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Abstract

We consider the problem of evaluating the cost of the optionality to cancel a future
delivery of a commodity when the seller has a number of markets to choose from. The
technique has potential applications to contracts of Liquefied Natural Gas loads and re-
quires solving certain diffusion problems in a multi-variable context.

1 Introduction

Energy commodities form an important part of most markets. Several mercantile exchanges
around the world trade energy commodities in different forms.
The possibility of cancelling the delivery of a commodity at specific times before the delivery
gives a substantial flexibility for the buyer. The purpose of this work is to price the value
of such optionality. More specifically we are interested on the following question: Given
a delivery contract of a commodity, how much should the buyer pay for the optionality of
canceling such delivery at different times in the future?
An instance of commodity where such contracts might be interesting is liquid natural gas.
Natural gas is an important source of electricity generation, as fuel for vehicles, and in house-
holds for heating and cooking. The global demand for natural gas has been growing steadly
in the last years.
Because of its nature, transportation is a crucial issue for the natural gas market. There are
two ways of transporting natural gas: pipelines and liquefied natural gas (LNG). If there is a
pipeline available, then it is the cheapest transportation option. LNG is the choice when no
pipeline is available. LNG takes up to 1/600th the volume of natural gas. It requires special
ships, known as LNG carriers.
In what follows, we concentrate in the example of LNG. However, the ideas and techniques
are readily extendable to other contexts.
One of the main differences between commodities and financial derivatives is the presence of
the cost of carry. This factor consists of the cost of holding a position in a commodity. To
enter in a long position in a commodity like rice, soy or oil there is the cost of storage, the cost
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of financing the position and the cash flow for owing the asset. The important implication of
the cost of carry is that we do not have a non arbitrage price for futures prices of commodities,
what we do have is a non-arbitrage interval. .
In this study we will focus on LNG market, we will study a spot price model for LNG and
introduce some derivatives over LNG. LNG has received a lot of attention in recent years.
LNG “per se” is not directly considered a commodity, since it is not traded in any mercantile
exchange. LNG trades are over-the-counter (OTC) and in general between two countries.
LNG is not a local market, we can not try to find a proxy for the price in any specific
markets, basically because the owner of the cargo is arbitrating among different markets.
In the Asian-Pacific market, LNG prices are indexed to crude oil prices. In Europe there
are different indices, such as crude oil (note that crude oil prices are different in Asia and
Europe), or a basket of indexes (like oil products, coal, inflation, among others). In the USA,
LNG is usually indexed by Henry Hub gas prices.
For a literature on natural gas see [VJ06, Jen03, SLNvH05].
One of the main advantages of our model is that no data for LNG is used. We find the spot
price based on the prices of the local market, which makes it possible to calibrate the model
using the huge amount of data for local markets.
Once the spot price was modeled we are able to treat derivatives and introduce some contracts
for LNG. The two contracts studied were futures for LNG and cancellation options. This
second contract is uncommon in the literature. It is a contract that gives the owner the right
to buy LNG in a given date and the right to cancel the contract paying some fee on certain
dates. Some uses and motivation of this contract are shown.

2 Spot Price

Oftentimes, spot prices of energy commodities are not directly traded or available. The first
step toward modeling commodities is to find its spot price. As it turns out, LNG trades are
done over-the-counter (OTC), and in general take place between two countries. Furthermore
we do not have any database regarding these trades. LNG is a global market, therefore we
cannot find a proxy for the price in any specific markets, basically because the owner of the
cargo is arbitrating among different markets.
Natural gas is a commodity in most countries. Several mercantile exchanges have derivatives
over natural prices. Just to give one example, let us consider USA. The most used reference
pricing point in the USA is Henry Hub which is the pricing point for natural gas contracts
traded on the New York Mercantile Exchange (NYMEX). The NYMEX trades futures con-
tracts for natural gas (called Henry Hub Futures), they also have options over Henry Hub
futures. The natural gas prices are very well modeled in each market. We will use the fact
that there is a model for natural gas in every country.
In order to model the market let us consider a specific producer like Nigeria, for example.
Nigeria can sell LNG to any country, see figure 1. For instance, if it sells in the USA it
will receive for the gas the spot price for natural gas in the USA, which in general is related
to NYMEX Henry Hub prices. To sell in the USA the producer pays the netback costs
(transport,liquefaction,re-gasification,...). The profit of selling to USA is then the Henry Hub
price subtracted by the netback cost.
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Figure 1: Spot Model Conceptual Map

3 The Model

Given a specific seller we can model the market. The price will be given by a profit maxi-
mization of this seller. Some basic market hypotheses will be needed:

• The seller has access to K markets, and pays fk ∈ R of netback cost in order to sell to
market k.

• The prices of natural gas are given by St ∈ (R+)
K

, a K-dimensional stochastic process
defined on on the filtered, probability space (Ω,F , {Ft} , P). In the k-th market natural
gas is a commodity and the price will be given by the stochastic process Sk

t .

If the producer sells to market k the producer receives a profit of Sk
t −fk. He tries to maximize

profit, and the maximum profit is given by

G(St) = max
k=1,...,K

(

Sk
t − fk

)

(1)

If a buyer from market k wants to buy from this producer he will have to pay no less than
G(St) if he pays the netback costs or G(St) − fk if the cost is payed by the seller. In both
cases the seller makes a profit of no less than G(St).
This price rule implies that buying LNG is no better than buying in the local market. That is
a simple consequence of the law of one price in each market. Each market has its own price,
so the law of one price is not true globally, and the seller of LNG is doing arbitrage in global
market. Once LNG is re-gasified and is inside a local market, it becomes natural gas, and so
has the price given by local market.
In this model the amount of natural gas traded by LNG is small, so it does not affect local
market prices. This is clearly a simplification.
This model reflects several aspects of the LNG market. In which every seller and buyer have
different netback costs. It is common for a country to concentrate the demand for LNG,
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which occurs when a market has a spike in prices for natural gas. In this case, this same
country is the natural destiny for every free cargo.
Future prices of LNG are straightfoward once we have the spot price model:

FG(t, T, St) = E [G(ST )| Ft] (2)

This is the most basic contract possible. It is a useful hedge alternative when you are sure of
your demand in a specific time.

4 Cancellation Options

Futures contracts are not flexible enough to cover all the hedge needs which we addressed at
the begining of this chapter. Cancellation options are an attempt to deal with wider hedging
needs.
Its is natural to have a contract that gives the owner the right, but not the obligation to buy.
This makes it possible to hedge against uncertainty in a future time.
We can generalize this flexibility. During the validity of the contract, the owner may receive
some information that alows him to know beforehand that the cargo will not be needed. In
this case he may want to cancel the cargo in advance.
We now define a contract that has these properties.

Definition: The cancellation option is a contract that gives the holder the following rights:

• At times t1, . . . , tN ≤ T the holder has the right to cancel the contract paying fees
c1, . . . , cN respectively.

• If the holder does not cancel the contract, at T he will buy the LNG cargo paying
A · S1

T + B, where A is a proportion of some benchmark market, and B is a fixed cost.

The value of a cancellation option at time t, for market prices St will be denoted by V (t, St).
To value this contract, first note that at delivery the value of the contract is:

V (T, ST ) = GT (ST ) −
(

AS1
T + B

)

. (3)

Or if we can cancel at deliver tN = T

V (T, ST ) = max
(

GT (ST ) −
(

AS1
T + B

)

,−cN

)

. (4)

To help fix the notation, consider the example of the cancellation option for which it is possible
to cancel for t = T as in equation (4). The payoff is shown in Figure 2.
We can find the value of the cancellation option backwards. To do this, we will first define
auxiliar functions V n(t, S) defined on [tn−1, tn] × R

K . Given t ∈ [tn−1, tn), then V n is given
by

V n(t, S) = E [V n(Stn , tn)| Ft] (5)

For tn, with n < N the value of V n is given by

V n(tn, Stn) = max
(

V n+1(tn, Stn),−cn

)

. (6)
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Figure 2: Payoff when it is possible to cancel at delivery time (4). The fee to cancel is c, and
simplifying assume B = 0. In area 1, the payoff is positive, so it is not optimal to cancel. In
area 2 the payoff is negative but better than the fee. In Area 3 the payoff is smaller than the
cancellation fee, so it is optimal to cancel.

If the contract does not give the right to cancel at T , the final payoff is then given by (3) so

V N+1(T, ST ) = GT (ST ) −
(

AS1
T + B

)

, (7)

where the N +1 interval is [tN , T ], the time after the last cancelation date. When the contract
gives the right to cancel at T then the final payoff is given by (4), then we have

V N (T, ST ) = max
(

GT (ST ) −
(

AS1
T + B

)

,−cN

)

. (8)

By means of such construction we are able to find the price for every t ∈ [0, T ]. Where we
have

V (t, S)|(tn−1,tn] = V n(t, S) (9)

5 Facts

Theorem 5.1 For a cancellation contract we have the following properties:

1. The contract value is nonincreasing in A

2. The contract value is nonincreasing in B

3. If for some j < i, we have that cj < cie
−r(ti−tj), then removing the cancellation date tj

does not affect the contract value.

The results (1 ) and (2 ) of Theorem 5.1 show that if you increase the deliver price for LNG
the price decrease. In other words, if you need to pay more money, the value of this contract
is smaller. The result (3 ) establishes restrictions on the cancellation fee, which proves that
we need increasing fees in order to make the cancellation dates meaningful.
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We can also study the value of the cancellation optionality. In this case we must define the
value of the contract without any cancellation possibility. The contract without cancellation
possibility is simply a future given by

F V (t, St) = E
[

GT −
(

AS1
T + B

)
∣

∣Ft

]

. (10)

Using (10) we can define the optionality value as

O(t, St) = V (t, St) − F V (t, St). (11)

Some properties of the optionality value are given in the next theorem.

Corollary 5.2 The optionality value has several properties:

1. The optionality value is always positive;

2. The optionality value is non decreasing in A;

3. The optionality value is non decreasing in B;

4. If for some j < i we have that cj < cie
−r(ti−tj), then removing the cancellation date tj

does not affect the optionality value.

The above result has an intuitive explanation. Property (1 ) one follows from the fact that the
cancellation contract is an option over a future, so its value is always above the future value.
Properties (1) and (2) of Theorem 5.1 show that the price of the contract drops with A and
B, so the probability of a negative payoff increases, and therefore the value of the cancellation
right is higher. This explains (2) and (3) of Corollary 5.2.

Proposition 5.3 If A ≤ 1 and B ≤ mink=1,...,K (−fk) it is never optimal to cancel.

Proof: At T the owner of the contract can receive a LNG cargo, paying AS1
T + B < GT (S).

The above result shows a clearly case were the optionality has null value. When we have A

and B as in Proposition 5.3 it is never optimal to cancel, so the value of the optionality is
zero.

6 Least-Squares Method and Monte Carlo Simulations

We describe the method used to solve numerically the model. The model we choose was the
regression-based Monte Carlo proposed by [LS01].
The convergence of the method, under fairly general conditions, was proved by [CLP02].
For exemple, considering only markovian processes St such that St ∈ L2(Ω, dP) ∀t ∈ [0, T ],
then convergency of least-squeres Monte Carlo method for cancelation options follows from
[CLP02].
The main idea of the method is to use the fact that

E [V (tn+1, X(tn+1))| Ftn ] (12)
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is Ftn-mensurable, so it may be represented as

E

[

e−r(tn+1−tn)V (tn+1, X(tn+1)) | X(tn) = x
]

=
∑

βrγr(x) , (13)

for some base {γr} of the function space L2(Ω, dP,Ftn). We can approximate (13) by

V (t+n , X(tn)) ≈
N

∑

n=1

βrγr(X(tn)). (14)

Thus compute β we solve the following problem by least-squares







γ1(X
1(tn)) · · · γR(X1(tn))
...

. . .
...

γ1(X
J(tn)) · · · γR(XJ(tn))













β1
...

βR






= e−r(tn+1−tn)







V (tn+1, X
1(tn+1))

...
V (tn+1, X

J(tn+1))






(15)

Using equation (6) we have

V (tn, X(tn)) ≈ max
(

∑

βrγr(X(tn)),−cn

)

(16)

7 An Example

The goal of this section is to present some numerical examples. The model chosen was the
mean reverting example which is very popular in commodities. The dynamic of the prices in
this model is given by

Si
t = eXi

t

dXi
t = κi

(

θi − Xi
t

)

dt +
∑

j

Ai,jdWj(t)
(17)

The solutions is then

Xi(t) = e−κi(t−s)Xi(s) + θi

(

1 − e−κi(t−s)
)

+

∫ t

s

e−κi(t−u)
∑

j

Ai,jdWj(u) (18)

It is easy to see that

E [Xi] = µi = e−κi(t−s)Xi(s) + θi

(

1 − e−κi(t−s)
)

Cov [Xi(t), Xj(t) | Fs] =
1

(κi + κj)

(

1 − e−(κi+κj)(t−s)
)

(AAt)(i,j)
(19)

Taking t → ∞ in the cova In this section we will present the results of the algorithm for the
following parameters:

• Maximum degree of the base: 5

• A = 1.0, B = 2.0, r = 0

• fee=(1, 1.25)
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• Cancellation dates (0.5, 1.0) and T = 1.5

• κ = (3, 3)

• X0 = (3, 3)

• θ = (3, 1.5)

• Ergodic covariance:

[

1 0.1
0.1 1

]

The results in this section were produced by the C ++ program of the previous section. This
section focuses on numerical results.
We measured the computational time in order to calculate the option value. The results are
expressed in Figure 3. The computational time indicates a linear increase of the computational
time with the number of simulations. The time seems to increase polynomially with the
number of elements in the base.

10 50 90 130 170
7.5

37.5

67.5

97.5

127.5

Simulation Number (103)

Time
(s)

1 2 3 4 5 6 7 8 9
2

32

62

92

122

Degree of the base

Time
(s)

Figure 3: Computational time. In order to calculate the time for different base degrees
we made 30.000 simulations. The algorithm seems to increase linearly with the number of
simulations and polynomially in the base degree.

The algorithm converges for a large number of simulations. The option value calculated from
10.000 to 200.000 had a difference of no more than 5.12%. And if we only consider the results
for more than 50.000 simulations the difference was no bigger than 1.5%. Prices also change
with maximum base degree but again the result is robust, and no bigger than 6.3%.
The results can be seen in figure. 4

The final result is the numerical standard error of the estimator. To calculate this, a total
of 20 samples of the algorithm were used, and the standard error was calculated with the
usual estimator. As expected the standard error of the estimator decays with the number of
simulations. The standard error for large bases seems to be bigger. The result can be seen in
figure 5.
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Figure 4: Accuracy. The change of the option price is not very sensitive to change in the
number of simulations, and in the number of elements in the base. For the different bases we
made 30.000 simulations.
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Figure 5: Standar error of the estimator as a function of the number of simulations, with a
fixed degree basis, and of the degree of the basis, for a fixed nunber of simulations.
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