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1. Introduction 
 

In this paper, we present a methodology to evaluate an option to defer an oilfield 
development. The value of this option depends on the stochastic evolutions of the crude oil price, 
the convenience yield and the risk-free interest rate. The choice of the continuous-time stochastic 
models corresponding to these uncertainty sources affects the value of the option to defer and 
consequently the development decision. Indeed, an investment decision based on a mean-reverting 
process could turn out to be quite different from the one based on a random-walk process (Dixit and 
Pindyck, 1994; Baker et al. 1998; Dias and Rocha, 1999 and Pelet, 2003). 

In order to choose the appropriate continuous-time stochastic processes for these uncertainty 
sources, the analysis of their time series properties is required. In this study, our starting point is to 
examine the mean reversion of the crude oil price, the convenience yield and the risk-free interest 
rate. We extend the works of Gibson and Schwartz (1989) who examined the oil price and the 
convenience yield behaviors by testing the significance of the coefficient which reflects the mean-
reverting pattern and those of Pindyck (1999) who ran Augmented Dickey-fuller and variance ratio 
tests to identify if the time series of the crude oil price is stationary. Indeed, we examine first the 
mean reversion without jumps of the crude oil price, the convenience yield and the risk-free interest 
rate by using unit root tests without breaks (Augmented Dickey-Fuller 1997; Phillips and Perron, 
1988; Elliot et al. 1996 and Kwiaytkowski et al. 1992 tests, denoted respectively ADF, PP, ERS and 
KPSS tests). Perron (1989) showed that these tests will incorrectly fail to reject the nonstationarity 
hypothesis if the series presents at least a slope and/or a level shift. So, if we accept the unit root 
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hypothesis, then we examine the mean reversion with jumps of these series. Unit root test allowing 
for a one-time structural change is carried out for this reason (Perron, 1993 test). If this test accepts 
the nonstationarity hypothesis, the next stage consists in testing the presence of multiple breaks (Bai 
and Perron, 1998-2003 tests). If the tests presented above do not allow selecting the appropriate 
stochastic processes, the final stage of the testing procedure is to simulate different continuous-time 
stochastic processes and the mean error between the simulated prices and the market ones.  

After choosing the suitable continuous-time stochastic processes, we evaluate an option to 
defer a Tunisian oilfield development by means of one-factor and multi-factor pricing models. 
Since the option valuation problem is complex, it cannot be easily solved directly from the partial 
differential equation. In this paper, the problem is solved by the Monte-Carlo simulation adapting 
the Least-Squares simulation method developed by Longstaff and Schwartz (2001) for valuing 
American type options. The application of the real option theory requires the determination of the 
critical early-exercise values at the times when the option can be exercised. The linear interpolation 
developed by Grant et al. (1993) and Muβhoff et al. (2002) is used to calculate these critical values. 
To improve the efficiency of the Monte-Carlo method, the antithetic variable technique is 
considered to reduce the standard deviation of the estimate. The paper ends with a summary of the 
main conclusions.    
 
2. Data description and oilfield development opportunity 
 

The data used to analyze the time series properties of the risk factors consist of the spot 
crude oil price, the risk-free interest rate (Monetary Market Rate) and the convenience yield series. 
The spot oil prices on a monthly basis for the period from January 1960 to May 2004 (figure 1) 
were obtained from the International Financial Statistics Browser. The monthly observations of 
Monetary Market Rate (henceforth, TMM) during the period from 1990:1 through 2004:11 (figure 
2) are available in the Tunisian Central Bank. The convenience yield (henceforth, convy) (figures 3 
and 4) series are calculated by means of pairs of adjacent maturity futures contracts according to the 
Gibson and Schwartz (1989) formula. These series are computed by using daily prices of the futures 
crude oil contracts and the annualized three-month Treasury Bills over the period starting June 23, 
1988 ending Mars 31, 2004 obtained respectively from the International Petroleum Exchange and 
the Board of Governors of the Federal Reserve System. 

Figure 1. Logarithm of the crude oil price 
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Figure 3. Convy derived from a pair of 
futures contracts expiring in months 1 and 2 
 
 
 
 
 
 
 
 
 
 

 
     
 

Figure 4. Convy derived from a pair of   
futures contracts expiring in months 2 and 3 
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The exploitation of the oilfield, which is the object of this study, began in 1974 after 
installing a first platform. In 1985, an additional oilfield was developed by installing a second 
platform. Encouraged by the important cash-flows generated by the news’ oil wells, the company 
considered the option of spreading deposit to the East and the South-East in 1992 by installing a 
third platform. It had been confronted to choose between two alternatives: Installing a platform with 
six “legs” (henceforth, PF6) or installing a platform with four “legs” (henceforth, PF4). 

The duration of the development phase is 3 years. The investment opportunity would be lost 
if the development phase didn’t begin at one of those dates 1992, 1993 and 1994. So, the maturity 
option is 3 years, where the date 1994 is the final expiration date of the option. There is no 
possibility to shut down temporarily or to abandon the project. The project life is 17 years. The oil 
quantities in thousand barrels and the extraction cost and the depreciation per barrel are indicated 
respectively in figure 5 and table 1. 

 A royalty must be paid to the state in cash or in nature. For the considered oilfield, the 
company chooses nature royalty which is equal to 12.5 percent of the produced quantity. The risk-
free interest rate r is 6%. The corporate tax rate denoted T is equal to 75 percent. 20 percent of the 
produced quantity must be sold on local market. The local price is equal to 90 percent of the 
exportation price. 
                    
                     Figure 5. Petroleum quantities                                                       
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Table 1. Extraction cost and 
depreciation per barrel 

The data used to estimate the parameters of the multi-factor pricing models consist of 
weekly prices of futures crude oil contracts which cover the period from 2nd of January 1990 to 25th 
of August 2003. Four different maturities are used: the first, the third, the sixth and the ninth 
months of delivery.  
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3. Methodology  
  
The methodology adopted in this paper to evaluate an option to defer is shown in Figure 6:   

                         Figure 6. Methodology to evaluate an option to defer 
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We begin by testing whether the series of uncertainty sources present a unit root or not. (1) 
If we accept the stationarity hypothesis, we can conclude that the variable follows a mean-reverting 
process. In this case there are two possibilities: either we can choose the appropriate continuous-
time stochastic process for this uncertainty source and then the testing procedure is stopped here or 
we carry on the testing procedure by simulating different continuous-time stochastic processes and 
the mean error between the simulated prices and the market ones. (2) If we reject the stationarity 
hypothesis, the failure to reject a unit root may be due to the presence of breaks in the time series. 
To that end, we apply unit root tests with breaks to examine the mean reversion with jumps of this 
series. (3) If we accept the stationarity hypothesis, the variable process can be described as a mean-
reverting process with jumps. Likewise, there are two possibilities: either we can identify the 
suitable continuous-time stochastic process and then we can stop the testing procedure, or the 
choice will be based on the simulation of different stochastic processes. (4) If the stationarity 
hypothesis is rejected, then we run multiple structural change tests. If these tests aren’t conclusive, 
we simulate different stochastic processes in order to decide on the best process for the uncertainty 
source. Since we choose the suitable continuous-time stochastic process, we evaluate the option to 
defer. In this paper we apply this methodology to evaluate an option to defer a Tunisian oilfield 
development.    

Two categories of unit root test without breaks are used in stage 1: tests whose null 
hypotheses are nonstationarity (Augmented Dickey-Fuller, 1997; Phillips and Perron, 1988 and 
Elliot et al. 1996 tests) and test whose null hypothesis is stationarity (Kwiaytkowski et al. 1992 
test). A unit root test with a structural break is applied in stage 2 (Perron, 1993 test). The multiple 
structural break tests used in stage 3 are developed by Bai and Perron (1998-2003)1. 

The simulation of continuous-time stochastic processes tackled in stage 4 necessitates the 
estimation of their parameters. For this reason, the Maximum Likelihood Estimation (henceforth, 
MLE) is implemented to estimate the parameters of the stochastic processes with and without 
jumps. MLE requires the density function which is unknown for the most part of the continuous-
time stochastic processes. To approximate the density function2, we use different methods: those of 
Aït-Sahalia (1999), Aït-Sahalia (2002) and Bakshi and Ju (2005)3 applied to the stochastic 
processes without jumps and the approximation of Yu (2007) applied to jump-diffusion processes. 

After choosing the appropriate continuous-time stochastic processes for the oil price, the 
risk-free interest rate and the convenience yield, the Least-Squares Monte-Carlo simulation 
approach is used to evaluate the option to defer. This method is developed by Longstaff and 
Schwartz (2001). It consists in: (1) Simulating many times the underlying assets price until the 
option maturity. (2) Determining the stopping rule matrix which indicates the time at which it is 
optimal to exercise the option along each path by working backwards from the option maturity. (3) 
Calculating the mean of the option discounted payoffs across all matrix entries.   

The valuation is based on one-factor and multi-factor pricing models. The estimation of the 
multi-factor models’ parameters is carried out by the simple and the extended Kalman filters.  

The application of the real option theory to investment valuation needs the calculation of the 
critical exercise values V* at the times when the option can be exercised. At the option maturity, 
there is no temporal flexibility and the critical value is equal to the investment cost I. In order to 
determine the critical exercise values (before the option maturity), we use the linear interpolation 
developed by Grant et al. (1993) and Muβhoff et al. (2002)4. If the option can be exercised at the 
time t = T-1, the critical value at this time is the discounted cash-flows value generated by the 
project for which the investor is indifferent with regard to exercise immediately the option or to 

                                                 
1 We wish to thank Dr Pierre Perron for the Gauss program available from his home page.   
2 The approximate density functions corresponding to the stochastic processes with and without jumps are calculated 
using mathematica. The estimation is carried out by Matlab. 
3 We wish to thank Dr Yacine Aït-Sahalia and Nengjiu Ju for their help.  
4 We wish to thank Dr Dwight Grant and Dr Oliver Muβhoff for their help.  
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defer the exercise time. In other words, it is the discounted cash-flows value V that equate the 
option intrinsic value (V-I) with the option continuation value. This value falls between two 
discounted cash-flows values which yield a change of sign of the difference of intrinsic value and 
continuation value. 

The increase of the number of simulation trails allows reducing the estimate standard 
deviation given that this last is inversely proportional to the square root of the simulations number. 
Therefore, different numbers of simulations trials are carried out in this study. A ninety five per cent 

confidence limits given by 
N

1.96W
±  is computed, where M is the option payoffs mean, W is the 

option payoffs standard deviation and N is the simulations number. 
In order to improve the efficiency of the Monte-Carlo method, the antithetic variable 

technique is considered. It consists in introducing a negative dependence between pairs of random 
variables. Let U uniformly distributed over the interval [0, 1]. If we generate a path using as input 
U1, U2….., UN, we can simulate a second path using (1-U1), (1- U2)….. (1-UN) without changing the 
law of the simulated process (Glasserman, 2003). When simulating continuous-time stochastic 
processes based on a standard normal random variable, the antithetic variable technique can be 
implemented by Z1, Z2….., ZN  sequence with -Z1, -Z2….., -ZN sequence (Glasserman, 2003). 

The results of the application of this methodology to the valuation of a Tunisian oilfield 
development are presented in the following section. 

     
4. Results analysis 
 
4.1. Stationarity of the uncertainty sources   
 

 The value of the option to defer an oilfield development depends on the uncertainty relating 
to the crude oil price, the convenience yield and the risk-free interest rate. To explore whether these 
series follow a random-walk or a mean-reverting process, we examine if these series are stationary. 
Table 2 displays the results of unit root tests without breaks. 

Table 2.  Results of ADF, PP, ERS and KPSS tests for the oil price, the Convy and the TMM series 

l4 and l12 are selected bandwidths based on the Schwert (1989) method; lwn is a selected bandwidth based on the Newey 
and West (1987) method; zt = {1, t} is a regression with constant and trend; zt = {1} is a regression with constant; ητ is 
a regression with constant and trend; ηµ is a regression with constant and the symbol *** indicates the acceptation of 
the stationarity hypothesis at the 1% risk level. 
   

 

PP-Statistic Series ADF-Statistic 
 l4 l12 lwn 

Crude oil price 0.6824 0.7549 0.8555 0.7296 
Convenience yield -6.1025*** -9.020*** -10.738*** -8.9265*** 
TMM -1.0833 -0.7485 -0.7415 -0.7485 
 DF-GLS-Statistic PT-Statistic 
 zt = {1,t} zt = {1} zt = {1,t} zt = {1} 
Crude oil price -1.555 0.371 10.626 43.880 
Convenience yield -5.453*** -5.306*** 1.373*** 0.390*** 
TMM -2.104 0.736 9.418 78.816 

KPSS-Statistic 
 ητ ηµ 
 l4 l12 lwn l4 l12 lwn 
Crude oil price 1.3494 0.5205 1.5677 5.5045 2.0903 6.4045 
Convenience yield 0.5064 0.2044*** 0.5530 0.7433 0.2996*** 0.8117 
TMM 0.5034 0.2178 0.5034 3.4611 1.2974 3.4611 
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For the convy series (derived from a pair of futures contracts expiring in months 1 and 2), 
the ADF, PP, DF-GLS and PT tests reject the null hypothesis at the 1% risk level5. Given that the 
nonstationarity tests provide results indicating that the convy series is stationary6, we can conclude 
that the data generating process of this series is stationary and consequently it would be preferable 
to use a mean-reverting process to describe the stochastic evolution of the convy in continuous time. 
Figures 3 and 4 show that the convenience yield can be negative. So, in this study, the Ornstein-
Uhlenbeck process is chosen to model the convenience yield when evaluating the option to defer 
using multi-factor pricing models and then the testing procedure is stopped at stage 1 for this 
uncertainty source. 

The dynamic of the Ornstein-Uhlenbeck process is written as: 

       ( ) tctt dzσdt Cαk dC +−=            (1) 

Where C is the convenience yield, k is the speed reversion of the convenience yield, α is the 
equilibrium level to which the convenience yield tends to revert, σc is the convenience yield’s 
standard deviation and dzt is the Wiener increment. 
 

Stationarity and nonstationarity tests applied to the TMM series accept the presence of unit 
root and so, indicate that this series is a random-walk. The rejection of the stationarity hypothesis 
may be due to the presence of at least one break in this time series. We carry on the testing 
procedure for this series. The unit root test with a structural break is applied to this series at stage 2. 
The test results are regrouped in table 3. 

 
Table 3. Results of the unit root test with a structural break for the TMM series 

Perron test: IO version (model C)  
Critical value (τ = 0.5 ) Break dates t τ 

1% 5% 10% 
1996 :11 -3.6492 0.5 -4.90 -4.24 -3.96 

Perron test: AO version (model B) 
 Critical Value (τ = 0.5 ) 
 

t τ 
1% 5% 10% 

1999 :02 -3.5144 0.5 -4.49 -3.93 -3.65 

Model B allows for a change in slope; Model C allows for a change in both intercept and slope;
T
Tτ b= ; Tb is the break 

date; T is the sample size and t is the t-statistic. 

The nonstationarity hypothesis isn’t rejected. The non-rejection of the null hypothesis may 
be due to the presence of multiple breaks. So, multiple structural change tests developed by Bai and 
Perron (1998-2003) are applied to this series at stage 3. Table 4 displays the results of multiple 
structural change7 tests (pure model) corresponding to a level shift, a slope shift and a level and 
slope shift. 

 
 
 
  
 

                                                 
5 Table 2 shows that the KPSS test statistic is affected by the choice of the bandwidth. Indeed, in the cases of l4 and lwn, 
the convy series is not stationary unlike the case of l12. 
6 The same results are obtained for the convy series derived from pairs of futures contracts expiring in months 2-3; 3-4; 
4-5; 5-6; 6-7; 7-8; 8-9; 9-10; 10-11. The Results are available upon request. 
7 The Results of multiple structural change tests with a nonparametric correction and multiple structural change tests 
using partial model are available upon request.    
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Table 4. Results of multiple structural change tests for the TMM series: pure model 

 Seq: Sequential procedure developed by Bai and Perron (1998-2003). 
BIC and LWZ: information criteria. 
The symbol *** indicates that the tests are significant at the 1%  risk level. 
cor_u = 0: errors are serially uncorrelated. 
het_u = 0: errors are identically distributed. 
het_z = 1: data have different distributions across segments. 

Both UDmax and WDmax tests are highly significant, so we distinguish at least one break. 
SupFT(l), l={1;2 ;3}, and supFT(3| 2) are all significant at the 1% risk level. The three information 
criteria select three breaks. We conclude that the non-rejection of the null hypothesis under which 

                                   cor_u = 0 het_u = 0 het_z = 1 ε = 0.2 m = 3 
xt= {Ø}, zt= {1} and p= 0 

 
Tests 

 
UDmax 

 
WDmax 

 
supFT(1) 

 
supFT(2) 

 
supFT(3) 

 2140.6768*** 
 

388 4.500*** 7356.629*** 1778.131*** 2140.6768*** 

 supFT(2|1) supFT(3|2)    
 1463.6033*** 108.4104***    
 
 

 
BIC 

 
LWZ 

 
Seq 

  

Number of breaks 3 3 3   
 T1 T2 T3   
Break dates 1993 :10 1996 :11 1999 :10   
 
Confidence intervals 

 
(1993 :9-1993 :11) 

 
(1996:10- 1996:12) 

 
(1999 :8 – 2000 :1) 

  

xt={Ø}, zt={t} and p= 0 
 
Tests 

 
UDmax 

 
WDmax 

 
supFT(1) 

 
supFT(2) 

 
supFT(3) 

 226.1908*** 336.2265*** 186.7576*** 226.1908*** 185.2906*** 
 

 supFT(2|1) supFT(3|2)    
 382.3574*** 198.2025***    
 
 

 
BIC 

 
LWZ 

 
Seq 

  

Number of breaks 3 3 3   
 T1 T2 T3   
Break dates 1993 :10 1996 :12 1999 :11   
 
Confidence intervals  

 
(1993 :9 -1994 :8) 

 
(1996:11 -1997:2) 

 
(1999:10 - 2000:1) 

  

xt={Ø}, zt= {1, t} and p= 0 
 
Tests 

 
UDmax 

 
WDmax 

 
supFT(1) 

 
supFT(2) 

 
supFT(3) 

 433.9159*** 609.8089*** 229.1624*** 433.9159*** 365.8036*** 
 

 supFT(2|1) supFT(3|2)    
 351.2022*** 49.1154***    
 
 

 
BIC 

 
LWZ 

 
Seq 

  

Number of breaks 3 3 3   
 T1 T2 T3   
Break dates 1993 :10 1996 :11 2001 :1   
 
Confidence intervals 

 
(1993:9 -1993 :11) 

 
(1996:10-1996:12) 

 
(2000 :12 -2001:3) 
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the TMM series is not stationary is due to the presence of several switching regime. Figure 2 shows 
that there aren’t remarkable fluctuations in the TMM historical series. The evolution of TMM series 
estimated with three breaks (figure 7) shows that after each break the value of TMM is nearly 
constant for a given period. So, for this study, the TMM is considered constant when evaluating the 
option to defer the oilfield development and the testing procedure is stopped at stage 3 for this 
series.   

Figure 7. TMM estimated with 3 level and slope shifts 
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For the crude oil price series, the computed ADF test statistic is superior to the critical 
values at the 1%, 5% and 10% risk levels, so we accept the unit root null hypothesis. Whatever the 
bandwidth chosen, the PP test also accepts the nonstationarity hypothesis at the 1%, 5% and 10% 
risk levels. The DF-GLS and PT tests are unable to reject the presence of unit root too. The 
computed KPSS test statistic is superior to the critical values at the 1%, 5% and 10% risk levels, 
and then we reject the null hypothesis. However, the non-rejection of the nonstationarity hypothesis 
may be due to the presence of at least one break in the crude oil price series. That is why we 
continue the testing procedure. The unit root test with a structural break is applied to this series at 
stage 2. Table 5 gives the results of this test. 

Table 5. Results of the unit root test with a structural break for the crude oil price series 
Perron test: IO version (model A) 

Critical Value (τ = 0.3 ) Break dates t τ 
1% 5% 10% 

1972 :12 -3.6010* 0.3 -4.39 -3.76 -3.46 
Perron test: AO version (model A) 

Critical Value (τ = 0.5 )  t τ 
1% 5% 10% 

1973 :12 -2.5927 0.5 -4.32 -3.76 -3.46 
         Mode A allows for a trend’s level shift; the symbol* indicates the acceptation of the stationarity hypothesis at the 

      10%  risk level;
T
Tτ b= ; Tb is the break date; T is the sample size and t is the t-statistic. 

The null hypothesis is rejected at the 10% risk level which is generally considered as a high 
risk level. At this stage, we can’t draw any definitive conclusion about the time series proprieties of 
the crude oil price. In order to choose the appropriate stochastic process for this uncertainty source, 
we move on to the stage 4 which consists in simulating different continuous-time stochastic 
processes8 and the mean error between the simulated prices and the market ones.  
                                                 
8 The continuous-time stochastic processes which are simulated in this study are: the Geometric Brownian Motion with 
and without jumps, the Ornstein-Uhlenbeck process with and without jumps, the Pearl-Verhulst process with and 
without jumps, the Schwartz (1997) process with and without jumps, the Inhomogeneous Geometric Brownian Motion 
with and without jumps and the Cox-Ingersoll-Ross process with and without jumps. The simulation is carried out using 
Excel. We wish to thank Dr Marco Dias for his help.        
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4.2. Estimation and simulation of the oil price process 
 

The simulation of continuous-time stochastic processes requires the estimation of their 
parameters. In this study, the estimation is carried out using the Maximum Likelihood Estimation9. 
The estimated parameter values of the Geometric Brownian Motion (henceforth, GBM) without 
jumps obtained through the approximate density functions developed by Aït-Sahalia (1999), Aït-
Sahalia (2002) and Bakshi and Ju (2005) are equal to those obtained by the exact density function. 
The estimated parameter values of the Ornstein-Uhlenbeck process without jumps obtained through 
the approximate density functions developed by Aït-Sahalia (1999) and Bakshi and Ju (2005) are 
equal to those obtained by the exact density function. However, the estimated parameter values of 
this process using the approach of Aït-Sahalia (2002) are different from those obtained by the exact 
density function. For this process, the likelihood maximized value of the Aït-Sahalia (2002) 
approximation is inferior to the ones obtained through the exact density function and the other 
approximate density functions. When we simulate the fitted processes without jumps, we use the 
values of parameters estimated by the approximation method that presents the higher value of the 
maximum likelihood. For the GBM and the Ornstein-Uhlenbeck process we use the estimated 
parameter values obtained by maximizing the exact density function10.  

The simulated paths, compared to the historical oil prices curve, and the frequencies of mean 
errors between the simulated prices and the market ones, show that11: (1) A process with jumps is 
better than a process without jumps to model the crude oil price with an increase in kurtosis. (2) The 
Cox-Ingersoll-Ross process and the Inhomogeneous Geometric Brownian Motion are unable to 
describe the oil price stochastic evolution in spite of the decreases in the mean error in comparison 
with the processes without jumps. (3) The GBM with jumps (figure 8) is the suitable stochastic 
process for the crude oil price. (4) A switching equilibrium level for the mean-reverting processes 
with jumps (Ornstein-Uhlenbeck process with jumps, Pearl-Verhulst process with jumps and 
Schwartz (1997) process with jumps) is better than a constant one12. 

So, in this study, the GBM with jumps is chosen to model the oil price when evaluating the 
option to defer the oilfield development.    

Figure 8. Simulation of the GBM with jumps 
 

 
 
 
 
 
 
 
 
 
 
              
                                                            Market prices                     Simulated prices 

          The dynamic of the GBM with jumps is written as: 
         ( ) ttttstt dq S JdZ S σdt S cdS ++−µ=          (2) 

                                                 
9 The estimated parameter values using MLE are available upon request. 
10 The simulation of stochastic processes with jumps is carried out using the values of parameters estimated by the 
approximation of Yu (2007). Parameter estimates are available upon request.  
11 The sample paths of simulated processes and the statistics of the Monte-Carlo simulation of the mean error are 
available upon request.     
12 Pindyck (1999) suggested a switching equilibrium level for these processes to model the oil price too.   
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 where S is the oil price, µ is the instantaneous expected return, c is the convenience yield, σs is the 
oil price’s standard deviation, dzt is the Wiener increment, J is the jumps size, dqt is equal to 0 with 
probability 1 – ηdt, dqt is equal to 1 with probability ηdt and η is the jumps intensity. 

A calibration of a GBM with compensated stochastic jumps developed by Jeanblanc and 
Privault (2002) shows that the jumps considered as stochastic are better described by a mean-
reverting process. Since we are interested in jumps up and jumps down, we choose the Ornstein-
Uhlenbeck process to describe the evolution of jumps considered as stochastic when evaluating the 
option to defer the oilfield development using three-factor pricing model. 

The dynamic of the Ornstein-Uhlenbeck process is written as: 

                          ( ) tJt11t dzσdt JαkdJ +−=              (3) 
where J is the jumps size, k1 is the speed reversion of jumps, α1 is the equilibrium level to which 
jumps tend to revert, σJ is the jump’s standard deviation and dzt is the Wiener increment  
 
4.3. Value of the option to defer  
  

After choosing the suitable continuous-time stochastic processes for the risk factors, we 
evaluate a petroleum reserve using a real option approach (option to defer) based on one-factor and 
mutlti-factor pricing models. For the single-factor model, the relevant state-variable is the crude oil 
price which follows the GBM with jumps. The second uncertainty source added in the two-factor 
model is the convenience yield which follows the Ornstein-Uhlenbeck process. The third factor 
used in the three-factor model is the jumps modelled by the Ornstein-Uhlenbeck process.          

For the one-factor model, the oil price evolves according to: 

      ( ) ttttpttt dq P JdZ P σdP P crdP ++−=         (4) 
where r is the risk-free interest rate, c is the convenience yield13, σp is the oil price’s standard 
deviation, dzt is the Wiener increment, J is the jumps size (We use log-normal distribution for 
jumps size like Merton, 1976), dqt is equal to 0 with probability 1 – ηdt, dqt is equal to 1 with 
probability ηdt and η is the jumps intensity. 
 To apply the Longstaff and Schwartz (2001) approach to evaluate the option to defer the 
oilfield development, the oil price is simulated many times14 in order to determine the discounted 
cash-flows values V generated by the project at the dates t = 1994, t = 1993 and t = 1992 at which 
the option can be exercised. Since the simulation of these discounted cash-flows values is achieved, 
we deduce first the optimal early exercise decision matrix at the dates t = 1993 and t = 1992. Then, 
we determine the optimal stopping rule matrix at the dates t = 1994, t = 1993 and t = 1992. Finally, 
we calculate the mean of the option discounted payoffs which is the value of the option to defer 
F(V). In order to calculate the critical exercise values V*, the linear interpolation is applied at the 
dates t = 1993 and t = 1992. Table 6 regroups the values of the option to defer the oilfield 
development F(V) and the critical values V*.  

Table 6. Option to defer values and critical values: one-factor model 
1992   

F(V)  1992 1993 1994 

227 779.39 V 233 100.20 267 616. 06 282 491.23 

F(V)+I     

  

 

PF6 

399 203.34 V* 344 844.08 302 631.05 192 611.95 

                                                 
13 For this model c is assumed constant. For detailed calculations of c for these two platforms, see “Pricing an Option to 
Defer a Tunisian Oil Field Development”, Kaffel, B., Abid F., Kaaniche L (2005).     
14 The simulations number chosen is 2000. The simulation is carried out using Excel.  
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1992   

F(V)  1992 1993 1994 

213 105.84 V 223 166.10 256 568.02 282 833.90 

F(V)+I     

 

 

PF4 

382 124.52 V* 342 211.99 308 739.80 189 909.39 

          

At the date t = 1992, we note that the project full cost [F(V) + I] and the critical value V* are 
superior to the discounted cash-flows value V for the two platforms. So, the petroleum company 
shouldn’t begin the development phase at this date. At the date t = 1993, we also note that the 
critical value is superior to V. At the option maturity (t = 1994), the critical value is inferior to the 
discounted cash-flows value for the two platforms. Moreover, the value of the option to defer 
corresponding to PF6 is superior to this of PF4. So we can conclude that, when we use a one-factor 
pricing model for which the oil price is the relevant state-variable, the petroleum company should 
begin the development phase at the option maturity by installing the platform with six legs (PF6).  
 The multi-factor pricing models fit the futures prices better than the one-factor pricing 
models (Schwartz, 1997). Indeed, the mean square error of the single-factor models is superior to 
the one of the multi-factor models. Besides, the volatilities implied by the single-factor models are 
different from the historical volatilities unlike the ones implied by the multi-factor models. Next, we 
evaluate the option to defer by means of multi-factor models and we examine whether the 
investment decision is affected when we use multi-factor models compared to the one-factor model. 
The valuation of the option to defer the oilfield development is under taken using two-factor and 
three-factor pricing models15. 

 In a world where there are no arbitrage opportunities and under the risk-neutral probability, 
the joint stochastic process corresponding to the two-factor model is: 

          
( )
( )[ ]⎪⎩

⎪
⎨
⎧

+−−=

++−=

cc

sss

dzσdt λCαkdC

dq S Jdz Sσdt S CrdS
         (5) 

with [ ]  ρdt       dzdzE cs =×  
where S is the oil price, C is the convenience yield, σs is the oil price’s standard deviation, dzs is the 
Wiener increment associated with the oil price, k is the speed reversion of the convenience yield, α 
is the equilibrium level to which the convenience yield tends to revert, σc is the convenience yield’s 
standard deviation, dzc is the Wiener increment associated with the convenience yield, λ is the risk 
premium associated with the convenience yield and ρ is the coefficient correlation between the two 
Brownian motions associated with S and C.       

The third factor added in the three-factor model is the jumps. The joint stochastic process 
corresponding to the three-factor model is: 

    
( )
( )[ ]
( )[ ]⎪

⎪
⎩

⎪⎪
⎨

⎧

+−−=
+−−=

++−=

JJ111

cc

sss

dzσdt λJαkdJ
dzσdt λCαkdC

dq S Jdz Sσdt S CrdS

        (6) 

 
with [ ] dtρdzdzE 1cs =× , [ ] dtρdzdzE 2Js =×  and [ ] dtρdzdzE 3cJ =×    
where k1 is the speed reversion of jumps, α1 is the equilibrium level to which jumps tend to revert, 
λ1 is the risk premium associated with jumps, σJ is the jump’s standard deviation, dzJ is the Wiener 
                                                 
15 Calculation details of the simple and the extended Kalman filters used respectively to estimates the parameters of 
two-factor and three-factor pricing models are available upon request. 
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increment associated with the jumps and ρ1, ρ2 and ρ3 are the coefficients correlation between the 
three Brownian motions associated respectively with S and C, S and J and J and C. 
 For this last model, we proceed in this way: between two times of jumps tk and tk+1, we 
multiply St by (1 + J). So, St+1 = St*(1+J) (Swishchuk, 2004). 

Tables 7 and 8 report the parameter values of the two-factor and the three-factor pricing 
models estimated using respectively the simple and the extended Kalman filters:  

Table 7. Parameter estimates: two-factor 
model 

Parameter Value 
σs 
σc 
κ 
µ 
α 
ρ 
λ 
σ3 
σ4 
σ5 
σ6 

σ_junps 
µ_jumps 

η 

0.2634 
0.0006 
0.1438 
0.2212 
0.1331 
0.3237 
0.0562 

4.6548 10-5 

0.0134 
0.0023 

4.508 10-5 

0.1214 
0.0025 
0.7539 

Likelihood function            649.0214 
µ is the oil price’s immediate return.  
σ3, σ4, σ5, σ6 standard deviations of error for 
measurement equation.  
 
                  
                                               

Table 8. Parameters estimates: three-factor 
model 

Parameter Value 
σs 
σc 
σJ 
κ 
κ1 
µ 
α 
α1 
ρ1 
ρ2 
ρ3 
λ 
λ1 
σ4 
σ5 
σ6 
σ7 

0.0891 
0.0963 
0.2114 
0.1232 
0.2445 
0.1521 
0.1075 

0.04270 
0.0941 
0.0013 
0.0010 
0.0023 
0.0018 
0.7827 
0.4551 
0.7432 
0.5410 

Likelihood function    657.1605        
 µ is the oil price’s immediate return.   
 σ4, σ5, σ6, σ7  standard deviations of error for 
measurement equation. 

We note a positive correlation between the crude oil price and the convenience yield 
processes’ residuals which indicates a positive relationship between the unexpected changes in 
these two state-variables. Furthermore, a weak correlation between the jumps and the oil price and 
the jumps and the convenience yield is remarked for three-factor models.        

The option pricing based on a multi-factor model has to take account of the correlation 
between the stochastic variables. The simulation of a normal distribution vector with parameters 
N(M, ∑) where M is a mean vector and ∑ is a covariance matrix is required. The simulation of a 
vector Z = [Z1 Z2 …..Zd] reverts to simulate W = A*Z where W = [W1 W2 …..Wd] with a 
covariance matrix ∑W. So, the simulation of the matrix W reduces to finding a matrix A such that 
AAT = ∑W (Glasserman, 2003). The Cholesky factorization allows calculating this matrix. The 
results corresponding to the option to defer values F(V) and the critical values V* using multi-factor 
models are summarized in the following tables (tables 9 and 10). 

Table 9. Option to defer values and critical values: two-factor model 
1992     

F(V)  1992 1993 1994 

134 524.88 V 174 434.92 175 347.11 185 782.10 

F(V)+I     

 

 

PF6 

305 948.83 V* 232 226.74 231 949.99 192 611.95 
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1992     

F(V)  1992 1993 1994 

98 741.47 V 142 163.72 158 149.56 187 032.88 

F(V)+I     

 

 

PF4 

270 165.42 V* 239 973.74 232 752.16 189 909.39 

 
  

Table 10. Option to defer values and critical values: three-factor model 
1992     

F(V)  1992 1993 1994 

10 185.63 V 157 219.68 171 353.09 185 955.97 

F(V)+I     

 

 

PF6 

181 609.57 V* 282 950.31 193 733.81 192 611.95 

1992     

F(V)  1992 1993 1994 

9 593.94 V 156 445.10 169 767.49 185 217.61 

F(V)+I     

 

 

PF4 

181 017.88 V* 193 500.06 193 143.01 189 909.39 

 
We note that the project full cost is superior to the discounted cash-flows value V at the date 

t = 1992 for the two platforms. In addition, at the dates t = 1993 and t = 1994, the critical values V* 
are superior to the discounted cash-flows values. So we can conclude that, when we use multi-factor 
models, the petroleum company shouldn’t exercise this option and consequently shouldn’t develop 
this oilfield.       
   When increasing the number of simulations from 2000 to 5000, the standard deviation of the 
estimate is reduced from 7 to 5.75 and the confidence limits from ± 14.30 to ± 11.28. We also note, 
when the simulations number increases from 20000 to 25000, the reduction of the confidence limits 
is smaller (from ± 6.50 to ± 6.01). The use of the antithetic variable technique reduces more the 
standard deviation of the estimate. Indeed, the range of the ninety five per cent confidence limits is 
reduced from ± 6.01 to ± 2.88. 

Table 11 gives the value of the option to defer the oilfield development and the critical 
values using 25000 simulations together with the antithetic variable technique.  

Table 11. Option to defer value and critical values (three-factor model): 25000 simulations together 
with antithetic variable technique  

1992   

F(V)  1992 1993 1994 

10 008.72 V 156 714.76 170 687.95 185 983.42 

F(V)+I     

 

 

PF6 

181 432.67 V* 196 560.56 194 438.87 192 611.95 

We note that, when we use the antithetic variable technique, the investment decision isn’t 
affected. Indeed, the critical values are superior to the discounted cash-flows values at the dates       
t = 1992, t = 1993 and t = 1994 and consequently the company shouldn’t develop this oilfield.    
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5. Conclusion 
 

The choice of the appropriate continuous-time stochastic processes for the underlying assets 
has important consequences for the valuation of oil deposits and for the development decision. This 
paper presents a methodology to evaluate an option to defer an oilfield development. The testing 
procedure to analyze the time series properties of the crude oil price, the convenience yield and the 
risk-free interest rate, with the purpose of identifying the stochastic processes that reflect as likely 
as possible their dynamics behaviors, consists in: (1) Running unit root tests with and without 
breaks. (2) Running multiple structural change tests. (3) Simulating different stochastic continuous-
time processes and the mean error between the simulated prices and the market ones. After 
identifying the appropriate stochastic processes for these risk factors, the valuation of the option to 
defer is carried out by means of one-factor, two-factor and three-factor pricing models. The Least-
Squares simulation method is applied for the option valuation. To improve the efficiency of the 
Monte-Carlo method, the antithetic variable technique is considered. The results analysis show that 
the Ornstein-Uhlenbeck process is the suitable process to model the convenience yield, the 
Geometric Brownian Motion with jumps is the appropriate process to describe the stochastic 
behavior of the crude oil price and the risk-free interest rate can be considered constant when 
pricing an option to defer an oilfield development. The case study illustrates that the investment 
decision depends on the number of stochastic variable kept for the valuation of a petroleum 
investment using real option theory. Indeed, according to the multi-factor pricing models, the 
company shouldn’t develop the oilfield unlike the single-factor model.   
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