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IMPROVING REDEVELOPMENT OF REAL ASSETS 
 

 

Abstract 

 

Property asset management is keenly influenced by the market rental price for the 

services and asset quality. Renovation is conceived as a form of redevelopment that 

returns the property back to its pristine state after experiencing quality deterioration. We 

formulate a two-factor renovation model under rental price and quality uncertainty and a 

fixed investment cost. The renovation policy is determined from the economic boundary 

conditions as an analytical solution in an implicit form. From this, we establish that the 

incremental value from renovating the asset quality has to exceed the investment cost by 

a mark-up factor that exceeds one. Further, the most the property owner is willing spend 

on renovating the property is positively influenced by the prevailing rental price but 

negatively by the underlying volatilities. Owners renovate their properties whenever 

rental prices are propitious and volatility is falling. 
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Introduction 
 
Commercial property assets, such as hotels, apartment blocks and retail parks, experience 

deterioration in their quality level due to wear and tear. The effects of any decline in 

quality loss are to make the property less attractive to both current and prospective users 

and to engender a loss in prestige. This has the possible adverse consequence of a fall in 

rental income, which is the product of the prevailing market rental price for services and 

its idiosyncratic quality. Renovation is conceived as the process of repairing the sustained 

damage and restoring the asset to its pristine state. But, remedying the quality deficit 

necessitates a capital investment injection. This raises the question of identifying the 

viable timing for renovating the asset when both the rental price and the asset quality are 

treated as stochastic. This occurs when the expected improvement in future rental income 

due to the quality renovation are sufficient to compensate the investment outlay. 

Conceptually, the opportunity to renovate an asset represents a real option that can be 

exercised at the discretion of the asset-owner and on a repeated number of occasions. The 

decision on asset renovation is resolved on the basis of the prevailing rental price for 

services of the asset and its quality level. Our aim is to determine in an analytical form 

the timing boundary for the two-factor renovation model. 

 

Real option analysis has evolved from the assertion of Myers and Turnbull (1977) that 

the DCF analysis of investment opportunities is distorted  in the presence of optionality 

and the derivation by Samuelson (1965) of the American perpetuity option. The original 

analytical applications include Tourinho (1979) on resource extraction, Brennan and 

Schwartz (1985) on mining activities with possible suspension, and McDonald and Siegel 

(1986) on investment opportunities.  

 

In the context of property development, applications of real option analysis can be 

classified according to its stage in the property life-cycle. Construction opportunities on 

vacant land is considered through a binomial lattice framework by Titman (1985) and  

through an analytical two-factor model by Williams (1991). Redevelopment opportunities 

of an existing structure are investigated by Williams (1997) who determines analytically 

the optimal inferior and superior quality levels of a property for a variable redevelopment 
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cost, while Childs, Riddiough and Triantis (1996) use a numerical solution technique to 

find the optimal combination for a mixed use property. The possibility of mothballing the 

property by suspending its rental services in a market of falling rental prices, with the 

eventuality of demolition and reconstruction, is investigated analytically by Paxson 

(2007). There are also other studies related to redevelopment; these include Mauer and 

Ott (1995) on equipment replacement and Malchow-Møller and Thorsen (2005) on 

technology replacement. 

 

The methods for solving the timing decision associated with these models of property 

development can be categorised as either analytical or numerical. An analytical solution 

is obtainable for a model that can be expressed as a one-factor formulation. In the Paxson 

(2007) one-factor model, the only source of uncertainty is the profit accruing to the 

property. Since the homogeneity degree-one property is satisfied by the boundary 

conditions in the Williams (1991) two-factor model, his formulation is expressible by a 

single variable. In a similar way, Williams (1997) transforms the boundary condition to 

produce a model in a tractable form. Whenever dimensional reducing transformations are 

unavailable, the conventional approach for solving the timing boundary is to adopt a 

numerical technique such as finite difference, Childs, Riddiough and Triantis (1996). 

However, these methods are computationally onerous and lack the intrinsic appeal of an 

analytical solution.  

 

The aim of this paper is to develop an analytical solution of the timing boundary for the 

two-factor renovation model. In this formulation, the investment cost for renovating the 

property asset is treated as a fixed quantity, which means that the boundary conditions 

infringe the homogeneity degree-one property and dimension reducing transformations 

are unavailable. Despite this, the timing boundary is derived analytically in an implicit 

form and we demonstrate that the condition for renovating the property adopts a form that 

is similar to the expression obtained by McDonald and Siegel (1986) and Dixit and 

Pindyck (1994). Secondly, renovation is conceived as the process of raising the inferior 

quality of the property back to its pristine state. In this conception, quality upgrades can 

range from refurbishment to structural renovation and we determine the most the property 
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owner is willing to spend on renovation for given levels of the rental price and asset 

quality. 

 

The paper is organised in the following way. The second section develops the method for 

deriving the analytical timing boundary and determines the renovation condition. The 

third section explores the model behaviour through a sensitivity analysis. The final 

section is a conclusion. 

 

Valuing the Renovation Opportunity 
Two Factor Model 

To solve the asset renovation problem, we maximise the expected present value of the 

stream of net cash flows rendered by the asset over all possible renovation schemes. A 

commercial property company owns a deteriorating real asset that represents a significant 

portion of its portfolio. It is seeking to identify the threshold conditions signalling a 

renovation investment, which will raise the prevailing inferior quality level to a certain 

superior level. The threshold conditions are characterised by a boundary that 

discriminates between the two decisions of asset renovation and asset continuance. In 

contrast to the one-factor model where the threshold is specified by a single level, the 

discriminatory boundary for the two-factor renovation model is specified by a locus 

function of the two variables that are uncertain. At any time, the property asset renders a 

cash flow revenue that depends on the asset quality and the market rental price relevant 

for the type of property under study. The rental price per unit of quality and the asset 

quality are denoted by  and  respectively, and the rental income is given by . 

These two variables are taken to evolve stochastically according to the geometric 

Brownian motion process. For 

p q pq

{ }x p,q∈ : 

 x xdx xdt xdzx= α +σ , (1) 

Where  is the instantaneous drift rate, xα xσ  is the instantaneous volatility, and  is the 

increment of a standard Wiener process. Dependence between the two uncertain variables 

is described by the instantaneous covariance term 

xdz

p qρσ σ  where [ ] p qCov dp,dq = ρσ σ  

with 1ρ ≤ . Williams (1997) assumes that the rental price follows a geometric Brownian 

5 



process but that quality deterioration is deterministic. We diverge from his formulation 

by allowing the asset quality to be stochastic. If the quality volatility  is set to equal 

zero, then the quality process becomes deterministic and the model reverts to the 

Williams (1997) formulation. The quality drift rate 

qσ

qα  represents the mean deterioration 

rate for the asset, it incorporates both physical depreciation and functional obsolescence, 

and it is expected to be negative. 

 

Renovating the asset incurs an investment cost that instantaneously raises asset quality 

from the prevailing inferior level to a certain superior level. This investment cost is 

denoted by  and is treated as non-stochastic. We assume, initially, that the continuous 

property operating and maintenance cost is constant throughout the asset life, or that any 

variability can be subsumed within the rental income. Subsequently, this continuous cost 

is permitted to be variable. 

K

 

Valuation Function 

The function  is defined as the value of the property asset including its embedded 

renovation option. All renovation decisions are treated as being made in isolation to any 

other enacted policies, so temporary suspension and abandonment opportunities are 

assumed to be unavailable. The value of  depends on the prevailing relevant rental price 

 and the asset quality level , so 

F

F

p q ( )F F p,q= . By assuming complete markets, standard 

contingent claims can be applied to the asset with value  to determine its risk neutral 

valuation relationship, Constantinides (1978) and Mason and Merton (1985). This is 

expressed by the partial differential equation: 

F

 

2 2 2
2 2 2 21 1

2 22 2

0

∂ ∂ ∂
σ + σ + ρσ σ

∂ ∂∂ ∂
∂ ∂

+ θ + θ − + =
∂ ∂

p q p q

p q

F F F
p q pq

p qp q
F F

p q rF pq
p q

.
 (2) 

Where  denotes the risk-free rate of interest, and r pθ  and qθ  are the risk-adjusted drift 

rates respectively for the rental price and quality.  
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The simplest form of generic function satisfying (2) takes the form: 

 pqF Ap q
r

β η= +
−φ

 (3) 

where  denotes a generic parameter and A φ = ρσ σ + θ + θp q p q . This generic functional 

form can be justified in two ways. In their analysis of an investment opportunity, 

McDonald and Siegel (1986) propose that the homogenous element of the functional 

solution to their two-factor model adopts a form similar to that expressed in (3). In their 

formulation, the boundary conditions support homogeneity degree-one, so they impose 

the condition . However, as we will explain later, the property homogeneity 

degree-one is not satisfied by the boundary conditions for the two-factor renovation 

model, and so we do not impose any conditions on the values of 

1β+ η =

β  and η . Other authors, 

such as Paxson and Pinto (2005), use the similarity principle to convert their two-factor 

into a one-factor model, but again, the boundary conditions of the renovation model do 

not support the similarity principle and this dimension reducing method cannot be 

applied. 

 

Secondly, the functional form (3) satisfies the valuation relationship (2) with 

characteristic root equation: 

 ( ) ( ) ( )2 21 1
2 21 1β η = σ β β − + σ η η − + ρσ σ βη + θ β + θ η − =p q p q p qQ , r 0 . (4) 

This is the two-factor equivalent of the Q  function for the one-factor model discussed by 

Dixit and Pindyck (1994). The function Q 0=  defines an ellipse that passes through all 

four quadrants and therefore the roots β  and η  may take on any value in the real two-

dimensional plane: 

 

{ }
{ }
{ }
{ }

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

0 0

0 0

0 0

0 0

β η β ≥ η ≥

β η β ≥ η ≤

β η β ≤ η ≤

β η β ≤ η ≥

I : , , ;

II : , , ;

III : , , ;

IV : , , .

 

This suggests that the generic function (3), which is the solution to (2), takes the specific 

form: 
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 3 31 1 2 2 4 4
1 2 3 4

β ηβ η β η β η= + + + +
− φ

pq
F A p q A p q A p q A p q

r
. (5) 

  

We now invoke the limiting boundary conditions to constrain the form of (5). The effect 

of a renovation investment is to improve the asset quality from its prevailing inferior 

level to a certain superior level in order to benefit from an ameliorated cash flow stream. 

For a high quality level close to its initial level, there is no economic incentive to make 

the renovation investment, and so the renovation option value under these conditions has 

to be close to zero. It follows that η  has to be negative and cannot belong to quadrants I 

or IV, and so  and  have to be zero. In contrast, if the prevailing quality level is low 

and close to zero, there is a strong economic justification for making the renovation 

investment. It follows that η  can only belong to quadrants II or III. Although property 

renovation improves the asset quality level by a certain degree, renovation has no effect 

on the rental price since this is a market figure. Even so, the renovation is only affordable 

for a sufficiently high rental price. If the rental price is low and close to zero, renovation 

is unlikely to occur because it is not economically viable, so the renovation option value 

is close to zero. It follows that β  cannot be negative and the solution quadrant is not III 

or IV. In contrast, if the prevailing rental price is high, there is an incentive to renovate 

and to take advantage of the propitious conditions, so the renovation option value is high. 

This implies that β  is positive and the solution quadrant is I or II.  

1A 4A

 

Collectively, the relevant solution quadrant for the renovation model is II. It follows from 

(5) that the specific solution becomes: 

 2 2
2

β η= +
− φ

pq
F A p q

r
. (6) 

 

Economic Boundary Conditions 

The value matching boundary condition identifies the renovation event when it is 

economically justified to make an investment in quality improvement. Renovation is 

assumed to occur when the asset quality has deteriorated to the inferior threshold level q . 
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At the prevailing market rental price p , the value of the asset in this state is (F p, q ) . The 

act of renovating the asset raises the quality to the superior threshold level q  and the 

renovated asset value becomes ( )qF p,  at the prevailing market rental price p . The effect 

of making the renovation investment cost K  is to improve the asset quality level from q  

to q  where q q> . The two threshold levels, q  and q , are selected to maximise the 

expected benefits altered by the renovation. The optimal choices for , p q  and q  are the 

solutions to: 

{ ( ) ( )}
p,q,q

0 max F p K F p, q= − −, q . (7) 

subject to q q> . The expression being maximized represents the renovated asset value 

less the renovation cost and the sacrificed asset value prior to renovation, all defined at 

the renovation event. The value matching condition requires an overall zero gain at 

renovation because of the indifference between the asset with a superior threshold quality 

after expending the renovating cost and the same asset prior to renovation. The optimal 

values determined from (7) are denoted by p̂ , q̂  and q̂  respectively. The explicit value 

matching relationship for the renovation model is found by substituting (6) in (7): 

 2 2 2 2
2 2

β η β η+ = +
− φ − φ

ˆˆˆpq p̂qˆˆ ˆ ˆA p q A p q K
r r

− . (8) 

 

 

The smooth pasting condition for p  can be expressed as: 

 
( )
( ) ( )2 2 2

2
2

ˆˆ ˆp q q 1A
ˆr ˆ ˆp q qβ η η

−
=
β −φ −

, (9) 

which is positive since  and 2 0β > 2 0η < . Replacing  in 2A (8) yields the reduced form 

value matching relationship: 

 
( )

2

2

ˆˆ ˆ ˆpq pq
K 0

r 1
− ⎛ ⎞β

= >⎜ ⎟− φ β −⎝ ⎠
. (10) 
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Since both sides of (10) have to be positive, otherwise no renovation would take place, 

then . It follows that the mark-up factor 2 1β > ( )2 2/ 1β β −  is at least one.  

 

Renovating a deteriorating asset is viable when the incremental rental income rendered 

by the renovation, evaluated as a perpetuity, equals or exceeds the renovation investment 

cost adjusted by the markup factor. This finding is universally valid for all renovation 

investment costs provided that  is not dependent on the rental price p . The viability 

condition 

K

(10) represents the asset renovation version of the equivalent statement for an 

investment opportunity, McDonald and Siegel (1986) and Dixit and Pindyck (1994). 

Renovating a deteriorating asset in an uncertain environment is economically justified 

only if the incremental rental revenue yielded by the renovation significantly exceeds the 

investment cost. This result contrasts with the net present value rule that justifies asset 

renovation provided that the investment cost is exceeded by the incremental rental 

revenue.  

 

The smooth pasting condition for q  can be expressed as: 

 
( ) 2 22

2

ˆ ˆpq 1A
ˆ ˆr p qβ η= −

η −φ
 (11) 

which is positive since . Substituting for  in 2 0η < 2A (7) yields: 

 
( )

2

2
2

ˆ ˆˆ ˆ ˆ ˆ ˆpq pq pq qK 1
ˆr r

η

η

⎛ ⎞−
= − −⎜⎜− φ η −φ ⎝ ⎠q

⎟⎟ , (12) 

where 
2

2
2

ˆ1 q1
q̂

η

η

⎛ ⎞−
− >⎜ ⎟⎜ ⎟η ⎝ ⎠

0 . The viability condition (12), similarly, demonstrates that the 

incremental rental income rendered by the renovation has to exceed the investment cost 

by a positive amount.  

 

The smooth pasting condition for q  can be expressed as: 

 
( ) 2 22

2

ˆp̂q 1A ˆˆr p qβ η
= −

η − φ
. (13) 
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A comparison of (11) and (13) reveals an obvious contradiction that infringes the value 

matching relationship and makes the model indeterminate. The indeterminacy of the 

model arises because for any given values of p̂  and K , there are an infinite number of 

combinations of q  and q  that satisfy the value matching relationship. There are three 

alternative methods for resolving the indeterminacy: (i) the renovation investment cost 

can be expressed as a function of the quality levels, (ii) the ratio of quality levels can be 

treated as fixed, or (iii) the upper quality level can be set to equal a known, fixed upper 

limit. 

 

If the superior quality level q̂  is fixed at the norm level of one, the reduced value 

matching relationships (10) and (12) become respectively: 

 
( )
( )

2

2

ˆ ˆp 1 q
K

r 1

− ⎛ ⎞β
= ⎜ ⎟− φ β −⎝ ⎠

, (14) 

 
( )

( ) (
2

2

ˆ ˆp 1 q ˆ ˆpq
ˆK 1

r r
−η

−
= − −

−φ η −φ
)q . (15) 

The two factor model is constituted by the two expressions of the value matching 

relationships (14) and (15), and the characteristic root equation (4). 

 

Single Renovation Opportunity 

When only a single renovation opportunity exists for the asset under study, the valuation 

of the renovated asset depends on only the present value of the revenue at the superior 

quality level of one, but excludes the option element. Under these circumstances, the 

amended value matching relationship from (7) can be expressed as: 

 22 22
22

ˆ ˆpq p̂ˆ ˆA p q K
r r

β η + = −
−φ −φ

. (16) 

By substituting for  in 22A (16) by using the smooth pasting condition for  and p q , the 

reduced forms of the value matching relationship become respectively: 

 
( )
( )

22

22

ˆ ˆp 1 q
K

r 1

− ⎛ ⎞β
= ⎜ ⎟− φ β −⎝ ⎠

, (17) 
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( )

2

ˆ ˆp 1 q ˆ ˆpq1K
r r

−
= −

− φ η −φ
. (18) 

 

 

Renovation Opportunities with Costs 

We now extend the renovation model and investigate the impact of an explicit cost 

structure on the renovation policy. Our aim is to formulate, within the confines of a two-

factor model, a variable that represents the continuous operating and maintenance cost for 

the incumbent. The process of asset deterioration is anticipated to result in an increase in 

operating and maintenance cost as well as a relative fall in rental revenue due to the loss 

in quality. The extent of the deterioration experienced by the asset since its last 

renovation is the decline in quality level, or 0q q− , where  denotes the quality level 

immediately following the renovation. If the variable cost element and deterioration are 

related such that the cost depends linearly on the quality loss, this cost element can be 

specified by , where the constant of proportionality  measures the increase 

in operating and maintenance cost due to a unit quality loss. Since any constant term 

appears identically in the valuations of the incumbent value and the renovated asset 

value, it can be safely ignored. Therefore, the valuation relationship 

0q

(q 0k q q− ) qk

(2) has to be 

amended by incorporating the cost variable, which is represented by . The 

relationship becomes: 

qk q−

 

2 2 2
2 2 2 21 1

2 22 2

0

∂ ∂ ∂
σ + σ + ρσ σ

∂ ∂∂ ∂
∂ ∂

+ θ + θ − + + =
∂ ∂

p q p q

p q q

F F F
p q pq

p qp q
F F

p q rF pq k q
p q

.
 (19) 

 

The policy for renovation with costs is derived by applying the line of argument similar 

to that used to develop the original renovation model. The valuation function, which is 

the solution to (19), is given by: 

 2 2
3 2

β η= + +
− φ − θ

q
,

q

k qpq
F A p q

r r
. (20) 

12 



The value matching relationship becomes: 

 2 2 2 2 00
3 2 3 2 0

β η β η+ + = + + −
− φ − θ − φ − θ

q
, ,

q q

ˆˆˆ k q k qpq p̂q
ˆ ˆ ˆA p q A p q K

r r r r
q . (21) 

When the expression for , which is determined from the smooth pasting condition 

with respect to  and is similar to 

3,2A

p (9), is substituted into (21), the reduced form becomes: 

 
( ) ( )0 2

2 q

ˆ ˆ ˆp q q k q q
K

r 1 r
q 0

⎡ ⎤− −⎛ ⎞β ⎢ ⎥= −⎜ ⎟− φ β − − θ⎢ ⎥⎝ ⎠ ⎣ ⎦
. (22) 

By comparing (17) with (22), the effect of including a operating and maintenance cost 

term in the valuation relationship is to effectively reduce the renovation cost K  by the 

amount ( ) (0ˆ ˆp q q / r− −θ )q

−

, which denotes the cost saving expressed as a perpetuity. The 

reduced form (22) states that the incremental revenue rendered by the renovation has to 

equal the renovation cost less the cost saving adjusted by the mark-up factor . ( )2 2/ 1β β

 

The smooth pasting condition for q  can be expressed as: 

 
2 2

q
3,2

2 q

ˆ ˆ ˆpq k q1A
ˆ ˆr r p q

1
β η

⎡ ⎤−
= +⎢ ⎥
η −φ − θ⎢ ⎥⎣ ⎦

. (23) 

Replacing  from 3,2A (23) in (21) yields the second reduced form: 

 
( ) ( ) 2

0 q 0 q 0

q 2 q

ˆ ˆ ˆp q q k q q ˆ ˆ ˆpq k q q1K 1
ˆr r r r q

η⎡ ⎤− − ⎛ ⎞⎡ ⎤
⎢ ⎥+ = − + − ⎜ ⎟⎢ ⎥ ⎜ ⎟− φ − θ η −φ −θ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

. (24) 

This states that by renovating the asset, the sum of the incremental rental revenue and the 

incremental cost saving, both evaluated as perpetuities, exceeds the renovation 

investment cost by the positive amount ( ) 2q
0

2 q

ˆ ˆ ˆpq k q1 ˆ1 q / q
r r

η⎡ ⎤ ⎡ ⎤− + −⎢ ⎥ ⎢ ⎥⎣ ⎦η −φ −θ⎢ ⎥⎣ ⎦
. The 

renovation model with costs is constituted by the two reduced form equations, (22) and 

(24), and the  function Q (4).  
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Numerical Solution and Sensitivity Analysis 
Renovation Boundary 

The renovation models that are developed in the last section are characterised by two 

reduced form equations, which are derived from the value matching relationship, and the 

characteristic root  function. Unfortunately, none of these models is sufficiently 

tractable to yield an explicit solution for the renovation policy. It is, therefore, necessary 

to determine the solution numerically from the three simultaneous equations. Even so, 

this is considerably less onerous than resorting to the finite difference method that is used 

by Childs, Riddiough and Triantis (1996) and Childs, Mauer and Ott (2005). Although 

only three equations constitute the model, there are four unknowns, which are the rental 

price level 

Q

p̂ , the quality threshold q̂ , and the two characteristic roots  and . But, 

model indeterminacy is not relevant here since we are seeking to determine the 

renovation boundary that relates 

2β 2η

p̂  with q̂ .  

 

Normally, the discriminatory boundary dividing the continuance and the investment 

decisions is determined from pairs of values for the two stochastic factors. However, the 

circumstances surrounding the phenomenon of renovation are different and suggest that 

an alternative representation would be more informative. At any time during the asset 

lifetime, the owner observes the market rental price and then deliberates on whether or 

not renovation is viable at the prevailing inferior quality level for a certain investment 

cost. This view of the renovation phenomenon recommends that the discriminatory 

boundary should be formed as pairs of values for the prevailing quality level and the 

renovation investment cost for a specified rental price. Accordingly, the determination of 

the discriminatory boundary first requires setting the rental price p̂  at a specific level, 

and then proceeds to sequentially evaluate from the model equations the numerical 

solutions of the quality threshold q̂  and the two characteristic roots, 2β  and , for a set 

of values for the investment cost . The base case data for the renovation model are 

presented in Table 1. 

2η

K

 
TABLE 1 

Base Case Data for the Renovation Model 
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Rental Price Level p̂  50.0
Superior Quality Level 0q  1.0
Rental Price Risk Neutral Drift Rate pθ  0%
Rental Price Volatility pσ 20%
Quality Risk Neutral Drift Rate qθ  -4%
Quality Volatility qσ 10%
Rental Price Quality Correlation ρ  0%
Risk-free Interest Rate r  7%

  
Figure 1 illustrates the discriminatory boundary labeled AB, which relates q̂  with K , for 

the original renovation model characterized by (14), (15) and (4), and using the data 

exhibited in Table 1. This figure also reveals the regions of continuance and renovation 

that are separated by the boundary. For a specific rental price and quality level, 

renovating a property remains viable for low investment costs, but as soon as the 

investment cost exceeds the level identified by the boundary, renovation is no longer 

viable and the optimal strategy is not to renovate. Further, the boundary is downward 

sloping so falling quality levels are associated with rising investment cost levels. At the 

ruling market rental price, property assets having a lower prevailing quality level have to 

incur a greater renovation investment cost in order to bring the quality up to the norm 

level. Greater differences between the norm and the prevailing quality levels demand 

higher investment cost levels for renovation. From Figure 1, the most an owner should be 

willing to commit to renovating their asset for a prevailing rental price of 50 and an 

observed quality level of 50% is 105.331. 

 

At the point A on the discriminatory boundary, a zero investment cost is insufficient to 

raise the quality level by any positive amount. Figure 1 reveals that at A,  and 

, which is the negative characteristic root 

2 1β =

2 1.352η = − 2−η  of the equation ( )2Q 1, 0η = . 

As we move along the boundary from A towards B, both 2β  and 2η  increase. Although 

                                                 

)
1 The real option rule for an investment opportunity with value , investment cost   and mark-up factor 

 is . This can be interpreted as the greatest investment cost for acquiring the asset 

is no more than . 

V K

( )/ 1β β − (V K / 1= β β −

( )K V 1 /= β − β
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2β  can in principle increase without limit, the value of 2η  is only permitted to increase to 

zero. If  exceeds zero and becomes positive, then  whether evaluated from 2η 2A (9) or 

(11) is negative. This implies that the option element of the asset valuation is negative, 

which is a result that contradicts option pricing theory. Clearly, the value of 2η  is 

restricted to the range from  to zero. Moreover, this restriction places a limit on the 

inferior quality threshold. By L’Hospital’s rule: 

2−η

 ( )2

2
2 m

0
lim 1 q / ln q

−

−η

η →
− η = in , 

where minq  denotes the minimum quality threshold. It follows from (14) and (15) that: 

 ( )min 2 minq 1 ln q+ 1−β = , 

where  is the positive characteristic root of the equation 2+β ( )2Q ,0 0β = . Since the 

minimum quality level minq  depends on 2+β , its value is determined by only the 

stochastic properties for the rental price. Surprisingly, the minimum quality level is 

independent of the stochastic properties for the quality level, and is not affected by either 

the prevailing rental price or the renovation investment cost. It is only possible for minq  to 

approach zero provided that 2+β  tends to infinity, which only occurs when the rental 

price volatility pσ  tends to zero. In a world of rental price certainty, a minimum quality 

threshold level of zero exists. The consequence of rental price uncertainty is to give rise 

to a minimum quality threshold level such that renovations become infeasible whenever 

the prevailing quality level falls beneath that minimum. The existence of a minimum 

quality threshold implies that there is a maximum investment cost above which 

renovation is not feasible. Using the data exhibited in Table 1, then  and 2 2.4365+β =

minq 0.206= 4 , so the maximum renovation investment cost is 212.67. 

 

Redevelopment in the Williams (1997) model is signaled when the asset state variable 

attains the threshold level. Like other one-factor models, his model supplies a threshold 

condition based on a single variable since the transformation on the value matching 

relationship reduces the dimensionality to one. The discriminatory boundary is 
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represented by a single point. In contrast, the two-factor renovation model yields a two-

dimensional discriminatory boundary that is composed of a countless set of paired values. 

The renovation investment cost that is required to remedy the quality deficit is evaluated 

for all possible quality levels. In essence, the renovation cost is not treated as fixed but is 

allowed to vary. This means that an asset-owner can, at any time during the renovation 

cycle, apply the renovation discriminatory boundary to investigate whether or not the 

required renovation cost is sufficiently small to make renovation economically 

acceptable. Accordingly, the renovation model interprets renovation as an act that can 

possibly happen throughout the lifetime of the incumbent, rather than at some 

predetermined point. 

 

Variations in Rental Price  

Figure 2 illustrates the effects of variations in the rental price p  on the renovation 

boundary. Three different rental prices are presented, namely 40, 50 and 60. All three 

renovation boundaries start at the identical renovation investment cost of zero for a 

quality level of 100%, and then the boundaries slope downwards as a declining quality 

level is associated with a greater investment cost for remedying the deficit. Further, all 

three boundaries terminate at the identical minimum quality level since this level only 

depends on . However, at the minimum quality level, the cost of renovating the asset 

is different for each boundary and the largest renovation cost is associated with the 

greatest rental price. This is explain by their positive association as expressed in 

2+β

(14). 

 

In Figure 2, the renovation for greater rental prices always lies to the right. For any 

specified quality level, a rise in rental price leads to an increase in the renovation cost. 

Higher rental prices are able to support a greater cost incurred in renovating the asset, so 

when the rental price increases, the asset-owner is more agreeable to spending more on 

asset renovation for remedying the quality deficit because of the greater improved future 

benefits from the renovation. In fact, a proportionate increase in rental price corresponds 

to an identical proportionate change in the renovation cost. Asset-owners are more 

predisposed to renovating their properties when rental prices are observed to be 

increasing. 
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Variations in Volatility 

Figure 3 illustrates the effects of variations in the rental price volatility pσ  on the 

renovation boundary. Four different rental price volatilities are presented, namely 0%, 

10%, 20% and 30%. The renovation boundaries, which all start at the identical point at a 

quality level of 100% and a renovation cost of zero, are all downward sloping. All four 

renovation boundaries terminate at different minimum quality levels, which increase for 

increases in volatility since  varies inversely with 2+β pσ . The renovation boundaries for 

greater rental price volatilities always lie to the left. For a specific quality level, the most 

the asset-owner is willing to spend on renovating the asset and remedying the quality 

deficit is always less for increases in the rental price volatility. If the rental price volatility 

rises, there is greater uncertainty concerning the improved future benefits produced by 

the renovation and consequently, this increases the sacrificial value of the renovation 

cost. Asset-owners are more reluctant to renovate their properties in a climate of 

increasing rental price volatility. 

 

Figure 4 illustrates the effect of variations in the asset quality volatility on the renovation 

boundary. Two boundaries are presented for q 0%σ =  and q 100%σ = . Both curves are 

downward sloping. They both start at the same point where q̂ 100%=  and , and 

terminate at the same point where 

K 0=

q̂  equals the minimum quality level. The two curves 

form an envelope, within which lies the boundaries for other volatility levels that fall 

within the range. Increases in the quality volatility bends the boundary towards the left, 

but leaves the two end points unaffected.  

 

Conclusion 

 

We determine the optimal discriminatory boundary for renovating a property asset that is 

subject to stochastic rental prices and quality levels, and a fixed investment cost. The 

renovation policy is found analytically as the implicit solution to a set of simultaneous 

equations derived from the economic boundary conditions. This quasi-analytical method 
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has several advantages compared with the alternatives. An implicit solution to the 

boundary is obtainable even though dimension reducing transformations are unavailable. 

Further, numerical methods such as finite difference are computationally onerous and 

lack the transparency of an analytical solution. In contrast, the quasi-analytical method 

delivers a relatively effortless solution, albeit in an implicit form, on which various 

sensitivity experiments are facilitated. 

 

The economic boundary conditions for the renovation model yield a rule on the viability 

of renovating. It states that renovation is economically prudent whenever the incremental 

value from upgrading the property quality exceeds by a mark-up factor the investment 

cost of renovation. This rule on renovation investment is the two-factor equivalent of the 

one-factor rule formulated by McDonald and Siegel (1986) and Dixit and Pindyck (1994) 

and demonstrates that their fundamental conclusion is extendable to other contexts. The 

renovation policy is characterised by the discriminatory boundary that is expressed as the 

trade-off between inferior quality levels and the renovation cost required to bring the 

property back to its pristine state. The shape of the discriminatory boundary establishes 

that the level of renovation investment required for a specific market rental price 

increases with the quality deficit and that progressively inferior quality levels demand 

greater amounts of investment to remedy the deterioration. Moreover, the most the 

property owner is willing to invest on property renovation depends positively on the 

market rental price and for a specific level of quality deterioration, higher rental prices 

can absorb greater amounts of renovation investment. Finally, the renovation policy is 

affected by the degree of uncertainty. The most the property owner is willing to invest on 

renovation is adversely affected by the extent of the volatility for specific levels of rental 

price and quality. A reduction in volatility for either the rental price or quality increases 

the amount the property owner is prepared to invest viably on renovation. Since volatility 

increases reduces the viable amount of renovation investment, property owners have to 

exercise greater caution whenever there is a rise in volatility. 

 

The combination of market rental price and property quality in a renovation model 

produces a richer conceptualization than the existing one-factor representations and the 
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quasi-analytical approach delivers the renovation policy with greater facility than the 

finite difference method. However, the representation ignores the existence of other 

options available to the property owner such as the temporary suspension of rental 

services or abandonment.  
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Figure 1 

Discriminatory Boundary for the Multiple Opportunity Renovation Model 

 

 

Typical values are 

q̂  K  2β  2η  

100.0% 0.000 1.00000 -1.35235
90.0% 5.179 1.12860 -1.30254
80.0% 19.935 1.28087 -1.22809
70.0% 42.802 1.45748 -1.11987
60.0% 71.946 1.65482 -0.96952
50.0% 105.335 1.86384 -0.77350
40.0% 141.107 2.07207 -0.53630
30.0% 177.916 2.26842 -0.26873
20.6% 212.686 2.43649 0.00000
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Figure 2 

Discriminatory Boundary for the Multiple Opportunity Renovation Model 

for Three Different Rental Prices 

 

 

 

 

 

Typical values are: 

   Rental Price  p
   40 50 60 
q̂  2β  2η  K  K  K  

100.0% 1.00000 -1.35235 0.000 0.000 0.000 
90.0% 1.12860 -1.30254 4.143 5.179 6.215 
80.0% 1.28087 -1.22809 15.948 19.935 23.921 
70.0% 1.45748 -1.11987 34.242 42.802 51.363 
60.0% 1.65482 -0.96952 57.557 71.946 86.335 
50.0% 1.86384 -0.77350 84.268 105.335 126.402 
40.0% 2.07207 -0.53630 112.885 141.107 169.328 
30.0% 2.26842 -0.26873 142.333 177.916 213.499 
20.6% 2.43649 0.00000 170.149 212.686 255.224 
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Figure 3 

Renovation Boundary for Multiple Opportunities  

for Three Different Rental Price Volatilities 

 

ypical values are: 

 

T

p 0%σ =  p 10%σ = p 20%σ = p 30%σ =  
q̂  K  K  K  K  

 

100.0% 0.000 0.000 0.000 0.000

2 2 1 1

1 1 1
1

 

90.0% 5.282 5.256 5.179 5.056
80.0% 0.865 0.623 9.935 8.895
70.0% 46.329 45.374 42.802 39.259
60.0% 81.219 78.541 71.946 63.866
50.0% 25.035 18.796 05.335 90.858
45.0% 150.120 141.040 123.022 04.843
40.0% 177.221 164.344 141.107 119.018
35.0% 206.257 188.419 159.441 133.319
30.0% 237.139 212.975 177.916 
25.0% 269.770 237.747 196.466 
20.0% 304.039 262.520  
15.0% 339.822 287.162  
10.0% 376.973 311.656  
5.0% 415.305   
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Figure 4 

Renovation Boundary for Multiple Opportunities  

for Two Different Quality Volatilities 

 

 

Typical values are 

q̂  q 0%σ =  q 20%σ = q 40%σ = q 60%σ = q 80%σ = q 100%σ =  
100.00% 0.000 0.000 0.000 0.000 0.000 0.000

5.919 4.277 3.336 2.932 2.728 2.613
22.211 16.906 13.515 11.995 11.216 10.774
4 3 3 2 2 2

1
1 1 1 1 1 1

1 1 1 1 1

 

 

90.00%
80.00%
70.00% 6.423 7.408 0.767 7.627 5.986 5.044
60.00% 76.031 64.974 55.243 50.299 47.645 46.102
50.00%
40.00%

08.876
43.459

98.345
35.792

86.901
25.273

80.480
18.510

76.898
14.510

74.779
12.078

30.00% 178.942 75.329 69.067 64.242 61.116 59.124
20.64% 212.686 212.686 212.686 212.686 212.686 212.686
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