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Abstract: The paper deals with optimal stopping problems which
arise in real options theory. We describe a variational approach to
the solution of optimal stopping problems for diffusion processes,
as an alternate to the traditional approach based on the solution
of the Stefan (free-boundary) problem. The connection of this
variational approach to smooth pasting conditions is established.
We present some examples where the solution to the Stefan prob-
lem is not the solution to an optimal stopping problem. On the
base of the proposed approach, we obtain the solution to an opti-
mal stopping problem for a two-dimensional geometric Brownian
motion with a non-linear payoff function. As an application we
consider an optimal investment timing model taking into account
tax exemptions.

1 Introduction. Real options
Let us consider an investment project of creating a new firm in the real sector
of economy. This project is characterized by a pair (Vt, t ≥ 0, I), where Vt

is a Present Value of the firm created at time t, and I is a cost of investment
required to create the firm. Vt is assumed to be a stochastic process, defined
at a probability space with filtration (Ω,F , {Ft, t ≥ 0},P), where Ft specifies
the information accessible for investor up to the time t. This model starting
from the well-known McDonald-Siegel model (see [11], [12]) supposes that:
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- a decision on investing is based on the observed information about
market (stochastic) prices on input and output production;

- at any moment, a decision-maker (investor) can either accept the project
and proceed with the investment or delay the decision until he obtains
new information;

- investment are considered to be instantaneous and irreversible so that
they cannot be withdrawn from the project any more and used for other
purposes.

The investor’s problem is to evaluate the project and to select an appro-
priate time for the investment. In real options theory there are two different
approaches to solving this problem (see [12]).

The value of project under the first approach is the maximum of net
present value (NPV) from the future firm over all stopping times (regarding
to the flow of σ-algebras Ft:

F = max
τ

E(Vτ − I)e−ρτ = E(Vτ∗ − I)e−ρτ∗ , (1)

where E stands for an expectation at initial (Real World) measure P), and
ρ is the given discount rate. An optimal stopping time τ ∗ in (1) is viewed as
optimal investment time (investment rule).

Within the second approach an opportunity to invest is considered as an
option – the right but not obligation to buy the asset on predetermined price.
At that an exercise time is viewed as investment time, and value of option
is accepted as a value of investment project. In these framework a project
is spanned with some traded asset S, which price St is completely correlated
with present value of the project Vt.

In order to evaluate a (rational) value of this real option it is usually used
two different (but interlinked) ways.

The first one is based on classical Financial Options Pricing theory. Namely,
we have BS market (see, e.g., [2]) with risk-free interest rate r and risky asset
S, which dynamics St = St(µ) is described by geometric Brownian motion
with drift µ, volatility σ, and flow of dividends at rate δ. On this market
one can consider an American option with payoff ft = g(St) = (St − I)+ if
exercised at time t. Then the value of this option equals to sup

τ
EQe−rτfτ ,

where sup is taken over all stopping times, and EQ stands for an expecta-
tion at risk-neutral (martingale) measure Q, such that {Ste

−(r−δ)t, t ≥ 0} is
Q-martingale. After the change of measure (see, e.g. [2], [5]) the value of
option can be written as

sup
τ

Ee−rτg(Sτ (r − δ)), (2)
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where expectation is taken relative to initial (Real world) measure, and risky
asset S is evolved as geometric Brownian motion with drift ρ−δ and volatility
σ. The above mentioned formula for the value of American option holds in
more general setting with any payoff function g(S).

The second way (see classical textbook [12]) is based on Contingent
Claims Analysis and considers a replicated portfolio on the above BS market.
The value of real option is defined in this way as a solution to the following
free-boundary problem (Stefan problem):

0.5σ2S2F
′′
(S) + (r − δ)SF

′
(S)− rF (S) = 0, 0 < S < S∗;

F (S∗) = g(S∗); (3)
F ′(S∗) = g′(S∗).

It is commonly accepted that a solution to Stefan problem (3) gives also
the value of the corresponding optimal stopping problem (2). This is really so
for a classical American call option with the payoff g(S) = (S − I)+, but for
the general payoff function a relation between solutions to problems (2) and
(3) remains open. Commonly speaking, what is a connection between opti-
mal stopping problem for diffusion processes and appropriate Stefan problem
(with free boundary).

Similar problems arise also for options defined on multiple underlying
assets. For a multidimensional case an optimal stopping problem is very hard
for studying whereas Stefan problem can be solved numerically (including
computer-based methods).

The paper proposes the new (variational) approach to the solution of
optimal stopping problems for diffusion processes, as an alternate to the
traditional approach based on the solution of the Stefan (free-boundary)
problem. The main idea of this approach is a variation of certain functional
defined on the sets from the given "continuation regions". In the framework
of this approach a smooth-pasting condition can be viewed as first-order
optimality condition, and we give some "non-exotic" examples when solution
to Stefan problem doesn’t give a solution to optimal stopping problem.

On the base of the proposed approach, we obtain the solution to an
optimal stopping problem for two-dimensional geometric Brownian motion
with a non-linear homogeneous payoff function. As an application we then
consider an optimal investment timing model under uncertainty taking into
account tax exemptions and derive a closed-form formula for an optimal
investment rule.

The paper is organized as follows. In Section 3 we describe a variational
approach for solving an optimal stopping problem which is an alternate to the
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traditional approach based on solving the Stefan (or free-boundary) problem
– see Section 2.

For the case, when the class of continuation regions is one-parametric
family of sets in Rn, an optimal stopping problem can be reduced to the
maximization of some (enough simple) function. We set that smooth pasting
conditions are equivalent (in the case considered) to stationarity, or first-
order, condition for some function. We give also few examples when a solution
to Stefan problem is not a solution to optimal stopping problem.

In Section 4 it is demonstrated how a variational approach works. We
show how this approach can be used in known problem of “Russian option”
pricing. An optimal stopping problem for two-dimensional Brownian motion
and homogeneous (of any non-negative order) payoff function is studied also.
A linear version of this problem, arising in investment timing models, is
studied, at heuristic level, in [11] and was a base for real option theory (see,
for example, [12]). The rigorous proof of an optimality, and the conditions
at which the formula for optimal investment time (stated at [11]) is hold,
appeared later in [13].

A reduction of optimal investment timing problem (taking into account
a taxation of enterprises) to optimal stopping problem for two-dimensional
Brownian motion and linear payoff function is conducted in Section 5.1. For
solving this problem we use a variational approach. A case with non-linear
homogeneous (of the first order) payoff function, that arises in real option
theory under tax exemptions is also considered in Section 5.2.

2 Optimal stopping problem
Let Xt, t ≥ 0 be a diffusion process with values in Rn defined on a stochastic
basis (Ω,F , {Ft, t ≥ 0},P).

Let us consider an optimal stopping problem for this process:

U(x) = sup
τ

Exg(Xτ )e
−ρτ , (4)

where g : Rn → R1 is payoff function, ρ ≥ 0 is discount rate, and Ex means
the expectation for the process Xt starting from the initial state x. The
maximum in (4) takes over some class of stopping times (s.t.) τ , usually over
the classM of all s.t. with respect to the natural filtration FX

t = σ{Xs, 0 ≤
s ≤ t}, t ≥ 0).

Traditional solving of problem (4) is to find s.t. τ ∗, at which sup in (4) is
attained, as well as the value function U(x), for all initial states x (see, e.g.,
[1]). In other words, (4) is considered as the family of problems depending
on the parameter x (“mass” setting).
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Optimal stopping time for the problem (4) can be represented as the first
exit time of the process Xt out of the continuation set C = {U(x) > g(x)}.
Usually it is proposed to find unknown function U(x) and set C as a solution
to free-boundary problem (Stefan problem):

LXU(x) = ρU(x), x ∈ C; (5)
U(x) = g(x), x ∈ ∂C; (6)
grad U(x) = grad g(x), x ∈ ∂C (7)

([1, Chapter III]; where LX is the infinitesimal generator of Xt, ∂C is the
boundary of the set C). The condition (6) is called “continuous fit”, and
(7) – “smooth fit” condition. A proof of necessity of the condition (7) for
one-dimensional processes one can find in [1]. The similar result for multi-
dimensional case was obtained (under some additional assumptions) in [3].

3 Description of a variational approach
In the paper we develop another approach to solving an optimal stopping
problem which we shall refer as a variational. In this framework it is a priori
defined a class of “continuation regions”, and we find the optimal region over
this given class. Unlike the mass setting of an optimal stopping problem,
we study the individual problem (4) for the given (fixed) initial state of the
process X0 = x.

Let G = {G} be a given class of regions in Rn, τG = τG(x) = inf{t ≥ 0 :
Xt /∈ G} be a first exit time of process Xt out of the region G (obviously,
τG = 0 whenever x /∈ G), and M(G) = {τG, G ∈ G} be a set of first exit
times for all regions from the class G. In the sequel we will suppose that
τG < ∞ (a.s.) for any G ∈ G.

Under fixed initial value x for any continuation region G ∈ G we define
the following function (of sets)

VG(x) = Exg(XτG
)e−ρτG . (8)

Outside the region G this function equals payoff function g (i.e. VG(x) =
g(x), x /∈ G), and inside G the function VG(x) can be derived (under some
assumptions) as a solution to boundary Dirichlet problem:

LXu(x) = ρu(x), x ∈ G;
u(y) → g(x), y ∈ G, y → x ∈ ∂G.

(9)

In order to calculate functions of the type (8) one can use martingale
methods also (see, for example, [1], [4]).
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Thus, a solving an optimal stopping problem over a class s.t. M(G) can
be reduced to a solving the following variational problem:

VG(x) → max
G∈G

. (10)

If G∗ is an optimal region in (10), the optimal stopping time in the class
M(G) coincides with the first exit time from this region: τG∗ .

If the class of regions G is chosen “well”, it is possible to prove that s.t.
τG∗ will be also an optimal stopping time for problem (4) over all s.t. M. In
Section 3 below such approach will be realized for two-dimension geometric
Brownian motion Xt and homogeneous payoff function g.

In one-dimensional case a variational approach (namely, maximization
over exit levels for geometric Brownian motion) was exploited in [7] as a
method for finding an optimal investment time for the creation of a new
enterprise.

A close approach is developed in в [8], where an optimal stopping prob-
lem for one-dimensional diffusion is solved by mathematical programming
technique. However those method uses a few properties of one-dimensional
diffusion, which are not valid in multi-dimensional case.

As for multi-dimensional processes, the first-order conditions as a heuris-
tic method for finding boundaries of optimal “continuation sector” in optimal
stopping problem for bivariate geometric Brownian motion and homogeneous
(of first order) payoff function was used in [4]. A general idea of a variational
approach with application to optimal stopping problems arisen in investment
timing models was stated in [9],[10].

Let us note, that the calculation of the optimal stopping time over a
given class of regions represents, to our opinion, a practical interest. Indeed,
the Stefan problem has no (as a rule) explicit solution for multi-dimensional
diffusion processes. Therefore, it has a sense to restrict our consideration to
more simple regions, for which it is possible to derive the function of sets
VG(x). Also, numerical methods can be applied for solving the problem (10)
with fix initial state X0 = x.

An idea of variational approach is general enough and can be applied not
only for a diffusion processes and payoff functions of the type (4).

3.1 A variational approach for one-parametric class of
“continuation regions”

Under some additional assumptions a general variational problem (10) can
be simplified and be made more convenient for study.
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Let D be a set of possible initial states of the process Xt (it can contain,
for example, one point only). Let G = {Gp, p ∈ P ⊂ R1} be one-parametric
class of regions in Rn, τp = inf{t≥0 : Xt /∈ Gp}, Vp(x) = VGp(x).

We will call function F (p, x), defined on P×D, a terminal-initial function
if Vp(x) = F (p, x) for p ∈ P, x ∈ Gp.

In the sequel we will use the following representation for the function
Vp(x):

Vp(x) =

{
F (p, x), x ∈ Gp

g(x), x /∈ Gp
, (11)

where F (p, x) is a terminal-initial function.
It is assumed that “continuous pasting” condition holds at the boundary

of set Gp:
F (p, x) = g(x), x ∈ ∂Gp. (12)

Further, we assume that a family of regions Gp satisfies the following
conditions:
1) Gp1 ⊂ Gp2 whenever p1 < p2 – monotonicity;
2) every point x ∈ D belongs to the boundary of the unique set from the
class G (a parameter of those set will be refered as q(x), so x ∈ ∂Gq(x)) –
“thickness”.

Under a thickness property for continuation regions the continuous past-
ing condition (12) can be written as follows:

F (q(x), x) = g(x) ∀x ∈ D. (13)

Under the stated above assumptions a solution to maximization of Vp(x)
in p is given by the following

Theorem 1. Let for x ∈ D a terminal-initial function F (p, x) have a
unique maximum (in p ∈ P ) at the point p∗(x), and F (p, x) decreases in p
whenever p > p∗(x). Then max

p∈P
Vp(x) = Vp∗(x)(x), i.e. τp∗(x) is an optimal

stopping time in the problem (4) over the class of s.t. M(G).
Thus, under the above assumptions a maximization (in p) of the function

Vp(x), which has the composite structure (11), can be reduced to maximiza-
tion of “more simple” terminal-initial function F (p, x). In subsequent sections
we demonstrate how this theorem can be used for finding a solution to a num-
ber of optimal stopping problems.
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3.2 A variational problem and smooth pasting principle

In the framework of a variational approach we give a new look to a smooth
pasting principle, which is one of the base component in solving Stefan prob-
lem with a free boundary.

Let the set D is opened (at Rn), the general assumptions from Section 3
hold, and furthermore, functions F (p, x), g(x), as well as q(x) (a parameter
of the region whose boundary passes through the point x), are differentiable
(in all arguments). Note, that the function q(x) will be smooth, for example,
in the case when regions’ boundaries ∂Gp are specified by surfaces of the type
{Ψ(p, y) = 0, y ∈ Rn}, where Ψ(p, y) is continuously differentiable in (p, y)
and Ψ′

p(p, y) is non-zero.
Let p̄(x) be a stationary point of the function F (p, x) in p, i.e.

F ′
p(p̄(x), x) = 0 (x ∈ D). The condition (13) implies

F ′
p(q(x), x) grad q(x) + F ′

x(q(x), x) = grad g(x), x ∈ D. (14)

Thus, if x belongs to the boundary of the region Gp̄(x), then q(x) = p̄(x) and,
therefore,

F ′
x(p̄(x), x) = grad g(x), x ∈ ∂Gp̄(x). (15)

This equality can be viewed as a variant of smooth pasting condition at
the boundary of the set Gp̄(x), whose parameter is a stationary point of a
function F (p, x).

Note, the set of such x that (15) holds can be empty. Consider the case,
when stationarity points p̄(x) = p̄ do not depend on x. In this case the set
of such x that relation (15) valid, is not empty. Such a situation emerges,
in particular, for the case of geometric Brownian motion and homogeneous
payoff function (the function F (p, x) in this case can be represented as a
product of a function of x and a function of p). Defining the function F̄ (x) =
F (p̄, x), the relation (15) can be written as follows:

grad Vp̄(x) = grad F̄ (x) = grad g(x), x ∈ ∂Gp̄. (16)

Taking into account that F̄ (x) for x ∈ Gp̄ is a solution to Dirichlet prob-
lem (9), the equality (16) is a traditional smooth pasting condition, and,
therefore, the pair (F̄ (x), Gp̄) is a solution to Stefan problem (5)-(7). The
region Gp̄ will be a candidate for an optimal continuation set. If maximum
of the function F (p, x) in p is attained at the point p∗ ∈ int P , then smooth
pasting condition (16) with p̄ = p∗ holds.

Let us note, if for the family of regions {Gp} it is hold grad q(x) 6= 0 for
x ∈ D, then (as one can see from (14), the smooth pasting condition (16) is
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equivalent to stationarity of F (p, x) (in p) at the point p̄.

Stationarity points of the function F can not be the points of extremum.
Hence, for such a case a solution to Stefan problem (which there is exists),
can not give a solution to optimal stopping problem.

3.3 A solution to Stefan problem can not give a solution
to Optimal Stopping Problem: Examples

Let us consider (one-dimensional) geometric Brownian motion Xt = x exp{wt}
(where wt be standard Wiener process), payoff function g(x)=(x − 1)3 + xδ

(δ > 0) for x ≥ 0, and discount rate ρ = δ2/2. The function g is smooth and
increasing for all δ > 0.

Let p∗ be a boundary point for the optimal continuation set. Due to
monotonicity of the payoff function we consider the interval (0, p∗) as an
unknown continuation set.

A Stefan problem for finding unknown function U(x) and boundary p∗ is
the following one:





1
2
x2U ′′(x) + 1

2
xU ′(x) = ρU(x), 0 < x < p∗

U(p∗) = g(p∗)

U ′(p∗) = g′(p∗)

(17)

To study this problem we begin with solving an auxiliary Dirichlet prob-
lem for finding the function Vp(x) = Exg(Xτp)e

−ρτp , where τp = min{t ≥ 0 :
Xt ≥ p}: {

1
2
x2V ′′(x) + 1

2
xV ′(x) = ρV (x), 0 < x < p

V (p) = g(p).
(18)

The solution to this problem is Vp(x) = Exg(Xτp)e
−ρτp = h(p)xδ (0 < x <

p), where h(p) = g(p)p−δ = (p− 1)3/pδ + 1.
As one can see, the smooth pasting condition V ′

p∗(p
∗) = g′(p∗) is equivalent

to h′(p∗) = 0.
For δ ≤ 3 the Stefan problem (17) has the unique solution: U(x) =

V1(x) = xδ, p∗ = 1. However, the stopping time τ1 (a first exit over the
level 1) is not optimal s.t. since Vp(x) → ∞ when p → ∞ for any x > 0
(when δ < 3), and Vp(x) ↑ V (x) = 2x3 (when δ = 3).

Thus, in this case there exists a solution of Stefan problem, whereas the
optimal stopping problem has no solution. Moreover, in the case δ = 3 there
are exist both a solution of Stefan problem (function U(x)) and optimal
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value function V (x) at optimal stopping problem, but its are not the same:
U(x) 6= V (x) for all x > 0.

For δ > 3 the Stefan problem (17) has two solutions:

U(x)=V1(x)=xδ, p∗ = 1 and U(x)=Vpδ
(x)=h(pδ)x

δ, p∗=pδ=δ/(δ−3).

Note that Vpδ
(x) > V1(x). It can be shown (using, for example, [8,

Theorem 3]), that s.t. pδ is optimal over all s.t. M.
Thus, one of the solutions to Stefan problem (corresponding to the bound-

ary p∗ = 1) does not give a solution to the optimal stopping problem (which
there exists, in contrast to the previous case).

Now let us demonstrate, how a variational approach works for the above
example. As a class of continuation sets we take intervals (0, p), p > 0, so
the corresponding s.t. are τp = min{t ≥ 0 : Xt ≥ p}. From the solution
to Dirichlet problem (18) one can see, that F (p, x) = [(p − 1)3/pδ + 1]xδ

can be viewed as the terminal-initial function. Let us note, that for δ ≤ 3
the function F (p, x) increases (in p) infinitely for any x > 0, and, therefore,
an optimal s.t. does not exist. When δ > 3, the function F (p, x) attains
maximum (in p) for every x > 0 at the point p∗=pδ, and all conditions of
Theorem 1 hold. Therefore, τpδ

is optimal s.t. over the class {τp, p > 0}.

4 How the variational approach works

In this Section we demonstrate how a variational approach described above
can be applied for solving a concrete optimal stopping problems. Below we
consider two such problems: the first one connects with well-known “Russian
Option”, and the second one concerns two-dimensional geometric Brownian
motion and homogeneous payoff function.

4.1 “Russian option”

Russian options were introduced in [5] as a special case of the perpetual
(American) options with a path-dependent payoff. As shown in [6], the pric-
ing in “Russian Option” can be reduced to an optimal stopping problem (with
payoff function g(x)=x) for the diffusion process (ψt, t ≥ 0) with reflection:

dψt = −ψt(rdt + σdwt) + dϕt,

where non-negative process (ϕt, t≥0) grows whenever (ψt, t≥0) attains
boundary {1}.

10



Consider the class of stopping times τp = min{t ≥ 0 : ψt ≥ p}, p > 1
that was proposed in [6] for the “simplified version” of the appropriate optimal
stopping problem.

Following the explicit formula for Vp(x) = Exψτpe
−ρτp (obtained from the

Dirichlet problem), we can view

F (p, x) = p · β2x
β1 − β1x

β2

β2pβ1 − β1pβ2
, p ≥ 1, x ≥ 1,

where β1, β2 are roots of the equation σ2β2 − (σ2 + 2r)β − 2ρ = 0 (β1 <
0, β2 > 1), as the terminal-initial function.

F (p, x) attains the unique maximum (in p≥1) for all x>1 at the point

p∗=
[
β2(1−β1)

β1(1−β2)

]1/(β2−β1)

, and decreases for p>p∗. Thus, Theorem 1 implies

that τp∗ is optimal stopping time over the class {τp, p>1}.

4.2 Two-dimensional geometric Brownian motion and
non-linear payoff function

As we see at the next Section, an optimal stopping problems for two-dimensional
geometric Brownian motion and homogeneous payoff function arise in invest-
ment timing models.

Let consider two-dimensional geometric Brownian motion Xt=(X1
t , X2

t ), t≥ 0

dX1
t = X1

t (α1dt + σ11dw1
t + σ12dw2

t ), X1
0 = x1,

dX2
t = X2

t (α2dt + σ21dw1
t + σ22dw2

t ), X2
0 = x2,

(19)

where (w1
t , w

2
t ) is standard two-dimensional Wiener process (with indepen-

dent components).
Let payoff function g(x1, x2) (see (4)) be continuous and positive homo-

geneous of order m ≥ 0, i.e. g(λx) = λmg(x) for all λ > 0, x1, x2 ≥ 0.
Initial states of the process Xt will be take from the region D = {(x1, x2) :

x1, x2 > 0}, and we will consider Gp = {(x1, x2) ∈ D : x1 < px2}, p > 0
as a class of continuation sets. The first exit time of the process (19) from
the region Gp: τp(x) = min{t ≥ 0 : X1

t ≥ pX2
t } coincides with the first exit

time of ξt = X1
t /X2

t over the level p. The explicit formulas for geometric
Brownian motion imply that

ξt =
x1

x2

exp

{(
α1−α2 +

σ2
2−σ2

1

2

)
t + σ1w̃

1
t − σ2w̃

2
t

}
, (20)
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where σ2
i = σ2

i1 + σ2
i2, and w̃i

t = (σi1w
1
t + σi2w

2
t )/σi are standard Wiener

processes (i = 1, 2).
It is easy to see that τp(x) is homogeneous (of zero order) function of

x = (x1, x2), i.e. τp(λx) = τp(x) for all λ > 0, moreover, under the following
condition

α1 − 1
2
(σ2

11 + σ2
12) ≥ α2 − 1

2
(σ2

21 + σ2
22) (21)

τp(x) is finite a.s. for all x ∈ D and p > 0, since Wiener process attains every
level (with probability 1).

The homogeneities of the process Xt (in initial state) and the function g
imply:

Vp(λx) = Eλxe−ρτp(λx)g(Xτp(λx)) = Eλxe−ρτp(x)g(Xτp(x))

= Exe−ρτp(x)g(λXτp(x)) = λmVp(x),

i.e. Vp(x) is a homogeneous (of order m) function.
In the region Gp we will represent Vp(x) as follows:

Vp(x1, x2) = xm
2 vp(y), где y = x1/x2, vp(y) = Vp(y, 1), 0 < y < p.

Since the infinitesimal generator of the process (19) has the following form

Lu(x) = α1x1u
′
x1

+α2x2u
′
x2

+1
2
σ2

1x
2
1u
′′
x1x1

+(σ11σ21+σ12σ22)x1x2u
′′
x1x2

+1
2
σ2

2x
2
2u
′′
x2x2

,

where σ1, σ2 are defined in (20), the elliptic operator in Dirichlet problem
(9) for Vp(x) transforms PDE to the ordinary differential equation for the
function vp(y) (or, briefly v(y)):

1

2
y2v′′(y)σ̃2 + yv′(y)

(
ᾱ1 − ᾱ2 − m−1

2
σ̃2

)
− v(y)(ρ− ᾱ2m) = 0, (22)

where ᾱi = αi+
1
2
(m−1)σ2

i (i = 1, 2), σ̃2 = (σ11−σ21)
2 + (σ12−σ22)

2.
Any solution of equation (22) for 0 < y < p has the form v(y) = C1y

β1 +
C2y

β2 , where β1, β2 are roots of the quadratic equation

1

2
σ̃2β(β − 1) +

(
ᾱ1 − ᾱ2 − m− 1

2
σ̃2

)
β − (ρ− ᾱ2m) = 0. (23)

Assume that
ρ > max(ᾱ1, ᾱ2)m. (24)

Then one can see that one of the roots in (23) is positive, and another –
negative. Let, for certainty, β1 > 0, β2 < 0.
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Returning to initial function we have

Vp(x1, x2)=C1x
β1

1 xm−β1

2 +C2x
β2

1 xm−β2

2 , for 0<x1<px2, x2>0. (25)

It is easy to see that for all x = (x1, x2) ∈ R2
+ |Vp(x1, x2)| is bounded by

the function C(xm
1 + xm

2 ), where C = 2m max
0≤y≤1

|g(y, 1− y)|.
This fact implies that C2 = 0 in representation (25). The constant

C1 in (25) is found from the boundary condition in Dirichlet problem (9):
Vp(px2, x2) = C1x

m
2 pβ1 = g(px2, x2) = xm

2 g(p, 1), i.e. C1 = g(p, 1)p−β1 .
Therefore, as a terminal-initial function F (p, x) in representation (11) for

the considered optimal problem we can take the following function

F (p, x) = h(p)xβ1

1 xm−β1

2 , h(p) = g(p, 1)p−β1 . (26)

Let us note, maximum of the function F (p, x) in p is attained at the same
point p∗ as maximum of the function h(p), i.e. this point does not depend
on x.

The class of regions {Gp, p > 0} satisfies the requirements of monotonic-
ity and thickness for continuation regions (see Section 1), and τp are stopping
times. The class of these s.t. will be denotedM0 = {τp, p > 0}. Thus, apply-
ing Theorem 1 to the optimal stopping problem for two-dimensional process
(19) and homogeneous (of order m) payoff function we obtain the following
result.

Theorem 2. Let (21), (24) hold, σ̃ > 0, and p∗ be the unique maximum
point of the function h(p), defined in (26), moreover h(p) decreases for p > p∗.
Then τ ∗ = min{t ≥ 0 : X1

t ≥ p∗X2
t } is optimal stopping time over the class

of s.t. M0.

It is turned out, the class of continuation regions for the considered prob-
lem is chosen “well” and s.t. τ ∗ (specified in Theorem 2) will be also optimal
(under some additional assumptions) over the class of all s.t.

Theorem 3. Let all conditions of Theorem 2 hold, g ∈ C2(R2
+), p∗ > 0

be the unique maximum point of the function h(p) and for f(p) = g(p, 1)

f ′(p)p−β1+1 decreases for p > p∗. (27)

Then τ ∗ = min{t ≥ 0 : X1
t ≥ p∗X2

t } is optimal stopping time over the class
of all s.t. M.

In order to prove the optimality of stopping time τ ∗ over the class M
we use the following “verification theorem”, based on variational inequalities
method. Below we formulated it for our case.
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Let us denote Px – the distribution of the process Xt (in sample space)
starting from the point X0 = x.

Verification Theorem ([13],[15]). Suppose, there exists a function
Φ : Rn

+ → R1, satisfying the following conditions:
1) Φ ∈ C1(Rn

+), Φ ∈ C2(Rn
+ \ ∂Γ); where Γ={x ∈ Rn

+ : Φ(x)>g(x)},
2) ∂Γ is locally the graph of Lipschitz function and Ex

∫ ∞

0

χ∂Γ(Xt) dt = 0

for all x ∈ Rn
+;

3) Φ(x) ≥ g(x) for all x ∈ Rn
+;

4) LΦ = ρΦ for x ∈ Γ;
5) LΦ ≤ ρΦ for x ∈ Rn

+ \ Γ (Γ is a closure of the set Γ);
6) τ̄ = inf{t ≥ 0 : Xt /∈ Γ} < ∞ a.s. (with respect to P x) for all x ∈ Rn

+;
7) the family {g(Xτ )e

−ρτ , τ ≤ τ̄} is uniformly integrable (with respect to
Px) for all x ∈ Γ.

Then τ̄ is an optimal stopping time for the problem (4) over all s.t., and
Φ(x) is the correspondent value function.

Let us give a corollary of Theorem 3 for the linear payoff function g(x1, x2)
([13]). Just this case arises in a classical investment timing problem (see
[11],[12]).

Corollary. Let g(x1, x2) = c1x1 − c2x2 (c1, c2 > 0), σ̃ > 0, condition
(21) hold, and ρ > max(α1, α2). Then the optimal stopping time for the
problem (4) over all s.t. M is τ ∗ = min{t ≥ 0 : X1

t ≥ p∗X2
t }, where

p∗ = c2c
−1
1 β(β − 1)−1, and β is a positive root of the quadratic equation

1

2
σ̃2β(β − 1) + (α1 − α2)β − (ρ− α2) = 0.

(As one can see, in this case f(p) = g(p, 1) = c1p− c2, the maximum of the
function h(p) = (c1p − c2)p

−β is attained at p∗ = c2c
−1
1 β(β − 1)−1 and all

requirements of Theorem 3 hold.)

Remark. As a terminal-initial function for the problem with linear payoff
function g(x1, x2) = c1x1 − c2x2 (c1, c2 > 0) we can take F (p, x) = (c1p −
c2)p

−βxβ
1x

m−β
2 that satisfies all conditions of Theorem 1.

5 Optimal investment timing problem under
taxation and uncertainty

Optimal stopping problem with homogeneous payoff function arises in a nat-
ural way for an investment timing model, where an agent wants to invest
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into a creation of new firm under the presence of tax exemptions. We show
below that taking into account the tax exemptions which usually accompany
a creation of a new firm in real sector of economy leads certainty to optimal
stopping problem with non-linear (but homogeneous) payoff function.

5.1 Taxation without exemptions

Let us suppose that investment into creating a firm is made at time τ ≥ 0,
Iτ be cost of investment required to create firm at time τ , πτ

τ+t be the flow
of profit from the firm, Dτ

t+τ denotes the flow of depreciation charges, that
diminish the tax base (at time t+τ, t ≥ 0). So, the after-tax cash flow of the
firm at time t + τ is equal to πτ

τ+t−γ(πτ
τ+t−Dτ

t+τ )=(1−γ)πτ
τ+t+γDτ

t+τ , where
γ is the corporate profit tax rate.

The present value of the firm (discounted to the investment time τ) can
be expressed as the following formula:

Vτ = E

(∫ ∞

0

[(1− γ)πτ
τ+t + γDτ

t+τ ]e
−ρt dt

∣∣∣∣Fτ

)
, (28)

where ρ is discount rate.
The investor’s decision problem is to find such a stopping time τ (invest-

ment rule), that maximizes the expected net present value (NPV) from the
future firm

E (Vτ − Iτ ) e−ρτ → max
τ

, (29)

where the maximum is considered over all stopping times τ∈M.
Assume that the process of profits (πτ

τ+t, t, τ ≥ 0) is represented as:
πτ

τ+t = πτ+tξ
τ
τ+t, t, τ ≥ 0, where (πt, t ≥ 0) is geometric Brownian motion,

specified by the stochastic equation

dπt = πt(α1dt + σ11dw1
t ) (π0 > 0, σ11 > 0), t ≥ 0,

w1
t is standard Wiener process, and (ξτ

τ+t, t ≥ 0) is a family of non-negative
diffusion processes, homogeneous in τ ≥ 0, defined by the stochastic equa-
tions:

ξτ
τ+t=1+

τ+t∫

τ

a(s−τ, ξτ
s ) ds+

τ+t∫

τ

b1(s−τ, ξτ
s ) dw1

s+

τ+t∫

τ

b2(s−τ, ξτ
s ) dw2

s , t, τ ≥ 0,

(30)
where w2

t is standard Wiener process independent on w1
t , and given functions

a(t, x), b1(t, x), b2(t, x) satisfy the standard conditions for the existence of the
unique strong solution in (30) (see, e.g. [15, Chapter 5]).
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The process πt can be related to the (external) prices of produced goods
and consumed resources (external uncertainty), whereas fluctuations ξτ

τ+t can
be generated by the firm created at time τ (firm’s uncertainty).

In order all values in the model were well-defined we will suppose that
Eπτ+t < ∞ for all t, τ ≥ 0.

The cost of the required investment It is also modelled by the geometric
Brownian motion as follows:

dIt = It(α2dt + σ21dw1
t + σ22dw3

t ), (I0 > 0) t ≥ 0,

where standard Wiener process w3
t is independent on w1

t , w2
t , and σ21 ≥

0, σ22 > 0.
The flow of depreciation charges at a time t + τ will be represented as

Dτ
τ+t = Iτat, t ≥ 0, where (at, t ≥ 0) is the “depreciation density” (per

unit of investment), characterizing a depreciation policy, i.e. non-negative

function a : R1
+ → R1

+, such that
∫ ∞

0

at dt = 1.

In [14] we derived the following formula: for all t ≥ 0 and stopping time τ

E(πτ
τ+t|Fτ ) = πτBt, where Bt = E(πtξ

0
t )/π0. (31)

Using this formula one can obtain that

Vτ = γIτA + (1− γ)πτB, where B =

∫ ∞

0

Bte
−ρt dt, A =

∫ ∞

0

ate
−ρtd.

(32)
Therefore, the investment timing problem (29) can be rewritten as the

following optimal stopping problem for two-dimensional geometric Brownian
motion (πt, It) and linear payoff function:

E [(1− γ)πτB − Iτ (1− γA)] e−ρτ → max
τ

, (33)

Application of Corollary (from the previous Section) gives immediately

the following formula for the optimal investment threshold: p∗ =
1− γA

(1− γ)B
·

β

β − 1
.

5.2 Tax holidays on payback period

A creation of a new firm in real sector of economy is usually accompanied
by certain tax benefits. One of the popular incentives tools is tax holidays,
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when the new firm is exempted from profit tax during the payback period
ντ :

ντ = inf{ν ≥ 0 : E

(∫ ν

0

πτ
τ+te

−ρtdt

∣∣∣∣Fτ

)
≥ Iτ} (34)

(if infimum is not attained, then we put ντ = ∞).
For this case the present value of the firm (discounted to the investment

time τ) can be expressed as the following formula:

Vτ = E

(∫ ντ

0

πτ
τ+te

−ρtdt + χτ

∫ ∞

ντ

[(1− γ)πτ
τ+t + γDτ

t+τ ]e
−ρt dt

∣∣∣∣Fτ

)
, (35)

where χτ is an indicator function of the set Ωτ = {ω : ντ < ∞}.
If ω ∈ Ωτ , then (31) and (34) imply:

Vτ = Iτ + (1− γ)E

(∫ ∞

0

πτ
τ+te

−ρtdt−
∫ ντ

0

πτ
τ+te

−ρtdt

∣∣∣∣Fτ

)
+ γIτA(ντ )

= Iτ [1 + γA(ντ )]− (1− γ)

(
Iτ − πτ

∫ ∞

0

Bte
−ρtdt

)

= γIτ [1 + A(ντ )] + (1− γ)πτB, (36)

where B is specified in (32), and A(ν) =

∫ ∞

ν

ate
−ρtdt (ν ≥ 0).

If ω /∈ Ωτ (i.e. ντ = ∞), then

Vτ = E

(∫ ∞

0

πτ
τ+te

−ρtdt

∣∣∣∣Fτ

)
= πτB. (37)

If ω ∈ Ωτ , then from a definition of payback period (34) and formula (31)
it is follows that

Iτ = E




ντ∫

0

πτ
τ+te

−ρtdt

∣∣∣∣∣∣
Fτ


 = πτ

ντ∫

0

Bte
−ρtdt. (38)

Let us define the following function ν(·) as

ν(p) = inf{ν > 0 :

∫ ν

0

Bte
−ρtdt ≥ p−1}, p > 0 (39)

(we put ν(p) = ∞ if infimum is not attained).
Then (38) implies that ντ = ν(πτ/Iτ ) for ω ∈ Ωτ . It is easy to see that

Ωτ = {ντ < ∞} = {ν(πτ/Iτ ) < ∞}.
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Combining (36) and (37) we can write the following formula for the
present value of the created firm (35):

Vτ =

{
γIτ (1 + A(ν(πτ/Iτ ))) + (1− γ)πτB, if ν(πτ/Iτ ) < ∞
πτB, if ν(πτ/Iτ ) = ∞.

So, the investment timing problem (29) is reduced to optimal stopping
problem for bivariate geometric Brownian motion (πt, It):

Eg(πτ , Iτ )e
−ρτ → max

τ∈M
, (40)

with non-linear homogeneous (of first order) payoff function

g(π, I) = (1− γ)(πB − I) + γIA(ν(π/I)),

where B, ν(·), A(·) are defined above (we put formally A(∞) = 0).
As one can see if τ ∗ is an optimal s.t. for the problem (40) and ν(πτ∗/Iτ∗) <

∞ (a.s.), then τ ∗ is the optimal investment time for the problem (29).

Let β be a positive root of the quadratic equation

1
2
σ̃2β(β−1)+(α1−α2)β−(ρ−α2)=0, σ̃2=(σ11−σ21)

2+σ2
22.

Then Theorem 3 implies
Theorem 4. Let at, Bt ∈ C1(R+) and all conditions of Theorem 3 hold.

Then the optimal investment time for the problem (29) is τ ∗ = min{t ≥ 0 :
πt ≥ p∗It}, where p∗ is a root of the equation

β(1− γ) +
γaν(p)

pBν(p)

= (1− γ)(β − 1)pB + βγA(ν(p)).

More simple version of the above model as well as a proof of optimality
of s.t. τ ∗, which doesn’t use Theorem 3, one can find in [14].
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