
THE AFTER-TAX REPLACEMENT DECISION  

UNDER COST AND SALVAGE PRICE UNCERTAINTY 

Roger Adkins* 

University of Salford, UK 

Dean Paxson** 

University of Manchester, UK 

 

Abstract 

We present an analytical solution for the after-tax replacement investment decision for an asset 

subject to deteriorating operating costs and salvage value. The advantages of solving the three-

factor replacement model analytically are that it extends the scope to include salvage value and 

the depreciation tax shield, while yielding a solution more efficiently than purely numerical 

methods. We show that the incremental value rendered by the replacement has to exceed the net 

re-investment cost, a finding that mirrors the standard result for one-factor models. The 

replacement policy is shown to vary with asset age, with younger assets being replaced at a 

lower operating cost threshold than older assets, and to vary with the salvage value, which is 

inversely related to the threshold. In line with expectations, an operating cost volatility increase 

raises the threshold, but an increase in the salvage value volatility or a decrease in the correlation 

between the operating cost and salvage value lowers the threshold.  
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 THE AFTER-TAX REPLACEMENT DECISION  

UNDER COST AND SALVAGE PRICE UNCERTAINTY 

 

We present an analytical method for solving the after-tax optimal timing boundary for a 

replacement model, which characterizes a productive asset with stochastic operating cost and 

salvage value that both deteriorate with age. At replacement, the disposal of the incumbent 

renders a salvage value, which is used to partly offset the fixed re-investment cost for installing 

the replica. Therefore, in this two-factor model, the replacement policy reflects a trade-off 

between the operating cost under continued usage and the salvage value obtained under disposal. 

Since continuance with the incumbent involves an uncertain future stream of potentially 

deteriorating operating cash flows as well as the opportunity cost of a likely unfavorable change 

in the salvage value, replacement entails sacrificing the incumbent net value in exchange for a 

replica with an improved performance, but only after expending the re-investment cost. The 

presence of salvage value in the formulation makes this model particularly relevant to those 

assets, such as vehicles, earth moving equipment and aircraft, that have an extensive second hand 

market, as well as to those, like ships, that are disposed of for their scrap value. Additionally, the 

presence of a salvage value creates a plausible mechanism for terminating the infinite 

replacement chain. If the investment in the replica becomes no longer economically justified 

owing to adverse operating conditions, the chain is terminated whenever the salvage value 

exactly balances the net worth of the incumbent. Finally, we show the versatility of the analytical 

method by extending the model to a three-factor formulation through the inclusion of a declining 

balance depreciation schedule. 

Abandonment value, as a source of cash flow, has the potential to alter the replacement 

policy. According to the simulation model of  Robichek and Horne (1967), which is based on a 

NPV framework, the consequence of a significant abandonment value is to raise the project 

value since the mobility of funds for a project that turns sour has a flexibility value. Ignoring 

abandonment is to exclude this option and to under-estimate the project value. However, since 

their analysis overlooks the opportunity to abandon at a subsequent date prior to project 

expiration, or the timing of the abandonment decision, Dyl and Long (1969), see also Robichek 



and Van Horne (1969), their assessment of the value created by abandonment is actually an 

under-estimate. The formulation of Dyl and Long (1969) is extended by Gaumitz and Emery 

(1980), who examine the consequences of a like-for-like replacement when the incumbent asset 

is  abandoned, and show that the presence or absence of asset replacement has a significant 

impact on the abandonment decision. A more comprehensive model of replacement and 

abandonment is produced by Howe and McCabe (1983), who consider the three cases of pure 

abandonment, an infinite cycle model with an abandonment value at each replacement, and a 

finite cycle model.  

A stochastic model of replacement and abandonment is built by Bonini (1977) on a 

dynamic programming framework. Although numerical methods are essential for determining 

the optimal replacement-abandonment policy, this formulation has the advantages that the two 

factors are represented by random variables and their treatment in the model is explicit. In 

contrast, the subsequent real option models of replacement that embrace abandonment only do so 

implicitly. As a restraint on model dimensionality, Mauer and Ott (1995) represent both the 

salvage value and the depreciation charge as functions of the operating cost, while Dobbs (2004) 

deduces from a one-factor replacement model, the salvage value from the operating cost 

threshold. Because there is no explicit recognition of the salvage value, these formulations ignore 

the possibility of a trade-off between the operating cost and the salvage value in the replacement 

policy as well as the co-movements in their stochastic behavior, so questions on the interaction 

of the two factors and how the properties of the salvage value influence the optimal policy 

remain unanswered. Abandonment also appears in real option models characterizing other forms 

of opportunity. McDonald and Siegel (1985) re-interpret their investment opportunity model to 

consider the abandonment for an ongoing project, but their analysis rests on the property of 

homogeneity degree-one, which is unavailable for replacement models with reversionary levels 

and a fixed re-investment cost.  Similarly, Myers and Majd (1990) apply a ratio transformation 

for reducing the dimensionality of their two-factor abandonment model, or use numerical 

methods when the changes in project value are non-linear. 

The major contribution of our study is the development of a quasi-analytical solution to 

the after-tax optimal timing boundary for a real option replacement-abandonment model. 

Because both operating cost and salvage value are explicitly and distinctly represented in the 



formulation, we are able to ascertain the direction and magnitude of the effect produced by 

including the salvage value on the replacement policy. Although this effect is quantified for 

deterministic models, no similar measure exists for the stochastic model. Further, it is possible to 

assess the variations in the trade-off between the thresholds for the two factors along the timing 

boundary due to changes in properties of the factors as well as their interaction. One merit of 

using the quasi-analytical method is the ease in forming the solution for an increase in the 

number of model factors. We develop the solution to the optimal timing boundary for the 

enlarged model containing a deterministic, declining balance depreciation charge as an additional 

factor, and show how the combined inclusion of the salvage value and the depreciation charge 

influences the replacement policy. Finally, the model has the advantage that the implied infinite 

chain of replacements can be terminated whenever it is economically justified to do so. Because 

the model explicitly recognizes the salvage value, abandonment occurs whenever the incumbent 

asset value is exactly balanced by its salvage value. Because termination is formally admissible 

within the formulation, then according to Preinreich (1940), this model with its explicit 

recognition of the salvage value provides a more realistic representation than previously 

designed replacement models. 

Our model is founded on the assumption that the operating cost and salvage value are 

well described by separate, but dependent, geometric Brownian motion processes, while the 

depreciation charge follows a similar process but with a zero volatility. When the model is 

enlarged to include depreciation, it contains three factors since all three variables are dynamic, 

and hence, they all appear as attributes in the asset valuation function. Replacement is 

economically justified whenever the factors jointly attain their respective threshold levels. At 

replacement, the levels for the operating cost, salvage value and depreciation charge for the 

replica re-adjust to their respective reversionary levels, which represent an improvement over 

their levels just before replacement. Following a replacement, the factor levels begin to 

deteriorate as the asset ages, so the operating cost typically inflates while the salvage value and 

depreciation charge deflate, and consequently, the threshold for operating cost is typically higher 

than its reversionary level, while the thresholds for the salvage value and depreciation charge are 

typically lower than their respective reversionary levels. Replacement is economically justified 

when the incumbent asset value is exactly balanced by the replica asset value less the net re-

investment cost. In this context, the net re-investment cost is specified by the expenditure in 



acquiring a replica less the after-tax benefits of disposing of the incumbent. Even though 

abandonment value is the net value obtainable from asset disposal, collectively from its sale, any 

recoverable working capital or from the release of resources, in either cash or cash savings, we 

confine our attention to only the salvage value, the proceeds from the asset sale, because this is 

more likely to described by the given stochastic process. 

The study is organized in the following way. The next section describes the replacement 

problem when a stochastic salvage value is present, explains the method for obtaining the 

optimal timing boundary, and provides a preliminary discussion of some of the findings. This is 

followed by a numerical exploration of the timing boundary behavior and illustrations of how the 

boundary responds to changes in the parameters. The basic replacement-salvage model is 

enlarged to a three-factor representation through including the depreciation charge and we 

demonstrate how the analytical method is adapted to obtain the timing boundary for a three-

factor model. The following section provides a variety of numerical illustrations to show the 

effects of changing parameters on the timing boundary. The final section is a conclusion. 

For convenience, the constituent equations for each of the models are assembled into two 

tables. Tables 1 and 6 present respectively the equations representing the various replacement 

models with salvage and those for the various replacement models with salvage and depreciation. 

Valuing the Replacement Opportunity with Salvage  

Valuation Function 

Solving the asset replacement problem with an uncertain operating cost and salvage value 

involves maximizing the after-tax expected present value of the net cash flow stream over all 

possible replacement policies. The optimal timing boundary for this two-factor model is 

represented by a function defined over a two-dimensional space. At any time, the operating cost 

and salvage value for the asset under study are denoted by C  and S  respectively. The tax rate 

τ is applicable to all cash flows, both positive and negative, and whether they represent income 

or capital gains. At replacement, the operating cost and salvage value for the newly installed 

replica revert to their known initial levels of IC  and IS  respectively. As the asset efficiency 

deteriorates with usage, we assume that the expected change in operating costs is 0Cα > , 



measured as an annualized continuous rate; correspondingly, its salvage value declines with an 

expected change rate of 0Sα < . The replacement re-investment cost is a known constant K . To 

avoid round-tripping, IS K< . Asset re-investment is treated here as partly irreversible, since the 

firm recovers only a fraction of the original outlay if the asset is divested. We assume that the 

asset revenue remains at a constant known level, denoted by IP ; since asset revenue is common 

for all replacement but not abandonment opportunities,  this quantity is largely excluded from the 

analysis. 

We assume that the two uncertain factors follow distinct geometric Brownian motion 

processes with drift. For { },X C S∈ : 

 d d dX X XX X t X zα σ= +  (1) 

Where Xα  is the instantaneous drift rate, Xσ  the instantaneous volatility rate, and d Xz  is the 

increment of the standard Wiener process. Dependence between the two factors is described by 

the instantaneous covariance term C Sρσ σ , [ ]Cov d ,d dC SC S CS tρσ σ=  and 1ρ ≤ .  

Since all other flexibilities are assumed to be absent, the value of the asset with its 

inherent replacement option is denoted by 1F . The value of 1F  depends on the prevailing 

operating cost and salvage value levels, so ( )1 1 ,F F C S= . By assuming complete markets, 

standard contingent claims analysis can be applied to the asset value to determine its risk neutral 

valuation relationship, Constantinides (1978), Mason and Merton (1985). This is expressed by 

the partial differential equation: 
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where 0r >  is the constant risk-free rate of interest, and Xθ  are the respective risk-neutral drift 

rates. We assume that 0Xr θ− > . The simplest kind of generic function satisfying (2) takes the 

form: 
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where, generically, 1A  is an unknown coefficient, and 1η  and 1γ  are unknown parameters of the 

product power function. In (3), the term 1 1

1 0AC Sη γ >  represents the replacement option value, 

while 
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represents the asset value in the absence of any replacement opportunity.  

Substituting (3) in (2) yields the characteristic root equation: 

 ( ) ( ) ( )2 21 1
1 1 1 1 1 1 1 1 1 1 12 2

, 1 1 0C C S S C SQ rη γ σ η η ρσ σ η γ σ γ γ θ η θ γ= − + + − + + − = . (4) 

The function 1Q  represents an ellipse. This ellipse has a presence in all four quadrants of the 

two-dimensional space, defined by 1η  and 1γ , because ( )1 1,0 0Q η =  and ( )1 10, 0Q γ =  both have 

a positive and a negative root. If we envisage a function ( )1 1 1, 0H η γ = , which is distilled from 

the value matching and associated smooth pasting conditions, then 1 0H =  has to intersect 

( )1 1 1, 0Q η γ =  for a feasible solution to exist. It follows that the roots of 1η  and 1γ  can belong to 

any of the four quadrants: 

I: { }11 11,η γ  11 110, 0η γ≥ ≥   

II: { }12 12,η γ  12 120, 0η γ≥ ≤   

III: { }13 13,η γ  13 130, 0η γ≤ ≤   

IV: { }14 14,η γ  14 140, 0η γ≤ ≥   

This suggests that (3) takes the specific form: 
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Boundary Conditions 

We first invoke the limiting boundary conditions for the operating cost C  and salvage 

value S  in order to constrain the form of (5). As C  becomes increasingly large and unfavorable, 

the pressure to replace the incumbent intensifies and the replacement option value becomes 

correspondingly large. In contrast, there is little economic justification for replacing the 

incumbent when C  tends to zero and is favorable. This suggests that the operating cost 



parameter 1η  can only be positive, which means that the eligible solution space does not belong 

to quadrants III or IV and that 13 14 0A A= = . 

We now consider how the salvage value level impacts on the replacement option value. 

At replacement, the asset owner is required to pay the re-investment cost K  for installing the 

replica, but receives the after-tax salvage value ( )1 Sτ−  on disposing the incumbent, and so, the 

net acquisition cost for the replica is ( )1K Sτ− − . Since the salvage value reduces the net re-

investment cost, the owner is incentivized to replace the incumbent for high rather than low 

salvage value levels and the replacement option value varies positively with the salvage value. 

This suggests that the salvage value parameter 1γ  can only be positive, which means that the 

eligible solution space does not belong to quadrants II or III and that 12 13 0A A= = . 

Collectively, the limiting boundary conditions imply that 12 13 14 0A A A= = = , so (5) 

becomes: 
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−
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Assuming that replacement is economically viable, the economic boundary conditions 

characterizing an optimal replacement are represented by the value conservation conditions and 

the optimality conditions. Our interpretation of economically viable is described below, under 

abandonment. The threshold levels for the operating cost and salvage value, which signal an 

optimal replacement, are denoted by 1Ĉ  and 1Ŝ  respectively. Since replacement is perceived as a 

rational response to asset deterioration, we expect the operating cost threshold to be at least its 

initial level, 1
ˆ

IC C≥ , and the salvage value threshold to be no more than its initial level, 1
ˆ

IS S≤ . 

At replacement, the incumbent and replica asset values are given by ( )1 1 1
ˆ ˆ,F C S  and ( )1 ,I IF C S  

respectively. To ensure value conservation, the incumbent asset value must balance the replica 

asset value less the net re-investment cost: 

 ( ) ( ) ( )1 1 1 1 1
ˆ ˆ ˆ, , 1I IF C S F C S K Sτ= − + − , 

Mauer and Ott (1995). This value matching relationship can be explicitly expressed as: 
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The two smooth pasting conditions associated with (7), for the two factors C  and S , can 

be expressed as: 
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This demonstrates that the option value at replacement 11 11

11 1 1
ˆ ˆA C Sη γ  is always positive since 11η  

and 11γ  are both positive. Using (8) to eliminate 11A  from (7) yields the reduced form value 

matching relationship: 

 
( ) ( ) ( ) ( )

( )
11 11

11 11

1 1

1

11 1 1

ˆ ˆ1 1 1ˆ1 1
ˆ ˆ

I I I

C C C

C C C C S
K S

r r r C S

η γ

η γ

τ τ τ
τ

θ θ η θ

 − − −
− = − − + − 

− − −  
. (9) 

If we conjecture that 11γ  is sufficiently small, then 11 11

I IC Sη γ  would be less than 11 11

1 1
ˆ ˆC Sη γ  since 

1
ˆ

IC C>  and 1
ˆ

IS S< . It now follows that the optimal replacement relationship (9) now implies 

that the after-tax value improvement in the operating cost exceeds the net re-investment cost by a 

positive amount: 
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ˆ 1 1 ˆ1
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− −
. (10) 

This finding for the replacement opportunity with salvage re-investment model is the two-factor 

equivalent of that for the standard one-factor investment opportunity model. We can also express 

(9) as: 
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The replacement model with a salvage opportunity is represented by three simultaneous 

equations: (i) the reduced form value matching relationship (9), (ii) the reduced form smooth 

pasting condition (8), and (iii) the characteristic root equation ( )1 11 11, 0Q η γ = , (4). The 

replacement timing boundary can be constructed from calculating the solutions of 1Ĉ , 11η  and 



11γ  to the replacement model for a pre-specified 1Ŝ , and then repeating the process for varying 

1Ŝ . 

Single Replacement Opportunity 

The asset owner may wish to pursue a single replacement policy when the operating 

conditions show signs of becoming adverse. Although the valuation function remains intact, the 

value matching relationship for the multiple replacement model (7) has to be amended to exclude 

the replica replacement option value. The revised value matching relationship becomes: 

 
( ) ( ) ( )11 11 1

11 1 1 1
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C C

C C
A C S K S

r r

η γ τ τ
τ

θ θ

− −
− = − − + −

− −
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where the subscript s  refers to the single replacement opportunity. Since the two smooth pasting 

conditions can be expressed in a form identical to (8) except for the inclusion of the subscript s , 

then by eliminating 11sA (12), the reduced form value matching relationship becomes: 
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For a single replacement to be economically justified, then from (13), the after-tax value of the 

operating cost threshold has to exceed the sum of the after-tax value of the operating cost for the 

replica and the re-investment cost, adjusted by a mark-up factor exceeding one. Since 

 
11 11

11 11

1 1

0
ˆ ˆ
I IC S

C S

η γ

η γ
> , 

then 1 1
ˆ ˆ

sC C< . For any salvage value threshold, the operating cost threshold for the multiple 

replacement model is always less than that for the single replacement model because its re-

investment cost can be recouped over multiple replacements instead of only one. 

The single replacement policy is found from solving the three simultaneous equations: (i) 

the reduced from value matching relationship (13), (ii) the reduced form smooth pasting 

condition, modified (8), and (iii) the characteristic root equation ( )1 11 11, 0s sQ η γ = , (4). 



Zero Salvage Value  

When the salvage value is set to equal zero, the multiple replacement model simplifies to 

the one-factor version presented by Dobbs (2004). When the salvage value is excluded from the 

formulation, the asset value including the embedded replacement option ( )2 2F F C=  depends on 

only the prevailing operating cost, so ( )2 2F F C= , where: 
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where generically 2A  is an unknown coefficient, and 1η  is an unknown parameter. A comparison 

of (3) with (14) reveals that ( ) ( )2 1 ,F C F C S=  for 1 0γ =  and 0S = . If we denote the operating 

cost threshold by 2Ĉ , then the value matching relationship is specified by ( ) ( )2 2 2
ˆ

IF C F C K= − , 

or more explicitly by: 
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The associated smooth condition can be expressed as: 
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where 21 1η >  is the positive root of the characteristic equation ( )21,0 0Q η = , (4). The coefficient 

21A  is eliminated from (15) by substituting (16) to yield: 

 
( )
( )

( )21

21

2

21

21 2

ˆ 1 1
1

ˆ
II

C C

C CC
K

r rC

η

η

τ τ
η

η θ θ

 − −
− + = + 

− − 
. (17) 

Alternatively, this can be expressed as: 
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A strategy of multiple replacement is economically justified provided that the after-tax value 

improvement in operating cost exceeds the re-investment cost. 



Since 11 11

1
ˆ

IS Sγ γ≥  for 11 0γ ≥ , a comparison of (11) with (17) reveals that 2 1
ˆ ˆC C≥ . The 

effect of including the salvage value in the formulation is to reduce the operating cost threshold 

since the salvage value reduces the net re-investment cost. 

The one-factor operating cost replacement model is represented by the reduced form 

value matching relationship (17) and the characteristic root equation ( )1 21,0 0Q η = , (4), which is 

the after-tax version of the solution developed by Dobbs (2004). The reduced forms (11) and 

(17) are identical when 1γ  is set to equal zero, and when 1Ŝ  is then set to equal zero. 

If only a single replacement opportunity is available, then the replacement option value 

for the replica is omitted from (15). The operating cost threshold is now denoted by 2
ˆ
sC , and it is 

straightforward to show that the threshold level is given by: 
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( )2 21
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ˆ 1 1 1s s I

s C C
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τ η τ
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− − −
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− −
. (18) 

Clearly, 2 2
ˆ ˆ
sC C≥ . This shows that the operating cost threshold is higher for a single replacement 

than for multiple replacements since the re-investment cost can only be recovered within a single 

occasion. 

Abandonment 

The multiple replacement model with salvage is founded on an infinite sequence of 

replacement opportunities and excludes the possibility of abandonment. However, the sequence 

of replacement opportunities can be interrupted whenever the replacement is not viable, which 

occurs when the replica asset value fails to compensate for the re-investment cost. For such a 

failure to occur, there would have to have been a deterioration in the initial properties of the 

replica asset, and although any of these properties, K , IP , IC  or IS , could be selected, we focus 

exclusively on IP  since the other properties are inter-dependent.  

The asset owner is indifferent between replacing the incumbent and abandoning the 

project of a sequence of multiple replacements whenever ( )1 ,I IF C S K= . This implies that 

( ) ( )1 3 3 3
ˆ ˆ ˆ, 1F C S Sτ= − , and the value matching relationship can be more explicitly expressed as: 



 
( ) ( ) ( )31 31 3 3

31 3 3 3

ˆˆ 1 1ˆ ˆ ˆ1
I
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A C S S

r r

η γ τ τ
τ

θ

− −
+ − = −

−
, (19) 

where the subscript 3 refers to the abandonment variant of the multiple replacement model, and 

3
ˆ
IP  denotes the reversionary revenue level required for abandonment.  

The smooth pasting conditions associated with (19) can be expressed in a form identical 

to (8) except for the change in subscript. By eliminating 31A  from (19), the reduced form value 

matching relationship becomes: 
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( )3 31 31 3 31 313

31 31
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η γ η γ

η θ γ

+ − + −
= =

−
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The abandonment variant of the replacement model with salvage is specified by three 

equations: (i) and (ii) the two reduced forms of the value matching relationship (20), and (iii) the 

characteristic root equation ( )1 31 31, 0Q η γ = , (4). 

Illustrative Results for the Replacement with Salvage Model 

The discriminatory boundary for the various versions of the replacement with salvage 

model is evaluated using the quasi-analytical solution. The responsiveness of the boundary due 

to specified changes in parametric values is examined through sensitivity analysis. We also 

compare this replacement policy with those prescribed by Mauer and Ott (1995) and Dobbs 

(2004). The initial analysis is performed on the data set presented in Table 2. Although this 

ignores the revenue level since its value has no bearing on the replacement boundary, later we 

consider its level in conjunction with abandonment. 

Replacement Boundary 

Figure 1 illustrates the replacement boundary, which is evaluated as the solution to the 

three simultaneous equations: (i) reduced form value matching relationship (11), (ii) the reduced 

form smooth pasting condition (8), and the characteristic root equation ( )1 11 11, 0Q η γ = , (4), for a 

pre-specified 1Ŝ  value. The boundary for the representative set 1
ˆ0 IS S≤ ≤  is depicted by the line 

AB, which separates the continuance region below AB from the replacement region above AB. 



The optimal decision is to replace the incumbent whenever the prevailing operating cost and 

salvage value belong to the replacement region, and to continue with the incumbent if otherwise.  

The slope of the line AB is non-linear and negative. The non-linearity implies that 1Ĉ  and 

1Ŝ  are not proportionate and that the homogeneity degree-one property is unavailable. The 

downward sloping replacement boundary means that there is a trade-off between the operating 

cost and the salvage value. For a certain pair of prevailing operating cost and salvage value 

levels belonging to the continuance region, there is possibly no regime change for a simultaneous 

operating cost increase and a salvage price decrease, while simultaneous increases in both the 

operating cost and salvage value are likely to change the regime from continuance to 

replacement, particularly if the pair of levels initially lie on the replacement boundary. There is a  

trade-off between the two factors exists due to the way that the salvage value, through reductions 

in the net re-investment cost, supplies compensates for increases in the operating cost. Further, 

the boundary is slightly convex to the origin; its slope becomes increasingly negative for 

decreases in the salvage value threshold and increases in the operating cost threshold. To 

promote a prevailing pair of operating cost and salvage value along the boundary into the 

replacement region requires for a unit decrement in the salvage value, a lower increment in the 

operating cost for higher salvage values. The significance of the salvage value in tipping the 

regime from continuance to replacement is greater for higher salvage values and its importance 

wanes as the salvage value approaches zero. 

Representative values of AB are presented in Table 3. This table shows that as the 

salvage value threshold declines, the operating cost threshold increases, while the parameters 11η  

and 11γ  both decline. When the salvage value threshold reaches zero, 11 0γ =  implying that the 

salvage value no longer influences the asset value, and 11η  is specified by the positive root of 

( )1 11,0 0Q η = , (4). Previously, we conjecture that for the after-tax value improvement in the 

operating cost to exceed the net re-investment cost, (10), 11γ  has to be sufficiently small. We 

observe from the table that 11γ  is small, but moreover that its value and the salvage value 

threshold both decline towards zero such that 11 11

1
ˆ/IS S

γ γ
remains close to one. 



Figure 1 also illustrates the replacement boundary for a zero salvage value, depicted by 

AC. This boundary is evaluated from the reduced form value matching relationship (17) and 

from the positive root of ( )21,0 0Q η = , (4). It is identical to the after-tax version of the solution 

proposed by Dobbs (2004). Since AC is located at least above AB, the two depicted boundaries 

endorse the finding that the effect of including the salvage value in the formulation is to lower 

the operating cost threshold. Ignoring the salvage value produces a sub-optimal replacement 

policy and the magnitude of the discrepancy grows with the extent of the salvage value at 

replacement. 

The replacement boundary for the single replacement opportunity model is also shown in 

Figure 1 and Table 4. The boundary, depicted by DE in Figure 1, is evaluated from the reduced 

form value matching relationship (13) and the characteristic root equation ( )11 11, 0s sQ η γ = , (4). 

Like AB, the boundary DE is also downward sloping, but it always lies above AB, as predicted 

by the analysis. The relative positions of the boundaries suggest that the single replacement 

policy is more conservative than the multiple replacement policy, since the re-investment cost 

under a single replacement can only be compensated on one occasion. For any trajectory of the 

operating cost and salvage value starting from their reversionary levels, the asset owner should 

always exercise multiple replacements as the preferred policy, if possible. Figure 1 also presents 

the single replacement boundary for a zero salvage value, depicted by DF. This is evaluated from 

the reduced form value matching relationship (18) and the positive root of ( )21 ,0 0sQ η = , (4). Its 

boundary DF always lies above the single replacement with salvage boundary DE. 

Assets are not forever replaced because of increasingly unfavorable economic conditions. 

If the reversionary levels at the next replacement become sufficiently adverse, replacement is no 

longer supported and the multiple replacement chain should be abandoned. Although the 

abandonment opportunity is not explicitly structured in the model, the asset owner becomes 

indifferent between the strategies of multiple replacement and abandonment when the value of 

the replica exactly balances the re-investment cost, or when the incumbent value exactly 

balances the after-tax salvage value including its depreciation shield. The abandonment boundary 

is then constructed from the two reduced form value matching relationships (20) and 

( )1 31 31, 0Q η γ = , (4) for a particular reversionary revenue level IP . An alternative interpretation 



is to compute the implied revenue reversionary level along the multiple replacement boundary 

that makes abandonment viable. This requires substituting the multiple replacement boundary 

solutions, the operating cost threshold 1Ĉ , the salvage value threshold 1Ŝ , and the parameters 11η  

and 11γ , for 3Ĉ , 3Ŝ , 31η  and 31γ  in (20) to obtain the value of the revenue reversionary level. 

These implied values of IP  are presented in Table 3. This reveals that there is a slight concavity 

in the implied IP  approximately around salvage value threshold level of 20. However, the 

changes in IP  along the boundary are very modest and we can almost conclude that IP  is 

invariant for all pairs of operating cost and salvage value thresholds. This means that when the 

implied IP  is translated as an abandonment policy, abandonment is not exercised for specific 

operating cost and salvage value thresholds, but when the revenue at the next replacement fails to 

achieve a minimum constant level. 

Our numerical illustrations have endorsed the importance of including the salvage value 

in forming the replacement decision. The replacement boundary with salvage always lies below 

that without salvage, so its exclusion will produce sub-optimal decisions and assets economically 

ready for replacement will continue to be used in service. Further, the presence of the salvage 

value in the replacement model means that the infinite chain of replacements can be terminated 

with a justifiable cause. This means that the replacement with salvage model supplies a more 

realistic representation of the replacement decision in practice. 

Sensitivity Analysis 

The separate effects of parametric changes on the operating cost threshold 1Ĉ  are 

presented in Table 5 for a representative set of salvage value thresholds 1
ˆ0 60S≤ ≤ . It contains 

ten panels and each panel is devoted to the specific parameter according to the list in Table 5. 

For 1
ˆ 0S = , the replacement with salvage model is identical to the basic replacement model, so 

the resulting operating cost threshold does not depend on the salvage value properties. Because 

of this, it is sometimes more informative to consider the operating cost threshold at 1
ˆ 60S =  as 

well as the boundary location and shape. 



The sensitivity analysis for the re-investment cost K , the initial operating cost IC  and 

the initial salvage value IS  are presented in panels A, B and E respectively of Table 3. The 

results are unsurprising. A positive change in K  or IC  produces an increase in the operating cost 

threshold for all salvage value thresholds since any deterioration in the re-investment cost or the 

initial operating cost would have to be compensated by a higher operating cost threshold. 

Changes in the initial salvage value have the opposite effect on the boundary. An increase in IS  

produces a fall in the operating cost threshold since its improvement entails a lower net re-

investment cost. However, of the three, an initial salvage value change has the smallest impact 

on the boundary; in fact, the effect produced by a change in IS  is almost insignificant. This 

suggests that on replacement, asset owners should negotiate with suppliers to obtain improved 

terms for the asset investment price and its initial operating cost level, but should not to be overly 

concerned about the salvage value. 

Panels C and D of Table 5 display the effects of changes in the two stochastic properties 

of the operating cost factor, the risk neutral drift rate Cθ  and the volatility Cσ , respectively. 

Again, the results are unsurprising. A deterioration in Cθ  produces a higher operating cost 

threshold, but the effect is not very significant. An operating cost threshold increases is also 

produced by an increase in Cσ , but its effect is more significant and pronounced for 1
ˆ 0S = . This 

suggests that replacement asset owners should pay greater attention to its operating cost volatility 

than the drift rate, and, since volatility is an indicator of reliability, should seek improvements in 

the asset reliability. 

There are more interesting results regarding the effects on the boundary arising from 

changes in the salvage value stochastic properties. Panels F and G of Table 5 present these 

effects for the salvage value risk neutral drift rate Sθ  and volatility Sσ . Although its effect is 

hardly significant, a Sθ  decrease lowers the operating cost threshold, while a Sσ  increase lowers 

the threshold but its effect is more significant. For each case, a deterioration in these salvage 

value parameters reduces the operating cost threshold. This suggests that as these parameters 

deteriorate, the operating cost threshold is being lowered as a way of protecting the asset owner 

from losses given a likely fall in the salvage value. This protection effect is also visible, and 



amplified, for the correlation coefficient ρ  between the two factors, the operating cost and the 

salvage value. Panel H of Table 5 presents the effect of changes in ρ  on the boundary. The two 

factors form a natural hedge for a positive ρ  since to some extent, any deterioration in operating 

cost is compensated by a salvage value improvement. However, a more realistic representation is 

a negative correlation, because an operating cost increase is likely to be reflected in a salvage 

value decrease. The effect of a fall in ρ  is to lower the operating cost threshold, which suggests 

that the threshold is acting to avert the misfortune of a greater salvage value loss. It is interesting 

to observe that while volatility in the standard investment model normally raises the threshold, a 

volatility increase lowers the threshold, and this feature is replicated for the correlation 

coefficient. 

The last two panels of Table 5, I and J, show the respective effects on the boundary of 

changes in the risk-free rate and the tax rate. The risk-free rate effect, although not very 

significant, is consistent with expectations and any risk-free rate increase is reflected in a higher 

operating cost threshold in order to compensate the lower discount factor. Similarly, any 

deterioration in the tax rate also creates a rise in the operating cost threshold because of its 

negative effect on the after-tax cash flow.  

The deterministic variant is a special case of the stochastic replacement model with zero 

volatilities. In Appendix A, we formulate the deterministic variant, determine the optimal cycle 

time and show that the solutions for the stochastic and deterministic variants are identical when 

0C Sσ σ= = . Using the tilde symbol to denote a deterministic solution value, the optimal cycle 

time is 1 22.225T =ɶ , with 11 1.8049η =ɶ , 110.04340γɶ , 1 24.327C =ɶ  and 1 19.749S =ɶ , for the 

parametric data presented in Table 2. When we ignore the salvage value threshold, the operating 

cost threshold for the deterministic variant lies entirely below the boundary for the stochastic 

variant, AB in Figure 1. This suggests that applying the deterministic rule in a context of 

uncertain operating costs and salvage value is sub-optimal., and the error is magnified as the 

salvage value declines towards zero. 



Valuing the Replacement Opportunity with Salvage and Depreciation 

Valuation Function 

Identifying the timing boundary for the replacement model with salvage and depreciation 

is developed in exactly the same way as for the model not including depreciation. Consequently, 

we only present an abbreviated analytical derivation and include only those aspects that are 

materially different. Specifically, the derivation concentrates on the specification of (i) the 

depreciation schedule, (ii) the risk neutral valuation relationship, (iii) the valuation function, (iv) 

the value matching relationship, and (v) the smooth pasting conditions.  

The selected depreciation schedule is DB (declining balance) since among the three 

alternatives, DB, SL (straight line) and SYD (sum-of-year’s-digits), this form is the most 

tractable. The DB depreciation level, denoted by D , is described by the deterministic geometric 

process: 

 d dDD tθ= −  (21) 

where 0 1Dθ< <  is a known constant proportional depreciation rate. Being time dependent, the 

time elapsed since the last replacement, or the age of the incumbent, can be deduced directly 

from the value of D . The principal difference between the evolutionary forms of C  and S  

compared with D  is the absence of the volatility term in (21). When the incumbent is replaced 

by the replica, the depreciation level reverts to its initial level ID . If the re-investment cost K  is 

fully depreciable for tax purposes, then I DD Kθ= . However, we leave this matter open since it is 

straightforward to accommodate this provision in the model solution. 

The value of the asset with its inherent replacement option, which is denoted by 4F ,  

depends on the prevailing levels of the operating cost, salvage value and depreciation, so 

( )4 4 , ,F F C S D= . The risk neutral valuation relationship, expressed as a partial differential 

equation, is given by: 
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The simplest kind of function satisfying (22) takes the generic form: 
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where 4A  denotes an unknown coefficient. The term 4 4 4

4 0A C S Dη γ λ >  represents the 

replacement option value, while 
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τ τ τ
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− −
− +

− +
 

is the asset value in the absence of any replacement opportunities.  

Substituting (23) in (22) yields the characteristic root equation: 

 
( ) ( ) ( )2 21 1
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The function 4Q  represents a hyper-parabola defined over the three-dimensional space 

{ }4 4 4, ,η γ λ . It should be conceived as the extension to the third dimension of the Q  function 

parabola for the replacement with DB depreciation model, and it therefore has a presence in all 

of the eight quadrants of this three-dimensional space. The solution to { }4 4 4, ,η γ λ  can possibly 

belong to any of the following eight quadrants: 

I: { }41 41 41, ,η γ λ  41 41 410, 0, 0η γ λ≥ ≥ ≥   

II: { }42 42 42, ,η γ λ  42 42 420, 0, 0η γ λ≥ ≥ ≤   

III: { }43 43 43, ,η γ λ  43 43 430, 0, 0η γ λ≥ ≤ ≥   

IV: { }44 44 44, ,η γ λ  44 44 440, 0, 0η γ λ≥ ≤ ≤   

V: { }45 45 45, ,η γ λ  45 45 450, 0, 0η γ λ≤ ≥ ≥   

VI: { }46 46 46, ,η γ λ  46 46 460, 0, 0η γ λ≤ ≥ ≤   

VII: { }47 47 47, ,η γ λ  47 47 470, 0, 0η γ λ≤ ≤ ≥   

VIII: { }48 48 48, ,η γ λ  48 48 480, 0, 0η γ λ≤ ≤ ≤   

This suggests that (23) takes the specific form: 
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− −
= + − +

− +∑ . (25) 



Boundary Conditions 

We first constrain the form of (25) by imposing the limiting boundary conditions. As 

previously argued, since the justification for an economic replacement becomes weightier as the 

operating cost increases, the operating cost parameter 4η  has to be positive. This means that the 

eligible { }4 4 4, ,η γ λ  solution space excludes quadrants V – VIII and 45 46 47 48 0A A A A= = = = . 

The effects of variations in the salvage value and depreciation on the replacement option 

value are connected to the net re-investment cost. At replacement, the re-investment cost is partly 

mitigated by the after-tax cash flow arising from the disposal of the incumbent. If at replacement, 

the levels of the salvage value and depreciation for the incumbent are denoted by S  and D  

respectively, then the remaining cumulative depreciation is / DD θ  since D  declines 

geometrically, the after-tax capital gain on the incumbent is ( )( )/ 1DS D θ τ− − , so the after-tax 

cash flow arising from the disposal is ( )1 / DS Dτ τ θ− + . Equivalently, this can be interpreted as 

the after-tax sale revenue from the disposal plus the depreciation tax shield. Now, the owner has 

an incentive to replace the incumbent when the level of the salvage price or depreciation is high, 

and this is correspondingly reflected in the replacement option value. Therefore, the salvage 

value and depreciation parameters, 4γ  and 4λ , have to be positive, which means that the eligible 

{ }4 4 4, ,η γ λ  solution space excludes quadrants II – IV and VI – VIII, and 

42 43 44 46 47 48 0A A A A A A= = = = = = . 

Collectively, the limiting boundary conditions imply that (25) simplifies to: 
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41 41 41

4 41
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For an economically viable replacement, the economic boundary conditions for the 

replacement with salvage and depreciation are constituted by the value matching relationship and 

the associated smooth pasting conditions. The threshold levels triggering an optimal replacement 

are denoted by 4Ĉ , 4Ŝ  and 4D̂  for the operating cost, the salvage value and depreciation 

respectively, where 4
ˆ

IC C≥ , 4
ˆ

IS S≤  and 4
ˆ

ID D≤ . The values of the incumbent and replica 

assets at replacement are defined by ( )4 4 4 4
ˆ ˆ ˆ, ,F C S D  and ( )4 , ,I I IF C S D  respectively, while the 



net re-investment cost is ( )4 4
ˆ ˆ1 / DK S Dτ τ θ− − − . Following Mauer and Ott (1995), value 

conservation at replacement demands that: 

 ( ) ( ) ( )4 4 4 4 4 4 4
ˆ ˆ ˆˆ ˆ, , , , 1 /I I I DF C S D F C S D S D Kτ τ θ= + − + − , 

so explicitly,  the value matching relationship is: 
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 (27) 

The three smooth pasting conditions associated with (27), for each of the three factors C , 

S  and D ,  can be expressed as: 
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which proves that the replacement option value is always positive since 41η , 41γ  and 41λ  are all 

positive. Using (28) to eliminate 41A  from (27) yields: 
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By conjecturing that 41γ  and 41λ  are both small, then 41 41 41 41 41 41

4 4 4
ˆ ˆ ˆ

I I IC S D C S Dη γ λ η γ λ< , and it follows 

that: 
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This implies that for an optimal replacement to occur, the value improvements in the operating 

cost and the depreciation tax shield has to exceed the net re-investment cost. This finding for the 

replacement opportunity with salvage and depreciation re-investment model is the three-factor 

equivalent of that for the standard one-factor investment opportunity model. 

Alternatively, (29) can be expressed as: 
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The replacement and salvage with depreciation model is represented by four equations: (i) the 

reduced form value matching relationship (30), (ii) and (iii) two reduced from smooth pasting 

conditions (28), and (iv) the characteristic root equation ( )4 41 41 41, , 0Q η γ λ =  (24). 

Single Replacement Opportunity 

If there exists only one further remaining replacement opportunity, the value matching 

relationship excludes the replica option value, so (27) becomes: 
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Since the reduced form smooth pasting conditions are identical to (28) except for the inclusion of 

the subscript s , then by eliminating 41sA , the reduced form value matching relationship 

becomes: 
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For a single replacement to be economically justified, then from (32), the after-tax operating cost 

threshold has to exceed the re-investment cost plus the after-tax operating cost value for the 

replica less its depreciation tax shield value. By comparing (32) with (30), then 4 4
ˆ ˆ
sC C≥ . For 

any trajectory starting from the reversionary levels, the multiple replacement policy is always 

exercised before the single replacement policy, since the net re-investment cost is discounted 

over multiple instead of a single replacement. 

The single replacement policy is determined from four equations: (i) the reduced form 

value matching relationship (32), (ii) and (iii) two reduced form smooth pasting conditions, 

amended (28), and (iv) the characteristic root equation ( )4 41 41 41, , 0s s sQ η γ λ =  (24). 

Abandonment 

The possibility of abandonment emerges when the owner becomes indifferent between 

the replacing and abandoning the asset, which occurs whenever replica asset value exactly 



balances the re-investment cost, ( )4 , ,I I IF C S D K= , or the incumbent value balances the after-

tax salvage value including the value of the remaining tax shield, 

( ) ( )4 5 5 5 5 5
ˆ ˆ ˆˆ ˆ, , 1 / DF C S D S Dτ τ θ= − + , where the subscript 5  refers to the abandonment 

possibility. From (27) this implies that: 
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where 5
ˆ
IP  denotes the reversionary revenue level required for abandonment. The smooth pasting 

conditions associated with (33) can be expressed in the same form as (28) except for the change 

in subscript. The reduced form value matching relationships are obtained by eliminating 51A : 
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The abandonment variant of the replacement with salvage and depreciation model is 

composed of four simultaneous equations: (i), (ii) and (iii) three reduced form value matching 

relationship (34), and (iv) the characteristic root equation ( )4 51 51 51, , 0s s sQ η γ λ =  (24). 

Illustrative Results for the Replacement with Salvage and Depreciation 

Even if one
1
 of the factors is deterministic, the optimal timing boundary for the three-

factor real option model occupies a three dimensional space since every factor is dynamic. While 

the timing boundary for a one-factor model is describable by a one dimensional space, and for a 

two-factor model by a two dimensional space, the boundary for the three-factor model is 

describable by a three dimensional space. As the number of dynamic factors grows, the space 

spanned by the resulting timing boundary grows commensurately. This also implies that the 

                                                 
1
 If two of the factors in a three-factor model were deterministic, their threshold levels would be related through a 

time variable and the three dimensional optimal timing boundary could be fully represented by a two dimensional 

space. 



extent of model indeterminacy increases likewise. While a one-factor model yields a point 

solution boundary and there is full model determinacy, and a two-factor model yields a two 

dimensional solution boundary and is one equation short of model determinacy, for the three-

factor model, the solution boundary occupies a three dimensional space and is two equations 

short of model determinacy. So, although the optimal timing boundary for the replacement 

model with operating costs, salvage value and depreciation are fully represented by four 

simultaneous equations, the reduced form value matching relationship (30), two reduced from 

smooth pasting conditions (28), and the characteristic root equation ( )4 41 41 41, , 0Q η γ λ =  (24), 

there are in fact six unknown quantities, 4Ĉ , 4Ŝ , 4D̂ , 41η , 41γ  and 41λ . 

While there is an element of choice in displaying the three dimensional optimal timing 

boundary, we depict the boundary as a representative set within a two-dimensional space. 

Specifically, a salvage value threshold is initially pre-specified, and then for this fixed threshold 

level, the optimal timing boundary is found for the two remaining factors, operating costs and 

depreciation by varying the depreciation threshold level. This procedure is repeated several times 

for alternative pre-specified salvage value thresholds. In this way, a representative set of optimal 

timing boundaries can be constructed. Since depreciation is a deterministic variable, its threshold 

level implies a certain timing level or asset age, 4T̂ , that is: 
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Because time seems to be perceptibly a more natural quantity than depreciation, the optimal 

timing boundaries are expressed in a two dimensional space of operating costs and time.  

The numerical illustrations are computed using the data set and the supplementary 

presented respectively in Tables 2 and 7. The supplementary data provides the depreciation 

reversionary level ID  and the declining balance rate Dθ . We assume that the whole amount of 

the re-investment cost K  is allowable for depreciation, so I DD Kθ= . The merit of using this 

condition is that changes in either the declining balance rate or the re-investment cost are 

automatically cascaded into the depreciation reversionary level. 



Replacement Boundary 

The replacement boundary for the three-factor model is illustrated in Figure 2 for pre-

specified threshold levels for the salvage value and from the parametric values in Tables 2 and 7. 

It is evaluated from the reduced form value matching relationship (30), two reduced from smooth 

pasting conditions (28), and the characteristic root equation ( )4 41 41 41, , 0Q η γ λ =  (24). The set of 

representative boundaries are presented for salvage value threshold levels from a minimum of  0, 

to 20, 40 and until 60, which is its maximum reversionary level. Each boundary is labeled by AB 

with a subscript denoting the salvage value threshold level. When the salvage value threshold is 

zero, a comparison of the optimal timing boundaries for the current replacement model and the 

replacement model with depreciation, Chapter 4 Figure 2 (The effect of tax policy on the 

stochastic replacement decision), reveals that they are identical, as predicted by the theory. When 

the depreciation threshold is zero, or T̂ = ∞ , the operating cost and salvage value thresholds is 

lower for the current model than for the replacement with salvage model, Figure 1 and Table 3, 

because of the inclusion of the replica depreciation tax-shield value: 
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in the value matching relationship for the current model, (27). The boundary AB separates the 

continuance decision region below the line from the replacement decision region above the line. 

When a prevailing salvage value equals the salvage value threshold level, the optimal decision is 

to replace the incumbent whenever the prevailing operating cost and implied time value belong 

to the replacement region, and to continue with the incumbent if otherwise. 

The slopes for the optimal timing boundaries are all positive but non-linear. For any fixed 

prevailing salvage value, the operating cost threshold increases as the asset ages and younger 

assets are replaced at lower operating cost thresholds than older assets. Again, as the asset ages, a 

smaller and smaller operating cost increment is required to promote the prevailing operating cost 

and time levels from on the optimal timing boundary into the replacement region. On 

considering a change in the salvage value threshold, we observe from Figure 2 that the distance 

between adjacent optimal timing boundaries, say for 4Ŝ  equal to 60 and 40, is almost invariant. 

Irrespective of the asset age, a drop in the salvage value from 60 to 40 is going to produce an 

almost identical rise in the operating cost threshold. However, the distance between the two 



optimal timing boundaries grows as the salvage value threshold decreases. A unit drop in the 

salvage value threshold has to be compensated by greater increases in the operating cost 

threshold as the salvage value threshold declines towards zero.  

Representative values along the optimal timing boundaries are presented in Table 8. This 

reveals that a decrease in either the salvage value threshold or the depreciation threshold (or an 

increase in the age threshold) produces an increase in the operating cost threshold and decreases 

in the parameters 41η , 41γ  and 41λ . Since the net re-investment cost is defined as the re-

investment cost less any gains from disposing of the incumbent together with the depreciation 

tax shield, there is an increase in the net re-investment cost as the levels for the depreciation and 

salvage value thresholds decrease, and this increase has to be compensated by a raised operating 

cost threshold level.  

Collectively, Figure 2 and Table 8 illustrate that the effect of including any of the salvage 

value or depreciation in the formulation is to lower the operating cost threshold. Figure 2 reveals 

that the optimal timing boundaries for the replacement model are vertically stacked for differing 

salvage value thresholds, and that the position of the boundary for a lower salvage value 

threshold always lies above that for a higher salvage value threshold. Table 8 endorses this 

finding. Also, it can be observed from Table 8, that for any salvage value threshold, the operating 

cost threshold increases for falls in the depreciation threshold. Any trajectory of prevailing levels 

for the operating cost, salvage value and depreciation, starting from their reversionary levels, is 

almost bound to hit the optimal timing boundary for the operating cost replacement model with 

salvage value and depreciation before hitting that for the operating cost replacement model. The 

sole exception arises when the trajectory hits both boundaries simultaneously, which can only 

occur if the threshold levels for the salvage value and depreciation are both zero. When the levels 

of salvage value and depreciation are relevant, a replacement policy based only on uncertain 

operating costs is sub-optimal and is going to be too conservative. Under this sub-optimal 

replacement policy, assets are allowed to continue to be in use when it is economically justifiable 

to have replaced them. 

Whenever the underlying economic conditions become unfavorable, and the reversionary 

levels at the next replacement become adverse, there is a likelihood that the multiple replacement 



chain remains no longer viable. The asset owner is indifferent between sustaining and 

discontinuing the chain when the replica asset value and the re-investment cost are in strict 

balance, or when the incumbent asset value exactly equals the after-tax salvage value including 

any depreciation tax shield. Again, we consider the magnitude of the revenue reversionary level 

in keeping with the owner’s indifference between continuing and discontinuing the multiple 

replacement chain. The required level of reversionary revenue is determined from (34), and these 

are presented in Table 8 for the representative values along the optimal timing boundary. If the 

reversionary revenue level slips below the level for indifference, it is economically justified to 

accept the salvage value and to discontinue the multiple replacement chain. Table 8 reveals that 

the reversionary revenue levels for indifference are slightly concave around a salvage value 

threshold of 30 and an age threshold of 10. However, the revenue reversionary level for 

indifference is almost invariant. Further, this almost constant amount is significantly lower than 

that for the replacement model with salvage value, Table 3. This shows that by increasing the 

available net cash flow, the inclusion of the depreciation charge produces a fall in the revenue 

reversionary level for indifference, and the condition for discontinuing the multiple replacement 

chain is less severe when depreciation is included in the formulation. 

The optimal timing boundary for the single replacement opportunity model is illustrated 

in Table 9. The shape for the single replacement boundary, Table 9, is very similar to that for the 

multiple replacement boundary, Table 8; however, their locations are very different. The two 

boundaries are vertically stacked, with the single replacement boundary always having a greater 

operating cost threshold for any salvage value and depreciation threshold levels. This means that 

any trajectory of prevailing values for operating cost, salvage value and depreciation will hit the 

multiple replacement boundary before hitting the single replacement boundary. A multiple 

replacement strategy is always preferred to a single replacement strategy, because the re-

investment cost in the multiple replacement model can be recouped over several future 

replacements, while it can only be recouped on one occasion for the single replacement model. 

Although a replacement model with decremental re-investment opportunities can be constructed, 

a more satisfying approach for terminating the multiple replacement chain is to introduce 

conditions specifying when the chain should be discontinued, as we show above. 



Sensitivity Analysis 

Table 10 illustrates the optimal timing boundary for the multiple replacement model with 

salvage and depreciation in response to changes in the parameters. Each entry in the main body 

of the table records the operating cost threshold for a representative set of salvage value 

thresholds 4
ˆ0 60S≤ ≤  and time thresholds 4

ˆ0 T≤ ≤ ∞ . The table is organized into 11 panels, and 

each panel is devoted to a separate parameter.  

Panels A and B of Table 10 present, respectively, the operating cost threshold for 

variations in the re-investment cost and the reversionary operating cost. The results are 

unsurprising. In response to an increase in either the re-investment cost or the operating cost 

revisionary level, there is an accompanying rise in the operating cost threshold, since the 

additional sacrifice has to be compensated by an increased threshold level. The arrays of 

illustrated operating cost thresholds reveal that the threshold attains its highest level at 120K =  

or 12IC =  for the very oldest asset with a zero salvage value, but its lowest level at 80K =  or 

8IC =  for a newly installed asset with a salvage value at the top of its range. Clearly, a fall in the 

operating cost threshold at replacement is being compensated by a rise in either the salvage value 

or the residual depreciation tax shield. The extent of the compensation varies, though, over the 

ranges of the thresholds. As an illustration, for any age threshold, the operating cost threshold 

increase due to an operating cost reversionary level increase declines as the salvage price rises. 

This suggests that as the salvage value declines towards zero, it gains in relative importance 

when the operating cost reversionary level increases. In contrast, the operating cost threshold 

increase due to a re-investment cost increase mainly decreases as the salvage value threshold 

declines towards zero, and so, loses in relative importance. 

The response of the timing boundary to variations in the reversionary salvage value is 

illustrated in Panel C of Table 10. The effect is invariant for a zero salvage value threshold, since 

for 4
ˆ 0S = , 41 0γ = , so the salvage value plays absolutely no role in the value matching 

relationship (27). For a salvage value threshold exceeding zero, the effect of an increase in the 

reversionary salvage value is to reduce the operating cost threshold for all reported entries. This 

occurs because such an increase effectively lowers the net re-investment cost, which then 

leverages a lower operating cost threshold. Although the response of the timing boundary to a re-



investment cost decrease and a reversionary salvage value increase is similar, their magnitudes 

are significantly different. A negative change in the re-investment cost creates a greater relative 

impact on the replacement policy than a like positive change in the reversionary salvage value, 

because of the distinct natures of the re-investment cost and the salvage value. At the next 

replacement, while the re-investment cost is known, the salvage value is uncertain and unknown, 

but most likely to be less than its reversionary level. If we compare the effect of a change in the 

reversionary salvage value on the operating cost threshold, this effect is greatest for the youngest 

asset having a salvage value threshold at the reversionary level, and least for old assets with a 

low salvage value threshold. It follows that in the selection of the right asset, prospective owners 

should devote more attention to obtaining improved terms of sale, and should not be unduly 

concerned with its salvage value. 

Panel D of Table 10 illustrates the timing boundary behavior in response to variations in 

the operating cost volatility. For any salvage value and age threshold, the effect of a volatility 

increase is to raise the operating cost threshold, as expected. An increase in the operating cost 

uncertainty produces a more conservative policy on replacing the incumbent and suggests the 

adoption of a more cautious stance towards replacement. The extent of the timing boundary 

adjustment varies with the threshold levels for the salvage value and asset age. As the incumbent 

grows increasingly old and its salvage value dwindles to zero, the extent of the adjustment 

increases, so that the greatest adjustment occurs for an infinitely aged asset having a zero salvage 

value. In contrast, the effect of a volatility increase is least for a newly installed asset having a 

salvage value at the top of its range. The response of a volatility rise on the timing boundary is 

less for young assets with high salvage values than for old assets with low salvage values. 

The model characteristics change radically when one of the uncertain factors is assigned 

to have a zero volatility. If the volatility of the operating cost is zero, then both the operating cost 

and the depreciation charge are describable by a time dependent function, and consequently, 

their threshold levels are related through this dependency on time. As their threshold levels are 

related to the age threshold 4T̂  through: 
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For 0Cσ = , (35) represents an additional equation to be included in the model, which reduces 

the extent of the model indeterminacy by one. This revised model is relevant for assets under 

study whose operating cost can be legitimately treated as certain, but whose salvage value is 

uncertain, such as electric fork-lift trucks. The optimal timing boundary for the revised model is 

illustrated in Table 11. This reveals that the salvage value threshold declines with asset age. If we 

assume that the salvage value can never exceed its reversionary level, then the asset has a 

minimum asset lifetime of approximately 12.4 years before any replacement can take place. 

Further, the asset also has a maximum lifetime, which occurs when the salvage value threshold 

equals zero, at approximately 22.4 years. Replacements are confined to an age range between 

12.4 and 22.4 years. This analysis demonstrates a key benefit of the quasi-analytical method, 

which stems from the ease of obtaining a solution to a particular problem from the solution to a 

general problem. 

The timing boundary behavior in response to variations in the salvage value volatility is 

illustrated in Panel E of Table 10.  When the salvage value threshold is zero, its parameter 14γ  is 

also zero, and so changes in its volatility can have no impact on the timing boundary. For salvage 

value thresholds exceeding zero, a rise in the salvage value volatility produces a fall in the 

operating cost threshold for all asset ages. This contrasts with the finding concerning the 

response of the boundary to variations in the operating cost volatility. It implies that a volatility 

increase leads to a more liberal replacement policy. The extent of the fall in the operating cost 

threshold is greatest for a salvage value at the top of its range and for the oldest assets. Compared 

with similar changes in the operating cost volatility, the extent of the variations in the operating 

cost threshold due to a salvage value volatility change is, however, relatively modest. Even so, 

the finding may be interpreted as a form of protection policy. If the prevailing salvage value for 

the incumbent is relatively high and the asset is relatively old, increasing uncertainty concerning 

the salvage value produces a more liberal replacement policy because of the possible, significant 

future decline in the salvage value, particularly for older assets. 



When the salvage value volatility is zero, 0Sσ = , the thresholds for the salvage value 

and the depreciation charge are related through time, and we can apply an expression similar to 

(35) for solving the timing boundary: 
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The resulting timing boundary is illustrated in Table 12. This reveals that the operating cost 

threshold increases with age, but at a decreasing rate, until it attains its maximum level when the 

thresholds for the salvage value and the depreciation charge are both zero, which occurs at time 

infinity. This representation is appropriate for assets under study that experience a volatile 

operating cost behavior but a time dependent, known salvage value. This would be relevant to 

problems where the owner acquires the asset from a vendor, but he has the right to return it to the 

vendor at a price according to a deterministic time schedule. 

When both volatilities are set equal to zero, 0Cσ =  and 0Sσ = , the model becomes 

deterministic. This entails determinacy since the model is supplemented by (35) and (36), so the 

number of equations and unknowns is identical. The optimal timing boundary is presented in 

Table 13. It is interesting to note that the operating cost threshold for the deterministic model is 

not the minimum amongst all the operating cost threshold levels listed in Panels D and E of 

Table 10, so the deterministic solution cannot be interpreted as a floor benchmark level. 

Adopting the deterministic model as a yardstick is sub-optimal for a positive volatility, but it is 

impossible to tell from the deterministic solution whether it represents an under- or an over-

estimate of the true figure. 

The effect of variations in the correlation ρ  between the levels for the operating cost and 

salvage value on the timing boundary is illustrated in Panel F of Table 10. Normally, poorly 

performing assets can only command low salvage values, so we would expect ρ  to be negative 

since random disturbances that produce a rise in the operating cost are most likely to be reflected 

in a fall in the salvage value. For the reason given above, variations in ρ  have no impact on the 

timing boundary for a zero salvage value threshold. Panel F reveals that for salvage value 

thresholds exceeding zero, the operating cost threshold declines as the correlation coefficient 

declines and becomes increasingly more negative and that this is most severe for assets having a 



high salvage value or for older assets. This effect, which is similar to the response of the 

operating cost threshold due to an increase in the salvage value volatility, is again counter-

intuitive since if the correlation coefficient is negative, a random disturbance that causes the 

operating cost to rise would also produce a fall in the salvage value, which leads to a rise in the 

net re-investment cost. However, such a disturbance is unfortunate on two counts, because it 

raises the operating cost and lowers the salvage value obtainable if the asset is replaced, and 

these two outcomes are not mutually compensatory. The decrease in operating cost threshold 

arising from a reduction in the correlation coefficient signals that the consequences for the 

operating cost and salvage value levels do not compensate for each other. This suggests that the 

fall in the operating cost threshold observed for a drop in the correlation coefficient is acting as a 

kind of protection against suffering from both types of loss. Alternatively, if the correlation 

coefficient is one, the resulting higher operating cost threshold means that it is economically 

justified to prolong the asset use, since any current value decrease due to a higher operating cost 

is redeemed by a future value gain in the salvage value. 

Panel G of Table 10 illustrates the effects of variations in the salvage value drift rate on 

the operating cost threshold. As before, when the salvage value threshold is zero, changes in the 

salvage value drift rate have no impact on the boundary, since the salvage value is absent from 

the value matching relationship. When the salvage value threshold exceeds zero, the response of 

the replacement policy to a negative increase in the drift rate is to lower the operating cost 

threshold. This can be explained in the following way. It can be inferred from the entries in Panel 

G that, while keeping the operating cost threshold constant, a fall in the salvage value drift rate 

produces a rise in the salvage value threshold. If an asset has a salvage value that deteriorates 

more intensely, then this asset would have to be replaced earlier, at a higher salvage value, than 

other assets. 

An increase in the declining balance rate advances the depreciation tax shield, and this 

should lead to more a liberal replacement policy. Panel H of Table 10 illustrates the effects of 

changes in the declining balance rate on the operating cost threshold. The entries reveal a mixed 

picture. An increase in the declining balance rate does yield a fall in the operating cost threshold 

for older assets ( )4
ˆ 20T ≥  and for newly installed assets, but for assets having an in-between age, 



the operating cost threshold rises. This contrasting behavior can be explained through 

considering the value matching relationship (27). If the threshold for the depreciation charge is 

close to its reversionary level and the asset is young, then the tax shield for the incumbent 

neutralizes the tax shield for the replica, so the re-investment cost is reduced by an amount 

equaling the residual depreciation tax shield. Similarly, if the depreciation threshold is close to 

zero and the asset is old, the incumbent tax shield and the residual tax shield neutralize each 

other, so the re-investment cost is reduced by an amount equaling the replica depreciation shield. 

This effect becomes less intense for assets of in-between years, and consequently, the reduction 

in the re-investment cost is less, and this is reflected in a lower operating cost threshold. 

The effect of a tax rate change on the replacement policy is illustrated in Panel I of Table 

10. We would normally expect a tax rate increase to make the asset less attractive financially, 

and consequently, the operating cost threshold would rise to compensate the tax rate increase. 

This occurrence is recorded only for older assets, assets having an age threshold greater than 2.5 

years, and the effect intensifies with age. In contrast, for newly installed and very young assets, 

the opposite occurrence happens and the operating cost threshold falls in response to a tax rate 

increase. In general, we obtain the expected result that a tax rate rise leads to an increase in the 

operating cost threshold, with the exception for younger assets.  

Changing the tax rate to zero makes the depreciation charge irrelevant as far as the 

replacement decision is concerned. The effect of 0τ =  on the value matching relationship is to 

eliminate the depreciation variables, so (27) becomes: 
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which is similar in form to the value matching relationship for the replacement-salvage model, 

(7). If the capital expenditure could be fully expensed for tax purposes, then (7) would be 

expressed as: 
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It is easily demonstrated that the solutions for the two revised expressions, (37) and (38), are 

identical. This means that the timing boundary is invariant to the tax rate when the re-investment 

cost is fully expensed for tax purposes, so the replacement policy becomes immune to tax rate 



changes and is not distorted by the tax rate level. This finding endorses the conclusion of Smith 

(1963), which is based on a deterministic NPV evaluation. The timing boundary for the 

replacement-salvage model is illustrated in Panel J of Table 5. By comparing this boundary with 

that for the replacement-salvage-depreciation model with various declining balance rates, Panel 

H of Table 10, we observe that the former is always less than the latter for assets having a 

lifetime greater than the expected lifetime. In contrast, if the asset is recently installed, the latter 

is less than the former, and the source of the difference lies in their disparate forms of the 

incumbent and replica option value. 

The effects of the operating cost drift rate and the risk-free rate on the timing boundary 

are unsurprising. Panels J and K of Table 10 record respectively the response of the operating 

cost threshold due to the separate variations in the operating cost drift rate and the risk-free rate. 

An increase in either of these two parameters produces a rise in the operating cost threshold. The 

magnitude of the positive change produced by a rise in the risk-free rate is greatest for the oldest 

assets, because of the time value of money, and for assets with the lowest salvage value, since a 

low salvage value is associated with older assets. The magnitude of the positive change produced 

by a rise in the operating cost drift rate is much less intense, but mixed. The magnitude is lowest 

for assets with an average age and an average salvage value, but increases slightly for younger 

and older assets, and for assets having a lower and higher salvage value. 

Conclusion 

We have applied the quasi-analytical method to the problem of replacing an asset, whose 

operating cost and salvage value deteriorate stochastically with age. The after-tax timing 

boundary is determined as the solution to a set of simultaneous equations. The approach has the 

advantage of analytical transparency. The standard finding for the one-factor real option model 

that for an investment to be economically justified, the value of an opportunity has to exceed the 

investment expenditure is shown to also apply to two- and three-factor replacement models. We 

prove analytically that for a replacement to be economically viable, the incremental value that it 

renders has to be greater than the re-investment cost less any after-tax cash flows from disposal. 

Not only does the analytical approach cope effectively in the absence of dimension reducing 

transformation, without recourse to onerous numerical methods, but it also has the versatility for 



dealing with models with more than two factors. We show how this method is extendable for a 

three-factor model, when depreciation is included as an additional factor. Finally, since this 

characterization of the replacement model represents the salvage value explicitly in the 

formulation, the infinite chain can be terminated when the incumbent value equals the salvage 

value. From this identity, the minimum reversionary revenue level that can sustain an 

economically justified replacement can be found. 

The timing boundaries for a variety of replacement models are investigated. The effect of 

including a variable representing the salvage value or the depreciation in the formulation is to 

lower the operating cost threshold. Additionally, we obtain distinct replacement policies if a 

variable is treated as deterministic instead of stochastic. All this points to the view that the 

appropriate viable conditions justifying a replacement depends on the context of the decision 

situation,  and that full knowledge on the asset characteristics as well as the circumstances 

surrounding its operations is essential before an optimal decision on replacement can be 

formulated. 

There is a fall in the operating cost threshold due to including the salvage value, 

depreciation charge, or both, because of the injection of a positive after-tax cash flow obtainable 

from the disposal. This effect is most intense for younger assets because of the residual 

depreciation tax shield, and for assets having a higher salvage value. The replacement policy also 

depends on the number of remaining replacement opportunities. The operating cost threshold is 

significantly lower for multiple than for a single opportunity since in the latter case, the net re-

investment cost can only be recouped during a single occasion. This implies that the trajectory of 

prevailing values starting from their respective reversionary levels always hits the multiple 

boundary before hitting the single boundary. Unless management decrees a single replacement 

policy, a multiple replacement decision is always enacted and the replacement chain cannot be 

terminated. Alternatively, we can determine the reversionary revenue level that is conducive to 

terminating the chain, which occurs when the incumbent value is exactly matched by the after-

tax disposal value. We find that this implied reversionary level is almost invariant, so it provides 

practitioners with a simple decision rule for ending the chain. 



Variations in the operating cost volatility have an expected, negative impact on the 

operating cost threshold. However, the response to changes in the salvage value volatility and the 

correlation coefficient between the operating cost and salvage value are surprising. There is a 

decrease in the operating cost threshold due to either a rise in the salvage value volatility, 

although the effect is quite modest, or to a fall in the correlation coefficient. One possible 

interpretation of these findings is the workings of some form of protection. There exists a double 

misfortune if a rise in the operating cost accompanies a fall in the salvage value, and this 

misfortune is amplified for higher salvage value volatilities. As a protection against this double 

misfortune, replacing the asset at a lower operating cost threshold may be economically 

desirable, since it avoids experiencing a salvage value fall and a rise in the net re-investment 

cost. Certainly, we find that the response of the boundary to either an increase in salvage value 

volatility or a decrease in the correlation coefficient is greatest for the highest salvage value 

thresholds, which is when the extent of the possible loss is at its greatest. 

The responses of the timing boundary to changes in the declining balance rate and the tax 

rate are mixed. Clearly, a higher declining balance rate and a lower tax rate are expected to lower 

the operating cost threshold because of the respective benefits in advancing and increasing the 

cash flow. However, neither an increased declining balance rate nor a reduced tax rate lowers 

universally the timing boundary, and the expected result is only obtainable for specific cases. If 

the capital expenditure is allowed to be fully expense for tax purposes, the replacement policy is 

invariant to the tax rate and the resulting operating cost threshold is lower than that for any of the 

declining balance rates provided that the asset is at least older than its expected lifetime. A fully 

expensed re-investment cost for tax purposes has the merits that the optimal replacement policy 

is interpretable as a simple rule, replacement is accelerated because of a mainly lower operating 

cost threshold, and the authorities receive the tax receipts earlier instead of being distributed over 

the asset lifetime. 

The significant response of the timing boundary to the inclusion of the salvage value and 

the depreciation charge testifies to the limitations inherent in previous stochastic replacement 

models. Restricted to one-factor formulations because of the curse of dimensionality, more 

representative replacement models have not been devised and questions on the effect of the 

additional factors and their interactions on the solution have been evaded. Through our analysis, 



we have demonstrated that the quasi-analytical method is a key for unlocking these questions, 

and possibly, its use can be extended for investigating other kinds of investment opportunities 

than replacement.  



Appendix: Deterministic Model  

In this Appendix, we find the optimal cycle time Tɶ  for the deterministic replacement 

model with salvage and depreciation, for constant revenues, and varying operating costs, 

depreciation charge and salvage price. We then show that identical solutions are obtained for the 

deterministic model and the stochastic model with zero volatilities. 

 Following Lutz and Lutz (1951) and Howe and McCabe (1983), the present value TV  for 

the asset with lifetime T  is the discounted stream of after-tax net cash flows: 
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where µ  denotes the appropriate risk-adjusted discount rate. The asset is financially viable for 

some definite lifetime so Cµ α> . By adapting the result by Lutz and Lutz (1951), the optimal 

cycle time for the asset is found from maximizing the value of the infinite chain TW , where: 
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where /T DD θ  denotes the residual depreciation of the incumbent at replacement and 0e
ST
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its salvage value at replacement. From (40), the first order condition for an optimal cycle time is: 
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From (39) and (40), (41) simplifies to: 
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By noting that: 
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the solution to Tɶ  is obtainable by solving (42) numerically. 

The optimal cycle time for the deterministic replacement model with salvage is 

obtainable from (42) by setting 0ID = , which implies 0
T
D =
ɶ

. 

We now show that the deterministic solution (42) is obtainable from the solution to the 

stochastic replacement model with operating costs, salvage value and depreciation (30). The 

stochastic solution is recast in a dynamic programming framework by setting C Cα θ= , S Sα θ=  

and rµ = . For 0C Sσ σ= = , then from (24): 
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By making these substitutions in (30), then it is straightforward to show using the smooth pasting 

conditions (28), that the result is identical to the deterministic solution (42). 

Since the solutions to the stochastic and deterministic replacement models with operating 

costs, salvage value and depreciation are identical for zero volatilities, clearly, this finding 

carries over for the model with operating costs and salvage value. 



Table 1 

Constituent Equations for Replacement Model with Salvage 
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Reduced Form Smooth Pasting Condition 
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Table 2 

Parametric Data for Replacement Model with Salvage 

 

 

Replacement re-investment cost K  100 

Initial operating cost for replica 
IC  10 

Risk neutral operating cost drift rate 
Cθ  4% 

Operating cost volatility 
Cσ  25% 

Initial salvage value for replica 
IS  60 

Risk neutral salvage value drift rate 
Sθ  -5% 

Salvage value volatility 
Sσ  25% 

Operating cost salvage value correlation coefficient ρ
 0% 

Risk-free interest rate r  7% 

Tax rate τ  30% 

 



 

Table 3 

Representative Values along the Multiple Replacement with Salvage Boundary 

 

1Ŝ  1Ĉ  11η  11γ  ( ) 11

1
ˆ/IS S

γ
 3

ˆ
IP  

60.0 25.812 1.4447 0.10075 1.0000 22.740 

50.0 27.223 1.4278 0.07867 1.0144 22.532 

40.0 28.755 1.4122 0.05893 1.0242 22.384 

30.0 30.409 1.3980 0.04138 1.0291 22.301 

20.0 32.193 1.3851 0.02582 1.0288 22.286 

10.0 34.132 1.3736 0.01207 1.0219 22.359 

0.0 36.397 1.3632 0.00000 1.0000 22.627 



 

Table 4 

Representative Values along the Single Replacement with Salvage Boundary 

 

1
ˆ
sS  1

ˆ
sC  11sη  11sγ  

60.0 42.743 1.4127 0.05949 

50.0 44.528 1.4028 0.04726 

40.0 46.326 1.3937 0.03610 

30.0 48.135 1.3852 0.02590 

20.0 49.954 1.3773 0.01654 

10.0 51.782 1.3700 0.00794 

0.0 53.619 1.3632 0.00000 

 



 

Table 5 

Effects of Parametric Data Changes on Multiple Replacement with Salvage Boundary 

 

1Ŝ  0 10 20 30 40 50 60 

Panel A:  The effect of re-investment cost changes on the boundary 

80K =   32.446 30.048 28.033 26.205 24.538 23.029 21.679 

100K =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

120K =  40.229 38.052 36.156 34.393 32.738 31.182 29.723 

Panel B:  The effect of reversionary operating cost changes on the boundary 

8IC =  32.938 30.773 28.880 27.122 25.481 23.951 22.534 

10IC =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

12IC =  39.738 37.376 35.390 33.579 31.912 30.376 28.969 

Panel C:  The effect of operating cost drift rate changes on the boundary 

2%Cθ =  36.056 33.912 32.001 30.211 28.525 26.941 25.457 

4%Cθ =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

Panel D:  The effect of operating cost volatility changes on the boundary 

0%Cσ =
 

27.004 25.363 23.950 22.659 21.470 20.378 19.379 

10%Cσ =  28.928 27.178 25.679 24.310 23.051 21.894 20.835 

20%Cσ =  33.498 31.440 29.681 28.068 26.578 25.202 23.938 

25%Cσ =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

30%Cσ =  39.635 37.137 34.990 33.009 31.165 29.451 27.865 

Panel E:  The effect of reversionary salvage value changes on the boundary 

50IS =  36.397 34.180 32.297 30.577 28.991 27.530 26.189 

60IS =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

70IS =  36.397 34.091 32.104 30.264 28.549 26.952 25.473 

Panel F:  The effect of salvage value drift rate changes on the boundary 



4%Sθ = −  36.397 34.186 32.296 30.557 28.942 27.444 26.060 

5%Sθ = −  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

6%Sθ = −  36.397 34.079 32.090 30.263 28.570 27.006 25.567 

Panel G:  The effect of salvage value volatility changes on the boundary 

0%Sσ =
 

36.397 34.298 32.509 30.856 29.312 27.870 26.527 

10%Sσ =  36.397 34.272 32.458 30.783 29.222 27.764 26.409 

20%Sσ =  36.397 34.192 32.306 30.569 28.953 27.453 26.064 

25%Sσ =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

30%Sσ =  36.397 34.059 32.056 30.216 28.517 26.949 25.511 

Panel H:  The effect of operating cost salvage value correlation changes on the boundary 

1ρ = −  36.397 33.672 31.304 29.129 27.124 25.285 23.608 

0.5ρ = −  36.397 33.902 31.748 29.768 27.937 26.251 24.705 

0ρ =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

0.5ρ =  36.397 34.363 32.639 31.054 29.579 28.207 26.933 

1ρ =  36.397 34.593 33.086 31.701 30.410 29.203 28.075 

Panel I:  The effect of risk-free rate changes on the boundary 

6%r =  34.876 32.683 30.853 29.191 27.669 26.275 25.007 

7%r =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

8%r =  37.898 35.560 33.514 31.611 29.830 28.166 26.617 

Panel J:  The effect of tax rate changes on the boundary 

 15%τ =  32.919 30.539 28.537 26.716 25.052 23.540 22.182 

30%τ =  36.397 34.132 32.193 30.409 28.755 27.223 25.812 

45%τ =  41.600 39.447 37.563 35.804 34.147 32.583 31.110 
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Table 7 

Supplementary Parametric Data for Replacement Model  

with Salvage and Depreciation 

 

 

Initial depreciation value for replica 
ID  10 

Depreciation rate 
Dθ  10% 
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Table 8 

Representative Values along the Boundary  

for the Multiple Replacement Model with Salvage and Depreciation 

 

T^ ˆ 0T =  ˆ 2.5T =  ˆ 5T =  ˆ 10T =  ˆ 20T =  ˆ 40T =  T̂ = ∞  

Discriminatory boundary values for ˆ 0S =  

Ĉ  29.540 30.176 30.700 31.478 32.322 32.818 32.919 

η  1.3895 1.3832 1.3785 1.3722 1.3664 1.3636 1.3632 

γ  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

λ  0.02490 0.01890 0.01442 0.00849 0.00303 0.00041 0.00000 

5
ˆ
IP  20.555 20.468 20.417 20.377 20.391 20.443 20.464 

Discriminatory boundary values for ˆ 10S =  

Ĉ  27.099 27.730 28.256 29.044 29.912 30.432 30.539 

η  1.4052 1.3979 1.3925 1.3852 1.3785 1.3753 1.3748 

γ  0.01556 0.01512 0.01478 0.01431 0.01383 0.01356 0.01350 

λ  0.02745 0.02079 0.01582 0.00929 0.00330 0.00045 0.00000 

5
ˆ
IP  20.169 20.080 20.032 20.001 20.032 20.100 20.126 

Discriminatory boundary values for ˆ 20S =  

Ĉ  25.080 25.699 26.219 27.008 27.889 28.424 28.537 

η  1.4230 1.4147 1.4084 1.4001 1.3923 1.3886 1.3879 

γ  0.03404 0.03303 0.03223 0.03110 0.02995 0.02931 0.02918 

λ  0.03004 0.02270 0.01725 0.01010 0.00358 0.00048 0.00000 

5
ˆ
IP  20.032 19.939 19.890 19.862 19.904 19.982 20.011 

Discriminatory boundary values for ˆ 30S =  
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Ĉ  23.271 23.872 24.382 25.166 26.052 26.599 26.716 

η  1.4432 1.4337 1.4265 1.4169 1.4079 1.4035 1.4028 

γ  0.05582 0.05405 0.05265 0.05067 0.04864 0.04749 0.04726 

λ  0.03283 0.02476 0.01879 0.01097 0.00387 0.00052 0.00000 

5
ˆ
IP  20.012 19.911 19.858 19.831 19.880 19.967 19.999 

Discriminatory boundary values for ˆ 40S =  

Ĉ  21.648 22.225 22.722 23.493 24.378 24.932 25.052 

η  1.4659 1.4550 1.4468 1.4358 1.4254 1.4203 1.4194 

γ  0.08126 0.07856 0.07641 0.07334 0.07017 0.06836 0.06799 

λ  0.03585 0.02699 0.02045 0.01190 0.00419 0.00056 0.00000 

5
ˆ
IP  20.090 19.979 19.921 19.891 19.944 20.038 20.072 

Discriminatory boundary values for ˆ 50S =  

Ĉ  20.211 20.759 21.237 21.988 22.863 23.419 23.540 

η  1.4910 1.4786 1.4693 1.4567 1.4448 1.4388 1.4378 

γ  0.11065 0.10684 0.10378 0.09937 0.09479 0.09216 0.09162 

λ  0.03905 0.02937 0.02222 0.01290 0.00453 0.00061 0.00000 

5
ˆ
IP  20.264 20.141 20.076 20.039 20.091 20.189 20.225 

Discriminatory boundary values for ˆ 60S =  

Ĉ  18.963 19.478 19.932 20.654 21.509 22.060 22.182 

η  1.5180 1.5043 1.4938 1.4795 1.4660 1.4591 1.4579 

γ  0.14410 0.13901 0.13490 0.12894 0.12268 0.11906 0.11830 

λ  0.04238 0.03184 0.02407 0.01395 0.00489 0.00066 0.00000 

5
ˆ
IP  20.535 20.397 20.322 20.274 20.320 20.418 20.456 

  



54 

 

 

Table 9 

Representative Values along the Boundary  

for the Single Replacement Model with Salvage and Depreciation 

 

T^ ˆ 0T =  ˆ 2.5T =  ˆ 5T =  ˆ 10T =  ˆ 20T =  ˆ 40T =  T̂ = ∞  

Discriminatory boundary values for ˆ 0S =  

Ĉ  47.250 48.029 48.637 49.480 50.301 50.714 50.780 

η  1.3796 1.3757 1.3728 1.3689 1.3653 1.3635 1.3632 

γ  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

λ  0.01546 0.01181 0.00906 0.00539 0.00195 0.00027 0.00000 

Discriminatory boundary values for ˆ 10S =  

Ĉ  45.423 46.200 46.806 47.646 48.466 48.878 48.944 

η  1.3881 1.3839 1.3808 1.3766 1.3727 1.3707 1.3704 

γ  0.00917 0.00899 0.00885 0.00867 0.00850 0.00841 0.00840 

λ  0.01618 0.01235 0.00947 0.00563 0.00203 0.00028 0.00000 

Discriminatory boundary values for ˆ 20S =  

Ĉ  43.605 44.380 44.984 45.822 46.640 47.050 47.116 

η  1.3974 1.3928 1.3894 1.3849 1.3806 1.3785 1.3782 

γ  0.01923 0.01883 0.01853 0.01813 0.01776 0.01758 0.01755 

λ  0.01697 0.01294 0.00992 0.00589 0.00212 0.00029 0.00000 

Discriminatory boundary values for ˆ 30S =  

Ĉ  41.799 42.571 43.173 44.008 44.823 45.233 45.298 

η  1.4074 1.4025 1.3988 1.3938 1.3892 1.3869 1.3866 

γ  0.03030 0.02965 0.02916 0.02850 0.02789 0.02760 0.02755 
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λ  0.01783 0.01358 0.01040 0.00617 0.00222 0.00030 0.00000 

Discriminatory boundary values for ˆ 40S =  

Ĉ  40.006 40.774 41.374 42.206 43.018 43.426 43.491 

η  1.4184 1.4130 1.4089 1.4035 1.3985 1.3960 1.3957 

γ  0.04254 0.04158 0.04086 0.03991 0.03901 0.03858 0.03851 

λ  0.01877 0.01429 0.01094 0.00648 0.00233 0.00032 0.00000 

Discriminatory boundary values for ˆ 50S =  

Ĉ  38.227 38.992 39.588 40.417 41.225 41.631 41.697 

η  1.4303 1.4244 1.4200 1.4141 1.4086 1.4059 1.4055 

γ  0.05612 0.05479 0.05380 0.05248 0.05125 0.05066 0.05056 

λ  0.01981 0.01506 0.01152 0.00681 0.00245 0.00033 0.00000 

Discriminatory boundary values for ˆ 60S =  

Ĉ  36.466 37.226 37.819 38.642 39.447 39.851 39.916 

η  1.4433 1.4368 1.4320 1.4255 1.4195 1.4166 1.4161 

γ  0.07124 0.06948 0.06815 0.06640 0.06477 0.06399 0.06386 

λ  0.02095 0.01591 0.01216 0.00719 0.00258 0.00035 0.00000 
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Figure 1 

Boundaries for the Replacement with Salvage Model 

AB and DE depict the boundaries for the multiple and single replacement model variants based 

on the data exhibited in Table 1, while AC and DF depict the same boundaries for a zero salvage 

value. The respective continuance and replacement regions lie below and above each boundary. 

Representative values along the boundaries AB and DE are presented in Tables 2 and 3 

respectively. For a zero salvage value, its threshold Ŝ  and parameter value 1γ  are both zero, and 

the operating cost thresholds are 36.397 and 53.619 for the multiple and single replacement 

models respectively. 
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Figure 2 

Optimal Timing Boundary for Multiple Replacement Model 

with Salvage Value and Depreciation 

The various optimal timing boundaries are represented by the generic lines AB, where the 

subscript refers to the value of the salvage value threshold, based on the parametric values 

presented in Tables 1 and 5. The respective continuance and replacement decision regions lie 

below and above each boundary. Representative values along each of the boundaries are shown 

in Table 6. 
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