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Abstract: This paper extends the literature of real options and exhaustible 

resource economics by examining the investment decisions of an active 

exhaustible resource monopolist. With demand uncertainty and endogenous 

price dynamics, the monopolist optimally chooses both the production rates 

and times to build extra capacity. The capacity expansion option for such  a 

firm is modeled as a two-dimensional option on demand shocks and 

remaining reserves. Using a discrete-time simulation, first the dynamics of 

option prices and its sensitivity to different parameters is calculated. Unlike 

previous literature which implies that all investments should happen in the 

beginning, I show that there is an optimal time to invest different from time 

zero. Furthermore, it is shown that the consideration of option value in 

investment decisions will lead the producer to choose a more conservative 

expansion policy and therefore causes higher prices in strong demand shock 

periods. Finally, the optimal production rate of the producer will change by 

the introduction of option feature to the problem. The findings of this paper 

may explain why we do not observe in practice the predictions of Hotelling 

rule regarding increasing prices and decreasing production rates. 
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1. Introduction 
 

In the first glance this paper may look irrelevant. One may say that there is a mature literature 

on capacity expansion options including Pindyck (1980) and Dangle (1998) on the one hand 

and optimal time to invest in natural resources most notably Brennan and Schwarz (1985) on 

the other hand which seem to address the problem of this paper. The answer is that this paper 

differs from previous literature in two major ways. First, the capacity building decision is 

made to foster the extraction a finite and depleting amount of reserves which is being 

produced based on inter-temporal considerations. The standard literature does not take into 

account the dynamics coming from totally-limited production inputs. Second, the paper 

studies the impact of having capacity expansion option on the optimal extraction rate of 

exhaustible resources. The second question comes from the fact that optimal trajectory of 

producing an exhaustible resource is different when the extraction rate is bounded or not 

bounded. The problem becomes more interesting when the extraction capacity is limited but 

can be expanded in future. To the best of my knowledge, these two questions were addressed 

neither the natural resource economics nor in real options literature.  

 

The main question the paper raises is when it is optimal to increase the production capacity of 

exhaustible resource under various uncertainties notably stochastic demand. In real world, this 

problem has a lot of policy implications. From the supply capacity point of view, it is 

important to understand when large producers of exhaustible resources add to their current 

production capacities. For Saudi Arabia this would be the optimal timing of drilling new oil 

wells and for Chile to expand copper extraction capacity. With uncertain demand and 

depleting reserve, finding optimal investment threshold is much more complicated than what 

a simple NPV rule calculations may suggest. One should on the one hand, takes this into 

account that building capacity while demand is fluctuating may mean to have a lot of excess 

capacity in low demand periods and due to depleting nature of reserves this will happen with 

certainty in future. More importantly, adding capacity means to extract more in current period 

and leaving less reserve for future (probably high demand) periods. When this inter-temporal 

effect is considered, the value of higher capacity may be lower than the case where the supply 

of production factors is unlimited, the typical example of widget production.  

 

The problem is also relevant to understand long-term behavior of prices. Commodity prices in 

long-run are driven by demand process and the capacity of supply side which is strongly 

bounded by net investment in production facilities. Oil market would be a good example of 

this case. For years, majority of oil producers have been producing very close to their 

maximum capacity. Although in short-term the wedge between demand and supply can be 

covered through inventories, in long-run supply may not be able to respond to upward 

demand shifts if the production capacity is not expanded. Under this inelastic supply scenario, 

demand shocks would be directly transferred into price process while with enough excess 

production capacity, high demand shocks can partly be observed by increase in production 

rate. This paper discusses the optimal trigger level to build new capacity and hence can be 

useful to understand long-run market fundamentals. 

 

The insights from considering the impact of finite reserve in the real options problem can be 

extended to capacity expansion decisions in environments where the underlying demand for 

the product is deteriorating. One example would be the optimal capacity choice for a producer 

introducing new durable goods whose market will shrink over time and the rate of drop in the 

demand is a function of the rate of supply in previous periods.  
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The model of this paper is a partial equilibrium one where the demand shocks, the price of 

investment good and the amount of reserves are given exogenously. I chose to focus on partial 

rather than general equilibrium, because I am mostly interested in studying the capacity 

building behavior of a single (yet with market power) resource producer. In reality, many of 

these fators are endogenous. The demand process will be affected by market„s expectations 

regarding future supply of exhaustible resource which depends on future excercises of 

capacity expansion options. Hence, if market rationally expects that new investments in oil 

production will happen in a very conservative way, investments on alternative sources of 

energy (e.g solar or oil shale) will be accelerated resulting in slower demand growth for oil. 

The current paper abstracts from this interesting commitment effect of capacity building 

where optimal investment treshold is not the sole determinant of capacity expansion policy 

but strategic considerations also play a major role.  

 

  The contribution of the current paper is twofold.  I first make the price dynamics endogenous 

by looking into the responses of the supply side to demand shocks and the change in price 

after exercising the option. The second contribution is more methodological. A real option 

problem with two state variables where the second one is implicitly dependent of the first one 

through another optimal control problem has been solved.  

 

The paper is organized as following. Section 2 describes the problem with more details and a 

summary of literature is provided in section 3. At section 4 and 5 the theoretical model for 

various cases has been discussed. Because solving the models analytically does not seem 

feasible I use numerical methods to solve them and the results are presented. 

 

2) Description of the Problem 
 

   Since the introduction of Hotelling‟s (1931) formulation for the optimal extraction path of 

exhaustible resources, several variations and refinements of this problem have been proposed 

and discussed in the literature. Consideration of variable production costs, various 

uncertainties, oligopolistic competition, capacity limits, backstop technology, deposits 

multiplicity and the investment in exploration are some major examples of the these 

variations.  

 

   To apply Hotelling‟s formulation into the real world problems, one needs to include 

different uncertainties (regarding for instance to the demand process, production and 

investment costs, time to build, geological properties and deposits, unexpected stops, etc) on 

the one hand and the capacity constraints on the other hand. It is also important to consider 

these two facts simultaneously and interrelated to each other. This motivates a natural stage to 

apply the concept of capacity expansion options in order to analysis the investment and 

production decisions of the producer.  

 

   As a real case, consider a monopolist producer of a natural resource (e.g. oil or copper), 

which faces stochastic demand and is restricted by a rigid capacity limit while possessing a 

capacity expansion option at the same time. The capacity limit is determined by several 

factors such as the number of wells, the size of tunnels, the capacity of material handling 

systems and the number of trained human resources. Since the production rate is restricted by 

these factors, the optimal extraction path of this producer will be different from what the basic 

Hotelling rule - or r-percent rule - suggests. This is simply because an optimal extraction 

programme in some periods may require extraction rates which are higher than the practically 
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feasible level. This immediately inserts a further constraint to the optimal control problem of 

the producer.  

 

 On the other hand, the existence of a capacity expansion option provides the chance to ease 

this limit to some extent by bearing particular investment costs (both in the beginning to buy 

the option and in future to exercise it). These investment expenses should be treated as 

irreversible fixed costs. This is a plausible assumption as investments in mining and oil 

industry (for example the cost to drill an oil well or to build a platform or to construct tunnels 

in mining) are highly tailor-made and specific for the particular oil/gas field or mine. 

Moreover, even if in the case of some general purpose machinery and equipments, 

disentangling, disassembling and moving them to another site or plant might be too costly. 

Therefore it is acceptable to treat them as fully irreversible costs.  

 

   Because of this very irreversibility, the option to wait has a positive value and the capacity 

expansion option will be exercised only when the immediate exercise is profitable enough 

meaning that the investment benefits justifies the scarification of the option to wait.  As an 

example, look at the case of a large producer of oil that has the right to use an oil field. The 

problem for this producer will be the optimal time (or to be technically more precise, the level 

of certain state variables) to start drilling a new well in order to add a specific amount to the 

current production capacity.  

 

 

 Although the option value for an inactive producer has been examined in the literature 

extensively, only one study – to the best of my knowledge -   has studied the production and 

capacity building decisions simultaneously. Previous studies (Brennan and Schwartz (1985), 

Morck et al (1989), for instance) usually calculate the real option value of investing in resources 

with an exogenously specified price process. Moreover, they usually assume a right to 

exercise an investment option for a currently inactive natural resource producer. My model 

differs from them through the important fact that the producer is active in both periods before 

and after exercising the capacity option. Therefore, there is a second dynamics in the model 

which is the level of remaining reserves. In this sense the capacity option problem considered 

is a two-dimensional one. 

 

 

The closest paper to the current one is Carlson, Kokher and Titman (2007) which introduces 

adjustment costs to the resource extraction problem in a competitive market and leaves the 

oligopoly case as an open question. In addition, their paper does not assume a rigid capacity 

constraint and only impose adjustment costs. To address the case of oligopoly, one needs to 

first develop a theory for a monopoly situation and this is what the current paper does. It 

should be noted that the current paper is one early outcome of a larger research project which 

aims to explore the interaction of real options and natural resource economics in a more 

realistic oligopolistic setting. 

 

      The value of a capacity expansion option for a monopolist (or close to monopolist) 

producer of an exhaustible resource such as oil or copper is an important parameter in making 

the capital budgeting and investment decisions. Making use of this option in the future 

requires some basic infrastructure to be built in the early stages of construction. For instance 

consider a copper producer which designs and implements facilities to extract 500,000 tons of 

copper per year. The producer, however, foresees that it might be optimal in future – because 
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of stronger demand or lower production costs – to add another 500,000 units to the production 

by installing some new capacities to flotation or refinery processes.  

 

   This is possible only if the structure of the ore extraction system or the tunnels were built in 

such a way from the onset to support a 1,000,000 ton production line. Since the structures for 

1,000,000 and 500,000 tons/year differ in cost, the decision to choose one of them depends 

crucially on the value of the (future) capacity expansion option. One can see this extra cost of 

building a stronger structure, which may seem for the time being useless and sunk, very 

similar to the money paid to buy a call option on a volatile asset. As we know, the equilibrium 

price of the financial option will not exceed its expected pay-offs (under risk-neutral 

measure), the same logic applies here for the investor in natural resources. 

 

   Moreover, both from a theoretical and practical point of view it is interesting to know about 

the reaction of the producer to the existence of this capacity expansion option. The producer – 

bounded by limited capacity – will choose an optimal rate of extraction according to a 

solution of a stochastic optimal control problem. This is an old observation going back to the 

1980s. I extend the problem by adding a capacity expansion option as a further feature and 

then ask what happens if the producer is forward looking and takes into account the 

possibility of adding to the extraction capacity in future in her current production decision.  

 

   The previous paragraphs illustrate three major questions addressed in this paper which are: 

 

1) What is the value of a capacity option for an exhaustible resource producer and when 

will it be exercised? 

 

2) What is the impact of a capacity option on the dynamics of price? 

 

 

3) Does the presence of a capacity option change the production plan of a producer? In 

other words, does it make any difference in supply side responses to demand shocks? 

  

 

  The paper gives intuition over the behavior the option price when the instantaneous 

production rate is both dependent and independent of the realization of demand shocks. It will 

be shown that if we assume no production costs then with constant-elasticity demand the 

optimal extraction rate is independent of demand shocks while production with linear demand 

will depend on demand shock. I, intentionally, assume zero costs in the case of constant-

elasticity demand in order to present both classes of the problem. The most important 

difference will be that when the optimal production is not being affected by demand shocks, 

the option will be valuable only for a finite time and its value drops to zero as soon as the 

level of stock reaches the critical level. In contrast, with linear structure the option may live 

longer (still not until infinity) because of the possibility of a very high demand realization and 

a strong supply response. 

 

 

3. The Review of the Literature 
 

With no doubt, Hotelling‟s (1931) paper is the most seminal work in the whole literature of 

natural resource economics. This paper raised a critical question that “what is the optimal rate 

of extracting for a particular exhaustible resource”. The paper answered this question by 
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introducing the famous r-percent rule implying that price net marginal cost (marginal 

revenue) will increase with interest rate for competitive (monopolistic respectively) market. 

As an immediate implication of this rule we should observe the futures contracts of 

commodities always in contango. Furthermore, the production rate should diminish over time 

if the demand is constant elasticity. Although Hotelling refers to the issue of limited 

production capacity, he does not explicitly incorporate it in his model. Therefore the results 

are valid only for an unlimited rate of extraction. Moreover, Hotelling does not consider any 

uncertainty in the problem whereas the reality includes various uncertainties as explained 

before.  

 

   Pyndick (1980) was the first to formulate a version of Hotelling‟s problem with continuous 

stochastic demand process. Assuming an Ito process for both demand and resource depletion 

dynamics, he reached a HJB equation which characterizes the optimal value function and 

extraction trajectory. He shows that if the marginal cost does not depend on reserves, the 

optimal extraction rate of the stochastic problem will be the same as the deterministic one. In 

other words, the r-percent rule for competitive and monopolistic case holds even for this case 

under expectations operator.  

 

   Cambpell (1980) introduced capital intensity based capacity constraint into the model. By 

this further assumption, the production at each instant is limited to a maximum level which is 

a function of net accumulated capital. Solving the constrained dynamic optimization problem 

he showed that the capacity constraint will be binding at some initial periods and then will be 

relaxed. Therefore it is optimal to build the capacity only at the very beginning of production. 

This comes from the fact that the optimal production trajectory is decreasing is time (or 

resource level), hence the shadow price of extra capacity is also decreasing over time and 

becomes zero after some time. Moreover, he derives the optimal level of investment at the 

beginning of the project‟s life by equating the marginal value of extra unit of capacity to the 

marginal costs of capital. I show in this paper that if demand is growing over time, the major 

assumption of Campbell paper which is declining production rate is violated. Therefore, it is 

not necessarily optimal to invest at t=0 because the production may reach its peak in some 

later periods and building the capacity from beginning will leave the producer with excess 

capacity in the initial periods.  

 

   Davis and Moore (1998) revise the Hotelling valuation rule based on capacity constraints. 

The older rule suggests that for in a competitive market the present value of a natural resource 

with known quantity is just the product of net value (price less production costs) and the 

amount of resource. Nevertheless, the empirical tests concluded that the value in reality is 

lower than the predictions of this rule.  Davis and Moore justify this difference by introducing 

capacity constraint and show that as long as the capacity is binding, the value function is 

lower than the unlimited case. They however do not provide an explicit valuation formula for 

the constraint case.   

 

   Litzenberger and Rabinowitz (1995) use the concept of (real) options existing in oil 

production to explain the seemingly odd backwardation in oil futures contracts. 

Backwardation is not consistent with the predictions of Hotelling rule as it expects the future 

prices to rise and therefore futures curve to be in contango. They argue that because of the 

value of this real option any decision to produce right now means to scarify the option to wait. 

As a result current production will happen only if the present value of future incomes plus the 

option value exceeds the value of spot production. Since the option value is always positive, 
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the present value of future income should be lower than the spot value which is equivalent to 

strong backwardation.  

 

 

4. The Model 
 

   The risk-neutral monopolist is endowed with an initial level R0 of the deposit of exhaustible 

resources. I assume no uncertainty regarding the resources and no exploration effort, therefore 

the deterministic dynamics of resource depletion is given by dtqdR tt   where qt is  the 

instantaneous rate of production and Rt the level of remaining reserves. An equivalent integral 

formulation would be 



0

0 dtqR t  

 

The inverse demand is a function of production rate qt and an exogenously given random 

process X and is written as ),( tt qXfP  . That extraction costs are neglected. This is a 

realistic assumption for example for the production of oil at the Middle East where the 

variable cost is around 2 US$ per barrel. Therefore the profit is determined by 

tttt qqXpXq ).,(),(  . The stochastic demand parameter X is a geometric Brownian motion 

with the following dynamics: dWXdtXdX ....    

 

The producer maximizes the sum of the present value of future profit streams which is 

equivalent to the next continuous-time stochastic optimal control problem: 
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In this problem the interest rate is taken constant and a dot on the variables shows the time 

derivative.  

 

4.1) Inverse Demand Function and the Impact of Shocks 

 

    To analysis the behavior of the exhaustible resource monopolist, one can specify different 

functional forms for the inverse demand and the profit function and the optimal production 

trajectory will change accordingly. Two widely used functional forms in this area are the 

constant elasticity demand function specified as 01,.),(   XqXqP  and the linear 

demand function given by 0,),(  XqXXqP  where X represents an exogenous demand 

parameter (usually interpreted as the price of backstop technology) and q accounts for the 

production rate. It can be shown and will be discussed later that with constant elasticity 

demand the optimal extraction rate is independent of the realization of demand shocks while 

with the linear demand the shocks change the optimal instantaneous extraction rate. Let us 

motivate this fact by a simple example. 
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Example 1: Consider an exhaustible resource monopolist which faces a two-period problem. 

The initial reserve of resource R is given (R=100) and the interest rate is 10%. 

 

The risk-neutral producer solves the following problem 

 

0,

100

)()(

11

21

2

1.0

1
2,1
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

 

qq

qq

st
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qq
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Solving the problem one sees that for the interior solution the optimality condition is 

1

1.0

2 MReMR  . Now look at this equation with two different forms of inverse demands: 

 

First by isoelsatic demand function:  


 /11.0

121

1.0

22 )()1()1()( eqqXqeXqqMR  ,  Independent of X! 

 

And now plug the linear demand function:  

1

1.0

21

1.0

22 ..5.0)2()2()( qeXrqqXeqXqMR   , Function of X! 

 

Since each demand function represents certain properties in the real world, both forms will be 

studied in this paper. 

 

4.2) Optimal Extraction Rates 

 

It is beneficial to first illustrate different optimal policies under different assumptions 

concerning the behavior of the demand. Both forms of the demand functions with 

deterministic and stochastic dynamics are presented in the next sub-sections.  

 
4.2.1) Deterministically Growing Constant elasticity Demand 

  

The simplest case would be the one where the demand is given by   0,.),( qXqXP  and 

the cofficient X has a deterministic dynamics as dtXdX   

 

Basic Hotelling‟s rule suggests that in the absence of production costs the marginal revenue of 

the monopolist will grow with the interest rate. Using this rule: 
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As seen the production rate is always a linear function of the remaining reserves and declines 

exponentially.  

 
4.2.2) Stochastic Constant elasticity Demand 

 

Pindyck (1980) shows that even with stochastic demand shocks the basic Hotelling‟s rule for 

marginal revenue (price in the case of competitive market) holds. Therefore we have: 
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   This is important to notice that the instantaneous production rate does not depend on X 

(meaning that it is independent of the realizations of the demand shocks) and is only the 

function of parameters of demand function.  

 
4.2.3) Deterministic Growing Linear Demand 

 

Unlike the constant elasticity case the optimal production with linear demand will not be 

independent of demand shocks.  
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With linear demand the reserves will deplete in finite time (if the growth rate of demand is 

less than the interest rate) therefore there is a full depletion time T where the production stops 

there and extraction rate is zero for any t>T. On the other hand the total supply of reserves is 

given by R and the value of shock at time 0, X(0) is known. Using these facts one can write 

down two equations with two unknowns (q(0) and T) in order to fully characterize the 

production path. 
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  The production rate for the linear demand may tend to grow over time and therefore the 

optimal production policy can be downward or upward sloping (depending on the ratio of 

interest rate and the growth rate of demand). If the growth rate of demand is lower than the 

interest rate the reserves will be depleted in finite time while with constant elasticity demand 

it will never be fully depleted. In the next sub-section the samples of the optimal production 

patterns together with the optimal rates under capacity constraints will be demonstrated.  

 

4.3) The Impact of Capacity Constraints 

 

   As explained before, in reality the extraction rate of natural resources is limited by installed 

and active capacity. As it is extremely capital intensive the production capacity is usually 

fixed for a period of time. For instance, in the oil industry building new capacity may take 

between 3 to 10 years. The problem of producer therefore is a constrained optimization 

problem. 

 

  If the demand is constant elasticity the extraction rate in a deterministic environment is 

declining over time. Based on Campbell (1980) the capacity constraint is binding only for 

some initial period of production horizon and once the resource reaches a critical level it will 

stop binding forever. This helps to write down the value function of resource production 

problem with binding capacity as the sum of two separate sub-problems: the problem for the 

period when the constraint is binding and the problem for the period right after that. In the 

first period there will be a fixed rate of production. Therefore the value of first period is just 

the present value of a fixed income stream in a finite horizon. The second period problem 

starts at T* and its current value can be calculated by taking the sum of discounted future cash 

flows coming from the optimal control problem. An example of extraction trajectory with and 

without capacity constraint is depicted in the figure 1.  
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Figure 1: Optimal trajectory of q for unconstrained (blue) and constrained (green) case and constant 

elasticity demand 

 

 

   The graph gives a graphical intuition of the previously discussed behavior. The optimal 

extraction rate is fixed for the constraint problem and once the level of reserves reaches a 

certain value the dynamics of extraction rate is similar to the unconstraint problem.  

 

   On the other hand, if the inverse demand has a linear form, then the dynamics of production 

would take different shapes depending on the drift of demand process. If the demand grows 

slower than the interest rate then the production starts from the beginning and declines until 

the resource is fully depleted (this is true only if there is no production costs otherwise the 

producer may leave some resources underground forever). Adding capacity constraint just 

makes the time of depletion longer. On the other hand, if the demand grows faster than the 

interest rate, then it is optimal to wait and benefit from a stronger demand in future periods. If 

the time horizon is infinite then the resource will never be extracted and this leads into a 

bubble in the value function. With a finite time horizon the dynamics of production would 

look like to the right panel of figure 2 where the producer starts extraction in finite time but 

with an upward extraction path. 
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Figure 2: Optimal trajectory of q for unconstrained (blue) and constrained (green) case and linear 

demand 

 

 

   In the next step, the stochasticity is introduced to the demand process. As discussed before, 

under linear demand the instantaneous rate will depend on the realization of the shocks. 

Figure 3 first shows a sample of production rates under unconstraint problem and two 

different levels of capacity constraints. It can be inferred from the graphs that when the 

capacity constraint is too low the time-path of optimal production (in finite time) will be flat. 

This is a direct result of forward looking behavior. The producer knows that the production 

will terminate in a finite period and the total production during the whole future (starting from 

the next period) will not exceed a certain amount. This destroys the inter-temporal 

optimization nature of the problem because the shadow value of more units of reserves in 

these periods is zero. As a result, it is optimal to produce according to the results of a static 

optimization problem which in this case turns out to be equal to the maximum capacity. This 

result may justify to some extent why we do not observe the declining pattern of production in 

reality.  

 

 
 

Figure 3: Optimal trajectory of q for stochastic demand 
 

Demand growth rate < r Demand growth rate > r 

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Time

P
ro

d
u
c
ti
o
n
 R

a
te

 

 

Unconstraint

Capacity=2

Capacity=4

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

Time

P
ro

d
u
c
ti
o
n
 R

a
te

 

 

Unconstraint

Capacity=2

Capacity=4

Demand growth rate < r Demand growth rate > r 

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

Time

Q
u
a
n
ti
ty

 

 

Constrained

Unconstrained

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

Time

Q
u
a
n
ti
ty

 

 

Constrained

Unconstrained



13 

 

 

4.4) The Value of Extra Unit of Production for constant-elasticity case 

 

  A capacity expansion option for an active producer is similar to a one-time American 

switching option where the holder can shift between two securities with a given cost I. As 

mentioned before, the option considered here has two unique features which make it different 

from other capacity options. First, for a producer of exhaustible resources the total supply of 

resources is given and fixed. This means if the producer postpones the investment in the 

capacity option for one period, the profits of that period will not be lost completely but will 

contribute to the firm value in the next period. This is different from the way the usual 

capacity option problems are formulated. The typical way to motivate a capacity expansion 

option is to introduce a widget producer which takes prices as given and determines when to 

invest in further capacity. If the capacity building decision is delayed for one period, the 

operational profit of that period is gone and therefore it is costly to postpone investment 

decision. Because of this cost the producer tends to exercise its option in a finite time. This is 

not the case for the problem of the current paper since natural resource monopolist considers 

the inter-temporal characteristic of the problem. 

 

  The second major difference relies on the fact that the reserves available for the producer are 

being constantly depleted. Therefore, at any time period in future the level of reserves will be 

lower than today. Ceteris Paribus, it means that the current value of a capacity expansion 

option will be lower than today‟s current value at any future period because the second 

underlying has declined. This will be discussed in detail in the next sections. 

 

   To approach the valuation of capacity option one notices that introducing a new constraint 

to an optimization problem will never improve the value function. Moreover, if the solution to 

the optimal control problem is unique and the constraint is binding over an interval with non-

zero measure, the value function will be lower compared to the unconstraint problem. The 

problems considered in this paper all have concave objective functions and convex constraints 

spaces. Therefore, their solution is unique and as a result the value function is strictly 

decreasing in the difference between maximal capacity needed and given capacity limit.  

 

   Figure 4 depicts the sensitivity of value function to capacity constraints for a given set of 

parameters. It can be inferred from the graph that relaxing the capacity constraint up to certain 

point will improve the value function and after that point the value of constraint and 

unconstraint problems will be the same.  
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Figure 4: Impact of Capacity Constraints on the Value Function 

 

 

 

   It is easy to find this “non-binding” point for the constant elasticity demand function. The 

equation in the sub-section 4.2 gives the relation between the remaining available resources 

and the instantaneous optimal production. Using this relation one can characterize the optimal 

path for the case of limited capacity. The ideas is to divide the extraction path into two 

regions where in the first region the constraint is biding  and therefore the flat production rate 

will be equal to the capacity. In the second region where the capacity is not binding and will 

not bind anymore the problem is the usual Hotelling problem without capacity constraints.  

 

For a given production capacity Q  the capacity will not bind if and only if: 
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   If the initial reserves exceed that threshold, the production curve will be flat and equal to Q

at the beginning. Using this fact one can calculate the time it takes for a producer with a given 

reserve 0R  to reach the non-binding region: 
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Based on these calculations the value function of the producer is given by: 
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By plugging the parameters back to the valuation equation one gets: 
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   To find the value of an extra unit of capacity VC denote the critical level of reserves where 

the capacity constraint just stops binding by R*. Use the fact that under the constant elasticity 

demand, production rate is always decreasing therefore we can specify two regions: 
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   The first equation simply says that when the reserve reaches the non-binding threshold the 

capacity constraint will never bind. Therefore an extra unit of capacity has no value. The 

second equation tells that at any point before this region, one unit of extra capacity will relax 

the capacity constraint and improves the value function. The difference between the values of 

two problems is the value of an extra unit of capacity which is equal to the shadow value of 

capacity constraint. 

 

   Figure 5 shows the time path of the value of one unit of extra capacity for different 

assumptions about demand process. The dot line refers to the case of constant demand and 

therefore the value of extra unit of capacity is constantly declining over time. This conforms 

to the results of Cambpell (1980) suggesting that the optimal time to invest in extra capacity is 

the beginning of the production. 

 

The dashed and continuous lines represent the case of determinist growing demand and a 

demand with GBM process and positive drift. It is an important observation to notice that 

although the change in demand parameter X does not influence the instantaneous production 

rate, it still has a strong effect on the total value of the firm through changing the profits. 
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Therefore one sees that the change of demand influences the value of an extra unit of capacity 

significantly. 

 

 
Figure 5: Time Path of an Extra Unit of Capacity 

 

 

  As seen in figure 5 the value of extra unit of capacity converges to zero after certain time. 

This comes from the fact that the reserves are constantly depleting over time and when the 

level of reserves reaches the critical threshold where the capacity constraint is not binding, 

extra capacity has zero value. This result may change if one introduces uncertainties about the 

level of reserves through adding for instance a jump process accounting for the discovery of 

new reserves. Under this new setting there is always a positive probability that the reserves 

becomes larges in future and therefore the value of extra unit of capacity will not die and 

remains always positive. I abstract from this further aspect and leave it to the extensions of 

the paper. 

 

4.5) The Firm’s Problem under Capacity Constraints 

 

 A producer with a general demand function and a given non-depreciating capacity constraint 

solves the following stochastic optimal control problem where X and R are state variables, q 

is the control variable and qmax refers to the maximum extraction rate:  
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Using standard arguments one gets to the following Hamilton-Jacobi-Bellman equation which 

characterizes the value function: 
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If the production rate depends on X, one can distinguish two cases for q. The first case 

associates with all realizations of X where maxqqt  . In this case the maximum occurs at 

qmax boundary and the corner F.O.C plugged backed into HJB equation leads to the 

following PDE 
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One should notice that at any point where capacity constraint is not binding the option will 

not be exercised. This comes from the fact that the shadow value of extra capacity is zero at 

the point and therefore adding extra capacity will not improve value function while will 

impose an investment cost of I and as a result is a sub-optimal decision.  

 

 

On the other hand if the capacity constraint is not binding FOC condition gives the interior 

solution which in the case of linear demand will be: 
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Substituting it back into HJB equation gives value PDE and its boundary condition: 
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These PDEs are not easy to solve analytically. Therefore we have to use numerical methods to 

evaluate value function for any given set of (R,X).  

 

4.6) The Value of Capacity Expansion Option 

 

   Now consider the problem of the resource producer with capacity expansion option at her 

disposal. As discussed before, this option is like a perpetual American option with exercise 

price of I. The important point is to notice that in our case this is a two-dimensional option 

whose value is driven by two state variables X and R. The key question is to find the free 

boundary as an implicit function of 0),( ** RXJ or a curve on the state space (X,R) which 

characterize the region where exercising the option is optimal. 

 

   To calculate the value of capacity expansion option we consider the basic no arbitrage 

equation. As explained before we do not need to consider dividend effect as the value 

function captures this effect: 
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The initial and boundary conditions of PDE will be: 
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   The first condition comes from the fact that X=0 is an absorbing state for GBM process. 

The second condition suggests that when there is no reverses the option has no value. The rest 

are the usual value matching and smooth pasting conditions for two variables case.  

 

Unfortunately this PDE is not feasible to solve rigorously. Therefore I use binomial tree 

method to compute the value of the option. Figure 6 shows the change of option value versus 

changing different parameters. 
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Figure 6: Value of Capacity Expansion Option 

 

 

 
Up-left panel shows the impact of increasing in the initial reserves on the option value. When 

R increases the effect of the second state variable is weaken since it now looks more similar 

to an infinite reserve case and converges to a normal capacity expansion. Down-right panel 

gives the value of option against its exercise price. The option value tends to zero as the costs 

to build extra capacity increases which means if it is too costly to add to the capacity the 

owner treats it as there is no expansion option. 

 

4.7) The Exercise Region 

 

   Since the analytical solution for the option value function does not exist the binomial tree 

method is used to find the optimal trigger curve in the case of constant elasticity demand. The 

interesting feature of this tree is that unlike other capacity choice problems the second state 

variable (i.e. R) diminishes over time and therefore the current value of option to build 

capacity deteriorates over time. Since we know that option will only be exercised at the region 

where the capacity constraint is binding R has a simple deterministic dynamics. Therefore we 

can use a standard tree for demand uncertainty while changing the value of R according to 

this dynamics. 
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Figure 7 shows the trigger curve on the space of R and X.  

 

 
Figure 7: Exercise and No Exercise Regions for Capacity Option 

 

   The trigger boundary suggests an intuitive result. With values of R above a certain threshold 

it is optimal to exercise the option if the demand shock is strong enough. On the other hand if 

R is below that critical level, the option will never be exercised even with very high demand 

shock (the cross sign on the horizontal axis specifies values of R where option will never be 

exercised). 
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5) Optimal Extraction Policy with Capacity Expansion Option 
 

Unlike constant elasticity demand where the realization of demand process does not influence 

optimal the production rate, under linear demand optimal extraction rate is a function of 

shocks. In this setting, the optimal trajectory of production is a function of demand shocks 

and the capacity available. Moreover, as the producer is forward looking she will take into 

account the possibility of exercising the capacity expansion option in the future. This may 

change the optimal production rate compared to the scenario where there is no expansion 

option. This section of the paper aims to investigate this effect first by some simple example 

and then a numerical simulation. 

 

   The overview of producer‟s two-period problem is demonstrated in the figure 8. Using a 

backward induction, one sees that the second period problem is a normal extraction problem 

with given reserves R1 (the amount left from the first period) and the capacity limit 2Q . The 

first period problem, however, is more complicated because the producer has a capacity 

expansion option available and therefore should decide on how much to produce and when to 

exercise the option. It is a stochastic control problem augmented with an optimal stopping 

time and non-zero variable terminal value. The producer of the first period takes the fact into 

account that the value function of second period problem is directly depending on the 

resources left for the second period. Therefore any policy regarding extraction rate in the first 

period changes the value of the second period problem and on the other hand any decision to 

build capacity influences the optimal extraction rate. Therefore, the problem has a fixed-point 

type behavior. 

 
Figure 8: Producers Problem 
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Denote the value function of the first period by V and that of the second period by W and the 

time to expand capacity by T. The mathematical formulation of the problem as sum of two 

depended optimal control problems will be: 
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The problem would be similar to the constraint case with a major difference that the stopping 

time will be chosen optimally. This effect change the value function by boundary conditions 

coming from value matching and smooth pasting conditions. 
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One should notice that this problem differs from the usual real options and optimal extraction 

problems because the decisions regarding how much to produce and when to stop and move 

to the next problem are made simultaneously. In mathematical terms we have a system of 

partial differential equations with a common free boundary which is more challenging to 

solve even numerically compared to ODE or single PDE problems.  

 

 It is not trivial a priori whether the optimal plan for this case will necessarily differ or will 

conform to Hotelling‟s standard solution. To test that first a simple two-period exampled is 

discussed and then some simulation results will be presented. 
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5.1) A Two-Period Model 

 

   Consider a two period problem with stochastic demand shocks and linear demand function. 

The initial state of shock is 1001 X  and the demand process in the next period may take two 

values 200,80 22  HL XX  with equal probabilities. Maximum production capacity is 50.  

 

The producer solves the following problem: 

 

qXq

qq

qq

qq

st

qEeqMax









 

)(

50,

0,

100

)()(

11

11

21

2

1.0

1





 

 

   The solution of the unconstrained problem is ,40,5.64,5.34 221  LH qqq  that does not 

satisfy capacity constraint for high demand realization in the second period. Therefore we 

move to the corner solution which is 40,50,50 221  LH qqq and the profit under this 

production plan is 

 6595]40*)4080(*5.050*)50200(5.0[50*)50100()40,50,50( 1.0  e  

 

Notice that with linear demand it is not necessarily optimal to extract all remaining reserves in 

the last period. Therefore if the demand shock turns out to be low only a proportion of the 

resources is extracted. 

 

   The reason for deviating from the optimal rate of unconstrained problem in the first period 

is that since the production capacity is limited the producer will not be able to take full 

advantage of possible high shock. As a result she moves part of the next period production to 

the first period to use the slack capacity at this period.  

 

   Now assume that the producer has a 15 unit capacity expansion option which costs 100 

monetary units to exercise. Possessing this option, it is optimal for the producer to wait for a 

period and then exercise the option only if high shock happens. With this extra possibility the 

optimal production plan will be 40,64,35 221  LH qqq  that yields a profit of  

65956837100]40*)4080(*5.064*)64200(5.0[35*)35100()40,64,35( 1.0  e

 

5.2) A Multi-Period Simulation 

 

The results of two-period model are valid for a more general case. Figure 9 depicts the 

production policy of the producer when the costs of exercising the capacity option is too high 

and when it is low. 
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Figure 9: Optimal Production Rates for Expensive and Low-Cost Options 

 

 

The two-period simple model and the multi-period simulations provide some interesting 

results: 

 

a. The producer with a feasible capacity option(s) chooses a more volatile 

production plan compared to the producer without the expansion option(s).  

 

b. If there is a high demand shock the producer who does not have any expansion 

option will response to that shock more strongly (provided that she has enough 

slack capacity) than a producer with capacity option. The second one may save 

more resources for some future periods where even higher shocks may take 

place and use the option there. 

 

These results may justify why the predictions of Hotelling rule are not happening in reality. 

The rule suggests that the production rate should gradually decrease the price should increase 

with the interest rate. However, many studies show that the real price of commodity tend to be 

almost constant during the last century and hardly increased. If one adds the capacity 

constraint aspect to the problem then having a close to flat production rate will be expected 

when investment in higher capacity is not feasible.  

 

This analysis is able to show the path-dependent behavior of the capacity expansion option as 

well. Comparing two different paths for the demand process in past, one can conclude that if 

there was a strong shock in future the rate of extraction was higher than if there was a low 

shock. Therefore, the level of reserves today will be different for two producers with two 

different histories. Now, if both producers face the same demand shock their response in 

terms of building further capacity might be different since the producer with higher current 

reserves (lower past production) is more willing to build capacity than a producer who have 

produced high in the previous periods and therefore retains lower level of reserves.  
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6) Price Dynamics for Constant-elasticity Demand 
 

 

   For a monopolist the market price highly depends on the production rate. Since the 

existence of option changes the production rates we expect that the price dynamics will also 

be different for the producer with and without capacity option. Moreover, one can investigate 

the impact of considering option value in making investment on price dynamics by comparing 

the price process in this case with a myopic NPV rule. 

 

For a producer facing constant elasticity demand the price dynamics will be given by: 
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One can distinguish three regions for price dynamics: 
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  Region 3 suggests that when the capacity is not binding the drift term of price is larger. This 

is due to the fact that in the constraint region Hotelling rule can not hold completely and the 

time dynamics of q which causes change in price is absent.  

 

 Now let‟s look at the price paths a fixed realization of demand shock under real options rule 

and NPV rule. First we show the case for a producer without capacity option. As expected the 

price follows the dynamics of X in the binding region and then the slope jumps as Hotelling 

effect is now in place.  
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Figure 9: Behavior of Capacity and Price without and with Option 

 

 

   In the second scenario we let the producer exercise the capacity option when it is optimal to 

do so. We see that for low realizations of X the capacity option is not exercised and the price 

looks like the previous case. But for high values of X the producer adds to the existing 

capacity and this causes price to drop significantly and then follow the usual dynamics.  

 

One implication of this behavior is that if the reserves are approaching the end of their life the 

price will be more volatile. Price volatility is caused by the fact that with lower level of 

reserves remained the probability of capacity expansion option exercised is lower and 

therefore we expect the supply side to react less aggressively to the demand shocks which 

cases higher price hikes and more volatility.  

 

7) Conclusion and Extensions 
 

   In this paper the interaction of capacity building and extraction decisions of an exhaustible 

resource monopolist was studied. Several results were derived using numerical solutions to 

the continuous-time optimal control problems. First, it was shown that the capacity expansion 

capacity for such a firm may have a finite life. The trigger boundary and the sensitivities of 

option value verses different parameters were illustrated. Finally, it was shown that the 

existence of the option will change the optimal production policy of the producer. These 

results have interesting implications for better understanding of the behavior of firms 

producing exhaustible resources. Unlike the predictions of Hotelling rule we do not 

necessarily expect the production rate to decline over and the price increase with interest rate 

because the producer is bounded by the capacity and tries to produce as much as possible if 
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she expects the saved reserves today to be valueless in future. Moreover, prices will be more 

volatile if the option to build is more expensive and if the remaining reverses are low. 

 The current research can be extended in several directions. First of all, one can model the 

problem for a oligopolistic case where two players extract from a common reserve with 

different capacity limits. Second, new sources of stochasticity can be introduced into the 

model including jumps in the level of remaining reserves, changes in the production costs 

(which were assumed to be zero here) and the cost to build more capacity. One interesting 

variation will also be to look at the results of this paper if the demand process follows a mean 

reverting process or jump-diffusion elements instead of a continuous geometric Brownian 

motion. 



28 

 

References 

 
 Brennan, M.J. and Schwartz, E.S., 1985, Evaluating Natural Resource Investments, 

The Journal of Business 58, 2,135-157  

 

 Campbell ,H, 1980, The Effect of Capital Intensity on the Optimal Rate of Extraction 

of a Mineral Deposit, The Canadian Journal of Economics, Vol. 13, No. 2, pp. 349-

356 

 

 Carlson M, Z Khokher, S, Titman, 2007, Equilibrium Exhaustible Resource Price 

Dynamics, Journal of Finance, vol. 62(4), pages 1663-1703, 08 

 

 Dangl, Thomas, 1999, Investment and capacity choice under uncertain demand, 

European Journal of Operational Research, 117/3,pp. 1-14 

 

 Davis, R. and D Moore, 1998, Valuing mineral reserves when capacity constrains 

production, Economics Letters 60 (1998) 121–125 

 

 Dixit, A. and R. Pindyck, 1994, Investment Under Uncertainty. Princeton, NJ: 

Princeton University Press. 

 

 Guerra, S. , 2008, Long Run Relationship Between Oil Prices and Aggregate Oil 

Investment: Empirical Evidence, Working Paper 

 

 

 Hotelling, Harold, 1931, The economics of exhaustible resources, Journal of Political 

Economy 39, 137–175. 

 

 Litzenberger, Robert H., and Nir Rabinowitz, 1995, Backwardation in oil futures 

markets: Theory and empirical evidence, Journal of Finance 50, 1517–1545. 

 

 R Morck, E Schwartz and D Stangeland, 1989, The Valuation of Forestry Resources 

under Stochastic Prices and Inventories, Journal of Financial and Quantitative 

Analysis, Vol 24, No 4 

 

 McDonald, R., and D. Siegel, 1986, The Value of Waiting to Invest, Quarterly Journal 

of Economics 101, 4: 707-727. 

 

 Pindyck, Robert S, 1980. Uncertainty and Exhaustible Resource Markets, Journal of 

Political Economy, University of Chicago Press, vol. 88(6), pages 1203-25, December 

 

  Pindyck, R, 1980, Irreversible Investment , Capacity Choice the Value of the Firm , 

NBER Working Paper 
 

 

 

 

http://www.anderson.ucla.edu/documents/areas/fac/finance/24.pdf
http://www.online.mba.net/rmorck/Research%20Papers/JFQA%20Valuation%20of%20Forestry.pdf
http://www.online.mba.net/rmorck/Research%20Papers/JFQA%20Valuation%20of%20Forestry.pdf
http://www.online.mba.net/rmorck/Research%20Papers/JFQA%20Valuation%20of%20Forestry.pdf

