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Abstract

A stochastic forest rotation model in the Faustmann tradition is pre-
sented and exemplified. The model combines harvesting decisions with
options to recover or clean up to restore the land after very unfavorable
evolutions of the stochastic growth process. Uncertainty is shown to have
a generally ambiguous effect on the optimal choice of investment strat-
egy. It is also shown how such models can be related to theory of optimal
inventory control.
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1 Introduction
Rotation models in the Faustmann (1849) tradition address the question of when
to cut and re-plant a growing forest on a certain piece of land. Decision problems
of this kind have attracted increasing attention in recent years, as evidenced by
the quantitative survey in Newman (2002). From a theory perspective, this
is partly due to the development of real options theory, which has enabled
more satisfying specifications of uncertainty than earlier techniques. From an
application perspective, it is due to more focus on environmental economics and
renewable resources in particular.
Faustmann-inspired models can be described and exemplified in various ways

as some kind of harvesting decisions. For simplicity, this paper sticks to the orig-
inal example with a forest stand that is to be cut and re-planted. The potential
income is then a result of physical growth and possible quality changes, all char-
acterized by a stochastic process, while costs are fixed. Clarke and Reed (1989)
were among the first to assess this stochastic rotation problem in a real options
context, but without presenting an explicit solution. Willassen (1998) used im-
pulse control theory when providing an explicit solution under the assumption
of a continuous and autonomous Ito forest growth process. Wilassen’s results
were confirmed by Sødal (2002), who used a less sophisticated methodology
based on discount factors to derive a simplified closed-form rotation formula.
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Other recent studies in the field include Chang (2005), who explores the sen-
sitivity of Willassen’s Faustmann formula for various parameters in the case
with geometric Brownian forest growth, and Alvarez (2004) and Alvarez and
Virtanen (2006), who present conditions under which various stochastic rota-
tion problems are solvable. Alvarez and Koskela (2003) focus on interest rate
uncertainty, while Insley and Rollins (2005) develop a two-factor model with
linear growth and mean-reverting prices. Saphores (2003) includes risk of ex-
tinction. The model of this paper is similar to that of Saphores in including risk
of extinction. However, where he associates extinction and reinvestment with a
fixed level of the underlying stochastic variable, the related decision here will be
an endogenous recovery investment based on marginal valuation which need not
imply investment at an absorbing barrier. Recovery due to unfavorable growth
could in principle be a viable option at many stages of a stochastic, unsuccessful
growth path. The characteristics of the problem determines whether it might
be better to wait for a natural recovery.
The optimal strategy in the standard Faustmann setting consists of cutting

the forest stand as soon as it reaches a certain value. By cutting and re-planting,
the value is brought back to the initial level. Hence, if the value of a new forest
stand is V0 and the cost of cutting and re-plantning is a constant C (≥ V0),
the optimal value at which to cut is some fixed value that exceeds C. In a
deterministic environment, the optimal rotation period will be constant. In an
environment with uncertain growth, the rotation period will be uncertain as
some generations of trees grow faster than others. Such a decision strategy is
optimal for many stochastic growth processes but it ignores one option that
could be valuable under some assumptions: the option to recover or restore the
land in cases with declining forest value. This implies a possible optimal strategy
where forest growth should also be restarted when the value reaches some fixed
value below V0. There will be a net loss in the short run but the investment
could still be preferred as it moves the forest out of a miserable state that
could otherwise be long-lasting or permanent. Our objective is to describe such
options, investigate the circumstances under which they are valuable, and relate
the description of the decision problem to previous research. The characteristics
of the various models to be discussed, are visualized in Figure 1.

< Insert F igure 1 here >

The first chart of Figure 1 shows the dynamics of the standard Faustmann
model, for which harvesting takes place and the growth process is brought back
to a fixed starting value as soon as the value of the forest hits a certain upper
threshold. The process may possibly eventually stop in case a lower absorbing
barrier exists. The next chart shows how forced recovery decisions may change
the dynamics of the model, with rotation at either of two barriers. An absorbing
barrier may still exist at or below the recovery barrier but it no longer implies a
final stage of the model. The third chart in Figure 1 shows the similar dynamics
of a standard barrier control model for which there is a combined fixed and
variable benefit or cost of changing the current resource stock. Now the growth
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process is not brought back to a fixed starting value, but to an endogenous
control point which depends on what barrier that was hit. Models of such
optimal control of brownian motion are discussed and related to models in the
Faustmann tradition towards the end of the paper.
The remaining part of the paper is structured as follows: Section 2 presents

the general rotation model and the optimal rotation policy as visualized by the
first two charts of Figure 1. Section 3 shows that, when growth is geometric
Brownian, the optimal strategy coincides with the one derived by Willassen
(1998) and simplified by Sødal (2002). In this case no lower threshold value for
rotation exists. Sections 4 and 5 contain counterexamples. Section 4 focuses
on how uncertainty affects decisions to re-invest in cases with a lower absorbing
barrier as in Saphores (2003). Section 5 studies the opposite kind of a process,
with an upper barrier for the size of the forest stand. The section applies a sto-
chastic process which, despite its simplicity, does not seem to be in common use.
The relationship between uncertainty, growth and the choice of optimal strat-
egy in terms of whether recovery is ever optimal is shown to be non-trivial. For
example, increased uncertainty could favor one or the other strategy depending
on whether an absorbing barrier is far from or close to the initial value of the
forest. The answer also depends on whether the expected growth rate is high
or low. Section 6 shows how the generalized Faustmann problem can be related
to optimal inventory control problems in the tradition of Scarf (1960), Clark
and Scarf (1960) +++, as visualized by the third chart of Figure 1. Section 6
concludes.

2 The model
The (quality-adjusted) size or, equivalently, the potential sales price, of a stand
of trees at time of planting equals a constant P0, after which it starts to grow
according to a continuous and autonomous Ito process

dP = f(P )dt+ g(P )dz (1)

Here f(P ) and g(P ) are drift and volatility terms and dz is a standard Wiener
process, depending on the price. By incurring the fixed cost C when the price
equals a general P , the owner receives a utility or income V (P ), where V is a
measurable function of P .1 Then the net revenue from one rotation is V (P )−C.
Rotation also includes planting a new stand, so the value of the forest takes on
the initial value, V (P0), immediately after the investment. The discount rate is
constant and equal to ρ.
When is it optimal to start a new rotation in terms of a decision to cut and

re-plant? Since the growth process is autonomous and costs are constant, the
1The standard assumption is V (P ) = P , .i.e, no difference between growth of the forest

and growth of the potential income or utility from cutting it. The distinction will prove to
be useful. The function V (P ) could take on many shapes but it is typically assumed to be
increasing within the interesting range for P . We usually refer to P as the price (or the forest
size) and to V as the value (or utility), ignoring what the exact interpretations might be. The
stochastic process for P is usually referred to as a growth process.
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decision problem looks exactly the same at any two points in time as long as the
price coincides at those instants. Then the optimal decision must also be exactly
the same and there is just one decision to make: either start a new rotation or
continue waiting. In case of a new rotation, the forest size is brought back to P0.
Since the process is continuous this proves that there are at most two relevant
trigger prices for any decision policy: one on the upper side of P0 and one on the
lower side. In case both thresholds apply, denote the higher one by PH and the
lower one by PL. An optimal decision policy is fully characterized by the two
specific choices for PH and PL that together maximize the expected net present
value over all future rotations; i.e., the value of the land including the stand of
trees. Within the range (PL, PH), which includes the initial P0 for a new stand,
the optimal decision is to wait. As soon as PH or PL is hit, the net revenue is
either V (PH) − C or V (PL) − C depending on what threshold is hit first. In
both cases the growth process is restarted at P0. What happens outside the
closed interval [PL, PH ] is of no interest because such values are never reached.
The economic intuition behind the standard solution to this problem, for

which rotation only takes place at an upper threshold, PH , is familiar: optimal
cutting and replanting is caused by decreasing returns from growth combined
with discounting. The economic intuition behind an additional, lower switch,
PL, is that the forest stand will occupy the land even if its value declines.
Therefore it may be better to try out again by cutting and planting once more
instead of waiting very long and possibly forever for a natural recovery.
Starting at time zero and forest size P0, the expected net present value of the

stand, including all future rotations, can be written as a sum of two conditional
expectations:

W0 = E[e−ρTH ](V (PH)− C +W0) +E[e−ρTL ](V (PL)− C +W0) (2)

The variable TH in this expression is the first hitting time when the underlying
stochastic variable is to move from P0 to PH conditional on not hitting PL first.
As long as PH is hit first, the net revenue V (PH)−C is achieved and the process
is restarted at P0. Then the net present value is back atW0 because the process
has no memory and costs are fixed. The obtained net gain, V (PH) − C +W0,
is discounted by the expected discount factor, E[e−ρTH ]. If, on the contrary,
the lower threshold is hit first, the similar revenue at time of rotation equals
V (PL) − C +W0 . This is discounted by the factor E[e−ρTL ], where TL is the
first hitting time from P0 to PL conditional on not hitting PH first.
The two expected discount factors, E[e−ρTH ] and E[e−ρTL ], can be written

as functions of the variables P0, PL and PH ; see Dixit et al. (1999) and Sødal
(2006) and the references therein. Denote the expected discount factor E[e−ρTH ]
by Q(P0, PH , PL) and the discount factor E[e−ρTL ] by Q(P0, PL, PH). A simple
rearrangement of (2) yields

W0 =
Q(P0, PH , PL)(V (PH)− C) +Q(P0, PL, PH)(V (PL)− C)

1−Q(P0, PH , PL)−Q(P0, PL, PH)
(3)

The optimal decision policy is found by maximizing this expression with respect
to PH and PL. If the Q- and V - functions are sufficiently differentiable, the first-
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order conditions for a maximum are ∂W0/∂PH = 0 and ∂W0/∂PL = 0. These
conditions are spelled out in Appendix. When PL is fixed at zero, the formula
corresponds to the value function with reinvestment in Saphores (2003) when
ignoring minor differences in the formal set-up.2

For simplicity, the same rotation cost, C, has been assumed for both types
of investment. More sophisticated versions can be developed where the rotation
cost depends on the type of investment, or the cost could be made an endogenous
variable as discussed later in this paper.
In general, the conditional discount factor function Q(P, P1, P2) that applies

to a motion from an arbitrary P to a fixed P1 without hitting a fixed P2 first,
where P is located between P1 and P2, is found by solving the differential
equation

1

2
σ2(P )

∂2Q(P, P1, P2)

∂P 2
+ µ(P )

∂Q(P, P1, P2)

∂P
− ρQ(P,P1, P2) = 0 (4)

There are two boundary conditions: Q(P1, P1, P2) = 1 and Q(P2, P1, P2) = 0.
This determines the two conditional discount factors in (3).
When only the upper threshold applies, we haveQ(P0, PH , PL)→ D(P0, PH)

in optimum, where D(P0, PH) is the expected (unconditional) discount factor
for a motion from P0 to PH , while Q(P0, PL, PH) → 0; see Dixit et al. (1999).
Hence, eq. (3) simplifies to

W0 =
D(P0, PH)(V (PH)− C)

1−D(P0, PH)
(5)

as in Sødal (2002). Then the first-order condition for a maximum with respect
to PH can be written

V (PH)− C

V (PH)
= (1−D(P0, PH))

γ

�
(6)

where � = −D0(V )/(D(V )/V ) and γ = V 0(P )/(V (P ))/P ).

3 Geometric Brownian growth
The geometric Brownian process is characterized by f(P ) = µP and g(P ) = σP
in (1), where µ and σ are constants. We require that µ < ρ.3 Then the
differential equation (4) with boundary conditions yields

Q(P0, P1, P2) =
(P0/P1)

β − (P2/P0)α(P2/P1)β
1− (P2/P1)α+β (7)

2Saphores (2003) expresses the discount factor that applies to a particular threshold as a
product of the discount factor for a first-hit of either PL or PH , muliplied with the probability
of hitting the particular threshold in question before the other one. This does not appear to
be entirely correct, as it does not account for differences in the time it takes to reach either
threshold.

3 If µ ≥ ρ, growth is not sufficiently suppressed by discounting, and the expected net present
value will growth beyond all limits by postponing cutting into infinity; see Willassen (1998).
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where α > 0 and β > 1 . Moreover, −α and β are the two roots of the
characteristic quadratic equation

1

2
σ2x2 + (µ− 1

2
σ2)x− ρ = 0 (8)

Willassen (1998) finds that it can never be optimal to reinvest at a lower
threshold PL(< P0) under geometric Brownian growth, assuming that V (P ) =
P (which implies γ = 1). One way to prove this is by showing that ∂W0/∂PL > 0
for any PL in the interval (0, PH) along the boundary ∂W0/∂PH = 0. This is
done in Appendix. Moreover, we have Q(P0, PH , PL) → D(P0, PH) = (P0/PH)
as PL → 0. Then � → β , which inserted into (6) yields the stochastic rotation
formula for this process as in Willassen (1998) and Sødal (2002).
It is a standard result that a geometric Brownian motion for which µ < 1

2σ
2,

will go to zero with probability one in the long run. Then the forest eventually
dies and is never re-planted. Sufficient expected growth relative to uncertainty
is required to avoid such permanent extinction. The convergence requirement
µ < ρ implies β > 1 and sets a limit, so the geometric Brownian motion may
not be well suited to represent many Faustmann problems of practical interest.
The requirement also explains why a recovery investment is never optimal. By
combining (5) and (6), and using L’Hopital’s rule it can be shown thatW0 < P0
and that W0 → P0(< C) as β → 1. Then the net present value of the land for
any P < P0 cannot exceed C , so the value of the land is rather low under these
assumptions.
This section has demonstrated some limitations of the geometric Brownian

model in expressing the growth pattern of a renewable resource like a forest
stand. More realistic model versions should be able to represent at least the
following two features:
1. Extinction combined with by a recovery investment as it is rarely observed

that a single failure of growth prevents the owner of land from making further
investments.
2. Expected growth which is not constant but which tends to decrease when

approaching some maximum level determined by nature.
The subsequent two sections focus on each of these issues.

4 Extinction and recovery
Due to externalities, for example because individual species nourish each other,
some renewable resources may need a critical size in order to survive. At the
macro level, it has proven difficult to recover forests in some arctic regions
after those that once existed were cut down. At the micro level, a new tree
may have small chances of surviving the next winter or storm unless it reaches
a certain size soon enough. The underlying forces behind such mechanisms
could be complicated, but even a simplified treatment should allow for the
main consequence, namely risk of extinction. This can be done most easily
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by including an absorbing barrier, PL, some place below P0 in the Faustmann
model, although not necessarily at zero as assumed in Saphores (2003).
The only adjustment of the net present value (3) that is needed when PL

is an absorbing barrier, is to maximize the net expected present value (3) only
with respect to PH ; then check whether this implies a higher net present value
than without such forced recovery. If rotation is only to take place when PH
is hit before PL, all costs and incomes stop as soon as the lower barrier is hit.
The simplified version of (3) to be maximized becomes

W0 =
Q(P0, PH , PL)(V (PH)− C)

1−Q(P0, PH , PL)
(9)

Table 1 contains a set of results for both strategies in ten cases with absorbing
barriers distributed evenly between zero and the initial value, P0 = 1. Growth
is geometric Brownian above the absorbing barrier. The results for the strategy
with investment only at the upper threshold are denoted by cW and bP , while fW
and eP represent the strategy with investment also at PL.

< Insert Table 1 here >

Continuity of the value function implies, in Table 1 as elsewhere, that

cW ≶ fW ⇐⇒ bP ≷ eP (10)

The optimal strategy (with the higherW and lower PH) is visualized by printing
the numbers for the optimal choice in bold characters in Table 1. Uncertainty is
fairly high (σ = 0.2) and no growth is expected (µ = 0). Together with the cost
assumptions (P0 = 1.0 and C = 1.1), this makes forced recovery unviable for all
cases in Table 1.4 Such a policy even leads to a negative net present value when
PL is high enough. One main reason is the assumption µ = 0, which implies
too small growth opportunities.
The results change by increasing the growth expectations from µ = 0 to

µ = 0.08, close to the discount rate (ρ = 0.10); see Table 2. Both the net present
value and the optimal investment threshold increase all over. More interestingly,
the optimal policy also changes. Forced recovery is still not optimal if the
absorbing barrier is close to zero, but for PL ≥ 0.5 the growth opportunities are
too high to be missed.

< Insert Table 2 here >

Table 3 uses the same numbers as Table 2 except for volatility, which is
increased to σ = 0.3. Now recovery is only optimal for intermediate PL-values.
This is due to a combination of effects: with very high uncertainty, rapid growth
in expectation does not give enough protection against extinction if PL is close
enough to P0. On the other hand, the net cost of enforced recovery, PL−C, can

4 If rotation only takes place at the upper threshold, non-negative profit can always be
ruled as there is a net gain (PH − C) at each rotation, and no other costs apply.
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be too high if the extinction barrier is very far from P0. Only in the intermediate
range is a policy with a recovery investment optimal.

< Insert Table 3 here >

Table 2 and Table 3 combined also clarify the impact of uncertainty on forest
value including land (W0). There are two effects: uncertainty increases the
value of waiting but also the risk of extinction. Therefore increased uncertainty
is positive if the extinction threshold is far from P0 but negative if it is close to
P0.
The rotation cost also matters. Table 4 uses the same numbers as Table 3

except for higher rotation cost (C = 1.5). This increases the upper threshold
PH and lowers the value of land for both decision policies, and recovery after
extinction is no longer optimal for any PL. Note also that very high eP -values
appear when PL is close to P0 as the risk of having to invest several times before
a successful next growth path is established makes the owner less inclined to
invest in the first place.

< Insert Table 4 here >

To conclude, risk of extinction by hitting an absorbing lower barrier may
influence investment timing and investment strategy greatly via effects that are
not trivial and generally ambiguous in terms of uncertainty and other variables.
For the geometric Brownian case studied here, strict assumptions seem needed
if a strategy with forced recovery after extinction is to be optimal. Exclusive
rotation at an upper threshold seems to be the normal case also when there
exists an absorbing barrier above zero but below P0. The next section sets up a
scene where the optimal policy is more likely to include both types of rotation
investments.

5 Limits to growth
Suppose there exists an natural maximum for forest size. This can be done by
letting growth and uncertainty develop according to the following process,

dP = µ(P − P )dt+ σ(P − P )dz (11)

where µ and σ are constants and, typically, µ ≥ 0 (with no upper constraint).
This can be called an inverted geometric Brownian motion because the volatility
rate as well as the expected growth rate is proportional to the distance from the
upper barrier, P . This makes economic sense as growth is often most uncertain
for immature natural resources.
A process like (11) can take on negative values. That is not worrysome

here as it may indeed require extraordinary efforts to replace and old, rotten
forest stand. Similar arguments hold for harvesting of some other renewable
resources. It will typically also not be of interest to start a new rotation for
very low, negative P -values; therefore such outcomes can simply be interpreted
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as times when the forest is very far from having economic value that makes
harvesting an option of interest. A lower extinction barrier can also easily be
imposed. Since such barriers were studied in the previous section we abstain
from introducing them here.
The growth process (11) is not affected by the location of the origin: drift and

volatility parameters are only affected by the distance from the upper barrier;
not by the distance from zero. This is not appealing, since natural resources like
trees are real assets that are subject scale effects of various kinds. To encount
for such effects, let the value of the stand be given by a cubic function:

V (P ) = P 3 (12)

This could reflect growth in three dimensions, but the exact type of power
function (or alike) is less important. The main objective is describe growth by a
process that is independent of explicit time, which is convenient from technical
reasons, but where growth still is slow at first and then faster until natural
decreasing returns set in. In the deterministic case (σ = 0), it follows that the
V -process can be written

V (t) = P − (P − P0)e
−µt

which is S-shaped in time Thus it resembles an ordinary one-factor production
function except for the definition of the input factor; in this real options model,
calendar time is a kind of variable input factor from which more output arises.
By and large, this also holds for a stochastic growth path.
Setting f(P ) = µ(P − P ) and g(P ) = σ(P − P ), and solving (4) with

boundary conditions leads to the conditional discount factor

Q(P0, P1, P2) =

³
P−P1
P−P0

´a
−
³
P−P0
P−P2

´b ³
P−P1
P−P2

´a
1−

³
P−P1
P−P2

´a+b (13)

where −a and b are solutions to the quadratic equation

1

2
σ2x2 − (µ+ 1

2
σ2)x− ρ = 0 (14)

implying a, b > 0 . The optimal decision policy is determined as usual by maxi-
mizing (3) based on (12), (13) and (14). Table 5 reports the results for one data
set with no expected growth (µ = 0), with forest size starting from P0 = 0 and
constrained by P = 10, and a unit-sized rotation cost (C = 1). Rotation on
both sides of P0 is now optimal as long as the volatility exceeds approximately
five percent.

< Insert Table 5 here >

The value of the recovery option increases further by introducing a growth trend.
This can be seen from Table 6, where µ = 0.02.

< Insert Table 6 here >
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Table 7 applies the same numbers as Table 6 except for twice as high rotation
cost (C = 2). Increasing the rotation cost in this manner reduces the value of
the recovery option.

< Insert Table 7 here >

The results above show that the upper threshold for investment (PH) in-
creases with uncertainty as in most investment models of this kind. The lower
threshold (PL) increases typically but not always with uncertainty. The convex
shape of V (P ) in the interesting domain for investment (P > C) is probably a
main reason for the ambiguity. All results in this section also indicate that main
effect of the recovery option is to increase the value of the land including the
forest (W0). The option seems to have minor impact on the optimal policy at
the upper threshold. This can be seen by comparing the columns bPH and ePH .
It remains to be studied whether empirical data would produce similar results.
In general, this should be expected in cases where the typical rotation period is
long relative to the discount rate.

6 Relationship to inventory control models
There is a close relationship between the stochastic rotation model of this paper
and inventory control models (Scarf (1960), Scarf and Clark (1960) etc. etc....
+++). Suppose a resource stock P which evolves stochastically produces a
flow of utility (in monetary units) that is equal to u(P ), where u is a concave
function that reaches a maximum for some P . The expected net present value
of the flow can be written

U(P ) = E

·Z ∞
0

u(P )e−ρtdt
¸

(15)

Suppose that the process for P is continuous and autonomous as usual, and also
that it is so regular that the slope characteristics of u(P ) carry over to U(P ).
Regulation of the inventory requires only a fixed cost, I, and the optimal level
is a fixed P0. Then the optimal inventory control problem boils down to the
question of when to reset the stock to P0 when a level which is either too high
(PH > P0) or too low (PL < P0) is reached. What are the optimal PH and PL
at which to reset?
Following the logic of previous sections, the net present value to be maxi-

mized, starting from P0, can be written

W0 = U0+Q(P0, PH , PL)(U0−UH−I+W0)+Q(P0, PL, PH)(U0−UL−I+W0)
(16)

where Ui = U(Pi) for i = 0, P,H. The net present value U0 is obtained with no
further regulation of the inventory. The value of the option to regulate down
when the inventory gets to high, is given by the next term on the right-hand
side of (16). The net utility gain when the option is exercised equals U0 − UH ,
and the cost is I, after which one is back to the initial situation with net present
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value W0. By defining C = I −U0 and V (P ) = −U(P ), it is possible to rewrite
(16) as follows:

W0 = U0 +
Q(P0, PH , PL)(V (PH)− C) +Q(P0, PL, PH)(V (PL)− C)

1−Q(P0, PH , PL)−Q(P0, PL, PH)
(17)

This is identical to (3) except for a constant (U0). Thus, the presented sto-
chastic rotation problem in the Faustmann tradition is equivalent to a standard
inventory control problem.
There are more parallels. As shown by Sødal (2002) in a simpler context, the

optimal size of the stock, P0, can be determined endogenously by maximizing
W0 from (17) with respect to PH , PL and P0.
Alternatively, a variable cost element could be introduced by which regu-

lation becomes more costly the larger the shift. This yields a barrier control
(S,s)-model (see Dixit (199x), xxx). In our context it corresponds to partial
harvesting as, for example, in the model by Saphores (2003), but also including
regulatory efforts during crises. For example, it may be possible to protect a
renewable resource against extinction in this way without having an ambition
to make profit from harvesting in the short run. A model with these extensions
must reflect that the magnitude of regulation could depend on what barrier is
hit, PH or PL. Therefore P0 must be replaced by two endogenous variables, Ph
and Pl, where PL < Pl ≤ Ph < PH . Suppose that the current inventory size
is a constant P0 between Pl and Ph. (P0 is now just a fixed number with no
specific interpretation as it was in the previous settings.) Then the expected
net present value at start, W0, can be derived from the following:

W0 = U0 +Q(P0, PH , PL)(Uh − UH − I − cH(PH − Ph) +Wh) + (18)

Q(P0, PL, PH)(Ul − UL − I − cL(PL − Pl) +Wl)

Wh = Q(Ph, PH , PL)(Uh − UH − I − cH(PH − Ph) +Wh) + (19)

Q(Ph, PL, PH)(Ul − UL − I − cL(PL − Pl) +Wl)

Wl = Q(Pl, PH , PL)(Uh − UH − I − cH(PH − Ph) +Wh) + (20)

Q(Pl, PL, PH)(Ul − UL − I − cL(PL − Pl) +Wl)

Equation (19) is similar to (16) except for two variable cost elements. The
constant cH is a variable cost per unit reduction of P when starting from PH .
The similar variable cost is cL when starting in the lower end. These variable
costs could result from selling or buying assets at a fixed price c > 0. Then we
have cL = −cH = c. The solution to the problem, yielding the optimal PL, Pl,
Ph and PH , is found by solving (18), (19) and (20) for W0 and maximizing with
respect to PL, Pl, Ph and PH . See Dixit (199x) +++ for a discussion of the
charactertistics of this optimal regulation problem in a specific case.
+ + +
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7 Final remarks
This paper has confirmed some well known relationships between uncertainty
and investment but also pointed at some new ones. Uncertainty was shown to
have a ambiguous effects with respect to valuation of investment options in the
presence of extinction barriers. This was also discovered by Saphores (2003), but
we have seen none of his examples of uncertainty having an ambiguous effect
on when to invest in terms of the trigger price (PH). Increasing uncertainty
implied higher PH in all numerical cases. On the other hand, uncertainty was
shown to have an ambiguous effect on the choice of investment strategy in
terms of whether to enforce recovery or not. The effect of uncertainty on the
optimal trigger price for such recovery investments (PL) was also ambiguous in
the models with endogenous thresholds of this kind.
The final section pointed at a close relationship between stochastic models

of forest growth and models of inventory control. Most such continuous-time
models are concerned with optimal regulation of Brownian motion. The limited
amount of cross references between the two strands of literature in this field
indicate that researcher working within each tradition could have more to learn
from each other.
+++
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8 Appendix
This appendix states the first-order conditions for a maximum of the expected
net present value function in Proposition 1, ∂W0/∂PH = 0 and ∂W0/∂PL = 0,
where W0 is given by eq. (3). Define the following functions and abbreviations,
assuming that all derivates exist:

QH = Q(P0, PH , PL), QL = Q(P0, PL, PH), (A1)

QH
H =

∂QH

∂PH
, QH

L =
∂QL

∂PH
, �HH = −QH

H

PH
QH

, �HL = QH
L

PH
QL

,

QL
H =

∂QH

∂PL
, QL

L =
∂QL

∂PL
, �LH = −QL

H

PL
QH

, �LL = QL
L

PL
QL

,

VH = V (PH), VL = V (PL), V
0
H = V 0(PH), V 0

L = V 0(PL),

γH = V 0(PH)
PH
VH

, γL = V 0(PL)
PL
VL

V (P ) is assumed non-decreasing so all elasticities (�HH , �HL , �LH , �LL, γH , γL)
are defined as non-negative numbers. Differentiating and summing up terms,
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the first-order condition ∂W0/∂PH = 0 can be written as¡
QH
H −QLQ

H
H +QH

LQH

¢
VH + (QH −QHQH −QLQH)V

0
H+ (A2)¡

QH
L −QHQ

H
L +QH

HQL

¢
VL −

¡
QH
H +QH

L

¢
C = 0

By use of the elasticity definitions, this becomes

QH�
H
H (QL(VH − VL)− (VH − C))− (A3)

QL�
L
H (QL(VH − VL) + C − VL)+

(1−QH −QL)γHQHVH = 0

Likewise, the first-order condition ∂W0/∂PL = 0 can be written¡
QL
L −QHQ

L
L +QL

HQL

¢
VL + (QL −QLQL −QHQL)V

0
L+ (A4)¡

QL
H −QLQ

L
H +QL

LQH

¢
VH −

¡
QL
L +QL

H

¢
C = 0

which by the elasticity definitions becomes

QL�
L
L(QH(VH − VL) + C − VL)− (A5)

QH�
L
H(QL(VH − VL) + VH − C)+

(1−QH −QL)γLQLVL = 0

In the geometric Brownian case, the discount factor function (7) implies
QH
H = −βQH/PH , QL

H = βQH/PL, QH
L = −αQL/PH and QL

L = αQL/PL. The
first-order condition (A2) can be rewritten as

(βQH + αQL)
C

PL
= (βQH − (β − α)QHQL)

PH
PL
− (A6)

QH(1−QH −QL)
PH
PL

+ ((β − α)QHQL + αQL)

Then it follows that

∂W0

∂PL
= (β − α)QHQL + αQL + (1−QH −QL)QL (A7)

+(βQH − (β − α)QHQL)
PH
PL
− (β − α)QHQL − αQL + (βQH + αQL)

C

PL

= (1−QH −QL)QL + (β(1−QL)QH + αQHQL)
PH
PL

> 0

As long as PH 6= PL the inequality sign is ensured by the properties of the
discount factor function, since 0 < QH , QL < 1, 0 < QH + QL < 1 and
PH , PL, α, β > 0. This shows that the expected net present value,W0, is strictly
increasing for all values of PL, so it is optimal to raise PL all the way up to PH ,
thereby making it irrelevant and establishing the corner solution.
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LP̂  W~  HP~  Ŵ  HP̂  
0.0 0.192644 1.413895 0.192644 1.413895
0.1 0.175551 1.422379 0.192637 1.413898
0.2 0.138036 1.442220 0.192489 1.413970
0.3 0.086934 1.472161 0.191652 1.414378
0.4 0.024440 1.513817 0.188949 1.415701
0.5 -0.050052 1.571431 0.182453 1.418913
0.6 -0.140668 1.653918 0.169520 1.425454
0.7 -0.258773 1.781504 0.147086 1.437275
0.8 -0.438086 2.011260 0.112294 1.456863
0.9 -0.835106 2.604328 0.063320 1.487221

Table 1  
(P0=1.0, C=1.1, µ=0, ρ=0.1, σ=0.2) 

Fixed starting point
(exogenous) 

Harvesting barrier 
(endogenous) 

Recovery barrier  
(exogenous or endogenous)

Faustmann with recovery 

Absorbing barrier 

Traditional Faustmann 

Fixed starting point
(exogenous) 

Harvesting barrier 
(endogenous) 

Absorbing barrier 

Upper control point 
(endogenous) 

Harvesting barrier 
(endogenous) 

Recovery barrier 
(endogenous) 

Barrier control 

Lower control point 
(endogenous) 

Figure 1 



 

LP̂  W~  HP~  Ŵ  HP̂  
0.0 0.706265 2.438238 0.706265 2.438238
0.1 0.706232 2.438427 0.706260 2.438263
0.2 0.705735 2.441284 0.706081 2.439297
0.3 0.703699 2.453027 0.704632 2.447639
0.4 0.698588 2.482630 0.698633 2.482367
0.5 0.688416 2.542097 0.681372 2.583658
0.6 0.670198 2.650131 0.642458 2.817432
0.7 0.638025 2.844400 0.569252 3.267622
0.8 0.575669 3.227878 0.448292 4.019967
0.9 0.408370 4.268622 0.264587 5.163430

Table 2 
(P0=1.0, C=1.1, µ=0.08, ρ=0.1, σ=0.2) 

 

LP̂  W~  HP~  Ŵ  HP̂  
0.0 0.747982 2.672294 0.747982 2.672294
0.1 0.742875 2.700174 0.747111 2.677019
0.2 0.730094 2.771650 0.740650 2.712445
0.3 0.710897 2.883291 0.722757 2.813728
0.4 0.684933 3.041712 0.688314 3.020642
0.5 0.650295 3.264379 0.633694 3.374944
0.6 0.602448 3.588560 0.556801 3.910852
0.7 0.530606 4.099954 0.456349 4.647199
0.8 0.403382 5.044261 0.331097 5.591438
0.9 0.072460 7.569701 0.179556 6.748561

Table 3 
 (P0=1.0, C=1.1, µ=0.08, ρ=0.1, σ=0.3) 

 
 

LP̂  W~  HP~  Ŵ  HP̂  
0.0 0.654922 6.415289 0.654922 6.415289
0.1 0.644277 6.490908 0.654308 6.419641
0.2 0.615229 6.698371 0.649736 6.452104
0.3 0.567664 7.041145 0.636891 6.543514
0.4 0.497740 7.550705 0.611443 6.725514
0.5 0.396488 8.297430 0.569308 7.029241
0.6 0.244671 9.430007 0.506854 7.483957
0.7 -0.003213 11.297454 0.421023 8.115702
0.8 -0.482700 14.934774 0.309297 8.946422
0.9 -1.860997 25.420068 0.169572 9.994007

Table 4 
(P0=1.0, C=1.5, µ=0.08, ρ=0.1, σ=0.3) 



σ W~  LP~  HP~  Ŵ  HP̂  
0.000    0.000 - 
0.025    0.159 1.715 
0.050    1.409 2.573 
0.075 4.402 -0.710 3.339 4.374 3.341 
0.100 12.136 -0.654 3.881 9.381 3.984 
0.125 24.102 -0.619 4.316 16.603 4.519 
0.150 40.458 -0.596 4.670 26.119 4.967 
0.175 61.253 -0.579 4.961 37.957 5.344 
0.200 86.482 -0.566 5.202 52.112 5.666 
0.225 116.111 -0.556 5.403 68.566 5.942 
0.250 150.094 -0.549 5.573 87.292 6.181 
0.275 188.383 -0.543 5.718 108.258 6.389 
0.300 230.931 -0.538 5.841 131.435 6.571 

Table 5 
(ρ=0.1, µ=0, C=1, P0=0, 10=P ) 

 

σ W~  LP~  HP~  Ŵ  HP̂  
0.000 - - - 5.497 3.524 
0.025 6.748 -0.502 3.693 6.739 3.694 
0.050 10.753 -0.542 4.053 10.323 4.071 
0.075 18.081 -0.547 4.427 16.102 4.489 
0.100 29.119 -0.544 4.758 24.050 4.884 
0.125 44.094 -0.539 5.039 34.171 5.238 
0.150 63.129 -0.534 5.275 46.464 5.550 
0.175 86.280 -0.530 5.474 60.921 5.824 
0.200 113.567 -0.527 5.642 77.527 6.065 
0.225 144.989 -0.524 5.785 96.261 6.276 
0.250 180.534 -0.522 5.907 117.102 6.464 
0.275 220.183 -0.520 6.011 140.030 6.630 
0.300 263.918 -0.518 6.101 165.025 6.777 

Table 6 
(ρ=0.1, µ=0.02, C=1, P0=0, 10=P ) 

 

σ W~  LP~  HP~  Ŵ  HP̂  
0.000    5.372 3.586 
0.025    6.606 3.750 
0.050 10.202 -0.875 4.115 10.170 4.116 
0.075 16.733 -0.807 4.501 15.924 4.525 
0.100 26.782 -0.779 4.843 23.844 4.913 
0.125 40.628 -0.762 5.134 33.933 5.261 
0.150 58.410 -0.750 5.378 46.192 5.570 
0.175 80.192 -0.741 5.583 60.613 5.841 
0.200 105.992 -0.734 5.757 77.179 6.080 
0.225 135.809 -0.729 5.904 95.871 6.290 
0.250 169.628 -0.724 6.029 116.668 6.476 
0.275 207.427 -0.721 6.137 139.549 6.641 
0.300 249.186 -0.718 6.230 164.495 6.788 

Table 7 
(ρ=0.1, µ=0.02, C=2, P0=0, 10=P ) 

 




