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Abstract

The purpose of this paper is to derive an optimal decision rule for investment in a fi-

nite life project, where we impose that the firm is ambiguous about the development of

profit over time in the sense that it has no perfect information about parameter values

governing the profit dynamics. Assuming that the firm is ambiguity averse, the analy-

sis is based on Knight’s distinction between risk and uncertainty and is carried out by

dynamic programming in continuous time.

We find that ambiguity aversion affects the value of waiting equivocally and thus may

accelerate investment. Yet, in the long run a large degree of Knightian uncertainty re-

sults in foregoing investment with greater probability than in the absence of Knightian

uncertainty.
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1 Introduction

We depart from the real options approach to investment under uncertainty in the spirit

of McDonald and Siegel (1986) and Dixit and Pindyck (1994). A first change is that we

consider a finite life-time project rather than a perpetual one. This seems to be more

realistic in today’s knowledge economy with its fast-changing technology environment

(see also Gryglewicz et al. (2005) and Sarkar (2003)).

When the firm faces an investment opportunity in a stochastic environment, it is very

unlikely that market uncertainty is time invariant and can be captured by a simple sto-

chastic process like e.g. geometric Brownian motion. However, this is regularly assumed

in the standard real option literature. We try to modify this unsatisfying situation

by studying a framework where market uncertainty may be perturbed by some noise

process. That is, in addition to risk, represented by geometric Brownian motion in our

model, the firm is aware of the presence of additional disturbance, where the latter

has an unspecified distribution. We employ the Knightian specification of uncertainty

(called also ambiguity in the literature) to model this probabilistic phenomenon. Math-

ematically, this form of uncertainty arises if the uncertainty is not reducible to a single

probability measure and thus needs to be characterized by a spectrum of probability

measures (cf. Knight (1921/2002)).

Most of the real options contributions assume that the market is complete and friction-

less, which implies that the firm’s decisions are made in a preference-free environment.

However, if the firm is not perfectly certain about the dynamics of the state variable

(the profit flow in our model), the firm’s investment decision must be based on priors

with respect to the future form of uncertainty. Following Chen and Epstein (2002), the

firm’s priors are represented by a set of probability measures. Furthermore, we impose

that the firm is ambiguity averse, which in fact means that the firm is pessimistic about

future profits. Having assumed the Knightian specification of uncertainty, the optimal

decision is taken as if the state variable was governed by the worst-case probability mea-

sure among the measures considered. Consequently, the optimal investment problem is

set in a maximin decision framework.
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We derive the optimal investment trigger for the investment problem using the dy-

namic programming approach. We show that ambiguity aversion leads to an erosion of

the value of the investment opportunity, but this does not necessarily bring about invest-

ment acceleration. This distinguishes our findings from Nishimura and Ozaki (2003),

who established only the first result for the case of a perpetual project and showed in

this way that the impact of ambiguity on optimal investment behavior is drastically dif-

ferent than the impact of risk (volatility). The latter result that ambiguity may speed

up or delay option exercise links our paper to Miao and Wang (2006). Their contribu-

tion builds on a comparison of the effects of different degrees of ambiguity aversion on

continuation payoffs and termination payoffs. If uncertainty is fully resolved after the

investment is undertaken, then an increase in ambiguity accelerates investment. How-

ever, if the firm is ambiguous about the termination payoff, then the firm may delay the

investment if this ambiguity dominates ambiguity about continuation payoff.

In our paper we assume that undertaking the investment does not change the level

of ambiguity after the investment has been carried out. Still, there are two contra-

dictory effects that govern the investment timing. First, there is option value effect.

It captures the negative impact of the Knightian uncertainty on the hysteresis factor.

Second, there is present value effect linked with subjective discount rate. We find that

the higher the degree of ambiguity the lower is the net present value of the project

under the worst case scenario. Combining these effects implies non-monotonicity of the

investment trigger and an equivocal relationship in the value of waiting to invest.

We further examine the probability of investment. We find that the reduced value

of waiting makes that in the short-run Knightian uncertainty may be investment en-

hancing. The opposite effect holds in the long-run: the ambiguity averse firm refrains

from investment with a larger probability than a firm facing no ambiguity.

The remainder of the paper is organized as follows. Section 2 describes two cases.

First, it presents a standard investment problem, where the project’s value follows a

geometric Brownian motion process and the project has finite life-time. Second, it de-

velops a model where the firm is uncertain about the correct process generating future

revenues. The analytical solutions for both cases are provided. Section 3 examines the
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sensitivity of the results to the key parameters and presents probability calculations.

The last section concludes.

2 The model

2.1 The project with finite lifetime

Let time be continuous and indexed by t ≥ 0. Uncertainty is represented by a filtered

probability space (Ω,F , (Ft)t≥0,Q). At each point of time the firm is facing an in-

vestment opportunity yielding a stochastic profit. Throughout this subsection the firm

is assumed to be perfectly certain about the future process governing the profit (this

conventional real options assumption is relaxed in the next subsection). The profit is

modelled as a geometric Brownian motion and its dynamics under Q is given by

dπt = πt(µdt + σdBt), (1)

with π0 > 0 and where µ and σ are positive constants denoting drift and instantaneous

standard deviation, respectively, while dBt is the increment of a Wiener process. The

firm is looking for the optimal time to pay a sunk cost I in return for a project whose

value is stochastic.1

Suppose that the investment is undertaken at time t. The value of the project in-

stalled, Wt, equals the expected present value of the profit flow generated by the project

during its life-time τ :

W (πt) = EQ
[ ∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
=

πt(1− e−(r−µ)τ )

r − µ
=: Wt, (2)

where r > µ is the (exogenous) interest rate. Applying Itô’s lemma to W (πt) implies

that the dynamics of the value of the project under Q satisfies

dWt = Wt(µdt + σdBt) with W0 = π0
1− e−(r−µ)τ

r − µ
.

The value of the opportunity to invest at time t, Ft, equals

Ft = max
t′≥t

EQ
[ ∫ t′+τ

t′
e−r(s−t)πsds− e−r(t′−t)I

∣∣∣∣Ft

]
,

1We assume that the project has no salvage value, i.e. I is totally sunk. As claimed in Dobbs (2004),

second hand markets are of great importance for a non-growing steady state economy. The fast-changing

technology environment constitutes the complementary case where the second hand value is negligible.
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which, because the model is stationary, leads to the following Bellman equation:

F (Wt) = max
{
Wt − I,EQ[dFt|Ft] + F (Wt)− rF (Wt)dt

}
.

In the continuation region it holds that rF (Wt)dt = EQ[dFt|Ft], which by Itô’s lemma

simplifies to
1

2
σ2W 2

t F ′′(Wt) + µWtF
′(Wt)− rF (Wt) = 0.

The equation above must be solved subject to appropriate boundary conditions (value-

matching, smooth-pasting, and absorbing-barrier condition, respectively):

F (W ∗) = W ∗ − I F ′(W ∗) = 1 F (0) = 0.

The main result of this subsection is summarized in the proposition below.

Proposition 2.1 Let r > µ and let β denote the positive root of the fundamental

quadratic 1
2
σ2β(β − 1) + µβ − r. The firm optimally exercises the investment option

the first time the process Wt exceeds the threshold W ∗ = β
β−1

I. The corresponding value

function equals

F (Wt) =





(W ∗ − I)

(
Wt

W ∗

)β

if Wt ≤ W ∗

Wt − I if Wt > W ∗.

The corresponding trigger on the process of profit flows equals π∗ = β
β−1

I r−µ
1−exp(−(r−µ)τ)

.

2.2 The optimal investment policy under ambiguity aversion

In contrast to the previous section, we assume that the firm has no perfect confidence

about the process governing the stochastic state variable (profit). Thus instead of as-

suming that future market uncertainty is driven by a single stochastic process with time

invariant parameters, the profit flow is perceived as a stochastic process perturbed with

noise of an unspecified distribution. This perturbation does not vanish over time, but

persists in the independently and indistinguishably distributed manner (IID) according

to terminology from Epstein and Schneider (2003). Formally, the noise is represented by

a process θ over the range [−κ, κ]. The ambiguity level (called also the degree of Knight-

ian uncertainty) is thus represented by the parameter κ. Due to the probabilistic model
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misspecification for θ, the arising form of uncertainty is not reducible to a single proba-

bility measure and thus needs to be characterized by a spectrum of probability measures.

The process θ serves itself as density generator, so the ambiguity in continuous time

is defined as an expansion of the measure Q with the set of density generators. Conse-

quently, the uncertainty is represented by a family of filtered probability spaces indexed

by the set of density generators θ: (Ω,F , (Ft)t≥0,Qθ). For a formal construction the

reader is referred to Appendix B.

It follows from the representation of ambiguity and Girsanov’s theorem that a stochastic

process

dBθ
t = dBt + θtdt

is a standard Brownian motion on (Ω,F , (Ft)t≥0,Qθ). This fact allows us incorporate

the noise process affecting the profit flows and state the general representation of the

profit flow as follows:

∀θ dπt = (µ− σθt)πtdt + σπtdBθ
t .

This construction restricts the analysis to the set of measures equivalent to a reference

probability measure. Measures are defined by their density generators and the model

uncertainty is made equivalent with parameter uncertainty after the change of measure.

Thus all processes used to describe the profit evolution are equivalent and ambiguity is

captured by the spectrum of the subjective drift terms.

Furthermore we assume that the firm is pessimistic about future profits, which is iden-

tified as the extremal form of investor’s ambiguity aversion. That is, the firm assigns

the lowest value of growth rate to the project, such that

dπt = (µ− κσ)πtdt + σπtdBκ
t

With this form of pessimistic beliefs the optimal decisions are taken as if the state vari-

able was governed by the worst-case probability measure among the elements in the

candidate set. That leads to the maximin decision framework.

As proved in Appendix B, the project value under the worst case scenario is described

by the following proposition.
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Proposition 2.2 Under the worst case scenario, the present value at t of a cash flow

stream generated by the project during its lifetime τ equals

W (πt, t) = min
Q∈PΘ

EQ
[ ∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
= πt

1− e−(r−µ+κσ)τ

r − µ + κσ
,

and its dynamics under the worst case measure, Qκ, is given by

dWt = Wt(µ− κσ)dt + WtσdBκ
t with W0 = π0

1− e−(r−µ+κσ)τ

r − µ + κσ
.

The corresponding value of the investment opportunity equals

Ft = max
t′≥t

min
Q∈PΘ

EQ
[ ∫ t′+τ

t′
e−r(s−t)πsds− e−r(t′−t)I

∣∣∣∣Ft

]

and satisfies the following Bellman equation (see Appendix B):

F (Wt) = max
{
Wt −K, min

θ∈Θ
EQθ

[dFt|Ft] + F (Wt)− rF (Wt)dt
}
.

In the continuation region it holds that

rF (Wt)dt = min
θ∈Θ

EQθ

[dFt|Ft],

which by Itô’s lemma simplifies to

1

2
σ2W 2

t F ′′(Wt) + (µ− κσ)WtF
′(Wt)− rF (Wt) = 0.

The equation above must be solved subject to standard boundary conditions (value-

matching, smooth-pasting and absorbing barrier condition, respectively):

F (W ∗) = W ∗ − I F ′(W ∗) = 1 F (0) = 0.

The main result is summarized in the following proposition.

Proposition 2.3 Let the firm be ambiguity averse and let κ > 0 represent the firm’s

degree of Knightian uncertainty. Let r > µ−κσ and let β denote the positive root of the

fundamental quadratic 1
2
σ2β(β − 1) + (µ − κσ)β − r. The firm optimally exercises the

investment option the first time the process Wt exceeds the threshold W ∗ = β
β−1

I. The

corresponding value function equals

F (Wt) =





(W ∗ − I)

(
Wt

W ∗

)β

if Wt ≤ W ∗

Wt − I if Wt > W ∗.
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In order to provide a complete characterization of the optimal investment rule, we state

an analogous proposition for profit flows.

Proposition 2.4 Let the firm be ambiguity averse and let κ > 0 represent the firm’s

degree of Knightian uncertainty. Let r > µ−κσ and let β denote the positive root of the

fundamental quadratic 1
2
σ2β(β − 1) + (µ − κσ)β − r. The firm optimally exercises the

investment option the first time the process πt exceeds the threshold π∗ = β
β−1

I δ
1−exp(−δτ)

,

where δ = r − µ + κσ. The corresponding value function is

F (πt) =





(
π∗

1− exp(−δτ)

δ
− I

)(
πt

π∗

)β

if πt ≤ π∗

πt
1− exp(−δτ)

δ
− I if πt > π∗.

3 Main implications of the model

In this section we examine the impact of ambiguity aversion and finite life-time on the

project value and optimal investment timing. As a reference point we consider the model

without Knightian uncertainty.

3.1 No ambiguity

To examine the effect of an increase in risk (volatility) of the project in the absence of

Knightian uncertainty we derive the following partial derivatives of triggers:

∂W ∗

∂σ
= − W ∗

β(β − 1)

∂β

∂σ
> 0 and

∂π∗

∂σ
=

∂W ∗

∂σ

r − µ

1− exp(−(r − µ)τ)
> 0.

Both critical values W ∗ and π∗ increase when σ increases. Thus a greater degree of risk

σ results in an increase of the value of the option to wait. This is a well-known result

from the real options literature.

3.2 Comparative statics results under ambiguity

First, we focus on the effect of ambiguity aversion on the time interval before the invest-

ment takes place. The threshold level of the present value of the project that triggers

investment equals

W ∗ =
β

β − 1
I,
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where β =
−(µ−κσ)+ 1

2
σ2+

s(
(µ−κσ)− 1

2
σ2

)2

+2rσ2

σ2 > 1. For this trigger the comparative sta-

tics result is easy to establish. Increasing ambiguity (κ) erodes the drift and raises β.

This implies that the hysteresis factor β
β−1

decreases, and so does the investment thresh-

old W ∗. Hence, higher ambiguity implies that, compared to the standard problem from

section 2.1, less precise information about the project value becomes available over time,

which makes waiting with investment less valuable. Thus higher ambiguity erodes the

subjective value of the investment opportunity. This result is in contrast with the im-

pact of risk (volatility) in the standard real options literature. On the other hand, the

hysteresis factor β
β−1

remains above 1, thus invalidation of the simple static NPV rule

still takes place.

To further investigate the impact of ambiguity on investment, we present comparative

statics results for the trigger π∗. This allows us to incorporate the impact of ambiguity

on the profit received by the firm after the investment has taken place. The partial

derivative of trigger π∗ is

∂π∗

∂κ
=

∂π∗

∂β

∂β

∂κ︸ ︷︷ ︸
option value effect(-)

+
∂π∗

∂δ

∂δ

∂κ
.

︸ ︷︷ ︸
present-value effect (+)

The above decomposition reveals two effects that govern the comparative statics results.

The first term is the option value effect. It describes the impact of the change in the

option value due to the change in the degree of Knightian uncertainty. Similarly as for

the trigger W ∗, the increase in ambiguity lowers the growth rate of the project. This

raises β and decreases the factor β
β−1

and thus lowers the investment threshold. Con-

sequently, this effect accelerates the investment. The second effect is the present-value

effect. This measures the change in the trigger caused by the change in the (subjective)

discount rate. An increase in the degree of ambiguity lowers the trend µ− κσ and thus

reduces the net present value of the project. This makes investment less profitable and

consequently raises the trigger. Thus the present-value effect is contradictory to the

option value effect. Note that in case of no Knightian uncertainty the present-value

effect is absent. Combining both effects yields that the relationship investment trigger-

Knightian uncertainty is equivocal for π∗. It is worth stressing that the origin of the

non-monotonicity result in the investment trigger here is different than in Miao and
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Wang (2006). Their findings are related to the different levels of ambiguity regarding

continuation and termination value whereas in our model the level of ambiguity remains

unchanged after the investment has been undertaken.

Figure 1 illustrates the difference in the impact of the Knightian uncertainty on the

triggers W ∗ and π∗.
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30.5
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Figure 1: Impact of ambiguity aversion on triggers W ∗ and π∗. The parameters are

(r, µ, σ, τ, I) = (0.2, 0.1, 0.2, 15, 100).

Let us now turn to the effect of the finite lifetime of the project. It is easy to show that

the trigger π∗ decreases at an exponential rate with τ . The larger τ , the larger the time

that the project generates profits, so that the profit flow can be smaller for investing

to be optimal. Figure 2 depicts the convergence of the optimal threshold to the case of

the perpetual one and also illustrates the decay in the magnitude of the option value

effect relative to the present value effect when the lifetime of the project increases. For

the limiting case corresponding to the perpetual project, the comparative statics results

for triggers W ∗ and π∗ exhibits monotonicity but in opposite directions: the former is

decreasing while the latter is increasing in κ (cf, Nishimura and Ozaki (2003)). This

extreme case reflects domination of the net present value effect over the option value

effect (see Appendix C).
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Figure 2: The finite life-time effect in the optimal investment trigger. The parameters

are (r, µ, σ, I) = (0.2, 0.1, 0.2, 100).

Concluding, we can summarize the comparative statics results for trigger π∗ in the

following proposition.

Proposition 3.1 If the project lifetime is finite, the impact of ambiguity on the invest-

ment trigger π∗ is equivocal.

Simulations show that short life-time of projects and low degree of Knightian uncertainty

is investment enhancing, while the opposite is true in case of high levels of ambiguity

and larger life-times.

3.3 Probability of investment

In the previous section we presented comparative statics results. We showed that in-

vestment triggers W ∗ and π∗ exhibit different comparative statics results despite that

processes Wt and πt are governed by the same dynamics (see Figure 1). To investigate

this issue further, we determine the impact of ambiguity aversion on the length of the

period before the investment takes place. This allows us to establish how powerful the

non-monotonic effect in π∗ is.

We examine the probability that investment takes place over a H-period horizon. Since

the future evolution of π (and W ) is unknown, the time of the investment is a random

variable. Following Harrison (1985), the cumulative distribution of the first passage time
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can be written as:

Qκ
(

sup
0≤t≤H

Wt ≥ W ∗
)

= Φ(d1) + Φ(d2)

(
W ∗

W0

) 2µ̂

σ2

,

where d1 =
− ln(W∗

W0
)+µ̂H

σ
√

H
, d2 =

− ln(W∗
W0

)−µ̂H

σ
√

H
, µ̂ = µ − κσ − σ2

2
, and Φ(·) is the standard

normal cumulative distribution function. Before we turn to the analysis of the results let

us recall that a change in the degree of ambiguity aversion affects the initial condition

for the process of the present values of project, W0 (see Proposition 2.2), whereas the

starting value of the profit flow, π0, is not sensitive to changes in κ. While marking both

triggers down we obtain
W ∗

W0

=
π∗

π0

. (3)

Due to this remark and because both Wt and πt are geometric Brownian motions with

identical parameters, the probability of investment is the same for the processes under

question. Therefore, without loss of generality in the remainder of this section we only

consider profit flows.

There are two important observations related to the probability of investment. Fig-

ure 3 shows the probability of investment for different time horizons and for different

levels of ambiguity aversion. The panel for low values of H illustrates the case where

the reduced value of waiting makes that in the short-run Knightian uncertainty may

be investment enhancing. On the other hand, for relatively high values of H the op-

posite effect holds: the ambiguous firm is less eager to invest than the firm facing no

ambiguity. In fact such a behavior of the probability of investment reflects two opposite

effects acting on this measure. First, the investment trigger is decreasing in low val-

ues of Knightian uncertainty so that investment occurs earlier. Second, a large degree

of Knightian uncertainty lowers the subjective drift of the project. This implies that

approaching the zero-absorbing barrier for the process is more likely. Combining these

effects imply that, even if the trigger π∗ is non-monotonic in the degree of the Knightian

uncertainty, the probability of investment appear to be monotonically decreasing in the

level of Knightian uncertainty for a sufficiently large time horizon.
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Figure 3: Impact of ambiguity aversion on probability of investment. The left panel for

low H, the right panel for H = (5, 10, 15, 25, 40, 65, 105, 170, 275, 1000). The parameters

are (r, µ, σ, τ, I, π0) = (0.2, 0.1, 0.2, 15, 100, 20).

In order to complete the discussion, we focus on the limiting case as H tends to infinity.

Following Harrison (1985, p. 43), we can write:

Qκ
(

sup
0≤t≤∞

πt ≥ π∗
)

=





1 if
2µ̂

σ2
≥ 0 ⇔ κ ≤ µ− σ2

2

σ(
π∗

π0

) 2µ̂

σ2

if
2µ̂

σ2
< 0 ⇔ κ >

µ− σ2

2

σ
.

This confirms the intuitive result that high uncertainty regarding the growth rate of

future prospect lowers the likelihood of the investment, as summarized in the following

proposition.

Proposition 3.2 The firm with low degree of ambiguity aversion (κ ≤ µ−σ2

2

σ
) invests

with probability 1, whereas the firm with large ambiguity aversion (κ >
µ−σ2

2

σ
) refrains

from investment with positive probability if the decision horizon is infinite.

3.4 Ironing the investment trigger

So far, we investigated the problem where the life-time of the project is given exogenously

and does not reflect any characteristics of market uncertainty. The project lasts exactly

τ years and then suddenly stops functioning. However, while a firm forms beliefs about

the dynamics of profits at the same time a firm may calculate the estimated life-time of

the project reflecting the firm’s attitude towards uncertainty. In this section we provide

comparative statics results helpful in answering the simplified version of this problem.
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Namely, we derive the life-time τ(κ) of the project that guarantees that profits at the

moment of investment under the worst case scenario are the same as for the case without

ambiguity. The trigger corresponding to this subjective project’s life-time is denoted by

π∗(κ, τ(κ)). The necessary condition to be met is stated in the proposition below.

Proposition 3.3 If π∗(0, τ(0)) > π∗(κ,∞) and τ(κ) = 1
δ(κ)

ln

(
1 − π∗(κ,∞)

π∗(0,τ(0))

)−1

then

π∗(κ, τ(κ)) ≡ π∗(0, τ(0)), where δ(κ) = r−µ+κσ > 0, and π∗(κ,∞) := limτ→∞ π∗(κ, τ).
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Figure 4: The life-time of the project, τ(κ).

Figure 4 depicts this criterion. If the firm’s pessimistic estimate of the project’s lifetime

is below τ(κ), then the profit earned at the moment of investment exceeds profit un-

der no ambiguity. The opposite holds for values of project’s subjective life-times above

τ(κ). This region expands with increase of the project’s life-time under no Knightian

uncertainty.

Eventually, the impact of ambiguity on investment policy can be analyzed by examining

the change in the probability of investment due to the change in the degree of Knight-

ian uncertainty and the adjusted to it (subjective) life-time of the project. Figure 5

depicts the case where the subjective life-time of the project equals τ(κ). For the set of

parameters under question (r, µ, σ, τ(0), I, π0) = (0.2, 0.1, 0.2, 15, 100, 20) the likelihood

of investment is eroded by the presence of Knightian uncertainty. However, establishing

this result in full generality remains an open problem.

14



0 0.1 0.2 0.3 0.4 0.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ

P
ro

ba
bi

lit
y 

of
 in

ve
st

m
en

t

Figure 5: Probability of investment over a H-period horizon for H = 5, 15, 30.

4 Conclusions

This paper analyzes the impact of both risk and uncertainty on investment timing.

While the standard analysis shows that risk increases the value of waiting in the ab-

sence of Knigthian uncertainty, ambiguity erodes the subjective value of the investment

opportunity.

Our main focus is on the impact of ambiguity on the investment timing. We iden-

tify two factors that critically influence the results: the finite life-time of the project

and whether option exercise solves ambiguity or not. We found that if the investor

remains ambiguous about the profit flows after the investment is undertaken then under

a short life-time of the project ambiguity may be investment enhancing. In general, we

obtain that a combination of ambiguity and finite lifetime of the project affect the value

of waiting equivocally.

To investigate the magnitude of the latter effect we examine the probability of invest-

ment over a finite horizon. We found that in the short-run ambiguity aversion may be

investment enhancing. However, it was also found that the non-monotonic effect in the

value of waiting is eroded when the time horizon is increased. In the long-run a high

degree of ambiguity aversion results in refraining from investment with a substantial
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probability.

Appendix A: Finite τ

This appendix contains calculations from section 2.1 skipped in the text.

The profit stream solving equation (1) is

πs = πt exp

( ∫ s

t

(
µ− 1

2
σ2

)
du +

∫ s

t

σdBu

)
, (4)

where π0 is given and the indices are ordered as 0 ≤ t ≤ s.

By Fubini’s theorem and substitution of πt from (4) we get

W (t, πt) =EQ
[ ∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
=

∫ t+τ

t

EQ
[
e−r(s−t)πs

∣∣∣∣Ft

]
ds =

=

∫ t+τ

t

πte
−r(s−t) exp

( ∫ s

t

(
µ− 1

2
σ2

)
du

)
EQ

[
exp

( ∫ s

t

σdBu

)∣∣∣∣Ft

]
ds =

=πt

∫ t+τ

t

exp
(
(µ− r − σ2

2
)(s− t)

)
EQ

[
exp

(
σ(Bs −Bt)

)∣∣∣∣Ft

]
ds =

=πt

∫ t+τ

t

exp
(
(µ− r − σ2

2
)(s− t)

)
exp

(σ2(s− t)

2

)
ds =

=πt

∫ t+τ

t

exp
(
(µ− r)(s− t)

)
ds =

πt(1− e−(r−µ)τ )

r − µ
.

Thus W (πt, t) is independent of time and follows the process denoted by Wt:

W (πt, t) = EQ
[ ∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
=

πt(1− e−(r−µ)τ )

r − µ
:= Wt. (5)

The value function is derived by splitting the decision between the immediate investment

and waiting for a short time interval t + dt as follows:

Ft = max
t′≥t

EQ
[ ∫ t′+τ

t′
e−r(s−t)πsds− e−r(t′−t)I

∣∣∣∣Ft

]
=

= max

{
EQ

[ ∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
− I, max

t′≥t+dt
EQ

[ ∫ t′+τ

t′
e−r(s−t)πsds− e−r(t′−t)I

∣∣∣∣Ft

]}
.

Plugging Wt from (5) and applying the tower property, yield

Ft = max

{
Wt − I, e−rdt max

t′≥t+dt
EQ

[
EQ

[ ∫ t′+τ

t′
e−r(s−t−dt)πsds− e−r(t′−t−dt)I|Ft+dt

]∣∣∣∣Ft

]}
=

= max

{
Wt − I, e−rdtEQ

[
dFt+dt

∣∣∣∣Ft

]}
.

By the first order Taylor approximation of e−rdt we obtain

F (Wt) = max
{
Wt − I,EQ[dFt|Ft] + F (Wt)− rF (Wt)dt

}
.
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Appendix B: Knightian uncertainty in continuous time,

finite τ and ambiguity aversion

4.1 Knightian uncertainty in continuous time

This subsection outlines the concept of Knightian uncertainty in continuous time as

proposed by Chen and Epstein (2002). Some necessary definitions used in further sub-

sections to model multiple priors are also provided here.2

Let L be the set of real-valued, measurable and (Ft)-adapted stochastic processes on

(Ω,FT ,Q) with index set [0, T ]. Let L2 be a subset of L:

L2 =

{
(θt)0≤t≤T ∈ L

∣∣∣∣
∫ T

0

θ2
t dt < ∞ Q− a.s.

}
.

Given θ = (θt) ∈ L2, define a stochastic process (zθ
t )0≤t≤T by

dzθ
t = −zθ

t θtdBt with zθ
0 = 1.

A stochastic process (θt) ∈ L2 is called a density generator if (zθ
t ) is a (Ft) martingale.

The most commonly used sufficient condition for (zθ
t ) to be a (Ft) martingale is Novikov’s

condition:

EQ
[

exp

(
1

2

∫ T

0

θ2
sds

)]
< ∞

Let θ be a density generator. Define Qθ by

∀A∈FT
Qθ(A) = EQ[zθ

T1A]. (6)

Qθ is a probability measure equivalent to Q. Any equivalent to Q probability measure

can be obtained by a density generator as described above.

Let Θ be a set of density generators. The set of probability measures PΘ on (Ω,FT )

generated by Θ is denoted by

PΘ = {Qθ|θ ∈ Θ},

whereQθ is derived fromQ according to (6). This completes the construction of multiple

priors. Thus, firm’s beliefs are operationally captured by the set of probability measures

equivalent to Q in the multiple-priors set-up proposed by Chen and Epstein (2002).

2For a more mathematically elaborated discussion one can refer to Chen and Epstein (2002),

Nishimura and Ozaki (2003) and Asano (2005).
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Now, by Girsanov’s Theorem, Bθ
t = Bt +

∫ t

0
θsds is Brownian motion relative to Qθ, and

the set of SDEs capturing uncertain profit turns out to be

dπt =µπtdt + σπtdBt

=µπtdt + σπt(dBθ
t − θtdt)

=(µ− σθt)πtdt + σπtdBθ
t

(7)

for any θ ∈ Θ. Consequently, the multiplicity of measures in P can be interpreted as

modelling ambiguity about the drift of the driving process.

Definition 4.1 A set of density generators is called strongly rectangular if there exists

a nonempty compact subset K of R and a compact-valued, convex-valued, measurable

correspondence K : [0, T ] ³ K such that 0 ∈ Kt and

ΘKt = {(θt) ∈ L2|θt(ω) ∈ Kt m⊗Q− a.s.},

where m is the Lebesgue measure restricted on B([0, T ]).

In the main part of our paper we focus on the case of strongly rectangular sets in which

Kt is independent of time t.

Definition 4.2 The uncertainty characterized by ΘK is IID uncertainty (see, Epstein

and Schneider (2003)) if there exists a compact subset K of R such that 0 ∈ Kt and

ΘK = {(θt) ∈ L2|θt(ω) ∈ K m⊗Q− a.s.}.

Definition 4.3 The special case of the IID uncertainty ΘK, where the set K is the

symmetric interval K = [−κ, κ], is called κ -ignorance.

The real number κ > 0 represents the degree of Knightian uncertainty.

Lemma 4.1 For any s ≥ t and for any θ ∈ ΘKt it holds that

EQθ

[
exp

(
−

∫ s

t

σθudu+σ(Bθ
s−Bθ

t )

)∣∣∣∣Ft

]
≥ EQθ∗

[
exp

(
−

∫ s

t

σθ∗udu+σ(Bθ∗
s −Bθ∗

t )

)∣∣∣∣Ft

]

where θ∗t ≡ arg max{σx|x ∈ Kt} = max Kt is degenerated measurable process.
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For the proof of this lemma the reader is referred to Nishimura and Ozaki (2003),

Appendix A. The degeneracy follows from the theory of support functions (cf. Chen

and Epstain (2002) or Asano (2005, pp. 11-12)).

RegardingQθ as the true measure the solution to profit equation (7) admits the following

recursive form

πs = πt exp

( ∫ s

t

(
µ− 1

2
σ2

)
du− σ

∫ s

t

θudu +

∫ s

t

σdBθ
u

)
. (8)

for 0 ≤ t ≤ s and where π0 > 0 is given.

Derivation of W (πt, t)

W (πt, t) = inf
θ∈Θ
EQθ

[ ∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]

= inf
θ∈Θ

∫ t+τ

t

EQθ[
e−r(s−t)πs

∣∣∣∣Ft

]
ds =

= inf
θ∈Θ

∫ t+τ

t

πte
−r(s−t) exp

( ∫ s

t

(
µ− 1

2
σ2

)
du

)
EQθ

[
exp

( ∫ s

t

σdBθ
u −

∫ s

t

σθudu
)∣∣∣∣Ft

]
ds =

=πt

∫ t+τ

t

exp
(
(µ− r − σ2

2
)(s− t)

)
EQθ∗

[
exp

(
σ(Bθ∗

s −Bθ∗
t )−

∫ s

t

σθ∗udu
)∣∣∣∣Ft

]
ds =

=πt

∫ t+τ

t

exp
(
(µ− r − σ2

2
)(s− t)−

∫ s

t

σθ∗udu
)
exp

(σ2(s− t)

2

)
ds =

=πt

∫ t+τ

t

exp
(
(µ− r)(s− t)−

∫ s

t

σθ∗udu
)
ds

The sequence of equalities is validated by Fubini’s theorem, equation (8), lemma 4.1,

degeneracy of θ∗ and easy algebra, respectively.

Lemma 4.2 Let 0 ≤ t1 ≤ t2 ≤ T and let X be an FT -measurable random variable. If

Θ is a strongly rectangular then under the assumption that the minima exist,

min
θ∈Θ

EQθ

[
EQθ

[X|Ft2 ]

∣∣∣∣Ft1

]
= min

θ∈Θ
EQθ

[
min
θ′∈Θ

EQθ′
[X|Ft2 ]

∣∣∣∣Ft1

]
(9)

Proof: see Nishimura and Ozaki (2003), Appendix B.

Ft = max
t′≥t

min
Q∈PΘ

EQ
[ ∫ t′+τ

t′
e−r(s−t)πsds− e−r(t′−t)I

∣∣∣∣Ft

]
=

= max

{
min
Q∈PΘ

EQ
[ ∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
− I, max

t′≥t+dt
min
Q∈PΘ

EQ
[ ∫ t′+τ

t′
e−r(s−t)πsds− e−r(t′−t)I

∣∣∣∣Ft

]}

Plugging Wt and applying the tower property, yield

Ft = max

{
Wt − I, e−rdt max

t′≥t+dt
min
Q∈PΘ

EQ
[ ∫ t′+τ

t′
e−r(s−t−dt)πsds− e−r(t′−t−dt)I

∣∣∣∣Ft

]}
=

= max

{
Wt − I, e−rdt max

t′≥t+dt
min
θ∈Θ

EQθ

[
EQθ[ ∫ t′+τ

t′
e−r(s−t−dt)πsds− e−r(t′−t−dt)I|Ft+dt

]∣∣∣∣Ft

]}
=
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By lemma 4.2 we get

max

{
Wt − I, e−rdt max

t′≥t+dt
min
θ∈Θ

EQθ

[
min
θ′∈Θ

EQθ′[ ∫ t′+τ

t′
e−r(s−t−dt)πsds− e−r(t′−t−dt)I|Ft+dt

]∣∣∣∣Ft

]}
=

= max

{
Wt − I, e−rdt min

θ∈Θ
EQθ

[
max

t′≥t+dt
min
θ′∈Θ

EQθ′[ ∫ t′+τ

t′
e−r(s−t−dt)πsds− e−r(t′−t−dt)I|Ft+dt

]∣∣∣∣Ft

]}
=

= max

{
Wt − I, e−rdt min

θ∈Θ
EQ

[
dFt+dt

∣∣∣∣Ft

]}

By the first order Taylor approximation of e−rdt we obtain

F (Wt) = max
{
Wt − I, min

θ∈Θ
EQθ

[dFt|Ft] + F (Wt)− rF (Wt)dt
}
.

Appendix C: Comparative statics results

The impact of ambiguity aversion on π∗:

∂π∗

∂κ
= π∗

(
− 1

β(β − 1)

∂β

∂κ
+

1

δ

∂δ

∂κ︸ ︷︷ ︸
perepetual project effect (+)

− τ exp(−δτ)

1− exp(−δτ)

∂δ

∂κ︸ ︷︷ ︸
finite life-time effect (-)

)
.

Notice that
(
β − 1

2

)
σ2 + µ− κσ =

√(
(µ− κσ)− 1

2
σ2

)2

+ 2rσ2 and thus

∂β

∂κ
=

1

σ

(
1− µ− κσ − 1

2
σ2

√(
(µ− κσ)− 1

2
σ2

)2
+ 2rσ2

)
=

σβ

σ2
(
β − 1

2

)
+ µ− κσ

.

− 1

β(β − 1)

∂β

∂κ
+

1

δ

∂δ

∂κ
=− 1

β − 1

σ(
β − 1

2

)
σ2 + µ− κσ

+
σ

r − µ + κσ
=

=
σ

β − 1

−r + (β − 1)σ2(β − 1
2
) + β(µ− κσ)((

β − 1
2

)
σ2 + µ− κσ

)(
r − µ + κσ

) =

=
σ

β − 1

σ2

2
(β − 1)2

((
β − 1

2

)
σ2 + µ− κσ

)(
r − µ + κσ

) > 0

The last equality follows after substitution of the fundamental quadratic.

The sign of derivative for π∗ depends on τ :

∂π∗

∂κ
T 0

⇔
σ2

2
(β − 1)(

β − 1
2

)
σ2 + µ− κσ

T τδ

exp(τδ)− 1
.

The RHS can be made large for τ small, whereas the LHS is independent on τ .
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Appendix D: Ironing the investment trigger

Proof:

∂π∗(κ, τ(κ))

∂κ
= π∗

(
∂ ln( β(κ)

β(κ)−1
Iδ(κ))

∂κ
− ∂ ln(1− exp(−δ(κ)τ(κ)))

∂κ

)
.

Equating the derivative above to 0 and solving the ODE obtained give

ln(
β(κ)

β(κ)− 1
Iδ(κ)) + c0 = ln(1− exp(−δ(κ)τ(κ))),

where c0 is an integration constant. Thus, C0
β(κ)

β(κ)−1
Iδ(κ) = 1 − exp(−δ(κ)τ(κ)) with

C0 := exp(c0). Rearranging and employing the initial condition reflecting the case

without ambiguity, yield C0 = 1
π∗(0,τ(0))

and τ(κ) = 1
δ(κ)

ln

(
1− 1

π∗(0,τ(0))
β(κ)

β(κ)−1
Iδ(κ)

)−1

.

Now, the formula in the proposition now follows by easy algebra: τ(κ) = 1
δ(κ)

ln

(
1 −

π∗(κ,∞)
π∗(0,τ(0))

)−1

. The solution is meaningful if τ(κ) > 0, which corresponds to π∗(0, τ(0)) >

π∗(κ,∞).

Proof: We examine the monotonicity (in κ) of the probability of investment over a

H -period horizon, given that the project’s life-time is τ(κ). By definition π∗(κ, τ(κ)) =

π∗(0, τ(0)) and thus

∂Qκ(sup0≤t≤H πt ≥ π∗(κ, τ(κ)))

∂κ
=

∂Φ(d1)

∂d1

∂d1

∂κ
+

∂Φ(d2)

∂d2

∂d2

∂κ

(
π∗(0, τ(0))

π0

) 2µ̂

σ2

+Φ(d2)

(
π∗(0, τ(0))

π0

) 2µ̂

σ2

ln

(
π∗(0, τ(0))

π0

)
∂(2µ̂

σ2 )

∂κ

It is easy to see that the second term is positive, whereas the remaining ones are negative.

The total sign of derivative is difficult to verify analytically.
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