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Abstract

The valuation of the real option to store natural gas is a practically important problem that entails dynamic
optimization of inventory trading decisions with capacity constraints in the face of uncertain natural gas
price dynamics. Stochastic dynamic programming is a natural approach to this valuation problem, but
it does not seem to be widely used in practice because it is at odds with the high-dimensional natural-
gas price evolution models that are widespread among traders. According to the practice-based literature,
practitioners typically value natural gas storage heuristically. The effectiveness of the heuristics discussed in
this literature is currently unknown, because good upper bounds on the value of storage are not available.
We develop a novel and tractable approximate dynamic programming method that coupled with Monte
Carlo simulation computes lower and upper bounds on the value of storage, which we use to benchmark
these heuristics on a set of realistic instances. We find that these heuristics are extremely fast to execute
but significantly suboptimal as compared to our upper bound, which appears to be fairly tight and much
tighter than a simpler perfect information upper bound; computing our lower bound takes more time than
using these heuristics, but our lower bound substantially outperforms them in terms of valuation. Moreover,
with periodic reoptimizations embedded in Monte Carlo simulation, the practice-based heuristics become
nearly optimal, with one exception, at the expense of higher computational effort. Our lower bound with
reoptimization is also nearly optimal, but exhibits a higher computational requirement than these heuristics.
Besides natural gas storage, our results are potentially relevant for the valuation of the real option to store
other commodities, such as metals, oil, and petroleum products.

1. Introduction

In North America, natural gas merchants manage contracts for the capacity of storage facilities as

real options on natural gas prices, whose values derive from the intertemporal trading of natural

gas allowed by storage. Organized markets such as the New York Mercantile Exchange (NYMEX)

and the IntercontinentalExchange (ICE) trade natural gas related financial instruments, including

futures and options on futures. Practitioners can use them to hedge and price natural gas storage

contracts using risk-neutral valuation techniques. Valuing such a contract is difficult because it
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entails dynamic optimization of inventory trading decisions with capacity constraints in the face of

uncertain natural gas price dynamics. This is an important problem that has received significant

attention within the energy trading community.

Stochastic dynamic programming (Stokey and Lucas [36], Puterman [30], Bertsekas [4]) is the

natural approach to this valuation problem (Weston [40]), but it is tractable only when a low-

dimensional spot price model is employed to describe the stochastic evolution of the price of natural

gas (Clewlow and Strickland [14, Chapter 8], Seppi [34], Eydeland and Wolyniec [16, Chapter 4],

Geman [18, Chapter 3]). Natural gas storage traders do not appear to like this approach, since

they doubt that the dynamics implied by such price models are consistent with the dynamics of the

NYMEX or ICE financial instruments they trade to hedge price risk. For example, in discussing

the viability of using stochastic dynamic programming for natural gas storage valuation, Eydeland

and Wolyniec [16, p. 367] make the following observations:

Great care must be taken when specifying and calibrating spot processes for the use

in optimization, so that they are consistent with the hedging strategy to be pursued.

Additionally, even for a given set of forward information, the critical surface may exhibit

unstable behavior that renders it of limited use as a hedging tool.

Consequently, according to the practice-based literature (Maragos [27, pp. 449-453], Eydeland

and Wolyniec [16, pp. 351-367], Gray and Khandelwal [21, 20]), the preferred modeling approach

among natural gas storage traders seems to be modeling the full dynamics of the futures term

structure using high-dimensional forward models (Clewlow and Strickland [14, Chapter 8], Seppi

[34], Eydeland and Wolyniec [16, Chapter 5], Geman [18, Chapter 3]). This modeling choice

overwhelms stochastic dynamic programming and makes the use of alternative valuation approaches

necessary. Thus, according to this practice-based literature, practitioners typically value natural gas

storage heuristically. Interestingly, commercial software products for the valuation of natural gas

storage (see, e.g., FEA [17], KYOS [26]) include heuristic valuation models that can accommodate

the stated high-dimensional forward models.

Two such heuristics combine linear programming and spread option valuation methods with or

without periodic reoptimization embedded in Monte Carlo simulation; we label the four resulting

heuristics LP, LPN, RLP, and RLPN, where LP abbreviates linear program, LPN indicates the

so called LP with “net” capacity constraints, and the prefix R indicates reoptimization (Gray and

Khandelwal [21] refer to the LP and RLP heuristics as the static and dynamic basket-of-spreads

models). An additional heuristic is based on reoptimization of a deterministic dynamic program,

2



Table 1: Models and Policies Studied in this Paper.
Policy

Model Without Reoptimization With Reoptimization
I I RI

LP LP RLP
LPN LPN RLPN
ADP ADP RADP

which computes the intrinsic value of storage, within Monte Carlo simulation; we label this heuristic

RI, where I abbreviates intrinsic and R stands for reoptimization (Gray and Khandelwal [21] refer

to this heuristic as the rolling-intrinsic model). The effectiveness of these heuristics is currently

unknown since good upper bounds on the value of storage are not available. Our objective in this

paper is to assess it.

We contribute to the existing literature in two ways. First, we develop a novel and tractable

approximate dynamic programming (ADP) method to value the real option to store a commodity,

such as natural gas, which uses a high-dimensional model of the evolution of the forward curve. Our

approach is based on transforming the intractable full information stochastic dynamic program that

models the storage valuation problem into a tractable and approximate lower dimensional Markov

decision process (MDP). We leverage our structural analysis of the optimal policy of this model,

which exhibits two stage and price-state dependent basestock targets, to speed up its computation.

We use the optimal policy and value function of the ADP model within Monte Carlo simulation

to compute both lower and upper bounds on the value of storage, that is, the optimal value function

of the exact MDP in the initial stage and state. We compute the upper bound by applying the

information relaxation and duality approach developed by Brown et al. [9]. We denote our upper

bound by DUB, where D and UB abbreviate dual and upper bound, respectively. We also compute

a perfect information upper bound, which we label PIUB, as a benchmark for DUB. Moreover,

we compute another lower bound by reoptimizing our ADP model within Monte Carlo simulation.

Thus, we obtain two lower bounds, the ADP and the RADP lower bounds. We point out that

removing the price stochasticity from our ADP model yields the RI model, in which case the

RADP and RI bounds coincide. Table 1 summarizes the models and policies that we analyze in

this paper.

Second, we use DUB and the two ADP and RADP lower bounds to benchmark the practice-

based heuristics on a set of realistic instances based on NYMEX price data and additional data

available in the energy trading literature. We find that the intrinsic value of storage accounts for a

relatively small amount of the total value of storage, but its computation is extremely fast. The LP
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heuristic is also very fast and captures significantly more value than the intrinsic value of storage,

but its suboptimality is large when compared to DUB, which is fairly tight and much tighter than

PIUB. The speed of the LPN heuristic is comparable to that of the LP heuristic, but its valuations

are lower than those of the latter heuristic; sometimes they are also below the intrinsic value of

storage. Our ADP lower bound exhibits less suboptimality, in most cases, but higher computational

requirement than these heuristics.

Moreover, reoptimization improves the valuation performance of all the policies. In almost all

the instances, the RLP, RI, and RADP lower bounds are all nearly optimal when compared to DUB.

In contrast, the RLPN lower bound improves but remains substantially suboptimal. Of course, all

these reoptimized lower bounds are more expensive to compute. In particular, the computational

requirement of the RADP lower bound is higher than those of the other lower bounds. Overall, the

RI heuristic strikes the best compromise between computational efficiency and valuation quality

on our instances. DUB plays a critical role in making these assessments.

These results are important to natural gas storage traders as they provide scientific validation,

support, and guidance for the use of heuristic storage valuation models in practice. Moreover,

when we (artificially) eliminate the seasonality in the NYMEX natural gas forward curves that

we use, we observe that these results remain substantially similar provided that reoptimization is

used. (For brevity, these results are not included in this paper, but are available upon request.)

This suggests that our findings related to the reoptimization case have potential relevance for the

valuation of the real option to store other commodities, whose forward curves do not exhibit the

pronounced seasonality of the natural gas forward curve, e.g., metals, oil, and petroleum products

(Geman [18]).

Our work is related to the literature on the valuation of commodity and energy real options

(Trigeorgis [39], Smith and McCardle [35], Geman [18]). We are not the first ones to study the

valuation of the real option to store natural gas. Thompson et al. [37] and Chen and Forsyth

[13] propose continuous-time stochastic control methods for this pricing problem, based on low-

dimensional representations of the evolution of the spot price of natural gas. In contrast, we

develop a discrete-time stochastic dynamic programming model that uses the high-dimensional

representation of the evolution of the natural gas forward curve discussed in the practice-based

literature.

Ghiuvea et al. [19] and Barrera-Esteve et al. [3] propose to value natural gas storage as an

extended swing option (Jaillet et al. [24]). This approach employs low-dimensional models of the

natural gas spot price evolution and imposes exogenous restrictions on the policy space. In contrast,
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our model uses a high-dimensional representation of the natural gas forward curve and does not

impose arbitrary constraints on the trading decisions.

ADP methods typically rely on Monte Carlo simulation and statistical functional approximation

to heuristically compute an approximation of the optimal value function of an MDP (Bertsekas and

Tsitsiklis [5], Powell [29]). Carmona and Ludkovski [12] and Boogert and de Jong [7] apply such

ADP methods to obtain a statistical approximation of the optimal value function of the MDP

formulation of the storage valuation problem. Unlike these authors, we do not employ statistical

functional approximation to compute our ADP and RADP policies, although we use Monte Carlo

simulation for policy evaluation. Moreover, even if the models of Carmona and Ludkovski [12] and

Boogert and de Jong [7] could in principle be used with high-dimensional forward price models,

these authors do not explore this possibility.

The heuristics that we study in this paper can be interpreted as control algorithms, in the

sense of Secomandi [32]. These are optimization-based models that compute heuristic control

policies for intractable MDPs. Secomandi [32] analyzes control algorithms for inventory and revenue

management, but does not consider the problem that we study.

Adelman [1] discusses math-programming-based ADP approaches that compute lower and upper

bounds for problems different than ours. In contrast, DUB is based on the theory developed by

Brown et al. [9], who generalize the work of Rogers [31], Andersen and Broadie [2], and Haugh

and Kogan [23] on pricing American options (see also Davis and Karatzas [15]). The problem

we study is significantly more difficult than the valuation of these options because it features

an inventory component that is absent in these papers. Brown et al. [9] illustrate their theory

using inventory management examples, but do not consider the problem that we focus on. As

discussed by Secomandi [33], this is significantly different from the problems studied in the inventory

management literature (Zipkin [41], Porteus [28]).

Gray and Khandelwal [21, 20], Carmona and Ludkovski [12], and Secomandi [33] compare dif-

ferent approaches for natural gas storage valuation. Different from our work, Gray and Khandelwal

[21, 20] and Carmona and Ludkovski [12] do not develop an upper bound on the value of storage.

Similar to our finding, Secomandi [33] finds that a reoptimized deterministic model can perform

very well for natural gas storage valuation, but restricts his study to a one-factor mean-reverting

spot price model, while we use a multi-factor forward curve model. Moreover, we benchmark other

heuristics that he does not consider.

Our stage and price-state dependent basestock target characterization of the optimal policy of

our ADP model extends that established by Secomandi [33]: in each stage, the basestock targets
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in his model depend only on one price state variable, whereas ours depend on two such variables.

The remainder of this paper is organized as follows. We present the natural gas storage val-

uation problem and an exact formulation of this problem in §2. We discuss the practice-based

heuristics in §3, our ADP model and the upper bounds DUB and PIUB in §4, and our computa-

tional implementation of these models in §5. We analyze our numerical results in §6 and conclude

in §7.

2. Valuation Problem and Exact Model

In this section, we describe the natural gas storage valuation problem and formulate an exact model

of this problem. A natural gas storage contract gives a merchant the right to inject, store, and

withdraw natural gas at a storage facility up to given limits during a finite time horizon. The

injection and withdrawal capacity limits are expressed in million British thermal units (mmBtus)

per unit of time, e.g., day. There are also limits on the minimum and maximum amounts of the

natural gas inventory that the merchant can hold under such a contract. Some contracts specify

injection and withdrawal capacities as functions of inventory, the so called ratchets (Eydeland and

Wolyniec [16, pp. 353-354]). For simplicity, we do not deal with this aspect in this paper (see

Remark 4 in §3). There are proportional charges and fuel losses associated with injections and

withdrawals.

The wholesale natural gas market in North America features about one hundred geographically

dispersed markets for the commodity. NYMEX and ICE trade financial contracts associated with

about forty of these markets. The most liquid market is Henry Hub, Louisiana, which is the

delivery location of the NYMEX natural gas futures contract. NYMEX also trades options on this

contract. Moreover, NYMEX and ICE trade basis swaps, which are financially settled forward

locational price differences relative to Henry Hub. Thus, these financial instruments make practical

the risk-neutral valuation of natural-gas related cash flows.

The quantity of interest to us is the value of a given natural gas storage contract at the time

of its inception. This value depends on how the natural gas price changes over time because a

merchant uses this contract to support his trading activity in the natural gas commodity market

as follows: buying natural gas and injecting it into the storage facility at a given point in time,

storing it for some time, and withdrawing it out of the facility and selling it at a later point in time.

Such a contract can be valued as the discounted risk-neutral expected value of the cash flows from

optimally operating it during its tenure, while also respecting its operational constraints.

6



Of primary interest to traders is the value of the “forward” or “monthly-volatility” component

of a storage contract (Maragos [27, p. 440], Eydeland and Wolyniec [16, p. 365]). The value

of this component can be hedged by trading futures contracts, and corresponds to the value of

the cash flows associated with making natural gas trading decisions on a monthly basis. Thus,

we restrict attention to the valuation of such cash flows. We acknowledge that decisions under

a storage contract can be made more frequently than a month, e.g., daily, so that this contract

could generate cash flows more often than once per month. These cash flows could be replicated

using instruments such as balance-of-the-month/week contracts and Gas Daily options (Eydeland

and Wolyniec [16, p. 365]). Incorporating these cash flows in the valuation of a storage contract

would clearly increase its value. However, given our focus in this paper, extending our work in this

direction is a topic for further research.

The contract tenure spans N futures maturities in set I := {0, . . . , N − 1}. Inventory trading

decisions are made at each maturity time Ti with i ∈ I. We use the standard notation F (Ti, Tj) to

denote the futures price at time Ti with maturity at time Tj , ∀i, j ∈ I, j > i; F (Ti, Ti) is the spot

price at time Ti. For the most part we replace the notation F (Ti, Tj) with the alternative notation

Fi,j to simplify the exposition: the former notation is useful when dealing with continuous time

dynamics of futures prices, the latter simplifies the writing of discrete time dynamic programs. We

define the forward curve at time Ti as Fi := (Fi,j , j ∈ I, j > i), ∀i ∈ I; by convention FN := 0.

Notice that Fi includes the spot price at time Ti. We define the forward curve at time Ti without

including the spot price as F′i := (Fi,j , j ∈ I, j > i), ∀i ∈ I \ {N − 1}; F′N−1 := 0.

A multidimensional version of the celebrated Black [6] model of futures price evolution is a

simple model of the dynamics of the forward curve that is discussed in the practice-based literature

(Eydeland and Wolyniec [16, Chapter 5] and Gray and Khandelwal [21, 20]). In this model, the risk-

neutral dynamics of the price of the natural gas futures associated with maturity Ti are described

by a driftless geometric Brownian motion, with maturity-specific constant volatility σi > 0 and

standard Brownian motion increment dZi(t). Moreover, the standard Brownian motion increments

corresponding to two different maturity times Ti and Tj are instantaneously correlated with constant

correlation coefficient ρi,j ∈ [−1, 1], and ρi,i := 1. This is the following N -factor model:

dF (t, Ti)
F (t, Ti)

= σidZi(t), ∀i ∈ I (1)

dZi(t)dZj(t) = ρi,jdt, ∀i, j ∈ I, i 6= j. (2)

In our numerical experiments reported in §6, we use this model as representative of the high-

dimensional forward models that, as discussed in §1, seem to be employed in practice.
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Remark 1 (Interpretation of multidimensional Black model (1)-(2)). It is easy to see that model

(1)-(2) is equivalent to a model of the risk-neutral evolution of the forward curve where the dynamics

of the price of each contract depend on N independent factors and N constant volatility functions,

which together make the futures prices at a given point in time in the future correlated random

variables. Clewlow and Strickland [14, §8.6] discuss such a model. These types of models are related

to the so called string and BGM models (Kennedy [25], Brace et al. [8]) used to value fixed income

instruments (see also Eydeland and Wolyniec [16, pp. 205-206]).

We now formulate the storage valuation problem as an MDP by modifying the one-factor spot-

price periodic-review model of Secomandi [33]. Our formulation does not depend on the type of

model used to represent the forward curve dynamics. In other words, it is not specific to model

(1)-(2). For example, it is also relevant when one employs a different forward price model, e.g., a

model of the type discussed in Remark 1, but possibly with less than N factors; in this case one can

in fact obtain a simplified MDP formulation by replacing the forward curve in the state definition

with fewer price-related state variables.

We denote an action by a. We use a monthly inventory review period, so that each review time

corresponds to a futures price maturity. A positive action corresponds to a withdrawal followed by

a sale, a negative action to a purchase followed by an injection, and zero is the do nothing action.

The commercial part of an action taken at time Ti, that is, a purchase or a sale, occurs at time Ti,

while the operational component of this action, that is, an injection or a withdrawal, is executed

in between times Ti and Ti+1, that is, during a review period. This means that the natural gas

purchased (respectively, sold) at time Ti is available (respectively, unavailable) in storage at time

Ti+1.

We normalize the storage contract minimum inventory level to 0, and denote its maximum level

as x ∈ <+. Thus, the set of feasible inventory levels is X := [0, x]. We denote the constant injection

and withdrawal capacities in each review period as CI < 0 and CW > 0, respectively. Their absolute

values express the maximum amount of inventory that can be injected into and withdrawn out of

the facility in each review period. We define the feasible injection and withdrawal action sets,

respectively, and the action set with feasible inventory x at any review time as

AI(x) := [CI ∨ (x− x), 0] (3)

AW (x) := [0, x ∧ CW ] (4)

A(x) := AI(x) ∪ AW (x), (5)

where · ∧ · ≡ min{·, ·} and · ∨ · ≡ max{·, ·}.
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We denote the immediate reward associated with action a at time Ti as r(a, si), where si is

the spot price at time Ti, that is, si ≡ Fi,i. Let αW ∈ (0, 1] and αI > 1 be commodity price

adjustment factors needed to model in kind fuel losses. Letting cW and cI be positive constant

marginal withdrawal and injection costs, respectively, the immediate reward function is

r(a, s) :=





(
αIs + cI

)
a if a ∈ <−

0 if a = 0(
αW s− cW

)
a if a ∈ <+

, ∀s ∈ <+. (6)

In theory, the storage value under model (1)-(2) can be computed by optimally solving the

following stochastic dynamic program:

VN (xN ,FN ) := 0, ∀xN ∈ X (7)

Vi(xi,Fi) = max
a∈A(xi)

r(a, si) + δE
[
Vi+1(xi − a, F̃i+1)|F′i

]
, ∀i ∈ I, (xi,Fi) ∈ X × <N−i

+ ;(8)

here Vi(xi,Fi) is the optimal value function in stage i and state (xi,Fi) (in (7) we exploit our

convention that FN ≡ 0); δ in (8) is the one review-period constant risk-free discount factor; and

expectation E in (8) is taken with respect to the risk-neutral distribution of random vector F̃i+1

conditional on Fi (in the remainder we use ·̃ to denote a random entity). In practice, the number of

maturities N associated with natural gas storage contracts is at least twelve, so that model (7)-(8)

is computationally intractable because of its high-dimensional state space.

Remark 2 (Action set restriction in (8)). The maximization in (8) only allows one type of action,

that is, only one of the buy-and-inject, do-nothing, and withdraw-and-sell actions is available. This

is without loss of generality by the definition of the reward function (6), that is, performing separate

buy-and-inject and withdraw-and-sell actions in the same stage is never optimal.

Remark 3 (Physical holding cost). Model (7)-(8) does not feature any cost for physically holding

inventory in between review times. To account for this cost component, we could let h denote

such unit cost and add the term −hxi to the right hand side of (8). However, according to the

practice-based literature natural gas storage contracts typically do not seem to include a holding

cost. Thus, we proceed without modeling this cost component.

3. Practice-based Heuristics

In this section, we describe the practice-based policies LP, LPN, and I, and their reoptimization

versions RLP, RLPN, and RI.
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3.1 Models Based on Spread Options

The LP policy is based on spread option valuation and linear programming (as explained below, it

also includes a spot sale of inventory at time T0). A spread option is an option on the difference

between two prices with a positive strike price (Carmona and Durrleman [11]). The LP policy uses

spread options on the difference between futures prices Fi,j and Fi,i, with i < j, adjusted for fuel,

and strike price equal to the sum of the values of the time Ti injection and withdrawal marginal

costs. We refer to such an option as the i-j spread option. Its time T0 value is

Si,j
0 (F0,i, F0,j) := δiE

[{
δj−iαW F̃i,j −

(
αI F̃i,i + δj−icW + cI

)}+
|F0,i, F0,j

]
. (9)

This is the time T0 value of injecting one unit of natural gas at time Ti and withdrawing it at time

Tj provided that the value of this trade is nonnegative at time Ti ({·}+ := max{·, 0}).
The LP policy works with portfolios of spread options {qi,j , i, j ∈ I, i < j}; here qi,j is the

notional amount of natural gas associated with spread option i-j. Such a portfolio includes notional

amounts for spread options whose injections and withdrawals are associated with maturities 0, 1,

. . ., N − 2, and 1, 2, . . ., N − 1, respectively. The LP policy also uses a spot sale y0 that allows one

to sell some or all of the inventory available at time T0 (typically storage contracts do not entail

a positive initial inventory, but this decision variable is useful in the reoptimization version of this

linear program).

The initial step of the LP policy is to approximate the value of storage at time T0 by constructing

a portfolio of spread options and a spot sale as an optimal solution to linear program (10)-(18) below.

The decision variables in this linear program are the notional amounts in set {qi,j , i, j ∈ I, i < j}; the

inventory levels in set {xi, i ∈ I \ {0} ∪ {N}} (these are not needed but simplify the formulation);

and the spot sale y0. This linear program, which only depends on the time T0 information set

{x0,F0}, follows

ULP
0 (x0,F0) := max

y0,q,x
s0y0 +

∑

i∈I

∑

j∈I,i<j

Si,j
0 (F0,i, F0,j)qi,j (10)

s.t. xi+1 = xi +
∑

j∈I,j>i

qi,j − y01{i = 0} −
∑

j∈I,j<i

qj,i, ∀i ∈ I (11)

xi 6 x, ∀i ∈ I \ {0} ∪ {N} (12)
∑

j∈I,j>i

qi,j 6 −CI , ∀i ∈ I \ {N − 1} (13)

y0 6 CW (14)
∑

i∈I,i<j

qi,j 6 CW , ∀j ∈ I \ {0} (15)
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y0 > 0 (16)

qi,j > 0, ∀i, j ∈ I, i < j (17)

xi > 0, ∀i ∈ I \ {0} ∪ {N}. (18)

The objective function (10) is the value of the portfolio of spot sale and spread options. Constraint

sets (11) and (12) express inventory balance and bounding conditions, respectively (1{·} in (11)

is the indicator function of event {·}, which is equal to 1 if this event is true and 0 otherwise).

Constraint sets (13)-(15) enforce capacity constraints. Constraint sets (16)-(18) pose nonnegativity

conditions on the decision variables.

A version of this model is discussed by Eydeland and Wolyniec [16, p. 362] and Gray and

Khandelwal [20] (see also Byers [10]). There is no closed form formula for the coefficients in its

objective function. However, they can be numerically computed or, alternatively, they can be

approximated using closed form formulas, such as Kirk’s formula that we use in §6 (Carmona

and Durrleman [11]). Once these coefficients are known, this model can be optimally solved very

efficiently.

Let yLP
0 (x0,F0) and {qLP

i,j (x0,F0), i, j ∈ I, i < j} be an optimal portfolio, that is, an optimal

solution to model (10)-(18). This portfolio can be used to construct a feasible policy for model

(7)-(8), which we call the LP policy. The ensuing description of this policy is based on our own

understanding of how this could be done in practice.

We define the following quantities:

qLP,+
i,j (Fi,i, Fi,j) :=

{
0 if δj−iαW Fi,j −

(
αIFi,i + δj−icW + cI

)
60

qLP
i,j (x0,F0) otherwise. (19)

These quantities depend on {x0,F0} but we suppress this dependence in our notation for ease of

exposition. Given Fi := (Fj)i
j=0, the sequence of forward curves observed up to and including

time Ti, the LP policy uses the quantities defined by (19) and the optimal spot-sale yLP
0 (x0,F0) to

obtain the following action at time Ti:

yLP
0 (x0,F0)1{i = 0}+

∑

j∈I,j<i

qLP,+
j,i (Fj,j , Fj,i)−

∑

j∈I,j>i

qLP,+
i,j (Fi,i, Fi,j). (20)

Notice that this action does not depend on the inventory level xi; nevertheless the LP policy is

feasible for model (7)-(8) as shown in Proposition 1. We denote the time T0 value of the LP policy

by V LP
0 (x0,F0), which can be estimated using Monte Carlo simulation as discussed in §5.

Proposition 1 shows that the optimal objective function value of model (10)-(18) is no greater

than the value of the LP policy, and that both of these values are lower bounds on V0(x0,F0).
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Proposition 1 (LP policy value). It holds that ULP
0 (x0,F0) 6 V LP

0 (x0,F0) 6 V0(x0,F0).

Proof. Constraint sets (11)-(18) are sufficient for the feasibility of the LP policy for model (7)-(8).

To see this, notice that constraints (12)-(18) enforce feasibility (in model (7)-(8)) of the inventory

levels generated by the LP policy, when this policy exercises all the spread options that define it. If

this policy exercises a strictly smaller number of these spread options, then its resulting inventory

levels would be strictly smaller, but always nonnegative, than they would be otherwise. This is true

because, aside from stage 0, the LP policy only withdraws and sells natural gas that was previously

bought and injected. Moreover, constraint sets (13)-(15) make sure that each action of the LP

policy respects the capacity limits CI and CW . The claimed result follows from observing that the

objective function (10) underestimates the value of the LP policy, because it “double counts” the

injection or withdrawal costs of the LP policy, and that this policy is feasible but not necessarily

optimal for model (7)-(8). ¤

Remark 4 (Minimum inventory requirements or ratcheted capacity). If one were to impose re-

quirements on the minimum inventory level at given maturity times, or if the injection and/or the

withdrawal capacities were ratcheted, model (10)-(18) would have to be reformulated as an integer

linear program. In this case, Proposition 1 would not necessarily hold. For brevity and simplicity

of exposition, we do not discuss these aspects in this paper.

Conversations with practitioners reveal that a version of model (10)-(18) that combines con-

straints (13)-(15) is sometimes used in practice. In this formulation, which we refer to as the refor-

mulated linear program, constraints (13) for all i ∈ I\{N−1}, (14), and (15) for all j ∈ I\{0, N−1},
are replaced with the following “net” constraints:

CI 6 y0 −
∑

j∈I,j>0

q0,j 6 CW (21)

CI 6
∑

j∈I,j<i

qj,i −
∑

j∈I,j>i

qi,j 6 CW , ∀i ∈ I \ {0, N − 1}. (22)

The objective function of the reformulated linear program is obviously higher than ULP
0 (x0,F0).

But it may not yield a lower bound to the value of storage since constraints (21)-(22) do not

ensure that an optimal portfolio composition in the reformulated linear program also gives rise to

a feasible policy for model (7)-(8). It is however possible to use an optimal solution to this linear

program to derive such a feasible policy, as now described. The following scheme reflects our own

understanding of how one might do this, and defines what we call the LPN policy.
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In the initial stage, 0, the LPN policy subtracts from the optimal value of the spot sale the sum

of all the optimal notional amounts corresponding to spread options that expire in the money in

this stage; withdraws or injects an amount of natural gas equal to the resulting difference according

to its sign; and does nothing otherwise. In each other stage i, excluding the last one (N − 1), this

policy subtracts from the total amount of natural gas to be withdrawn during this stage, which

is associated with spread options that expired in the money in earlier stages, the total amount of

natural gas to be injected during this stage, which is associated with spread options that expire in

the money at time Ti. Call this the net action. There are two possibilities.

(1) The net action is a valid action as defined by (3)-(4), given the current inventory level, that

is, it satisfies the injection and withdrawal capacity constraints and leads to a feasible inventory

level in the next stage; in this case, the LPN policy executes the net action.

(2) The net action violates one of the capacity constraints (3)-(4).

(2a) If the net action is negative, some spread options that expire in the money at time Ti cannot

be operationally exercised, that is, the constraint being violated is (3). In this case, the LPN policy

sorts these options in decreasing order of their values at this time, and sequentially executes as

many options as possible starting from the most valuable one, without violating injection constraint

(3); it then discards the rest of these options from further consideration in any of the remaining

stages (partial exercise of an option is possible here, in which case the LPN policy only discards

the remaining notional amount of this option).

(2b) If the net action is positive, then some natural gas associated with options that were

executed during an earlier stage cannot be withdrawn and must be carried forward, that is, the

constraint being violated is (4). The LPN policy withdraws and sells as much natural gas as possible

and adds the residual amount of natural gas to a pool of inventory that will be considered as a

withdrawal in the computation of the net action in each remaining stage, irrespective of price, until

it is completely withdrawn and sold in one of these stages.

In the last stage (N − 1), the LPN policy withdraws and sells as much as possible of any

remaining inventory (as this was natural gas associated with spread options that were exercised in

some earlier stage).

The time T0 value of the LPN policy can be estimated using Monte Carlo simulation as discussed

in §5.
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3.2 Model Based on Forward Contracts

Another model of interest is the so called intrinsic value model, which computes the value of

storage that can be attributed to seasonality, as expressed by the forward curve in the initial stage

(Secomandi [33]). This model is

U I
N (xN ;F0) := 0, ∀xN ∈ X (23)

U I
i (xi;F0) := max

a∈A(xi)
r(a, F0,i) + δU I

i+1(xi − a;F0), ∀i ∈ I,∀xi ∈ X . (24)

This model computes an optimal policy that only considers the information available at time T0.

This is the I policy, which corresponds to a sequence of purchases-and-injections or withdrawals-

and-sales, one for each stage, determined based on the information available at the initial time.

The cash flows associated with this policy can be secured at time T0 by transacting in the forward

market for natural gas at this time. The time T0 value of the I policy is U I
0 (x0;F0).

3.3 Models Based on Reoptimization

It is typically possible to improve the performance of the LP, LPN, and I policies by reoptimizing

their associated linear and dynamic programs at each maturity to take advantage of the price and

inventory information that becomes available over time, implementing the action pertaining to the

maturity when the reoptimization is performed, and repeating this process up to and including the

last maturity; reoptimization of the LP and I models is discussed by Gray and Khandelwal [20],

that of the I model by Maragos [27]. For brevity, we do not provide the details of this process.

The time T0 values of the reoptimization versions of the LP, LPN, and I policies, that is, the RLP,

RLPN, and RI policies, are clearly lower bounds on the value of storage and can be estimated by

Monte Carlo simulation as discussed in §5.

4. ADP Model

In this section, we discuss our ADP model, some structural results for this model, and how we use

it to compute lower and upper bounds on the value of storage.

4.1 ADP Policy

Our approach to reduce the computationally intractable and exact model (7)-(8) to a computa-

tionally tractable and approximate model uses information and value function approximations,

which allow us to reduce the high dimensionality of model (7)-(8) and compute an approximate

and feasible policy for this model.
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We introduce the ADP model by reformulating the exact model. To this aim, define the forward

curve at time Ti excluding the spot and prompt month futures prices as F′′i := (Fi,j , j ∈ I, j > i+1),

∀i ∈ I \ {N − 2, N − 1}; F′′N−2 := 0. Also define the function

V ′
i (xi, si,F′′i−1) := E

[
Vi(xi, si, F̃′i) | si,F′′i−1

]
, ∀i ∈ I \ {0}, (xi, si,Fi) ∈ X × <N−i

+ . (25)

Thus, expression (8) in stage i ∈ I \ {N − 1} and state (xi,Fi) can be reformulated as

Vi(xi,Fi) = max
a∈A(xi)

r(a, si) + δE
[
Vi+1(xi − a, F̃i+1)|F′i

]

= max
a∈A(xi)

r(a, si) + δE


E

[
Vi+1(xi − a, si+1, F̃′i+1)|s̃i+1 = si+1,F′′i

]

︸ ︷︷ ︸
V ′i+1(xi−a,s̃i+1,F′′i )

|Fi,i+1




= max
a∈A(xi)

r(a, si) + δE
[
V ′

i+1(xi − a, s̃i+1,F′′i )|Fi,i+1

]
. (26)

The maximization in (26) is computationally intractable. Thus, we make the following approx-

imations to make it tractable:

1. Information: We replace F′′i in (26) with (F0,i+2, . . . , F0,N−1), which is information known at

time T0. This effectively reduces the dimensionality of maximization (26) because the third

argument of the function V ′
i+1(·, ·, ·) becomes equal to the “constant” (F0,i+2, . . . , F0,N−1),

that is, a quantity known at time T0.

2. Value function: We replace the function V ′
i+1(·, ·, (F0,i+2, . . . , F0,N−1)) with the function

UADP
i+1 (·, ·), which we specify below.

With these approximations, the maximization in (26) becomes

max
a∈A(xi)

r(a, si) + δE
[
UADP

i+1 (xi − a, s̃i+1) | Fi,i+1

]
, (27)

which is tractable. To complete this argument, we need to specify the function UADP
i+1 (·, ·). We do

so by introducing the approximate value function

uADP
i (xi, si, Fi,i+1) := max

a∈A(xi)
r(a, si) + δE

[
UADP

i+1 (xi − a, s̃i+1) | Fi,i+1

]
,

∀i ∈ I, (xi, si, Fi,i+1) ∈ X × <2
+, (28)

letting

UADP
N (xN , sN ) := 0, ∀xN ∈ X , (29)
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where we exploit the fact that sN ≡ 0, and finally leveraging (25) to define

UADP
i (xi, si) := E

[
uADP

i (xi, si, F̃i,i+1) | si, F0,i+1

]
, ∀i ∈ I, (xi, si) ∈ X × <+, (30)

with F0,N = FN−1,N := 0. Expressions (28)-(30) define our ADP model.

The ADP model can be used to generate a feasible policy for the exact model (7)-(8) through

the maximization in the right-hand side of (28). We call this policy the ADP policy. We denote by

aADP
i (xi, si, Fi,i+1) the action of this policy in stage i and state (xi, si, Fi,i+1); if set

arg max
a∈A(xi)

r(a, si) + δE
[
UADP

i+1 (xi − a, s̃i+1) | Fi,i+1

]
, (31)

is not a singleton, we set aADP
i (xi, si, Fi,i+1) equal to the element in this set with the smallest

absolute value.

We denote the value of the ADP policy by UADP
0 (x0,F0). This value can be estimated by

Monte Carlo simulation as discussed in §5. Notice that we evaluate the value of the ADP policy in

this manner because the approximate value function computed by the ADP model (28)-(30) is not

necessarily equal to the value function of the ADP policy when this policy is evaluated under the

full information available in model (7)-(8). In other words, when implementing the ADP policy one

has access to all the relevant price information, that is, the entire forward curve at a given time;

when computing this policy in the ADP model only partial information is available, that is, the

current spot and prompt month futures prices at a given time and the forward curve in the initial

stage.

The following result holds because the ADP policy is feasible for the exact model.

Proposition 2 (ADP policy value). It holds that V ADP
0 (x0,F0) 6 V0(x0,F0).

Remark 5 (ADP model and exact model). It can be verified that the ADP model computes the

exact value of storage in stage 0 when the number of maturities is equal to one, two, or three, that

is, UADP
0 (x0,F0) = V0(x0,F0) when N = 1, 2, 3. This does not necessarily hold for N > 4, when

UADP
0 (x0,F0) is not necessarily smaller or larger than V0(x0,F0).

Remark 6 (Other ADP models). It is possible to formulate models similar to (28)-(30) by re-

moving fewer price-related state variables from the state definition of the exact model (7)-(8). For

example, one may keep in the state both the spot price and the prompt month futures price and

condition on the futures price two months in the future. However, this choice yields a model that

is computationally harder to solve to optimality.
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Figure 1: Illustration of the behaviors of the basestock targets with respect to the spot price and
the prompt month futures price in one of the instances discussed in §6.

4.2 ADP policy Structure

We discuss our computational implementation of the ADP model in §5. This implementation

takes advantage of the properties of the optimal value function and policy of the ADP model

established in Theorem 1. This theorem characterizes the optimal policy of model ADP as having

a stage and price-state dependent basestock target structure; that is, in each stage there exist two

critical inventory levels, which depend on the available price information, such that it is optimal

to buy-and-inject-up (respectively, withdraw-and-sell-down) to get as close as possible to the lower

(respectively, higher) critical level from any inventory level below (respectively, above) such level.

This structure makes the computation of an optimal policy more efficient. This theorem also

establishes the behavior of these targets in the price related information, in one case under the

assumption that the distribution of the spot price in the next stage conditional on the prompt

month futures price in the current stage, denoted by Φ(si+1|Fi,i+1), stochastically increases in the

latter quantity; that is, this distribution satisfies the property that 1− Φ(si+1|Fi,i+1) increases in

Fi,i+1 for each given si+1 (see, e.g., Lemma 3.9.1(b) in Topkis [38]). For example, this assumption

is satisfied by the multidimensional Black model (1)-(2). Figure 1 illustrates the stated behaviors

of the basestock targets for a given stage in one of the instances discussed in §6. Theorem 1 relies

on the theory of supermodular functions (Topkis [38]); a real valued function f defined on a lattice

Z is supermodular on Z if f(z′) + f(z′′) 6 f(z′ ∧ z′′) + f(z′ ∨ z′′) for all z′ and z′′ ∈ Z, with

z′ ∧ z′′ := (z′1 ∧ z′′1 , . . . , z′n ∧ z′′n) and z′ ∨ z′′ := (z′1 ∨ z′′1 , . . . , z′n ∨ z′′n), where n is the dimension of z′

and z′′, that is, z′ = (z′1, . . . , z
′
n) and z′′ = (z′′1 , . . . , z′′n).

Theorem 1 (Optimal policy for ADP model). (a) The function UADP
i (xi, si) is concave in xi for
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each given si in each stage i, and the optimal policy for model ADP in each stage i features two

basestock targets, bi(si, Fi,i+1), bi(si, Fi,i+1) ∈ X , such that bi(si, Fi,i+1) 6 bi(si, Fi,i+1) and

aADP
i (xi, si, Fi,i+1) =





CI ∨ (xi − bi(si, Fi,i+1)) if xi ∈ X I
i (si, Fi,i+1)

0 if xi ∈ XDN
i (si, Fi,i+1)

CW ∧ (xi − bi(si, Fi,i+1)) if xi ∈ XW
i (si, Fi,i+1)

, (32)

where

X I
i (si, Fi,i+1) := [0, bi(si, Fi,i+1)) (33)

XDN
i (si, Fi,i+1) := [bi(si, Fi,i+1), bi(si, Fi,i+1)] (34)

XW
i (si, Fi,i+1) := (bi(si, Fi,i+1), x]. (35)

Moreover, (b) UADP
i (xi, si) is supermodular in (xi, si) ∈ X × <+ for all i ∈ I; (c) bi(si, Fi,i+1)

and bi(si, Fi,i+1) decrease in si for given Fi,i+1 and for all i ∈ I; and (d) under the assumption

that the distribution of random variable s̃i+1 conditional on Fi,i+1 stochastically increases in Fi,i+1

for all i ∈ I \ {N − 1}, bi(si, Fi,i+1) and bi(si, Fi,i+1) increase in Fi,i+1 for given si and for all

i ∈ I \ {N − 1}.

Proof. (a) The proof of the concavity of UADP
i (xi, si) in xi for each given si in each stage i is

omitted for brevity (it is a simple adaptation of the proof of Proposition 1 in Secomandi [33]).

For the proof of the rest of this part, focus on stage i. Define the feasible inventory and action

set B := {(x, a) : x ∈ X , a ∈ A(x)}, which is both convex and a lattice. By the concavity of

UADP
i (xi, si) in xi for each given si and Lemma 2.6.2(b) in Topkis [38], UADP

i+1 (xi − a, si+1) is

supermodular in (xi, a) ∈ B for each given si+1. Thus, by Lemma 2.6.1(a) and Corollary 2.6.2 in

Topkis [38], δE
[
UADP

i+1 (xi − a, s̃i+1) | Fi,i+1

]
is supermodular in (xi, a) ∈ B for each given Fi,i+1.

Since r(a, si) is trivially supermodular in (xi, a) ∈ B for each given si, it follows from Lemma

2.6.1(b) in Topkis [38] that r(a, si)+δE
[
UADP

i+1 (xi − a, s̃i+1) | Fi,i+1

]
is supermodular in (xi, a) ∈ B

for each given pair (si, Fi,i+1). Thus, any optimal action aADP
i (xi, si, Fi,i+1) increases in xi for each

given pair (si, Fi,i+1) by Theorem 2.8.2 in Topkis [38]. This implies the existence of two feasible

inventory levels bi(si, Fi,i+1) 6 bi(si, Fi,i+1) that depend on the pair (si, Fi,i+1) and partition the

feasible inventory set into the stated sets X I
i (si, Fi,i+1), XDN

i (si, Fi,i+1), and XW
i (si, Fi,i+1), where

it is respectively optimal to buy and inject, do nothing, and withdraw and sell. In particular, if

xi ∈ XDN
i (si, Fi,i+1), then the relevant part of (32) holds. Otherwise, in determining an optimal

action in the extended state (xi, si, Fi,i+1), relax the injection and withdrawal limits CI and CW

on this action and let xi+1 = xi − a. Thus, the relevant maximization is

max
xi+1∈X

r(xi − xi+1, si) + δE
[
UADP

i+1 (xi+1, s̃i+1) | Fi,i+1

]
. (36)

18



Suppose that xi ∈ X I
i (si, Fi,i+1). Then, maximization (36) can be written as

max
xi+1∈X

− (
αIsi + cI

)
xi+1 + δE

[
UADP

i+1 (xi+1, s̃i+1) | Fi,i+1

]
+

(
αIsi + cI

)
xi, (37)

which shows that any optimal solution to this problem does not depend on xi. Hence, bi(si, Fi,i+1)

is an optimal solution to (37) and the pertinent part of (32) holds. Similar arguments establish the

validity of (32) when xi ∈ XW
i (si, Fi,i+1).

(b)-(c) By reverse induction on i. The function UADP
N (xN , sN ) is trivially supermodular in

(xN , sN ) on the lattice X ×<+. Let the induction hypothesis be that UADP
j (xj , sj) is supermodular

in (xj , sj) ∈ X ×<+ for all stages j = i + 1, . . . , N − 1. Consider the determination of an optimal

action in stage i in feasible extended state (xi, si, Fi,i+1). The relevant optimization is

max
a∈A(xi)

r(a, si) + δE
[
UADP

i+1 (xi − a, s̃i+1) | Fi,i+1

]
.

It follows from Lemmas 2.6.1(a)-(b) and 2.6.2(b) and Corollary 2.6.2 in Topkis [38] that the objective

function of this problem is supermodular in (xi, a, si) ∈ B×<+ for each given Fi,i+1. Theorem 2.8.2

in Topkis [38] implies that aADP
i (xi, si, Fi,i+1) increases in (xi, si) for each given Fi,i+1, which implies

that bi(si, Fi,i+1) and bi(si, Fi,i+1) decrease in si for each given Fi,i+1. Moreover, Theorem 2.7.6

in Topkis [38] implies that uADP
i (xi, si, Fi,i+1) is supermodular in (xi, si) ∈ X × <+ for each given

Fi,i+1. Corollary 2.6.2 in Topkis [38] implies that UADP
i (xi, si) is supermodular in (xi, si) ∈ X×<+.

Thus, parts (b)-(c) are true for every stage by the principle of mathematical induction.

(d) Consider stage i ∈ I \ {N − 1} and pick a feasible extended state (xi, si, Fi,i+1). Suppose

that xi ∈ X I
i (si, Fi,i+1), so that the relevant optimization is (37). Recall the assumption that

the distribution of random variable s̃i+1 conditional on Fi,i+1 stochastically increases in Fi,i+1

for all i ∈ I \ {N − 1}. Then, Theorem 3.10.1 and Lemma 2.6.1(a) in Topkis [38] imply that

δE
[
UADP

i+1 (xi+1, s̃i+1) | Fi,i+1

]
is supermodular in (xi+1, Fi,i+1) ∈ X × <+. The term −(αIsi +

cI)xi+1 is trivially supermodular in (xi+1, Fi,i+1) ∈ X × <+. Thus, given si, any optimal xi+1,

including bi(si, Fi,i+1), increases in Fi,i+1 by Theorem 2.8.2 in Topkis [38]. The stated behavior of

bi(si, Fi,i+1) in Fi,i+1 given si can be established in a similar manner. ¤

4.3 RADP Policy

The ADP policy is computed at time T0, that is, the ADP model is solved only at this time. We

also consider a reoptimization version of the ADP policy, that is, the RADP policy, which we obtain

by re-solving the ADP model in each stage after the initial stage given the information available

at that time. In other words, we reoptimize model ADP at each time Tj , j ∈ I \ {0}, by using Fj
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rather than F0 as in (28)-(30). Specifically, we replace F0,i+1 with Fj,i+1 in (30). The time T0 value

of the resulting RADP policy is typically different, and in fact higher, than that of the ADP policy.

In other words, the RADP policy can typically take advantage of sequential reoptimization. Since

the RADP policy is feasible for the exact model, its time T0 value is a lower bound on V0(x0,F0).

4.4 Upper Bounds

We also use the ADP model to compute an upper bound on the value of storage. Following Brown

et al. [9], we define the penalty terms

pADP
i (xi, a, si+1, Fi,i+1) := UADP

i+1 (xi − a, si+1)− E
[
UADP

i+1 (xi − a, s̃i+1) | Fi,i+1

]
,

∀i ∈ I, (xi, a) ∈ X ×A(xi), (38)

which are based on the optimal value function of the ADP model computed at time T0. We denote

by P0 a sequence of pairs of spot and prompt-month future prices for maturities 0 through N − 1;

that is, P0 := ((si, Fi,i+1))
N−1
i=0 . Given P0, we solve the following DUB model:

UDUB
N (xN ; P0) := 0, ∀xN ∈ X (39)

UDUB
i (xi; P0) = max

a∈A(xi)
r(a, si)− pADP

i (xi, a, si+1, Fi,i+1) + δUDUB
i+1 (xi − a; P0),

∀i ∈ I, xi ∈ X . (40)

This is a perfect price information model whose immediate rewards are penalized according to the

penalty terms (38). We obtain an upper bound on the value of storage in the manner stated in

Proposition 3, which follows from Brown et al. [9].

Proposition 3 (DUB). Define

V DUB
0 (x0,F0) := E

[
UDUB

0 (x0; P̃0) | F0

]
. (41)

It holds that V0(x0,F0) 6 V DUB
0 (x0,F0).

The upper bound V DUB
0 (x0,F0) can be estimated by Monte Carlo simulation (see §5).

It is not necessary to use the DUB model to obtain an upper bound on the value of storage.

For example, setting the penalty terms defined in (38) equal to zero and proceeding analogously to

the computation of upper bound (41) yields the perfect information upper bound on the value of

storage, labeled PIUB (this follows from Brown et al. [9]). This upper bound provides a benchmark

for the performance of upper bound V DUB
0 (x0,F0).
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5. Numerical Implementation

In this section, we describe a software implementation of the models and policies discussed in

§§3-4. In particular, the I and ADP models have continuous state spaces. Thus, we introduce

discretizations of the domains of the state variables and of the distribution functions of the relevant

random variables.

5.1 Price Evolution and Discretization

The forward curve evolves in continuous time according to the multidimensional Black model (1)-

(2). In computing, but not evaluating, the ADP policy, we use a discretized simplification of the

dynamics of the forward curve. This is done as follows.

For all i ∈ I\{N−1}, we construct a 3-dimensional binomial tree (Haugh [22, §3.3]) to represent

the evolution of the pair (F (t, Ti), F (t, Ti+1)), starting with the pair (F0,i, F0,i+1) and ending with

a probability mass function Gi,i+1(·, · | F0,i, F0,i+1) for the random pair (s̃i, F̃i,i+1) conditional on

the initial pair. We generate this tree using a given number mi of time discretization steps. From

Gi,i+1(·, · | F0,i, F0,i+1), for each value si with positive probability of occurring, we extract the

probability mass function Hi,i+1(· | si, F0,i+1) of random variable F̃i,i+1 conditional on the pair

(si, F0,i+1). For each value Fi,i+1 having a positive probability in Hi,i+1(· | si, F0,i+1), we use a

2-dimensional binomial tree evolving F (t, Ti+1) starting from Fi,i+1 to obtain the probability mass

function Li+1(· | Fi,i+1) of the random variable s̃i+1 given Fi,i+1. Here, we use a number m of time

discretization steps. For each i ∈ I \ {N − 1}, the discretizations of the domains of si, Fi,i+1, and

si+1 are byproducts of how we construct these probability mass functions.

We generate the discretization of sN−1 separately, using the values with positive probability in

the probability mass function LN−1(· | F0,N−1), which we obtain from a 2-dimensional binomial

tree for the evolution of F (t, TN−1) starting from F0,N−1.

5.2 Computing and Evaluating the Policies

In solving the ADP model, we use a regular discretization of the feasible inventory set X in each

stage i ∈ I. Assume that there exists a number Q with the property that it is the largest number

such that the maximum inventory level, x, the injection capacity, CI , and the withdrawal capacity,

CW , are all integer multiples of Q. The regular discretization uses a number 1 + x/Q of equally

spaced points (see Secomandi [33, §3.3]). In our experiments discussed in §6, Q = 0.05 and x = 1,

so that the inventory discretization includes 21 points. As given in (29), we set UADP
N (xN , sN )
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equal to 0 for all the discrete values of xN (recall our convention that sN ≡ 0). For each i ∈ I,

when computing UADP
i (xi, si) for discretized state (xi, si), we can thus assume that the values of

UADP
i+1 (xi+1, si+1) are known for all values of xi+1 and si+1 in their respective discretizations.

Given a discretized state (xi, si), the computation of UADP
i (xi, si) starts with computing the

approximate value function uADP
i (xi, si, Fi,i+1) for all the Fi,i+1 values having a positive probability

in Hi,i+1(· | si, F0,i+1). The possible actions in A(xi) are further restricted to actions a such that

xi − a is a point of the discretization of set X . We compute the expectation over s̃i+1 in (28)

using Li+1(· | Fi,i+1). Here, some rounding operation is typically required. Suppose that si+1 has

a positive probability in Li+1(· | Fi,i+1). If si+1 is not in the discretization of si+1 used in stage

i + 1, it is rounded to the nearest value in this discretization and its corresponding entry in the

table that stores UADP
i+1 (·, ·) is used in (28).

In the determination of an optimal action in (28), we apply the basestock policy established

in Theorem 1. In particular, given the pair (si, Fi,i+1), we first find optimal actions for inventory

levels 0 and x with the withdrawal and injection limits removed. This gives us the basestock targets

corresponding to (si, Fi,i+1). Then, by leveraging (32), we can easily compute an optimal action and

the value of the approximate value function for all inventory levels when these limits are enforced.

We store these quantities in tables. Finally, we compute the expectation over F̃i,i+1 in (30) using

Hi,i+1(· | si, F0,i+1).

The I policy is trivial to compute. Given the forward curve F0 and the same regular discretiza-

tion of inventory set X that we use to solve model ADP, we solve a deterministic dynamic program

with storage and withdrawal/injection capacity constraints. The key issue for the LP and LPN

policies is the valuation of spread options. We use Kirk’s approximation for this purpose (Carmona

and Durrleman [11]).

We apply Monte Carlo simulation to evaluate the various policies. We generate a pool of

sample paths that evolve the forward curve from stage 0 to stage N − 1 by sampling from the

continuous time and space stochastic process that describes its evolution. Starting with a given

feasible inventory level x0, it is straightforward to compute the average performances of the I, LP,

and LPN policies on these sample paths. (For consistency, we also evaluate the performance of

the I policy by simulation.) For the ADP model, at time Ti we round the realized pair of prices

(si, Fi,i+1), first by rounding si to the nearest value si in its discretization and then by rounding

Fi,i+1 to the nearest value F i,i+1 that has positive probability in Hi,i+1(· | si, F0,i+1). We have an

inventory xi, and the triplet (xi, si, F i,i+1) allows us to access its corresponding optimal action in

the table that stores the optimal actions of the ADP model.
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The implementation of the reoptimization versions of all the policies and of DUB is straightfor-

ward. For brevity, we do not discuss it here.

6. Numerical Results

In this section, we numerically analyze the performance of the models and policies presented in

§§3-4 on a set of realistic benchmark instances. Before discussing our numerical results, we describe

how we created these instances.

6.1 Instances

We generate the benchmark instances by combining real data and data reported in the energy trad-

ing literature. We use four sets of prices from the NYMEX natural gas price database, each corre-

sponding to the information available at the close of trading on the following four days: 3/1/2006

(Spring), 6/1/2006 (Summer), 8/31/2006 (Fall), and 12/1/2006 (Winter). (The reason why we

choose 8/31/2006 instead of 9/1/2006 to represent Fall is explained below.) The choice of these

days allows us to generate instances with trading information typical of the four seasons of the

year. For each selected trading day, we consider the Henry Hub spot price and the futures prices

of the first 23 maturities (recall that Henry Hub is the delivery location of the NYMEX natural

gas futures contract). This gives us four forward curves, each consisting of 24 prices. The two

top panels of Figure 2 illustrate these forward curves. (Table 10 in the Online Appendix lists this

data.) These panels clearly show the pronounced seasonality in the natural gas forward curve.

We use prices of NYMEX call options on natural gas futures to calibrate the market implied

volatilities of the 23 futures prices on each of the four considered trading days. We do not have

access to the prices of the options traded in September 2006, but we have these prices for 8/31/2006.

This is why we choose this date, as opposed to 9/1/2006, to represent Fall. The two bottom panels

of Figure 2 illustrate the implied volatilities on each of the four trading days. (Table 11 in the

Online Appendix tabulates this data.) These panels show that these volatilities “tend” to decrease

with increasing maturity, which is as expected, but also bring to light what appear to be seasonal

patterns that somewhat mirror those displayed by the forward curves.

We do not have access to calendar spread options on NYMEX futures prices. Thus, we are un-

able to imply out correlations between futures prices for different maturities. Instead, we construct

a historical correlation matrix based on the futures prices of the first 23 maturities on each trading

day from 1/2/1997 to 12/14/2006. Tables 12-14 in the Online Appendix display the part of that

matrix above the main diagonal.
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Figure 2: NYMEX natural gas forward curves (top panels) and implied volatilities (bottom panels)
on 3/1/2006 (Spring), 6/1/2006 (Summer), 8/31/2006 (Fall), and 12/1/2006 (Winter).

Table 2: Absolute Values of the Capacity Pairs (mmBtu/Month).
Number Injection Withdrawal

1 0.15 0.30
2 0.30 0.60
3 0.45 0.90

The one-year treasury rates on the four selected dates, as reported by the U.S. Department of

Treasury, are 4.74%, 5.05%, 5.01%, and 4.87%, respectively. We use them as risk-free interest rates

to generate the monthly discount factors used in our experiments.

We normalize the maximum inventory x to one mmBtu. We employ the three pairs of injection

and withdrawal capacities shown in Table 2. The first pair roughly reflects the capacities in Example

8.11 in Eydeland and Wolyniec [16, p. 355]. We obtain the other two by multiplying this pair by

2 and 3, respectively. Following Maragos [27], we set the injection and withdrawal costs to $0.02

and $0.01 per mmBtu, respectively, and the injection and withdrawal fuel coefficients to 1.01 and

0.99, respectively.

The distinguishing features of our benchmark instances are the number of months in the con-

tract tenure (number of stages), the season corresponding to the initial stage (forward curve and
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volatilities), the withdrawal/injection limits, and the correlation matrix. The label of an instance

encodes this information in the following order:

• Number of stages: 12 or 24;

• Season: one of Sp, Su, Fa, and Wi, which abbreviate Spring, Summer, Fall, and Winter,

respectively;

• Injection and withdrawal pair number: 1, 2, or 3.

We consider twelve 12-stage instances, labeled 12-Sp-1 to 12-Wi-3, and twelve 24-stage instances,

labeled 24-Sp-1 to 24-Wi-3. Thus, we generate a total of twenty-four instances. For brevity, the

ensuing discussion focuses on the 24-stage instances, because the valuation results pertaining to

the 12-stage instances are very similar to those of the 24-stage instances. However, the Cpu times

required to compute and evaluate the various policies are significantly smaller on the 12-stage

instances than the 24-stage instances. When reoptimization is used, the average Cpu time of each

of the heuristics is approximately divided by four. Without reoptimization, the average Cpu time

for the ADP based heuristics is divided approximately by two, while for the other three heuristics

it is approximately divided by four.

The machine used for the computations is a 64 bits Monarch Empro 4-Way Tower Server with

four AMD Opteron 852 2.6GHz processors, each with eight DDR-400 SDRAM of 2 GB and running

Linux Fedora 9. The compiler is g++ version 4.3.0 20080428 (Red Hat 4.3.0-8). Results

are obtained using only one processor. We solve the linear programs associated with the LP and

LPN policies using the Clp linear solver of COIN-OR (www.coin-or.org).

6.2 Results

We evaluate all the policies and the two upper bounds by starting with zero initial inventory and

by using 10, 000 futures price sample paths.

DUB. We compare the value of all the policies to the upper bound of Proposition 3, DUB.

This bound depends on the discretization used to solve the ADP model, that is, the values of the

parameters mi and m discussed in §5. We set m = 20. We examine the values of DUB for values

of mi ranging from 5 to 500. Setting mi = 500 yields the tightest DUB. Thus, for convenience of

comparison, we report all other values as percentages of the DUB values obtained for mi = 500

(Table 15 in the Online Appendix displays the values of DUB for mi = 500). Table 3 reports the

values of DUB for mi ranging from 5 to 250, as well as the value of the perfect information upper
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Table 3: DUB Values for Several Values of Discretization Parameter mi and PIUB Value as Per-
centages of the DUB Value for mi = 500.

DUB
Number of Discretization Steps

Instance 5 20 50 100 250 PIUB
24-Sp-1 108.06 112.41 105.64 102.86 100.74 147.09
24-Sp-2 125.32 116.76 107.54 103.72 100.90 164.13
24-Sp-3 137.35 119.54 108.72 104.26 101.03 175.02
24-Su-1 107.22 111.45 104.74 102.58 100.62 142.77
24-Su-2 121.20 114.36 106.08 103.24 100.85 155.12
24-Su-3 132.00 116.97 107.22 103.76 100.99 165.98
24-Fa-1 110.64 112.61 105.43 102.88 100.69 153.01
24-Fa-2 122.72 114.42 106.30 103.31 100.81 158.18
24-Fa-3 130.93 116.06 107.01 103.63 100.92 164.02
24-Wi-1 141.54 130.92 113.80 106.76 101.69 224.37
24-Wi-2 167.14 136.05 115.88 107.72 101.96 245.04
24-Wi-3 184.94 139.31 117.22 108.25 102.13 258.36

Table 4: Statistics on the Cpu Seconds Needed to Compute DUB for Several Values of Discretization
Parameter mi and PIUB.

DUB
Number of Discretization Steps

Statistic 5 20 50 100 250 500 PIUB
Maximum 11.06 15.71 24.96 41.96 123.33 382.45 4.46
Minimum 10.32 14.44 22.48 37.55 107.21 320.64 2.30
Average 10.59 14.89 23.38 39.43 115.42 353.16 3.02

Standard Deviation 0.23 0.37 0.70 1.25 4.85 21.02 1.00
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bound, PIUB. It should be clear from Table 3 that increasing mi to larger values would likely

improve the resulting value of DUB only marginally. Moreover, PIUB is much weaker than DUB,

even for relatively small values of mi such as 5 and 20. Note that the average values of DUB are not

always monotonically decreasing as mi increases, although this is the usual pattern. For example,

in Table 3 for the instances 24-Sp-1, 24-Su-1, and 24-Fa-1 the values obtained with mi = 20 are

worse than those for mi = 5.

The standard errors for the values displayed in Table 3 are typically around 0.60% of the

corresponding DUB values for mi = 500. The average standard error ranges from 0.49% (for

mi = 500) to 0.71% (for mi = 5) of DUBs. The standard errors for PIUBs are between 1.07% and

1.89% with an average of 1.32%.

Table 4 reports some statistics of the Cpu times needed to compute the various upper bounds.

This can be done in a manageable amount of time. Obtaining tighter DUBs requires more Cpu

time. For example, the small improvement in the quality of DUB obtained by increasing mi from

100 to 500 is obtained at the cost of multiplying the Cpu time by roughly a factor of 9. Computing

PIUB is much faster than computing DUB, but, as noted above, the latter bound is significantly

better than the former.

We will see later in this section that DUB for mi = 500 is close to the optimal value of storage,

as we are able to produce a feasible policy whose value is within 1% to 6% of this bound on most

instances. Thus, the valuation performance of each policy as a percentage of DUB for mi = 500 can

be taken as a fairly accurate estimate of the fraction of the value of storage that can be captured by

each policy. All subsequent performance tables use this reporting format. Moreover, the standard

errors discussed below are percentages of the relevant DUB values for mi = 500.

ADP policy and discretization. Before comparing the performances of the different policies,

we emphasize that increasing the value of mi also improves the performance of the ADP policy.

This is shown in Table 5, which reports the performance of this policy for values of mi ranging

from 5 to 500. Improved valuations require larger Cpu times, as shown in Table 6. The valuation

results for mi equal to 100 and 500 are fairly close, but their associated Cpu times are in a ratio of

35. In the following comparative analysis we use the ADP policy obtained for mi = 500.

The standard errors for the values reported in Table 5 are typically around 1%, with a minimum

of 0.86% and a maximum of 1.63%. The average standard errors range from 1.10% (for mi = 5)

to 1.18% (for mi = 500). The largest standard errors occur on the Winter instances with a spread

from 1.24% to 1.63%.

No reoptimization. We now compare the performance of the ADP, I, LP, and LPN policies,
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Table 5: Effect of Discretization Parameter mi on the Quality of the ADP Policy without Reopti-
mization (Percent of the DUB Value for mi = 500).

Number of Discretization Steps
Instance 5 20 50 100 250 500
24-Sp-1 82.83 88.52 91.37 92.49 92.89 93.11
24-Sp-2 74.38 84.71 90.09 92.42 93.48 94.01
24-Sp-3 70.66 83.06 89.76 93.13 94.59 95.12
24-Su-1 83.19 89.58 92.29 93.31 93.74 93.88
24-Su-2 77.64 87.53 92.22 94.48 95.48 96.14
24-Su-3 73.80 86.06 91.92 94.74 96.39 96.88
24-Fa-1 80.82 88.86 92.18 93.58 94.29 94.64
24-Fa-2 76.08 87.28 92.22 94.39 95.82 96.45
24-Fa-3 73.85 86.58 92.31 94.91 96.56 97.37
24-Wi-1 41.81 63.45 72.40 76.55 78.89 80.17
24-Wi-2 36.76 62.84 75.10 80.89 83.96 86.15
24-Wi-3 33.35 62.56 76.71 83.32 86.69 89.10

Table 6: Statistics on the Cpu Seconds Needed to Compute the ADP Policy for Several Values of
Discretization Parameter mi.

Number of Discretization Steps
Statistic 5 20 50 100 250 500

Maximum 0.44 0.57 1.38 4.27 28.35 146.23
Minimum 0.42 0.56 1.33 4.07 27.21 135.29
Average 0.43 0.56 1.35 4.15 27.68 140.01

Standard Deviation 0.003 0.003 0.019 0.069 0.383 4.536

Table 7: Statistics on the Cpu Seconds Needed to Compute the Four Policies without Reoptimiza-
tion.

Policy
Statistic ADP I LP LPN

Maximum 146.23 0.53 0.64 0.69
Minimum 135.29 0.40 0.46 0.47
Average 140.01 0.46 0.54 0.56

Standard Deviation 4.54 0.05 0.07 0.08
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Figure 3: Valuation Performance of the Four Policies without Reoptimization (Percent of the DUB
Value for mi = 500).
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that is, the policies that do not use reoptimization. Recall that the I policy computes the intrinsic

value of storage, that is, that part of the storage value that can be attributed to the seasonality in

the natural gas forward curve, rather than its volatility. Thus, its valuation performance should be

interpreted accordingly. In other words, even if we include the I policy in our comparisons, we do

so with the understanding that this policy is likely to yield lower valuations than the others.

Figure 3 reports the valuation performance of the four policies on the 24-stage instances (the

detailed values are presented in Table 16 in the Online Appendix). Overall, the ADP and LP

policies perform consistently better than the I and LPN policies. The performance of the latter

two may reach as low as 40% of the DUB value. The ADP policy performs better than the other

policies on most of the instances except on the instances 24-Sp-1 and 24-Su-1, where the LP policy

outperforms it.

The standard errors on the values of the policies without reoptimization are typically around

1% with a minimum of 0.66% and a maximum of 1.63%. We obtain average standard errors of

1.18%, 1.16%, 1.12% and 0.84% for the ADP, I, LP and LPN policies, respectively.

To discuss how the valuation performance of a policy depends on the injection/withdrawal

capacities, we define the range of valuation performances for a policy to be the difference between

its minimum and maximum valuation performance figures on each of the three instances that differ

only in their injection/withdrawal capacities. For example, the range of the ADP policy on instances

24-Sp-1, 24-Sp-2, and 24-Sp-3 is (95.12−93.11)% = 2.01%. The LP policy is the least sensitive with

a rough average range of 3%, whereas the ranges of the ADP, I, and LPN policies are about 4%,

8%, and 24%, respectively. It appears that the ADP and LPN policies are able to capture a larger

share of the value of storage for instances with higher injection/withdrawal capacities, while the

intrinsic value becomes smaller when the injection/withdrawal capacities increase. In particular,

the values obtained by the LP policy do not show a monotone pattern as the injection/withdrawal

capacities vary.

The statistics on the Cpu times needed to compute and evaluate the different policies are

reported in Table 7. The ADP policy requires on average much more Cpu time than the other

policies, but, as pointed out in comments on Table 6, this number can be significantly reduced

by using a coarser discretization without significantly affecting the valuation performance of this

policy. The fastest policy to compute and evaluate is I, but the computational requirements of

both the LP and LPN policies are very small.

Reoptimization. Figure 4 reports the valuation performance of the RADP, RI, RLP, and

RLPN policies (the detailed values are provided in Table 17 in the Online Appendix). Notice that
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Figure 4: Valuation Performance of the Four Policies with Reoptimization (Percent of the DUB
Value for mi = 500).

Table 8: Statistics on the Cpu Seconds Needed to Compute the Four Policies with Reoptimization.
Policy

Statistic RADP RI RLP RLPN
Maximum 634.22 24.81 296.12 249.21
Minimum 570.66 23.20 262.88 233.84
Average 595.73 23.90 278.74 240.94

Standard Deviation 20.85 0.47 12.26 4.58
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we compute the RADP policy using mi = 5 and m = 5 to keep its computational requirement

at a manageable level. The RADP policy captures at least 96% of the value of storage on all

the instances, except on 24-Wi-1 for which this figure is 94.91%. Moreover, the RADP policy

performs mostly better than the other policies, with the exception of 24-Sp-2, where it is marginally

outperformed by RLP. The performances of RADP, RI and RLP are all very insensitive to changes

in injection/withdrawal capacities with average ranges less than 1%, whereas the average range of

the RLPN policy is a whooping 23%.

Similar to the case without reoptimization, the standard errors of the policies with reoptimiza-

tion are around 1%. We obtain average standard errors of 1.19%, 1.17%, 1.17% and 1.16% for the

RADP, RI, RLP, and RLPN policies, respectively.

It is noteworthy that the gap between DUB and the value of the RADP policy is substantially

higher in the Winter instances than in the instances associated with the other seasons (see panel

(d) of Figure 4). This may be due to DUB being looser or to the performance of the RADP policy

being worse on the Winter instances compared to the other instances. Thus, we also evaluate the

RADP policy with mi set equal to 10 and 20. Unfortunately, the value of the RADP policy in

these cases does not appreciably change relative to the case of mi = 5, and we are unable to shed

any light on this issue.

The statistics on the Cpu times needed to compute the four reoptimization policies are reported

in Table 8. The RADP policy needs on average substantially more Cpu time than the other policies,

whose computational requirements, however, increase markedly relative to the no-reoptimization

case. The policy that can be evaluated the fastest is RI; this takes roughly one tenth of the time

needed to evaluate the RLP and RLPN policies, which in turn take half the time required to

evaluate the RADP policy.

No simulation. We now discuss how the “raw” values of the four optimization models used

to compute the various policies compare to DUB. That is, we focus on the values generated by

optimization of the four models at time T0 without simulating their corresponding policies. In

contrast, all the valuation results discussed so far entail simulation to evaluate the quality of the

policy obtained from each model. Figure 5 reports these raw values (the detailed values are provided

in Table 18 in the Online Appendix). The ADP model underestimates the value of storage for this

set of experiments. This underestimation is much more marked for models I and LP. Unlike these

three models, model LPN may overestimate or underestimate the value of storage. Recall from §3
that the raw values of the I and LP models are lower bounds on the optimal value of storage, while

those of the ADP and LPN models may not be. These results also imply that it seems difficult for
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Figure 5: “Raw” Values of the Four Models without Simulation (Percent of the DUB Value for
mi = 500).

any of these models to consistently produce near optimal storage valuations without reoptimization

and simulation.

Table 9 displays some statistics of the Cpu times needed to solve the four models: solving the

I, LP, and LPN models is remarkably fast, whereas solving the ADP model requires considerably

more time.

Summary. Our computational results bring to light the value of combining reoptimization and

Monte Carlo simulation for natural gas storage valuation. This approach allows one to compute

a near optimal policy in a rather simple and relatively fast fashion, for example, by sequentially

Table 9: Statistics on the Cpu Seconds Needed to Compute the “Raw” Values of the Four Models.
Model

Statistic ADP I LP LPN
Maximum 145.5830 0.0010 0.0050 0.0030
Minimum 134.6100 0.0001 0.0030 0.0010
Average 139.4726 0.0005 0.0038 0.0021

Standard Deviation 4.4848 0.0005 0.0007 0.0005
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reoptimizing model I, which is a deterministic and dynamic model that can be optimized very

efficiently. Reoptimizing model ADP, which is a stochastic and dynamic model, yields a slightly

better policy at the expense of significantly higher Cpu requirements (recall that model I is a special

case of model ADP, that is, I is the deterministic version of ADP). Reoptimizing model LP, which

is a stochastic and static model, also generates a very good policy and is faster than reoptimizing

model ADP. Moreover, although beneficial, reoptimization applied to model LPN does not yield a

near optimal policy. Hence, the choice of which model to sequentially reoptimize is important in

order to obtain near optimal valuation of natural gas storage contracts by sequential reoptimization

coupled with Monte Carlo simulation.

7. Conclusions

The valuation of the real option to store natural gas is an important problem in practice. Exact

valuation of this real option using the multidimensional models of the evolution of the natural

gas forward curve that seem to be used in practice is an intractable problem. Thus, practitioners

typically value storage using heuristics. In this paper, we develop a novel approach to benchmark a

set of such heuristics. Unlike these heuristics or methods that are available in the extant literature,

our approach yields both lower and upper bounds on the value of storage using the multidimensional

representation of the dynamics of the natural gas forward curve that seem to be used in practice.

These bounds allow us to assess the effectiveness of the stated heuristics on a set of realistic

instances. Our upper bound appears to be fairly tight. We find that the practice-based policies

that we analyze are very fast to compute but also significantly suboptimal, and are dominated

by our policy. When employed in a reoptimization fashion within Monte Carlo simulation, the

valuation performances of all but one of these policies become nearly optimal. The price to be

paid for this improvement is a significantly higher computational burden. Our own policy with

reoptimization is very competitive with these reoptimization-based policies, but requires more time

to compute. Overall, sequential reoptimization within Monte Carlo simulation of a deterministic

model that computes the intrinsic value of storage strikes the best balance between valuation quality

and computational requirements.

These results have immediate relevance for natural gas storage traders. Although not discussed

in this paper, our findings with reoptimization remain substantially similar when we (artificially)

remove the seasonality from the natural gar forward curves that we employ in our instances. This

suggests that our results in the reoptimization case have potential relevance for traders involved in
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the valuation of the real option to store other commodities, whose forward curves do not exhibit

the marked seasonality of the natural gas forward curve.

Our results imply that improving the computational efficiency of valuation algorithms that use

periodic reoptimizations of optimization models embedded within Monte Carlo simulation is an

interesting area for further research and applications in the valuation of commodity storage real

options. Moreover, as explained in §2, our focus in this paper is on the value of the “monthly-

volatility” component of a storage contract; that is, when trading decisions are made on a monthly

basis. Extending our work to the case when trading decisions are made more frequently, such as in

Carmona and Ludkovski [12] and Boogert and de Jong [7], would also be of interest.
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Online Appendix

The tables reported in this Online Appendix include the details of the market data used in the

numerical experiments and the valuation results. In particular:

• Tables 10-11: The two top and bottom panels of Figure 2, respectively;

• Tables 12-14 display the correlation matrix;

• Table 15 reports the DUB values for discretization parameter mi = 500;

• Tables 16-18 are associated with Figures 3-5, respectively.
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Table 10: Forward Curves ($/mmBtu).
Months to Maturity Spring Summer Fall Winter

0 7.112 5.925 6.816 8.318
1 6.733 6.448 6.048 8.422
2 6.940 6.698 8.228 8.480
3 7.115 6.963 9.978 8.380
4 7.290 7.318 10.628 8.080
5 7.417 8.523 10.663 8.062
6 7.502 9.758 10.483 8.125
7 7.607 10.318 8.343 8.207
8 8.722 10.323 8.193 8.278
9 9.742 10.138 8.283 8.333
10 10.432 8.388 8.388 8.433
11 10.437 8.218 8.478 8.908
12 10.242 8.315 8.568 9.338
13 8.502 8.435 8.728 9.573
14 8.322 8.530 9.703 9.578
15 8.382 8.640 10.588 9.348
16 8.457 8.800 11.108 8.028
17 8.527 9.565 11.113 7.903
18 8.552 10.290 10.848 7.958
19 8.622 10.785 7.878 8.038
20 9.262 10.790 7.673 8.098
21 9.837 10.535 7.758 8.153
22 10.272 7.935 7.838 8.233
23 10.277 7.705 7.918 8.578
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Table 11: Implied Volatilities.
Months to Maturity Spring Summer Fall Winter

1 0.59 0.56 0.79 0.55
2 0.55 0.66 0.79 0.57
3 0.53 0.68 0.70 0.61
4 0.51 0.69 0.70 0.52
5 0.52 0.62 0.73 0.49
6 0.53 0.56 0.75 0.47
7 0.53 0.57 0.50 0.47
8 0.51 0.57 0.47 0.48
9 0.50 0.60 0.47 0.49
10 0.49 0.44 0.47 0.49
11 0.49 0.41 0.48 0.47
12 0.50 0.41 0.50 0.44
13 0.39 0.41 0.51 0.43
14 0.36 0.42 0.47 0.44
15 0.36 0.43 0.46 0.44
16 0.37 0.45 0.44 0.33
17 0.38 0.45 0.46 0.33
18 0.39 0.44 0.48 0.33
19 0.40 0.44 0.34 0.33
20 0.43 0.46 0.33 0.34
21 0.40 0.46 0.33 0.35
22 0.41 0.36 0.31 0.36
23 0.42 0.34 0.34 0.34

Table 12: Correlation Matrix: Submatrix 1.
Maturity

Maturity 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0.958 0.933 0.910 0.887 0.871 0.858 0.843 0.832 0.819 0.806 0.795
2 1 0.983 0.959 0.935 0.919 0.906 0.889 0.876 0.860 0.846 0.833
3 1 0.982 0.962 0.946 0.934 0.918 0.905 0.890 0.876 0.863
4 1 0.990 0.975 0.961 0.947 0.935 0.921 0.907 0.895
5 1 0.991 0.978 0.965 0.955 0.942 0.929 0.918
6 1 0.992 0.981 0.971 0.960 0.948 0.936
7 1 0.992 0.985 0.974 0.963 0.952
8 1 0.996 0.986 0.976 0.966
9 1 0.994 0.984 0.975
10 1 0.994 0.986
11 1 0.995
12 1
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Table 13: Correlation Matrix: Submatrix 2.
Maturity

Maturity 13 14 15 16 17 18 19 20 21 22 23
1 0.784 0.768 0.749 0.727 0.708 0.696 0.681 0.668 0.654 0.643 0.634
2 0.822 0.809 0.790 0.768 0.750 0.737 0.720 0.706 0.693 0.680 0.671
3 0.852 0.841 0.825 0.804 0.787 0.773 0.754 0.739 0.724 0.712 0.703
4 0.884 0.873 0.861 0.847 0.831 0.817 0.796 0.780 0.767 0.755 0.746
5 0.907 0.896 0.884 0.872 0.859 0.846 0.825 0.809 0.796 0.784 0.775
6 0.926 0.915 0.904 0.891 0.880 0.869 0.848 0.833 0.820 0.807 0.798
7 0.942 0.930 0.916 0.903 0.891 0.881 0.870 0.856 0.843 0.830 0.820
8 0.956 0.944 0.931 0.918 0.907 0.897 0.887 0.876 0.864 0.851 0.841
9 0.967 0.955 0.942 0.929 0.919 0.909 0.899 0.889 0.879 0.867 0.858
10 0.978 0.967 0.955 0.943 0.932 0.923 0.913 0.903 0.894 0.885 0.876
11 0.988 0.979 0.967 0.955 0.946 0.936 0.928 0.918 0.909 0.901 0.893
12 0.995 0.986 0.976 0.964 0.954 0.946 0.937 0.928 0.919 0.911 0.904

Table 14: Correlation Matrix: Submatrix 3.
Maturity

Maturity 13 14 15 16 17 18 19 20 21 22 23
13 1 0.994 0.984 0.973 0.964 0.955 0.947 0.939 0.930 0.922 0.915
14 1 0.993 0.984 0.975 0.967 0.955 0.946 0.937 0.930 0.923
15 1 0.994 0.986 0.978 0.962 0.953 0.945 0.938 0.931
16 1 0.995 0.987 0.971 0.963 0.955 0.947 0.939
17 1 0.995 0.980 0.972 0.965 0.957 0.949
18 1 0.987 0.980 0.972 0.964 0.957
19 1 0.995 0.988 0.981 0.973
20 1 0.996 0.988 0.980
21 1 0.994 0.987
22 1 0.994
23 1

Table 15: DUB Values ($/mmBtu) for Discretization Parameter mi = 500.
Instances DUB
24-Sp-1 4.25
24-Sp-2 5.34
24-Sp-3 5.79
24-Su-1 4.75
24-Su-2 6.33
24-Su-3 6.84
24-Fa-1 4.19
24-Fa-2 6.45
24-Fa-3 7.56
24-Wi-1 1.85
24-Wi-2 2.55
24-Wi-3 2.92
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Table 16: Valuation Performance of the Four Policies without Reoptimization (Percent of the DUB
Value for mi = 500).

Policy
Instance ADP I LP LPN
24-Sp-1 93.11 86.86 94.04 58.79
24-Sp-2 94.01 79.16 91.52 71.28
24-Sp-3 95.12 75.06 89.80 79.71
24-Su-1 93.88 87.26 94.55 63.06
24-Su-2 96.14 83.10 92.93 78.72
24-Su-3 96.88 80.07 91.62 85.69
24-Fa-1 94.64 83.45 92.87 52.95
24-Fa-2 96.45 80.12 93.37 72.98
24-Fa-3 97.37 78.18 92.76 82.89
24-Wi-1 80.17 48.14 79.62 39.38
24-Wi-2 86.15 42.96 82.29 51.15
24-Wi-3 89.10 40.48 82.77 61.74

Table 17: Valuation Performance of the Four Policies with Reoptimization (Percent of the DUB
Value for mi = 500).

Policy
Instance RADP RI RLP RLPN
24-Sp-1 98.37 98.29 98.37 85.93
24-Sp-2 98.20 98.20 98.23 94.25
24-Sp-3 98.52 98.51 98.44 97.47
24-Su-1 98.61 98.51 98.52 71.51
24-Su-2 99.31 99.24 99.26 92.04
24-Su-3 99.39 99.32 99.30 97.61
24-Fa-1 98.96 98.84 98.84 66.45
24-Fa-2 99.67 99.59 99.61 90.41
24-Fa-3 99.63 99.51 99.53 97.54
24-Wi-1 94.91 92.45 92.39 71.27
24-Wi-2 96.69 94.80 94.76 89.87
24-Wi-3 96.44 94.73 94.73 93.46
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Table 18: “Raw” Values of the Four Models without Simulation (Percent of the DUB Value for
mi = 500).

Model
Instance ADP I LP LPN
24-Sp-1 91.31 86.45 92.13 107.95
24-Sp-2 92.10 78.86 87.26 93.14
24-Sp-3 93.73 74.72 84.32 87.74
24-Su-1 92.31 86.86 92.45 109.67
24-Su-2 94.26 82.74 89.22 94.94
24-Su-3 95.45 79.79 87.24 90.33
24-Fa-1 91.88 82.71 90.32 111.23
24-Fa-2 93.63 79.48 88.81 96.59
24-Fa-3 95.05 77.64 87.68 91.90
24-Wi-1 73.38 47.54 74.94 108.98
24-Wi-2 79.90 42.62 73.53 86.58
24-Wi-3 84.19 40.41 72.18 78.49
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