increases gradually until the option to 

switch and earn the spread reaches V1-S01 at the switching boundary pH. Even for 

highly negative p-values, it is expected that p will eventually revert to the long-run 

mean (m) so that the option on the spread declines only slowly towards zero for 

negative spread levels. 

 

TABLE 6 

 

Table 6 above provides the asset value with and without operating flexibility together 

with the switching boundaries for the standard parameters and various scenarios in 

order to test the sensitivity to changing parameters. For the standard parameters, we 

find a value of the operated plant with no flexibility of €251 million compared to an 

asset value with operating flexibility of €255 million, which is a 2% premium and 

suggests a low probability of suspending the asset operation. These asset values 

compare to an investment cost of about €200 million. The switching boundaries pL 

and pH lie to both sides of the variable operating cost (c), as would be expected, 

however, not symmetrically. Suspending the operations would be recommended at a 

net cash flow (p-c) of -€23.67/mt compared to restarting at €19.72/mt. This 

asymmetry is explained by the long-run mean of p which is significantly above the 

operating cost. Suspension is delayed more than resumption. The switching 

boundaries are distributed symmetrically to both sides of the variable operating cost if 
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the switching cost is zero, then pL=pH=c, or if the long-run mean of the spread was 

identical to the variable operating cost. 

Let us first validate the behaviour of the value function with regard to the 

parameters of the underlying uncertainty and then with regard to asset-specific 

parameters. When testing for zero volatility, the spread will tend towards its long-run 

mean (m) in a deterministic way. With m>c and all stochastic elements eliminated, 

the option to suspend becomes irrelevant so that the operating flexible asset is valued 

exactly the same as the non-flexible one. Furthermore, if the plant is suspended, it 

would be resumed as soon as the spread exceeds the variable operating cost because 

with m>c, the net cash flows (p-c) are positive from that time on and the present value 

of those net cash flows exceeds the switching cost (S01). Now, let the speed of mean-

reversion (η) be zero so that the Ornstein-Uhlenbeck process simplifies to a Brownian 

motion process with no drift, dzdp σ= . For the non-flexible plant, the present value 

declines when mean-reversion is relaxed because the risk increases with time 

(volatility proportional to the square root of time). This is reflected in a higher 

discount rate for the spread in equation (11). As a result, the present value of €166 

million is significantly lower compared to the mean-reversion case and would even 

not justify the investment. In contrast, the value of the flexible asset increases 

significantly by about 25% to €315 million when relaxing mean-reversion, which is a 

90% premium on the non-flexible asset. This is consistent with real options theory 

because the lower the speed of mean-reversion the higher the absolute volatility and 

the higher the option values. 

Assuming different variable operating costs, the option premium increases 

with higher operating cost because the probability of exercising the option (switching) 

increases. However, as long as the option is far in the money, (p-c)≫0, the premium 
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is rather small. The results confirm the intuition that in the absence of switching cost, 

switching is optimal as soon as the spread crosses the operating cost, so that the cash 

flow is given by Max[p-c;0]. Although the switching cost significantly influences the 

switching boundaries, its effect on the asset value is minor because the current and 

long-run expected spread is far above the operating cost and hence the probability of 

suspending the plant and incurring switching costs is low. Figure 8 below illustrates 

the sensitivity of the switching boundaries to the variable operating cost and to the 

switching cost. It can be seen that while pH and pL move in line with the operating 

cost, the switching boundaries are not symmetrically distributed around the operating 

cost because m≠c. Finally, comparing the case of an initial spread of €500/mt vs. a 

spread of €150/mt, the difference in asset value would be about €40 million. 

 

FIGURE 8 

 

It is now interesting to simulate the asset operation on the basis of historical 

commodity prices. Figure 9 shows the development of the polyethylene/ethylene 

spread over the last decade, together with the level of variable operating cost of the 

conversion plant and the switching boundaries. It can be seen that the plant should 

have been idle most of the year 2000 and be suspended in 2004 and 2005 for about 

one month each time. In these cases, ethylene was better sold to the market instead of 

polyethylene. Most of the time, however, the spread level exceeds the variable cost by 

far, so that sell polyethylene was the better product, which explains the rather small 

option premium for the flexibility of suspending the plant of 2%. 

 

FIGURE 9 
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3.4 The Greek Letters 
 
The risk measures Delta and Gamma of the asset value are provided in Figure 10. 

Delta is defined as the change of the asset value with changes in the spread (p), and 

Gamma is the change of Delta with changes in the spread. The asset value function in 

the base operating mode (suspension) is a convex function in p, therefore Delta is also 

increasing in p. When the asset is in the alternative operating mode (operation), the 

asset value increases with the spread and the Delta approaches a constant value for 

high levels of p, because the option to suspend becomes negligible. For a level of the 

spread lower than the switching boundary, the asset value function finds a minimum 

and increases again for lower levels of p in order to reflect the switching option. 

Hence, the Delta function is zero when the value function (V1) is at a minimum, and 

negative for lower levels of the spread. 

 

FIGURE 10 

 

 

4 Implications 

4.1 Implications for participants in the polyethylene industry 
 
Three generic strategies are available to companies involved in the production of 

polyethylene: investing in a polyethylene plant by building a new one or buying an 

existing one, optimising the operations, or divesting. The model and the results from 

the previous section enable us to evaluate these strategies and to point out 

opportunities and pitfalls. 
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Both investment and divestment decisions require transparency on the value of 

the transaction asset to determine an appropriate transaction price or to compare to the 

investment cost. When setting up a new plant, the investment is supposed to add value 

and the project should be implemented at the right time to maximise the value. The 

polyethylene plant is valued at €255 million which compares to the investment cost of 

about €200 million. Hence, the investment would be positive in the current set of 

circumstances. We have seen that the asset value would vary by about 15% (or €40 

million in absolute terms) if we vary the initial spread level between the extreme 

levels of €150/mt and €500/mt. Ceteris paribus, the investment is more valuable if the 

current spread is high. With regard to taking the actual investment decision, this needs 

to be interpreted in combination with the time to build (about two years) and the 

correlation between spread and investment cost (the model above assumes constant 

investment cost). 

In the design phase of the new plant, decisions are taken regarding the degree 

of operating flexibility to be incorporated into the asset. The asset with operating 

flexibility has been shown to exceed that without flexibility by about €4 million. 

Thus, operating flexibility should be incorporated as long as it can be implemented for 

a cost of less than €4 million. Furthermore, a trade-off between reduced operating cost 

and higher investment cost is commonly encountered. For instance, if the variable 

operating cost of the polyethylene plant could be reduced from €128.5/mt to €100/mt, 

this would justify a €36 million higher investment cost. 

Transparency on the spread levels triggering temporary suspension and 

resumption is essential for the management team operating the plant so that these 

critical decisions can be prepared in good time. One needs to be aware that switching 
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boundaries change when variable operating cost (e.g. logistics cost) or the cost of 

ramping up or down the plant change.  

 

4.2 General implications 
 
The application of the continuous rainbow option has shown that the flexible asset 

increases in value when relaxing the mean-reversion (η) in the underlying uncertainty. 

This is consistent with the Smith and McCardle (1999) conclusion that the option of 

flexibility is worth less when the underlying variable is mean-reverting instead of 

random walk. For η=0, the stochastic process simplifies to a Brownian motion with 

no drift. Real options theory tells that the value of real options increases with 

volatility, and a non-stationary Brownian motion is more volatile than a stationary 

mean-reversion process. On the contrary, the non-flexible asset decreases 

significantly in value if mean-reversion is relaxed which is due to the higher discount 

rate. Laughton and Jacoby (1993) call these two opposing phenomena the variance 

and discounting effects. From this can be concluded that flexibility in assets is 

recommended when the value drivers are non-stationary, whereas the extra cost for 

flexibility might not be justified when the value-drivers are stationary. 

The results also highlight the relevance of assessing the degree of co-

integration of markets. If two co-integrated variables are modelled as geometric 

Brownian motion with the appropriate correlation, their spread would not be bound 

and asset values based on these variables would tend to be overstated. Instead, the 

spread of two co-integrated variables should be modelled as a stationary process. 

In real life, decisions to realise large scale investments are typically taken at 

times when the uncertain value-drivers are high or near its peak, for obvious reasons. 

Assuming this value-driver is a commodity and follows a mean-reverting stochastic 
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process, the probability is high that the price has reverted back towards its long-run 

mean by the time the investment goes on stream. In addition, investments are 

typically most expensive when the economy is booming and the general price level is 

high. The opportunity can then be seen as an anti-cyclical investment. When the 

economy is weak, commodity prices tend to be weaker and investment costs tend to 

be lower as well. This seems to be a good time to invest, so that by the time the 

investment is completed, the commodity price reverts back towards its long-run mean 

while the savings on the investment cost have been realised. The booming years of 

2007/8, when the cost for large-scale investments almost doubled compared to the 

normal level, demonstrated that this effect can be quite significant. 

 

5 Conclusion 
 
This paper presents a continuous option to choose the best of two co-integrated 

commodities. Since the spread of two co-integrated variables can be modelled as 

arithmetic mean-reversion, this real rainbow option can also be interpreted as an 

entry/exit valuation problem on a mean-reverting stochastic variable, hence reducing 

the complexity from two-factor to one-factor. We develop a quasi-analytical solution 

for which all parameters can be estimated from empirical data. 

An application of the model to value a polyethylene plant based on the spread 

between polyethylene and ethylene demonstrates that the option to switch between the 

two commodities increases when there is no mean-reversion. For the empirical data, 

we found a premium of the continuous rainbow option over the operation with no 

switching flexibility of merely 2% which is due to the mean-reverting characteristic of 

the spread and the on average large positive net cash flow, resulting in a low 

probability of switching to the alternative operating mode. When simulating zero 
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mean-reversion, the rainbow option becomes several times as valuable as the non-

flexible asset. One main implication from this is that incorporating flexibility into 

assets seems more promising when the value-drivers are non-stationary while the 

value of flexibility in co-integrated markets is more limited. On the other hand, 

opportunities are found in anti-cyclical investing when the value-driver is stationary 

because the investment can be made when prices and initial costs are low, with prices 

expected to revert back to their long-run mean by the time the benefits are realised. 

An interesting extension to the model would therefore be to determine the optimal 

investment timing based on a fixed investment cost and then on a stochastic 

investment cost proportional to the spread.  
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Appendix A. Proof of the transformation of the PDE into Weber's equation 
Equation (15) is to be transformed on the basis of the substitutions ( )xFV 0 =  and 


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b
pax , as suggested by Kampke (1956, p. 414). The first and second 
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These derivatives are applied to equation (15), and taking into consideration that a<0, 

we obtain: 
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With the above substitutions, we obtain the Weber equation: 
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Appendix B. System of equations 
With A0=0 and B1=0, equations (21) and (23) simplify to 

 ( )
2

4
1

a

b
pa

ad00 e
a

b
paDBpV
















 +

− 














 +−⋅=
 and

 

 ( ) wpue
a

b
paDApV

2

4
1

a

b
pa

ad11 +⋅+














 +⋅=















 +

−  

With the value functions above, the two boundary conditions, (24) and (25), can be 

evaluated: 
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For the evaluation of the smooth pasting conditions, the derivative function of the 

parabolic cylinder function is used: 
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(26) can then be assessed and simplified: 
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Similarly, from (27): 
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Figure 1. General shape of the value functions V0 and V1 

 

 
 

Asset values as a function of the spread (p). V0 is the asset value in the base mode, V1 in the 
alternative mode. Switching from base mode to alternative mode at pH for a switching cost of 
S01, reverse switching at pL for S10. 
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Figure 2. Simplified scheme of inputs and outputs of a polyethylene plant (HDPE) 
 
 

 
 

Feed components and output of the slurry polymerisation process of ethylene to high-density 
polyethylene (HDPE) 
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Figure 3. Equilibrium price changes in reaction of supply shift in cost-driven and 
demand-driven markets 
 

 
 

 
 

Supply/Demand equilibrium prices in cost-driven market (top) and demand-driven market 
(bottom). An increase in production costs leads to an upward shift in supply. Equilibrium 
price is more sensitive to a supply shift in a cost-driven market than in a demand-driven 
market. 
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Figure 4. Time series of commodity prices and of the spread 

 
Monthly data, prices in € per metric ton and for delivery within Europe. Ethylene: spot prices. 
Polyethylene: HDPE quality (high-density polyethylene). Spread defined as polyethylene 
price less 1.017 times ethylene price.  
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Figure 5. Chow tests on parameter stability with respect to particular breakpoints 

 
P-value gives the probability of making an error when rejecting the null hypothesis of no 
breakpoint. Chow test splits the sample data into two periods divided by the breakpoint and 
compares the residual sums of the regressions from these sub-samples with the residual sum 
of the regression over the whole period. Ordinary least squares regression for the Ornstein-
Uhlenbeck process: t1tt pp ε+β+α= −  

 
 
  

0.0

0.2

0.4

0.6

0.8

1.0

92 94 96 98 00 02 04 06 08

p-value
Critical level (5%)



38 

 

 
Figure 6. Recursive coefficient estimates 

 
Regression model: t1tt pp ε+β+α= − . C(1) corresponds to α, C(2) to β. Parameter estimates 

start from Jan-1991 and subsequently add more data points until all data up to Dec 2009 is 
considered. Convergence towards a stable value indicates parameter stability. 
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Figure 7. Asset value as a function of the spread 
 
 

 
 
 
 

Spread (p) in €/mt and asset values AV0 and AV1 in €. Switching from not operating to 
operating the asset at pH, vice versa at pL. Asset values on dashed lines not applicable because 
switching of operating mode is triggered. 
Long-run mean of p: m = €316.8/mt; Speed of mean-reversion of p: η = 1.35; Volatility of p: 
σ = €198 p.a.; Variable operating cost: c = €128.5/mt; Capacity of p: k1 = 250,000 mt p.a.; 
Switching cost for resuming operation: S01 = €40,000; Switching cost for suspending 
operation: S10 = €20,000; Required return: µ = 0.10; Risk-free rate of return: r = 0.05; 
Exponential decay and technological/political risk: λ = 0.08; Tax rate γ = 0.3; Fixed operating 
cost: cfix = €3.75 million p.a.; Annual depreciation: €10 million over 20 years. 
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Figure 8. Switching boundaries as a function of variable operating cost 
 
 

 
 

Switching boundaries pH and pL as a function of variable operating cost (c) and for different 
switching costs for resuming and suspending operation (S01 = S10) of €0, €50,000 and 
€200,000. 
Standard parameters: Current value of the spread: p = €340/mt; Long-run mean of p:  
m = €316.8/mt; Speed of mean-reversion of p: η=1.35; Volatility of p: σ = €198 p.a.; Capacity 
of p: k1 = 250,000 mt p.a.; Required return: µ = 0.10; Risk-free rate of return: r = 0.05; 
Exponential decay and technological/political risk: λ = 0.08; Tax rate γ = 0.3; Fixed operating 
cost: cfix = €3.75 million p.a.; Annual depreciation: €10 million over 20 years. 
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Figure 9. Time series of the spread and optimal switching points 
 
 

 
 

Monthly prices for the polyethylene/ethylene spread (polyethylene price less 1.017 times 
ethylene price) in € per metric ton of polyethylene and for delivery within Europe. Suspend 
conversion of ethylene to polyethylene if the spread falls below pL = 104.8 €/mt and resume at 
pL = 148.2 €/mt. 
Parameters: Variable operating cost: c = €128.5/mt; Capacity of p: k1 = 250,000 mt p.a.; 
Switching cost for resuming operation: S01 = €40,000; Switching cost for suspending 
operation: S10 = €20,000; Required return: µ = 0.10; Risk-free rate of return: r = 0.05; 
Exponential decay and technological/political risk: λ = 0.08; Tax rate γ = 0.3; Fixed operating 
cost: cfix = €3.75 million p.a.; Annual depreciation: €10 million over 20 years. 
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Figure 10. Delta and Gamma for asset values in base and alternative operating mode 
 
 

 
 
 

 
 
 

Delta (∆) and Gamma (Γ) for the asset value in the base operating mode (top) and in the 
alternative operating mode (bottom) as a function of the spread (p) in €/mt. ∆ = δV / δp and Γ 
= δ2V / δp2. 
Parameters: Long-run mean of p: m = €316.8/mt; Speed of mean-reversion of p: η = 1.35; 
Volatility of p: σ = €198 p.a.; Variable operating cost: c = €128.5/mt; Capacity of p: k1 = 
250,000 mt p.a.; Switching cost for resuming operation: S01 = €40,000; Switching cost for 
suspending operation: S10 = €20,000; Required return: µ = 0.10; Risk-free rate of return: r = 
0.05; Exponential decay and technological/political risk: λ = 0.08; Tax rate γ = 0.3; Fixed 
operating cost: cfix = €3.75 million p.a.; Annual depreciation: €10 million over 20 years. 
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Table 1. Augmented Dickey-Fuller test for unit roots in time series 
 
 

 Probability of unit roots on 
prices 

Probability of unit roots on 
1st difference of prices 

Ethylene 0.043 0.000 
Polyethylene 0.057 0.000 
Spread 0.005 0.000 
 

MacKinnon one-sided p-values give the probability of making an error when rejecting the null 

hypothesis that unit roots exit. Unit roots are present if the regression ∑
=

− +φ=
12

1i
titit uyy  yields 

Φi≥1 for any i, where yt is the dependent variable at time t and ut the residual at time t. The 
presence of unit roots indicates that the process is non-stationary. Maximum number of lags to 
account for autocorrelation: 12 months. 
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Table 2. Regression model for the Ornstein-Uhlenbeck process of the spread 
 

 
 

Ordinary least squares (OLS) regression model of the polyethylene-ethylene spread (p): 

t1tt pp ε+β+α= − . P-values give the probability of making an error when rejecting the null 

hypothesis that the respective parameter is zero. 
 
 
  

Regression parameter Value Std. Error p-value
α 33.62 10.06 0.00
β 0.894 0.029 0.00

σε 54.11

Parameters of the Spread Value Unit
m 316.8 EUR/t

ηmonth 0.11 per month

ηyear 1.35 per year

σmonth 57.2 EUR/t per month

σyear 198.0 EUR/t per year
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Table 3. Diagnostic tests on regression model 
 

 
 

Regression model: 
t1tt pp ε+β+α= − . 

The White test yields the probability according to an F-distribution for the joint null 
hypothesis that ρ1=0, ρ2=0 and ρ3=0 in the auxiliary regression of the residuals 

t
2

1t31t21
2

t uppˆ +ρ+ρ+ρ=ε −−  where ut is a normally distributed disturbance term. Squared terms 

are included. 
The Breusch-Godfrey test yields the probability according to an F-distribution for the joint 
null hypothesis that ρi=0 for i=1..12 in the auxiliary regression of the residuals 

t

12

1i
iti1t21t uˆpˆ +ερ+γ+γ=ε ∑

=
−−

 where ut is a normally distributed disturbance term. To account 

for autocorrelation covering 12 months, 12 lagged terms are included. 

The Bera-Jarque test statistic is given by ( )












 −+
4

3K
S

6

N 3
2  , where [ ]

3
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S

σ
ε=  is the skewness 

and [ ]
4

4E
K

σ
ε=  the kurtosis of the residuals distribution. The Bera-Jarque statistic is distributed 

as a Chi-square with 2 degrees of freedom. 
Ramsey's RESET test yields the probability according to an F-distribution for the null 
hypothesis that ρ1=0 in the auxiliary regression of the residuals 

t
2

t11t21t uppp +ρ+γ+γ= −  

where ut is a normally distributed disturbance term. 
 
  

Test p-value Interpretation

Heteroskedasticity test of residuals
White Test
Probability F-distribution 0.49 Do not reject the null hypothesis

of homoscedasticity

Autocorrelation test of residuals
Breusch-Godfrey
Probability F-distribution 0.21 Do not reject the null hypothesis of

no autocorrelation

Normality test of residuals
Bera-Jarque

Probability Chi2-distribution 0.01 Reject the null hypothesis of normality

Test for misspecification of functional form
Ramsey's RESET test
Probability F-distribution 0.09 Do not reject the null hypothesis

of the functional form being linear
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Table 4. Overview of asset parameters 
    
Capacity polyethylene k1 250,000 mt per year 
Feedstock ethylene k0 254,250 mt per year 
Ramp-up cost S01 40 ‘000 € 
Ramp-down cost S10 20 ‘000 € 
Current spread p 340.0 €/mt polyethylene 
 Logistics cost  50.0 €/mt polyethylene 
 Consumption materials  74.5 €/mt polyethylene 
 Personnel cost  4.0 €/mt polyethylene 
Variable operating cost c 128.5 €/mt polyethylene 
Current margin p-c 214.9 €/mt polyethylene 
 

During the ramp-up phase the process stability is not given at all times so that the 
polyethylene produced is of lower quality. The ramp-up cost is then the lost income based on 
an estimated price reduction of €20/mt for the lower grade and a ramp-up time of 24h up to 3 
days. When suspending the operations temporarily, the variable personnel costs cannot be 
eliminated immediately, assuming that one week's salaries will be incurred for non-productive 
time following a ramp-down. 
As quoted commodity prices refer to delivered products, logistics cost refer to delivery of 
polyethylene within Europe. Current spread as of December 2009. 
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Table 5. Cost of consumption materials for the HDPE slurry process 
 
Production inputs Consumption for 

1,000 kg of HDPE 
Unit prices Cost for 1,000 kg 

of HDPE 
Catalyst     €4 
Hydrogen 0.7 kg 2.4 €/kg €1.7 
Hexan 7 kg 650 €/t €4.5 
Stabilisers     €20 
Steam 500 kg 25 €/t €12.5 
Electric power 600 kWh 45 €/MWh €27.0 
Cooling water 200 m3 2.4 € ct/m3 €4.8 
     €74.5 
 

Main production inputs to the HDPE slurry process other than ethylene. Consumption data 
based on Meyers (2004). Electric power and cooling water consumption data adjusted to 
account for the extruder. Estimate for cost of hydrogen on natural gas basis from FVS (2004). 
Prices of hexan, steam and cooling water based on industry experts interview. Electric power 
based on average spot electricity prices at European Energy Exchange. 
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Table 6. Sensitivity analysis of switching boundaries and asset values 
 

  
 

Standard parameters: Current value of the spread: p = €340/mt; Long-run mean of p: m = €316.8/mt; Speed of mean-reversion of p: η=1.35; Volatility of p: σ = €198 
p.a.; Variable operating cost: c = €128.5/mt; Fixed cost: cfix = €3.75 million p.a.; Capacity of p: k1 = 250,000 mt p.a.; Switching cost for resuming operation: S01 = 
€40,000; Switching cost for suspending operation: S10 = €20,000; Required return: µ = 0.10; Risk-free rate of return: r = 0.05; Exponential decay and 
technological/political risk: λ = 0.08; Tax rate γ = 0.3; Fixed operating cost: cfix = €3.75 million p.a.; Annual depreciation: €10 million over 20 years. 

 

Flexible asset Non-flexible asset
Sensitivities pL pH AV1 = V1 - PV(cf ix) + PV(tax) PV1 - PV(cf ix) + PV(tax)

[€/mt] [€/mt] [million €] [million €]

Standard parameters 104.83     148.22     255     251     

Sensitivity to volatility
σ = 0 115.16     128.53     251     251     

Sensitivity to mean-reversion (η)
η = 0 106.95     150.17     315     166     

Operating cost sensitivity
c = €100/mt 76.00     119.41     291     289     
c = €150/mt 126.58     169.95     228     222     

Switching cost sensitivity
S01 = S10 = €0 128.50     128.50     255     251     

S01 = S10 = €200,000 80.01     162.62     254     251     

Sensitivity to current spread (p0)

p0 = 500 104.83     148.22     273     269     

p0 = 150 104.83     148.22     234     229     



49 

 

 

References 
 
 
Abramowitz, M. and I. Stegun. 1964. Handbook of Mathematical Functions with 

Formulas, Graphs, and Mathematical Tables. New York: Dover Publications 
Inc. 

 
Adkins, R. and D. Paxson. 2010a. Renewing Assets with Uncertain Revenues and 

Operating Costs. Journal of Financial and Quantitative Analysis, forthcoming. 
 
Adkins, R. and D. Paxson. 2010b. Reciprocal Energy Switching Options. Paper 

presented at the Trondheim Winter Energy Workshop, 6 January 2010, in 
Trondheim, Norway. 

 
Bhattacharya, S. 1978. Project Valuation with Mean-Reverting Cash Flow Streams. 

Journal of Finance 33, 1317-1331. 
 
Bjerksund, P., and S. Ekern. 1995. Contingent Claims Evaluation of Mean-Reverting 

Cash Flows in Shipping. In Real Options in Capital Investment: Models, 
Strategies, and Applications, ed. Lenos Trigeorgis. London: Praeger. 

 
Brooks, Chris. 2008. Introductory Econometrics for Finance. 2nd edition. Cambridge: 

Cambridge University Press. 
 
Deutsche Bank. 2009. Petrochemicals Yearbook. 
 
Dickey, D. A., and W. A. Fuller. 1979. Distribution of the Estimators for 

Autoregressive Time Series with a Unit Root. Journal of the American 
Statistical Association 74, 427−431. 

 
Dixit, Avinash K., and Robert S. Pindyck. 1994. Investment under Uncertainty. 

Princeton, NJ: Princeton University Press. 
 
Dockendorf, J. and D. Paxson. 2009. Continuous Rainbow Options on Commodity 

Outputs: What is the Value of Switching Facilities? Paper presented at the 
13th International Conference on Real Options, 17-20 June 2009, in Braga, 
Portugal and Santiago, Spain. 

 
Duan, J.-C., and S. R. Pliska. 2004. Option Valuation with Co-integrated Asset Prices. 

Journal of Economic Dynamics and Control 28, 727−754. 
 
FVS (Forschungsverbund Sonnenenergie). 2004. Wasserstoff und Brennstoffzellen – 

Energieforschung im Verbund. Annual symposium, 25-26 November 2004, in 
Berlin 

 
Geman, H. 2007. Mean Reversion Versus Random Walk in Oil and Natural Gas 

Prices. In Advances in Mathematical Finance, eds. Michael C. Fu, Robert A. 
Jarrow, Ju-Yi J. Yen and Robert J. Elliott. Basle: Birkhäuser. 



50 

 

 
Hull, J. C., 2006, Options, Futures and Other Derivatives, 6th ed. New Jersey: Pearson 
 
Johnson, H. 1987. Options on the Maximum or the Minimum of Several Assets. The 

Journal of Financial and Quantitative Analysis 22, 277-283. 
 
Kamke, E. 1956. Differenzialgleichungen – Lösungsmethoden und Lösungen. Leipzig: 

Akademische Verlagsgesellschaft Geest & Portig K.G. 
 
Kulatilaka, N., and L. Trigeorgis. 2004. The General Flexibility to Switch: Real 

Options Revisited. In Real Options and Investment under Uncertainty, eds. E. 
S. Schwartz and L. Trigeorgis. London: The MIT press. 

 
Laughton, D. G. and H. D. Jacoby. 1993. Reversion, Timing Options, and Long-Term 

Decision-Making. Financial Management 22, 225-240. 
 
Meyers, Robert A. 2004. Handbook of Petrochemicals Production Processes. 

McGraw-Hill Professional. 
 
Näsäkkälä, E. and S.-E. Fleten. 2005. Flexibility and Technology Choice in Gas Fired 

Power Plant Investments. Review of Financial Economics 14, 371-393. 
 
Pinto, C. B., L. Brandao and W. J. Hahn. 2007. Modelling Switching Options using 

Mean Reverting Commodity Price Models. Paper presented at the 11th 
International Conference on Real Options, 6-9 June 2007, in Berkeley. 

 
Schwartz, E. S. 1997. The Stochastic Behaviour of Commodity Prices: Implications 

for Valuation and Hedging. Journal of Finance 52, 923−973. 
 
Smith, J. E. and K. F. McCardle. 1999. Options in the Real World: Lessons Learned 

in Evaluating Oil and Gas Investments. Operations Research 47, 1-15. 
 
Sodal, S., S. Koekebakker and R. Aaland. 2007. Market Switching in Shipping – A 

Real Option Model Applied to the Valuation of Combination Carriers. Review 
of Financial Economics 17, 183-203. 

 
Spanier, J., and K. B. Oldham. 1987. An Atlas of Functions. Washington, DC: 

Hemisphere Publishing Company. 
 
Stulz, R., 1982. Options on the Minimum or Maximum of Two Risky Assets: 

Analysis and Applications. Journal of Financial Economics 10, 161–185. 
 
Tvedt, J. 2000. The Ship Lay-Up Option and Equilibrium Freight Rates. In Project 

Flexibility, Agency and Competition, eds. M. Brennan and L. Trigeorgis. 
Oxford: Oxford University Press. 

 
 


