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Abstract
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capacity in an oligopolistic (Cournot) industry. We use a continuous
time model with stochastic demand. The contribution of this paper is
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independent of market concentration. However, unlike the determinis-
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joying positive rents. On the practical side, we perform sensitivity
analysis, comparative statics and monte carlo simulations to examine
the effect of price cap regulation at different levels of demand volatility,
market concentration and lead times. The findings demonstrate that
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1 Introduction

The wave of electricity industry liberalisation initiated during the 1980s

and 1990s in many countries has dramatically changed the structure of the

industry. While transmission and distribution remain regulated monopolies,

generation has become a competitive industry in which prices are set in a

wholesale market. In the early years of liberalisation, the focus of academic

research and regulatory scrutiny concentrated mainly on short-term market

e¢ ciency and competitiveness. As the �rst territories to liberalise �among

which are included England and Wales and some U.S. states � have now

reached the end of their �rst investment cycle, much attention is being paid

to assessing the long-term dynamic performance of the liberalised electricity

industry.

One of the key issues is whether a liberalised electricity industry can

deliver adequate investment to maintain security of supply, both in the reg-

ulated transmission and distribution sectors, and in the competitive gener-

ation business. This entails at least three subquestions which are the focus

of this paper. Will electricity markets deliver the right equilibrium level of

investment? Will investments be timely to prevent any delay in construc-

tion that might lead to temporary periods of capacity scarcity and high

prices? And what is the e¤ect of market power mitigation procedures that

cap generators�bids on investment?

Many industry experts and academics defend the view that the idiosyn-

crasies of the electricity industry (such as concentrated markets, investments

that are capital intensive and subject to a long construction time lag, and

remaining non-market mechanisms or regulatory interventions such as price

caps) are likely to result in delayed or under-investment (e.g. de Vries, 2004,

Stoft, 2002). Joskow (2003) concludes from his study of the New England

electricity market:

"I think that there are good reasons to believe that spot

market prices for energy and operating reserves alone, [...] are

unlikely to provide adequate incentives to achieve generating ca-

pacity levels that match consumer�s preferences for reliability. A

variety of market and institutional imperfections contribute to

this problem."

The model presented in this paper concentrates on the level and tim-
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ing of investment in electricity markets, although it is applicable to any

industry characterised by oligopolistic competition, uncertain demand and

irreversible investment. We present a continuous time model of irreversible

investment in an oligopolistic industry with stochastic demand, and intro-

duce two critical characteristics of investments in electricity markets, a price

cap and a construction lag.

The contribution of this paper is twofold.

First, we solve the Nash-Cournot symmetric industry equilibrium and

demonstrate that the investment price trigger is an increasing function of

market concentration, demand uncertainty, and of the length of the con-

struction lag (and therefore the industry installed capacity is a decreasing

function of these parameters). We demonstrate that under demand uncer-

tainty, perfectly-rational, well-informed, risk-neutral investors will delay the

construction of new capacity in an industry characterised by oligopolistic

(Cournot) competition and with a construction time lag. This result gives

some weight to the claim that electricity markets are likely to see delayed or

under-investment. While models in the existing literature explain delayed

or under-investment by advocating the risk aversion or bounded rationality

of investors, in our model under-investment stems out of the irreversibility

of investment and the uncertainty of demand.

Second, the model o¤ers some new insights about the intertemporal ef-

fects of price cap regulation on investment under uncertainty. Our results

underline the importance of taking into account the option value e¤ect aris-

ing out of uncertainty in demand. As in the static models, we demonstrate

that the optimal price cap level corresponds to the perfect competition en-

try price, but setting the price cap at the competitive level does not realise

the competitive investment outcome and leads to under-investment. Con-

trary to perfect competition models, the investment price trigger is a non

monotonic function of the level of the price cap, as the price cap has two

e¤ects on investment which work in opposite directions. On the one hand,

the price cap has a negative impact on the �option value e¤ect�associated

with demand uncertainty, as it caps potential upside pro�ts while leaving

unchanged potential downside losses, thereby providing a disincentive to

investment. On the other hand, when the price cap is binding, increasing

capacity in a Nash Cournot game does not lead to a reduction in price, hence

providing an incentive to increase investment. We �nd that for a price cap
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lower than the competitive entry price, the impact of the price cap on the

�option value e¤ect�dominates, such that the investment price trigger is a

decreasing function of the price cap. Conversely, the �market power miti-

gation�e¤ect dominates for a price cap higher than the competitive entry

price, such that the investment price trigger is an increasing function of the

price cap.

Moreover, we show that the optimal price cap is an increasing function

of the volatility of demand and of the length of the construction time lag.

Sensitivity analyses and simulations suggest that not recognising the option

value e¤ects arising out of uncertainty in demand when determining the opti-

mal level of a price cap can have a signi�cant negative impact on investment.

We show for instance that a price cap set at a conventionally optimal level

without taking into account demand uncertainty can actually be counter-

productive in an industry characterised by relatively highly volatile demand,

as it may reduce investment and increase prices. Similarly, a conventionally

optimal price cap set without taking into account the impact of the con-

struction time lag on investment might reduce investment as compared to

the oligopolistic case without price cap, and distort technology choices in

favour of the technologies with the shortest construction lead time.

The rest of the paper is organised as follows. Section two reviews the

relevant literature. Section three presents the continuous time model of irre-

versible investment in an oligopolistic industry with stochastic demand and

studies the impact of market concentration on the Cournot Nash equilibrium

investment strategies of the �rms. Section four and �ve expand the model

by introducing successively a price cap and a construction time lag, and

studying their impact on investment. Section six presents some simulations

to provide an idea of the quantitative magnitude of the e¤ects identi�ed by

the model in the case of the electricity industry.

2 Literature review

There is an extensive literature modelling investment under demand uncer-

tainty in electricity markets. Most models explain investment delays by as-

suming either that investors have bounded rationality or that they are risk

averse. Murphy and Smeers (2003) build a two stage capacity-expansion

game and show that the two-stage, closed-loop formulation leads to greater
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capacity than an open-loop, single-period formulation. Ford (1999, 2001)

and Olsina et al. (2005) use a systems dynamics approach to model invest-

ments in an electric system with time to build and price caps. They assume

that investors have limited rationality and information and their simulations

show investment delays and under-investment.

The second advocated reason for under or delayed investment under de-

mand uncertainty is investors�risk aversion. Neuho¤ and de Vries (2005)

show that when demand is uncertain and investors are risk adverse, generat-

ing companies invest in less generation capacity than is optimal when they

cannot sign long-term contracts with retailers to hedge their risks. Earle and

Schmedders (2001) introduce demand uncertainty and agent�s risk aversion

in a Cournot model and show that the introduction of a price cap may lead

to higher average prices and lower production quantities.

The model presented in this paper introduces a new approach to study

the impact of some of the idiosyncrasies of electricity markets (such as

oligopolistic competition, a wholesale price cap, and a construction time

lag) on investment level and timing in the electricity industry. We build on

the theory of irreversible investment under uncertainty (often referred to as

Real Options theory) initiated by McDonald and Siegel (1986) and devel-

opped extensively in Dixit and Pindyck (1994).1 We model investment in

power generation as a two-stage continuous time game, in which generators

optimise the capacity utilisation and decide on their capacity investment.2

This model relates therefore also indirectly to the literature looking at the

impact of demand uncertainty on capacity choices and bidding strategies of

generators in the spot market. However, the focus of this literature strand

is on strategic use (i.e. withholding) of capacity to increase prices in the

spot market, rather than on investment equilibrium and timing (see e.g.

Crampes and Creti, 2003 and Le Coq, 2002).

Turning to the issue of price caps in electricity markets, Joskow and Ti-

role (2004) explore the impact of a wholesale price cap below the competitive

price level and �nd that it creates a shortage of peaking capacity in the long

1There are many papers using the theory of irreversible investment under uncertainty
to study investment issues in electricity markets, such as the impact of input price risk
(Murto and Nese, 2002), of construction cost risk (Pindyck 1993), or of construction
modularity (Gollier et al., 2005) on technological choices.

2However, we will prove later that our choice of demand function makes the �rst stage
trivial as investors always produce at full capacity.
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run when there is market power in the supply of peaking capacity. Grob-

man and Carey (2001) run simulations of investment in an electricity market

with a price cap for either a social welfare maximizing or monopolistic agent.

Their results show that the long run e¤ects of a price cap on investment and

spot prices di¤er signi�cantly based upon the market structure.

In a broader perspective, the extensive literature focussing on price-cap

regulation is also relevant to this paper (see e.g. Beesley and Littlechild,1989,

La¤ont and Tirole, 1993, and La¤ont and Tirole, 2001). Our model con-

centrates on the intertemporal impact of price cap regulation on investment

under uncertainty. Other models looking at this issue include Dobbs (2004)

which investigates the monopoly case, and Dixit (1991) and Pindyck and

Dixit (1994), which deal with the perfect competition case. The model

presented in this paper can be viewed as an intertemporal model of price

cap regulation with stochastic demand which generalises Dobbs (2004) and

Dixit (1991)�s monopolistic and perfect competition models to the case of

an oligopolistic (Cournot) industry.

3 The model

In this section we introduce the basic framework of the model, based on

Baldursson (1998) and Grenadier (2000 and 2002). The model presented

has its roots in the theory of irreversible investment under uncertainty ini-

tiated by McDonald and Siegel (1986) and developed in Dixit and Pindyck

(1994). More precisely, this paper belongs to the growing literature on

�strategic real options�, which has developed recently by combining the

theory of real options with game theory.3 The model characterises opti-

mal irreversible investment decisions of �rms in an industry characterised

by stochastic demand and oligopolistic (Cournot) competition. Although

we present the model by referring to the electricity industry, it can be ap-

plied to any industry characterised by stochastic peak demand, oligopolistic

(Cournot) competition, and irreversible investment.

3See Smit and Trigeorgis (2004) for an extensive review of this literature.
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3.1 Model assumptions

3.1.1 Demand

In the case of the electricity industry, it is important to distinguish demand

variability from demand uncertainty. The former corresponds to usual daily

and seasonal demand �uctuations which are easy to forecast, while demand

uncertainty is due to unexpected events (e.g. plant or transmission line

breakdowns) and to weather unpredictability. In this perspective, the model

stochastic demand function should be interpreted as the "residual demand"

or "net demand". That is, the demand that generators which are not en-

gaged in forward contracts face in the wholesale market. Therefore, the

uncertainty in demand encompasses both the e¤ects of aggregate demand

shocks (unforecast increase in demand at short notice due to changes in

weather, e.g. wind or temperature) and supply shocks (sudden breakdown

of a "must run" base load plant that had its output contracted forward).

De�nition 1 The price for electricity is determined endogenously by the
aggregate inverse demand function which takes the isoelastic form:

P (t) = X(t)Q(t)
� 1

 (1)

were X(t) is a stochastic process, Q(t) is the aggregate demand, and 
 is the

elasticity parameter.

The use of such a constant elasticity demand function is common in Real

Options models (e.g. Dixit 1994, Grenadier 2002, and Dobbs 2004), as it

simpli�es the searcch of closed form solutions. Furthermore such demand

speci�cation has one degree of freedom (the elasticity constant 
) which

allows for some sensitivity analysis to this critical parameter in electricity

markets.

De�nition 2 The stochastic shock X(t) is assumed to follow a Geometric
Brownian Motion (GBM) given by the equation:4

dX = X�dt+X�dz (2)

where � is the drift of the demand process and � is the instantaneous stan-

dard deviation of the process. dz is a Wiener process.
4This can be generalised to any Ito process.
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This speci�cation implies that X(t) is lognormally distributed. The

GBM is a fairly general process whose use is widespread in the Real Options

literature even though concerns are frequently voiced about its shortcom-

ings (for example its tails are too �at). However, the focus of this paper is

on long-term investment, and Metcalf and Gilbert (1995) show that using

a GBM instead of a mean reverting process has little impact on cumulative

investment in a similar real options application.

3.1.2 Supply

There are N power producers in the industry, which produce the same ho-

mogenous good, electricity, using the same technology of production. We

restrict the analysis to N symmetric �rms and assume that there is no entry.

The model therefore represents a market in which �rms have been success-

ful at raising barriers to entry, through for instance vertical integration into

electricity supply.5

The N plants sell their production in a wholesale market at a single node.

We abstract from transmission constraints and network e¤ects which would

render the model intractable and are not the focus of this paper (most other

generation investment models make a similar assumption, see e.g. Murphy

and Smeers, 2005).

Moreover, we do not model the impact of forward contracts between

generators and retailers and assume that generators�output is entirely sold

in a wholesale market. The issue of how forward contracts impact on gen-

erators�s bidding behaviour and pro�t in spot markets is a problem which

has attracted lots of research, but it is not the focus of this paper (see e.g.

Allaz and Vila, 1993, Newbery, 1998, Green, 1999, and Murphy and Smeers,

2005).6

All plants have the same capacity k (t), so that the total production

capacity in the industry at time t is K(t), with the following relation:

5 In the light of the recent European electricity industry concentration movement, it
seems credible that the industry will eventually be dominated by an oligopoly of 5 to 7
major vertically integrated companies.

6This assumption is justi�ed to keep the model tractable, Murphy and Smeers (2002)
for instance make the same assumption, as well as all other investment models papers
mentioned in the literature review section.
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K(t) =
NX
i=1

k(t) = Nk(t) (3)

The N identical producers produce each an amount q(t) at time t; such

that the total quantity produced at time t is:

Q(t) =

NX
i

q(t) = Nq(t) (4)

3.2 The game

The timing of the game is as follows: each producer observes the evolution

of demand and decides �rst how much to produce, q(t); up to its capacity

constraint k (t). Then each producer decides whether or not to increase

production capacity and by how much. This two stage game is repeated in

continuous time.

3.2.1 Firms�output decision

De�nition 3 Normalizing variable and �xed costs to zero, the pro�t �(t)
that each producer makes per unit of production at time t is de�ned by:

�(q0;Q�i0;; X0; q(t); Q�i(t); X(t)) = X(t)Q(t)
�1=
q(t) (5)

where (q0;Q�i0;; X0) are the initial values of the state variables, and

where Q�i(t) is the aggregate production of all �rms but �rm i at time t

.

We assume that all producers are pro�t maximizers, and that the market

is concentrated enough (high N) or the demand is elastic enough (high 
)

such that N
 > 1.

Lemma 4 Pro�t maximising producers produce at full capacity provided
that N
 > 1.

Proof. See Appendix 1

This Lemma makes the �rst stage of the game trivial: in the �rst stage

agents will produce at full capacity and in the second they will decide if they
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want to invest in new capacity. In the rest of the paper, q(t) refers equally

to the �rm�s production output and installed capacity at time t in order to

simplify notation.

3.2.2 Firms�irreversible investment problem

Investment in new capacity is assumed to be completely irreversible.7 We

assume that there is no technological progress nor physical depreciation of

the assets, and the risk free discount rate is denoted by �. Capacity is

in�nitely divisible and becomes available instantaneously. We will relax this

later assumption in the �fth section.

The �rms continuously maximise their pro�t by expanding capacity in-

crementally whenever such strategy is pro�table. When they increase capac-

ity, they pay a sunk cost of C per unit. The maximisation problem of �rm

i at time t consists of determining the �rm�s investment strategy, so that it

maximises the expectation of its pro�t minus the cost of investing in more

capacity. Each �rm therefore faces a sequence of investment opportunities

and must determine an exercise strategy for its path of investment. Agents

have complete information, are rational, and risk neutral.

The optimal investment strategy of one �rm has to take into account

the other �rms� investment decisions. It is determined as part of a Nash

equilibrium, where �rms compete à la Cournot. At each time t, �rm i

will maximise the expected operating pro�t from existing as well as new

capacity minus the cost of investing in more capacity, taking into account

the strategies of the rest of the agents. We consider a closed loop equilibrium.

De�nition 5 The capacity expansion problem of �rm i at time t is an op-

timal control problem that can be formulated by the following objective func-

tional J , where � is the constant risk free discount rate, and the expectation

7 Investment is irreversible in the sense that �rms cannot sell some of their capacity
if demand drops. This assumption appears appropriate in electricity markets, in which
investment is characterised by large sunk costs. In mathematical terms, the irreversibility
assumption means that k(t) is a non-decreasing function.
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operator E is conditional on the current state:

J(q0; Q�i0; X0; q(t); Q�i(t); X(t)) =

max
q(t)2[0;1)

E[

Z 1

t=0
�(q0; Q�i0; X0; q(t); Q�i(t); X(t)) exp(��t)dt

�
Z 1

t=0
C exp(��t)dq(t)] (6)

Alternatively we can see each �rm as owning a sequence of call options

on the stochastic price of the output. The strike price is the investment

costs. However, each �rm fully recognises that the exercise of such options

by its competitors will impact its own pro�ts by reducing the market clearing

price.

3.3 Nash equilibrium investment strategies

We restrict the analysis to symmetric Nash Cournot equilibrium, so that

at time t, q(t) = Q(t)=N , for all �rms. We follow Baldursson�s (1998) and

Grenadier�s (2002) simpli�ed approach to derive symmetric Nash-Cournot

equilibrium strategies. Baldursson (1998) and Grenadier (2002) build on the

seminal paper of Leahy (1993) and demonstrate that the investment Nash

equilibrium investment strategy of an oligopolistic �rm can be determined

as if the �rm was pursuing a form of myopic exercise strategy, while facing

a modi�ed aggregate demand curve.8

Assuming for a short while that the �rms are price takers, the problem

reduces to a standard application of the theory of investment under uncer-

tainty developed in Pindyck and Dixit (1994), which can be solved by using

either dynamic programming or contingent claims methods.

De�nition 6 Let V (q;Q�i; X) be the optimal value of the objective func-
tional J de�ned by equation (6), which represents the value of the investment

option for �rm i at time t.9

As usual in the theory of irreversible investment under uncertainty, the

decision rule will take the form of a critical price trigger P � such that it is
8Baldursson (1998) and Grenadier (2002) show that besides the monopoly and perfectly

industry cases, it is also possible to solve the oligopoly case as a single agent optimisation
problem. The procedure is just to pretend that the industry is perfectly competitive,
maximising a "�ctitious" objective function, using an "arti�cial" demand function.

9 In rest of the paper we omit the time index t to simplify notations.
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optimal to invest once P � P �. This price trigger P � for new investment

constitutes a natural ceiling, above which the market price will never rise.

Proposition 7 The value V of the investment option veri�es the following

di¤erential equation when �rms behave as price takers:

1

2
�2X2 @

2V

@2X
+ �X

@V

@X
� �V + � = 0 (7)

Proof. This is a standard result of Real Option theory obtained by applying
Ito�s lemma (see e.g. Dixit and Pindyck 1994).

Following the transformation detailed in Grenadier (2002), let us change

variables in order to work with P as a stochastic variable, and de�ne the

marginal value of the �rm m as follows.

De�nition 8 The marginal value of the �rm m(P (Q); Q�i; q) is de�ned by

m = @V
@q (P (Q); Q�i; q):

We can now use the results obtained in the case of price taking �rms

to �nd the strategic Nash Cournot equilibrium investment strategies of the

�rms, using Grenadier�s (2002) transformation.

Proposition 9 The symmetric Nash Cournot equilibrium investment strate-
gies of the �rms are de�ned by the following di¤erential equation

1

2
�2P 2

@2m

@2P
+ �P

@m

@P
� �m+ @�

@q
= 0 (8)

with
@�

@q
= P

N
 � 1
N


(9)

and the two free boundary conditions:10

� Value matching condition at the investment trigger P �

m(P �(Q); Q�i; q) =
@V

@q
(Q;Q�i; q)kV �(Q;Q�i;q) = C (10)

10The smooth pasting conditions in this continuous time model are akin the �rst order
necessary conditions for value maximisation in a static optimisation model.
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� Smooth pasting condition at the investment trigger P �

@m

@P
(P �(Q); Q�i; q) =

@2V

@q@X
(Q;Q�i; q)kV �(Q;Q�i;q) = 0 (11)

Proof. See Grenadier (2002).

The interpretation of this result is detailed in Grenadier (2002). The

symmetric Nash Cournot equilibrium investment strategy of a �rm corre-

sponds to the equilibrium investment strategies of a myopic �rm facing a

modi�ed aggregate demand curve, which is represented by the additional

term @�
@q in the di¤erential equation (8).

3.4 Solution of the Nash equilibrium investment strategies

Let �1 and �2 be the roots of the second degree characteristic equation

corresponding to equation (8) (see Appendix 2):

�1 =
1

2
� �

�2
+

r
(
�

�2
� 1
2
)2 +

2�

�2
> 1 (12)

and

�2 =
1

2
� �

�2
�
r
(
�

�2
� 1
2
)2 +

2�

�2
< 0 (13)

Proposition 10 The marginal value of the �rm m takes the following form:

m(P (Q); Q�i; q) = H0(Q)P
�1 +A0P (14)

with

H0(Q) =
N
 � 1
N
(�� �)

1

�1
[C

N
(�� �)�1
(N
 � 1)(1� �1)

]1��1 (15)

and

A0 =
N
 � 1
N
(�� �) (16)

Proof. See Appendix 2.

Proposition 11 The investment price trigger P � is given by:

P � = C (�� �) �1
(�1 � 1)

N


(N
 � 1) (17)

with the condition 
 > 1
N . The investment trigger is a decreasing function

of the number of �rms N in the industry.
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Proof. See Appendix 2.

The �rst two terms are familiar. P = C (�� �) represents the invest-
ment price trigger in a competitive industry without uncertainty, (see e.g.

La¤ont and Tirole, 2000, p.151). �1
(�1�1)

> 1 is often termed an option value

multiplier, as P �N=1 = C (�� �) �1
(�1�1)

is the investment price trigger in a

competitive industry under uncertainty (see e.g. Dixit and Pindyck, 1994).

3.5 Impact of market concentration on investment

The investment price trigger P � in the oligopolistic industry can be expressed

as a function of the investment price trigger in a perfectly competitive in-

dustry:

P � = �P �N=1 (18)

where

� =
N


(N
 � 1) > 1 (19)

and

P �N=1 = C (�� �) �1
(�1 � 1)

(20)

� = N

(N
�1) > 1 can be interpreted as a demand elasticity mark-up. That is,

the investment price trigger at which a Cournot oligopoly adds to capacity

P � is equal to the competitive investment entry price trigger P �N=1 multi-

plied by the oligopoly mark-up �: Figure 4.1 illustrates the impact of market

concentration on the investment trigger in an oligopolistic industry and a

perfectly competitive industry with and without price cap. The investment

price trigger is a decreasing function of the number of �rms, and since the

oligopoly mark-up � > 1, the �rms in the oligopolistic industry only add

to capacity when price reaches a higher value than would be the case un-

der competition. Prices are therefore at all times higher under oligopolistic

competition, while, concomitantly, installed capacity is less.

Moreover, we retrieve in our model the expression of the investment price

trigger P � in the two particular cases of monopoly and perfect competition.

In the limit of a perfectly competitive industry (as N goes to in�nity), �

tends towards one and equation (17) tends towards equation (20), which

corresponds to the investment price trigger in a perfectly competitive indus-

try (see Dixit and Pindyck (1994)). Moreover, when N = 1, � = 


�1 which
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corresponds to the monopoly mark-up identi�ed in Dobbs (2004).

Figure 4.1 - Price Triggers vs. Market Concentration

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08

In the next two sections we introduce successively two critical features

of electricity markets into the Cournot Nash equilibrium irreversible invest-

ment model described in this section. We study successively the impact of

a wholesale price cap and of a construction time lag on the level and timing

of investment.

4 Impact of a price cap

Let us now assume that prices in the wholesale market are capped at a

predetermined level by the regulator,
_
P . Two types of price caps need to

be distinguished in electricity markets, namely retail and wholesale market

price caps. This stylised model concentrates on the impact of wholesale price

caps (see Joskow and Tirole (2004) and Stoft (2002) for a technical discus-

sion of the impact of retail and wholesale price caps in electricity markets).

Wholesale price caps constitute a widespread tool used by regulators to mit-

igate market power exercise in electricity markets, but are believed to have

important side e¤ects on investment.11 Fraser (2003) highlights for instance
11 In PJM and most of the US East Coast wholesale markets, there is for instance a

1000$/MWh bidding price cap.
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the detrimental impact of price caps on investment that caused temporary

capacity shortages and price increases in the late 1990s in Australia and in

Canada (Alberta and Ontario). The price cap in this model can also be

interpreted more broadly as any kind of regulatory rule that prevents prices

from moving freely up when the market is tight. Such regulatory rules and

engineering constraints on wholesale markets are detailed for instance in

Stoft (2002), Joskow (2003), and Joskow and Tirole (2004).

4.1 Solution of the Nash-Cournot investment equilibrium
strategies with a price cap

In this section, P represents the hypothetical market-clearing or �shadow�

price, which is monotonically related to the pressure of demand through

equation (1). The investment price trigger above which it is optimal for �rms

to invest in more capacity is denoted
_
P
�
when a price cap

_
P is implemented:

An imposed price cap higher than the natural investment trigger is sim-

ply irrelevant, as voluntary investment decisions will always generate enough

capacity to keep the price below the price cap in the model stylised setting

(next section will make the model more realistic by introducing a construc-

tion time lag). In other words, necessarily
_
P �

_
P
�
because

_
P
�
is a re�ecting

boundary for the price process. When the price is at the ceiling
_
P , excess

demand is rationed in such a way that generators do not capture any of the

scarcity rent.

De�nition 12 The pro�t � that each producer makes per unit of production
at time t is given by:

�(q0;Q�i0;; X0; q;Q�i; X) = min
n
XQ�1=
q;

_
Pq
o

(21)

where (q0;Q�i0;; X0) are the initial values of the state variables, and

where Q�i is the aggregate production of all �rms but �rm i at time t.

Solving now equation (8) using (21) requires us to distinguish two dif-

ferent cases depending on the level of the price cap
_
P :

1. Non-binding Price cap

If P �
_
P , the price cap is not binding and we can use the results of the

previous section. The marginal value of the �rm m takes the following
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form:

m(P (Q); Q�i; q) = H1(Q)P
�1 +

N
 � 1
N
(�� �)P (22)

2. Binding Price cap

If P �
_
P , new investment is made only when the pressure of demand

rises to a critical level
_
P
�
at which the shadow price exceeds the im-

posed price cap
_
P at which the actual price is stuck. Equation (9)

becomes: @�@q =
_
P

Lemma 13 When prices are capped at
_
P , the marginal value of the �rm

m takes the following form (with �1 > 1 and �2 < 0 being the roots of

the second degree characteristic equation corresponding to equation (8), see

Appendix 2 for an analytic expression):

m(P (Q); Q�i; q) = H2(Q)P
�1 +H3(Q)P

�2 +

_
P

�
(23)

and veri�es the two free boundary conditions:

� Value matching condition at the investment trigger
_
P
�

m(
_
P
�
(Q); Q�i; q) = C (24)

� Smooth pasting condition at the investment trigger
_
P
�

@m

@P
(
_
P
�
(Q); Q�i; q) = 0 (25)

Proof. Straightforward by following the same calculation steps as in
Appendix 2.

Bringing now the two cases in which the price cap is binding and in

which it is not together, the value matching and continuity conditions at

the price cap
_
P give two additional boundary conditions, where the notation

_
P
(�)
and

_
P
(+)
refer respectively to the limit of the function considered below

and above the price cap
_
P :

m

�_
P
(�)
; Q

�
= m

�_
P
(+)
; Q

�
(26)
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@m

@P

�_
P
(�)
; Q

�
=
@m

@P

�_
P
(+)
; Q

�
(27)

The system of four equations (24), (25), (26), and (27) with four un-

knowns (H1;H2;H3;
_
P
�
) de�nes the symmetric Nash Cournot equilibrium

investment strategies of a �rm when prices are capped at
_
P . See Appendix

3 for an analytical expression.

4.2 Impact of a price cap on the oligopolistic investment
price trigger

Proposition 14 When the regulator caps prices at
_
P , the investment price

trigger
_
P
�
is given by:

_
P
�
= [�(

_
P

�
� C)

_
P
(�2�1)

]1=�2 (28)

with � de�ned as:

� =
�1

(1��1)
�(���) �

�1
�

(29)

where � is the elasticity mark-up de�ned previously:

� =
N


(N
 � 1) > 1 (30)

Proof. See Appendix 3.

Proposition 15 There exists an interval [
_
Pmin;

_
Pmax] over which the intro-

duction of a price cap lowers the investment price trigger as compared to the

oligopolistic industry investment trigger without price cap (i.e.
_
P
�
< P �).

_
Pmaxcorresponds to the investment price trigger P �without price cap, over

which any price cap is irrelevant.

Let
_
P optdenote the price cap level which minimises the investment price

trigger
_
P
�
. For

_
P <

_
P opt; the investment price trigger

_
P
�
is a decreasing

function of the level of the price cap
_
P , and tends towards in�nity as

_
P is

lowered to zero.

Over the interval [
_
P opt;

_
Pmax]; the investment price trigger

_
P
�
is an in-

creasing function of the level of the price cap
_
P :

Proof. See Appendix 4 and 5. No analytical solution for
_
Pmin can be

obtained in the general case, but an expression of the non-linear polynomial
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inequality is given in Appendix 4. Moreover, in the particular case in which

�2 = �1; an analytical solution of
_
Pminis given in appendix 4.

Figure 4.2 shows the evolution of the investment price trigger
_
P
�
as a

function of the level of the price cap
_
P . A �rst interesting result is that

the relationship between the investment price trigger
_
P
�
and the level of

the price cap
_
P is not monotonic. This result contrasts with Dixit (1991)

and Dixit and Pindyck (1994)�s �ndings that under perfect competition, the

investment price trigger is a decreasing function of the level of the price cap.

Figure 4.2 - Investment Price Trigger vs. Price Cap,

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 3:

The intuition for this result is that under oligopolistic competition, the

price cap has an impact not only on the option value characterising irre-

versible investments under uncertainty, but also has a market power mit-

igation e¤ect. These two e¤ects work in opposite directions as regards to

investment incentives.

� Impact of a price cap on the option value

On the one hand, a price cap has a negative impact on the option value

e¤ect associated with demand uncertainty, as it caps potential upside prof-

its while leaving unchanged potential downside losses, thereby providing a
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disincentive to investment. A price cap reduces the likelihood of future high

pro�ts, so that investors need to be con�dent that the pressure of demand

will stay high for longer (and hence the price will be equal to the price

cap) than when there is no price cap in order to commit to new investment.

Hence, a tighter price cap implies that a greater current pressure of demand

is needed to bring about investment. As Dixit (1991) explains in his model

of perfect competition,

�As the imposed ceiling is lowered toward the long-run aver-

age cost, the critical shadow price that induces new investment

goes to in�nity. In other words, if the imposed price cap is so

low that at this point the return on capital is only just above the

normal rate, then investors want to be assured that this state

of a¤airs will last almost forever before they will commit irre-

versible capital.�

� Impact of a price cap on market power mitigation

As seen before, under symmetric oligopolistic (Cournot) competition

without price cap, the value maximising strategy of a �rm is to reduce

capacity as compared to the perfect competition case, in order to increase

prices. But when there is a price cap, in the case where it is binding, increas-

ing capacity in a Nash Cournot game does not lead to a reduction in price,

hence providing an incentive to increase investment. In other words, a price

cap reduces the ability of �rms to leverage their market power by reducing

capacity. Indeed, when the price cap is binding, �rms have an incentive to

invest as the increased capacity will not reduce price. A tighter price cap

should therefore reduce the investment price trigger
_
P
�
and thereby induce

greater investment and lower prices.

A price cap has therefore a dual impact on the investment price trigger in

an oligopolitic industry, which explains the two regimes observed on Figure

2.

Over the interval [
_
P opt;

_
Pmax]; the positive market power mitigation im-

pact of the price cap dominates the negative impact of the price cap on the

option value e¤ect, so that the investment price trigger
_
P
�
is an increasing

function of the level of the price cap
_
P :

On the contrary, for a price cap lower than the competitive entry price
_
P opt, the impact of the price cap on the option value e¤ect dominates, such
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that the investment price trigger
_
P
�
is a decreasing function of the level of

the price cap
_
P .

Moreover, the implementation of a price cap at a level lower than
_
Pmin

would be counterproductive, as it raises the investment price trigger above

the oligopolistic price trigger without a price cap. As the price cap is lowered

to zero, the investment price trigger tends towards in�nity, as in the case of

perfect competition.12

4.3 The optimal price cap

Let us now search for the optimal level of the price cap
_
P opt, that is the

level at which a regulator aiming to minimise the investment price trigger

(and hence to maximise installed capacity and minimise prices) should set

the price cap.

Proposition 16 The optimal level of the price cap
_
P optis given by the fol-

lowing expression:
_
P opt =

�C(�2 � 1)
�2

(31)

which is equal to (20),the investment price trigger in a competitive industry,

and does not depend on N :

_
P opt = P

�
N=1 = C (�� �) �1

(�1 � 1)
Proof. See appendix 5.

In other words, under uncertainty, similarly to the certainty case, the

optimal level of the price cap is equal to the competitive industry investment

trigger price. Equation (31) indicates that the optimal price cap in this

intertemporal model does not depend on the market concentration, but does

depend on the volatility of demand and on the discount rate.

12These results are moreover consistent with Dobbs (2004), who studies the impact of
price cap on a monopoly in a similar setting.
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Figure 4.3 - Investment Price Triggers vs. Price Cap for di¤erent degrees

of Market Concentration,

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; :N = 2; 3; 4:

Figure 4.3 illustrates the point that the optimal price cap does not

depend on the market concentration, but that the bounds of the interval

[
_
Pmin;

_
Pmax] do. The higher the industry concentration (the lower N), the

lower
_
Pmin, and the larger

_
Pmax. This is a fairly intuitive result: the higher

the industry concentration, the larger the interval over which the intro-

duction of a price cap is bene�tial and lowers the investment price trigger

as compared to the oligopolistic industry investment trigger without price

cap. This generalises Dobbs�(2004) similar results obtained in the case of a

monopoly to the case of a Cournot oligopoly.

Figure 4.4 shows two sensitivity analyses of the impact of demand volatil-

ity on the optimal price cap
_
P opt, and of the impact of market concentration

on the price range [
_
Pmin;

_
Pmax] over which a price cap lowers the industry

investment price trigger as compared to the oligopolistic industry investment

trigger without a price cap.
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Figure 4.4 - Optimal Price Cap vs. Demand Volatility and Price Range

over which a Price Cap lowers the Investment Trigger vs. Market

Concentration, C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 3:

4.4 E¢ ciency of a Price Cap

The previous subsection revealed that, contrary to the results of models

without demand uncertainty, setting the price cap at the competitive level
_
P opt does not realise the competitive outcome, as

_
P
�
(
_
P opt) > P

�
N=1, which

is clearly illustrated on Figures 4.2 and 4.3. In other words, even with the

optimal price cap, under uncertainty there will be under-investment and

periods during which �rms will impose quantity rationing as compared to

the perfect competition case.

In this section, we present sensitivity analyses to investigate the e¢ ciency

of a price cap as a function of market concentration and demand volatility.

De�nition 17 We de�ne the e¢ ciency e of a price cap
_
P by the following

formula

e = 1�
_
P
�
� P �N=1

P � � P �N=1
where P � is the investment price trigger in the oligopolistic industry without

price cap,
_
P
�
is the investment price trigger when the regulator caps prices

at
_
P , and P �N=1 = C (�� �) �1

(�1�1)
=

_
P opt =

�C(�2�1)
�2

is the investment

price trigger in a competitive industry under uncertainty without a price cap.

The e¢ ciency of a price cap can be understood as a measure of how

close the price cap can take the market to the competitive outcome if set
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optimally.13 It takes the value of 1 if it retrieves the competitive outcome

and it is zero if, at best, it is irrelevant.

Figure 4.5 - Price Cap E¢ ciency vs. Demand Volatility,

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 2; 3; 4:

Figure 4.5 con�rms the intuition, that the more concentrated the market,

the more e¢ cient a price cap is. Moreover, Figure 4.5 shows that the e¢ -

ciency of a price cap depends critically on demand uncertainty, in particular

when the market concentration is not too important.

4.5 Impact of neglecting demand volatility when setting the
price cap

The previous results suggest that regulators should be careful to take into

account the option value e¤ects arising out of demand uncertainty when

introducing a price cap. Figure 4.6 illustrates the importance of recognising

this impact of demand uncertainty on the optimal price cap. It investigates

the percentage error made when computing the optimal price cap and not

13An interesting extension left for further research would be to study the impact of a
price cap on the market e¢ ciency, i.e. on a measure of social welfare such as e.g.the sum
of the �rms�pro�ts and of the consumer surplus. A proper evaluation of the latter would,
however, require a more detailed study of quantity rationing: we assume in this model
that quantity rationing is perfect, while in practice in electricity markets the lack of real
time metering implies that load is unlikely to be curtailed according to consumers�value
of lost load.
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taking into account demand volatility. For instance, a price cap set at an

optimal level when demand is constant represents a 39% under-estimation

of the optimal price cap when the actual demand volatility is characterised

by �2 = 0:01, and a 67% under-estimation when the actual demand volatil-

ity is characterised by �2 = 0:1. For relatively low actual volatilities of

demand, such an under-estimated price cap would still lower the investment

price trigger as compared to the non-regulated oligopoly case, and therefore

increase investment. But for higher volatilities of demand, the price cap

would be so low as compared to the optimal price cap that it is likely to be

counter productive, in the sense that it would be so low as to to increase the

investment price trigger as compared to the oligopolistic investment price

trigger without a price cap, and therefore lead to under-investment.

Figure 4.6 - Error on Optimal Pice Cap when not Taking into account

Demand Volatility, C = 600; � = 0:03; 
 = 0:6; � = 0:08; N = 3.

5 Impact of a construction time lag

In this section we introduce a construction time lag in the model, building

on Bar-Ilan and Strange (1996), as well as on Grenadier�s (2000 and 2002)

models of real estate markets. The construction time lag is an important

characteristic of investment projects in the electricity industry: for instance,

the time lag between the investment decision to build a new power plant and

the production start spans between three (gas turbine) and six years (nuclear
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plant) in the best case. This includes the time necessary to get regulatory

and local approval, the actual construction period, and the �nal testing and

commissioning stage.

This construction time lag is an important factor to be considered in

the investment strategy of a �rm, in particular when the determinants of

the pro�tability of the investment are uncertain.14 In our model, the prof-

itability of a capacity increase will be determined by the electricity price

when this capacity will become available. This electricity price will in turn

depend on the demand when the capacity becomes available, as well as on

the production capacity of the other producers at that time. This implies

that the construction time lag should modify investors strategies as follows:

investors must take into account both forecasts of future demand and the

impact on the future price of production capacity which is being built at

the time of the investment decision and which will become available in the

future.

Let us call � the time-lag between the time t at which an investor takes

the decision to increase capacity, and t + � the time at which this capacity

becomes operational.

Lemma 18 Since all the units under construction at time t will be com-
pleted by time t+ �, the pro�t �ow during the period [t; t+ �] depends only

on the capacity investments over the period [t � �; t], while the pro�t �ow
after time t+ � depends only on the current level of committed capacity.

Proof. See Grenadier (2000) for a formal proof.

The marginal value of a �rm m(X(t); q(t� �); Q�i(t� �)) can therefore
be expressed as follows:

m(t) = E

" R1
t=�

@
@qi
(�i (qi(t� �) ; Q�i(t� �) ; X(t))) exp(��t)dt

� @
@qi

R1
t=0C exp(��t)dqi(t)

#
(32)

where the expectation E is taken over the stochastic parameter X(t).

In the case where there is no price cap, the procedure to solve this integral

is classic (see Grenadier 2000). A sketch of the proof is given in Appendix

14Gardner and Rogers (1999) examine a capacity mix model under demand uncertainty
that explicitly accounts for di¤erences in technology lead times, and show that lead time
is a key design parameter that needs to be considered by investors alongside capital and
operating costs.
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6. When there is no price cap, the conditional expectation of demand with

a construction lag of � is:

exp(���)E[(X(t+ �)dX(t)] = exp((�� �)�)(X(t)) (33)

When there is a price cap at
_
P ; the conditional expectation of demand

with a construction lag of � is simply:

exp(���)E[(X(t+ �)dX(t)] = exp(���)(X(t)) (34)

This implies that the construction time lag just introduces an extra mul-

tiplicative discounting factor of respectively exp(���) and exp((�� �)�) in
the cases with and without price cap in the modi�ed demand curve faced

by an investor. It can be noticed that for � = 0, the discounting factor is

equal to one.

5.1 Impact of a construction lag on the oligopolistic invest-
ment price trigger

We now turn to the impact of the construction time lag � on the investment

price triggers with and without price cap at
_
P (denoted respectively now by

_
P �� and P

�
� ). When there is no price cap, the problem is standard and has

been solved in Grenadier (2000).

In the case where there is a price cap at
_
P , deriving the investment

trigger is more complex insofar as we need to distinguish two cases, as in

section 3, depending on whether the price cap is binding or not. Following

the same procedure as in section 3, we obtain a non linear system of four

equations with four unknowns, which is detailed and solved in Appendix 7.

Proposition 19 The Nash Cournot equilibrium investment price trigger
_
P
�
�

with a construction lag of � is given by the following formula:

_
P
�
� = [

�1(exp(��)C �
_
P
� )

exp(��) �1�1�(���) �
�1
�

_
P
(�2�1)

]1=�2 (35)

where

� =
N


(N
 � 1) > 1 (36)
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Proof. See Appendix 7.
It is interesting to compare the investment price trigger

_
P
�
� with a con-

struction lag of � with the investment price trigger
_
P
�
without construction

lag:

_
P
�
= [

�1(C �
_
P
� )

�1�1
�(���) �

�1
�

_
P
(�2�1)

]1=�2 <
_
P
�
� (37)

We can �rst notice that the two expressions are identical when � = 0:

Moreover, we can interpret the two supplementary multiplicative factors in

the expression of the investment price trigger
_
P
�
� with a construction lag of

� years as follows.

The construction lag leads investors to modify their investment strate-

gies in two ways. First, investors incorporate in the residual demand they

expect to face the expected rate of demand growth over the coming � years,

and therefore multiply the �ctional demand term at time t by exp(��),

where � represents the growth trend of the Geometric Brownian Motion

characterising the evolution of demand.

Second, investors modify their investment strategies by taking into ac-

count the return on capital lost by spending money at time t for an invest-

ment that will only start generating returns at time t + � . Hence they

simply increase the cost of investing today C by the return on capital they

could earn during the � years it takes for the capacity to become operational,

therefore replacing C by exp(��)C, where � represents the risk free discount

rate.
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Figure 4.7 - Investment Price Triggers vs. Price Cap for Di¤erent

Construction Time Lags (years),

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 3:

Figure 4.7 shows the impact of the price cap on the investment price

trigger for di¤erent construction time lags. It shows that a construction

time lag increases �rms�investment price triggers because of the increased

cost of investing today when taking into account the risk free discount rate,

as explained before. The next subsection will focus on the impact of a

construction time lag on the optimal price cap and on the e¢ ciency of price

cap regulation.

5.2 Optimal choice of a price cap with a construction lag

As shown by equation (35), the Nash Cournot equilibrium investment price

trigger
_
P
�
� with a construction lag of � is a function of the price cap level

_
P :

We now derive the optimal intertemporal price cap
_
P �opt that a regulator

can chose to maximise investment and lower prices.

Proposition 20 The optimal level of the price cap
_
P �optwith a construction
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time lag of � years is given by:

_
P �opt = exp(��)

�C(�2 � 1)
�2

(38)

Proof. See Appendix 8.
This expression indicates that similarly the case without construction

time lag studied in the previous section, the optimal price cap does not

depend on market concentration, but does depend on the volatility of de-

mand and on the discount rate. Figure 4.8 shows that the optimal price cap
_
P �optand the price range [

_
P �min;

_
P �max] over which a price cap lowers the

industry investment price trigger as compared to the oligopolistic industry

investment trigger without price cap are increasing (exponential) functions

of the construction time lag � (years).

Figure 4.8 - Optimal Price Cap and Price Range over which a Price Cap

lowers the Investment Trigger vs. Contruction Time Lag (years),

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 3:

It is interesting to compare the expression of the optimal level of the

price cap with a construction lag of � years
_
P �optwith the expression (31) of

the optimal level of the price cap without construction lag
_
P opt. The two

are linked by the following simple relation:

_
P �opt = exp(��)

_
P opt (39)
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This can be interpreted as follows: when determining the optimal level

of a price cap, the regulator should take into account the impact of the

construction lag on investors�investment decisions by setting the price cap

at a higher level than it would be without construction time lag. This

increase of the price cap should re�ect the return on capital that investors

would earn on the money spent on their investment during the � years it

takes for the capacity to become available. The regulator should therefore

multiply the optimal price cap without construction time lag by the factor

exp(��), where � represents the risk free discount rate.

5.3 Impact of a construction time lag on the e¢ ciency of a
price cap

Figure 4.9 shows that the e¢ ciency of a price cap (de�ned previously as a

measure of how close the price cap can take the market to the competitive

outcome if set optimally) is a concave decreasing function of the construction

time lag �. This raises questions as to the e¢ ciency of price cap regulation

in industries which exhibit both long lead times and signi�cant demand

uncertainy, such as the electricity industry.

Figure 4.9 - Impact of a Construction Time Lag on the E¢ ciency of a

Price Cap, C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 3:
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5.4 Impact of not taking into account the construction time
lag

The previous results suggest that regulators should be careful to take into

account the construction time lag characterising the industry when intro-

ducing a price cap. Figure 4.10 illustrates the importance of recognising this

impact of the construction time lag on the optimal price cap. It investigates

the percentage error made when computing the optimal price cap and not

taking into account the construction time lag. For instance, a price cap

set at an optimal level if there was no construction time lag represents a

10% under-estimation of the optimal price cap when the actual construction

time lag is 3 years, and a 50% under-estimation when the actual construc-

tion time lag is 6 years. For relatively short construction time lags, such an

under-estimated price cap would still lower the investment price trigger as

compared to the non-regulated oligopoly case, and therefore increase invest-

ment. But for longer construction time lags, the price cap would be so low as

compared to the optimal price cap that it is likely to be counter productive,

in the sense that it would be so low as to to increase the investment price

trigger as compared to the oligopolistic investment price trigger without a

price cap, and therefore lead to under-investment.

Figure 4.10 - Error on the Optimal Price Cap when not taking into

account the Construction Time Lag ,

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 3:
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Moreover, these results raise questions as regard to the appropriate

choice of price cap in an industry in which technologies with di¤erent con-

struction lag times compete for the production of the same good, such as

the electricity industry. If a regulator does not take into account the im-

pact of the construction time lag on the optimal price cap under demand

uncertainty, the regulator will not only induce under-investment, but will

also introduce a bias against technologies which have a long construction

lag time. This is particularly relevant to the electricity industry, in which a

wholesale price cap is likely to reduce investment in technologies with a long

construction time, such as nuclear power plants, as compared to technolo-

gies which are quicker to build, such as combined-cycle gas turbines (see the

second part of this thesis for a discussion of the impact of the construction

time lag on the economics of di¤ernet genration technologies).

6 Simulations

In this section we aim to provide some insights on the magnitude of the

investment delays caused either by the exercise of market power, by a con-

struction time lag, or by a counter productive use of price caps by the

regulator (i.e. a price cap set at a level such that it increases the investment

price trigger as compared to the case without ptrice cap). We simulate a re-

alisation of the stochastic demand, and observe the corresponding capacity

expansion and price paths.15

6.1 Simulation parameters

The model is implemented numerically using usual parameter values in elec-

tricity markets, but does not pretend to o¤er a precise characterisation of

investment in electricity markets, due to its stylised nature. Rather, the

aim of this section is to provide some insights on the order of magnitude

of the quantitative impact on the delays and under-investment identi�ed in

the previous sections. Table 4.11 summarizes the main model variables and

the default simulation parameters. Initial capacity is normalised to one, as

we are interested in comparing the relative level of investments. The annual

average demand growth is set to 3%, the risk-free discount rate at 8%. The

15The numerical solutions and simulations were done using MATLAB software. The
code is available from the author upon request.
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price elasticity with respect to production is set at 0.6, and the construction

time lag at 3 years. It should be noted that the results presented in this

section are qualitatively robust over a wide range of parameters.

Base case parameters Value Unit

Fixed investment costs16 C = 600 US$/kW

Volatility �2 = 0:3 p. year

Trend of GBM (� < �) � = 0:03 % d. growth p. yr.

Price elasticity 
 = 0:6 p. year

Risk free discount rate � = 0:08 %

Number of �rms (N > 1=
) N = 3

Initial production quantity Q0 = 1 Normalised

Optimal Price cap
_
P = 158:94 US$

Initial demand X = 160 MW

Initial time t = 0 Year

Construction time lag � = 0 Year
Table 4.11 - Base case simulation parameters

6.2 E¢ ciency of a price cap

Figure 4.12 shows a typical demand and price realisation together with the

evolution of capacity in the three cases of perfect competition, oligopoly

without price cap, and oligopoly with an optimal price cap.

16Recent estimates from the US Department of Energy suggest that the capital cost
for a new plant range from US$ 400/KW for an open cycle gas turbine, US$ 600 for a
combined-cycle gas turbine, US$ 1200/KW for a coal plant, to US$ 2000/KW for a nuclear
plant (DOE 2004).
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Figure 4.12 - Price and Capacity Evolutions for one typical Demand

Realisation,

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 3; X0 = 160.

It can �rst be observed by comparing the upper and lower left hand side

�gures that the Nash Cournot equilibrium investment trigger price is much

higher in the oligopolistic case than in the perfect competition case. Firms

strategically restrict investment and impose quantity rationing on consumers

in order to raise prices. Because of the higher level of the price trigger in

the oligopolistic case, this investment trigger is hit less often such that less

capacity is being built over time, which can be seen on the bottom right

hand side �gure.

When a price cap is introduced at the optimal level (top right hand side

�gure), i.e. at the competitive investment price, the investment price trigger

is lower than for a non regulated oligopoly. However, as already pointed out
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in section four, setting the price cap at a competitive level does not realise the

competitive investment outcome. The bottom right hand side �gure shows

indeed that if the regulated oligopoly industry has more capacity installed

at any time than the oligopolistic industry without price cap, it still does

not see as much capacity being installed as in the competitive industry.

6.3 Impact of a construction time lag

We now turn to the issue of under-investment related to the construction

time lag. The price cap is set at the optimal level when there is no construc-

tion time lag. The left-hand side of Figure 4.13 shows a typical demand

realisation and the associated endogenous price evolution in both cases with

and without construction time lag. If it takes time to build capacity, when

the without construction time lag investment trigger is reached, no invest-

ment takes place. The price needs to reach the higher investment trigger

with a construction lag to motivate new build, and even when it does so, it

takes time before capacity becomes operational. This is shown by the time

lag between the time at which prices reach the investment trigger on the left

hand side of Figure 4.13, and the time at which capacity actually increases

on the right hand side. During this time lag, price can increase dramatically

if demand keeps growing as capacity cannot be adjusted immediately.
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Figure 4.13 - Price and Capacity Evolutions with a Construction Time Lag

for one typical Demand Realisation,

C = 600; �2 = 0:3; � = 0:03; 
 = 0:6; � = 0:08; N = 3; X0 = 160; � = 3.

6.4 Sensitivity Analysis

Figure 4.12 and Figure 4.13 showed the evolution of prices, and installed

capacity for a typical demand realisation. In this subsection, we use a Monte

Carlo simulation to get some insights on the average underinvestment in both

a non-regulated oligopolistic industry and a regulated oligopolistic industry

with an optimal price cap as compared to the perfectly competitive industry.

We compute the average installed capacity after 10 years over 10,000 demand

realisations in the three cases and show the following ratios:

� QOlig
Qcomp

represents the ratio of the average installed capacities after 10

years in a non-regulated oligopolistic industry and in the perfectly

competitive industry.

� QOPC
Qcomp

represents the ratio of the average installed capacities after 10

years in a regulated oligopolistic industry with an optimal price cap
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and in the perfectly competitive industry.

Table 4.14 shows the extend of under-investment for varying values of the

base-case parameters introduced in Table 4.11. The results of the simulation

suggest that the impact of imperfect competition on installed capacity can

be quantitatively quite signi�cant, insofar as the non-regulated oligopolistic

industry and the regulated industry have on average respectively only 69%

and 78% of the perfectly competitive industry installed capacity after 10

years with the base-case parameters. Table 4.14 shows also that variations

of the investment cost, volatility of demand, load growth, price elasticity,

market concentration, and construction time lag signi�cantly impact both

the extend of underinvestment, and the e¢ ciency of price cap regulation.

Investment cost Volatility Load growth Price elasticity Discount rate Number of firms
Construction

time lag

K
comp

Olig

Q
Q .

comp

OPC

Q
Q

σ2

comp

Olig

Q
Q .

comp

OPC

Q
Q

m
comp

Olig

Q
Q .

comp

OPC

Q
Q

γ
comp

Olig

Q
Q .

comp

OPC

Q
Q

ρ
comp

Olig

Q
Q .

comp

OPC

Q
Q

N
comp

Olig

Q
Q .

comp

OPC

Q
Q

θ
comp

Olig

Q
Q .

comp

OPC

Q
Q

300 0,62 0,74 0,001 0,61 0,97 ­0,03 0,76 0,82 0,35 0,71 0,82 0,04 0,65 0,74 2 0,56 0,71 0 0,69 0,78
400 0,64 0,75 0,01 0,61 0,87 0,00 0,72 0,80 0,4 0,70 0,81 0,06 0,67 0,76 3 0,69 0,78 1 0,70 0,78
500 0,66 0,76 0,1 0,63 0,77 0,01 0,71 0,79 0,5 0,69 0,79 0,07 0,68 0,77 4 0,76 0,82 2 0,71 0,78
600 0,69 0,78 0,3 0,69 0,78 0,03 0,69 0,78 0,6 0,69 0,78 0,08 0,69 0,78 5 0,81 0,85 3 0,71 0,78
700 0,72 0,80 0,5 0,74 0,81 0,04 0,68 0,77 1 0,69 0,75 0,1 0,71 0,79 7 0,86 0,88 5 0,73 0,78
800 0,74 0,81 0,7 0,76 0,83 0,05 0,67 0,77 1,5 0,69 0,73 0,15 0,75 0,83 10 0,91 0,92 10 0,77 0,80
900 0,76 0,83 1 0,80 0,85 0,07 0,66 0,76 2 0,69 0,73 0,2 0,78 0,85 20 0,95 0,96 20 0,85 0,86

Figure 4.14 - Average underinvestment after 10 years for 10,000 demand

realisations with and without price cap.

Similarly, we run a Monte-Carlo simulation to compute the average

price markup after 10 years over 10,000 demand realisations in both a non-

regulated oligopolistic industry and a regulated oligopolistic industry with

an optimal price cap as compared to the competitive price, and compute

the following ratios:

� POlig
Pcomp

represents the ratio of the average prices after 10 years in a

non-regulated oligopolistic industry and in the perfectly competitive

industry.

� POPC
Pcomp

represents the ratio of the average prices after 10 years in a

regulated oligopolistic industry with an optimal price cap and in the

perfectly competitive industry.
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Table 4.15 shows the markup over the competitive price for varying val-

ues of the base-case parameters introduced in Table 4.11. The average price

in the non-regulated oligopolistic industry represents on average 193% of

the average competitive price after 10 years with the base-case parameters,

and the average price in the regulated industry represents on average 139%

of the competitive price. Table 4.15 shows also that variations of the in-

vestment cost, volatility of demand, load growth, price elasticity, market

concentration, and construction time lag signi�cantly impact the markup in

both the non-regulated and the regulated oligopolistic industries.

Investment cost Volatility Load growth Price elasticity Discount rate Number of firms
Construction

time lag

K
comp

Olig

P
P .

comp

OPC

P
P

σ2

comp

Olig

P
P .

comp

OPC

P
P

m
comp

Olig

P
P .

comp

OPC

P
P

γ
comp

Olig

P
P .

comp

OPC

P
P

ρ
comp

Olig

P
P .

comp

OPC

P
P

N
comp

Olig

P
P .

comp

OPC

P
P

θ
comp

Olig

P
P .

comp

OPC

P
P

300 2,22 1,49 0,001 2,25 1,01 ­0,03 1,73 1,35 0,35 4,91 1,55 0,04 2,08 1,47 2 3,30 1,53 0 1,93 1,38
400 2,13 1,46 0,01 2,25 1,11 0 1,83 1,38 0,4 3,31 1,52 0,06 2,00 1,43 3 1,93 1,39 1 1,90 1,40
500 2,02 1,43 0,1 2,18 1,37 0,01 1,88 1,38 0,5 2,31 1,45 0,07 1,96 1,41 4 1,59 1,31 2 1,88 1,42
600 1,93 1,39 0,3 1,93 1,39 0,03 1,93 1,39 0,6 1,93 1,39 0,08 1,93 1,39 5 1,43 1,26 3 1,86 1,44
700 1,85 1,35 0,5 1,82 1,36 0,04 1,96 1,39 1 1,43 1,26 0,1 1,87 1,36 7 1,28 1,19 5 1,80 1,44
800 1,79 1,32 0,7 1,81 1,34 0,05 1,98 1,41 1,5 1,26 1,18 0,15 1,77 1,30 10 1,18 1,14 10 1,71 1,49
900 1,75 1,31 1 1,80 1,34 0,07 2,03 1,39 2 1,18 1,14 0,2 1,69 1,27 20 1,08 1,07 20 1,55 1,50

Figure 4.15 - Average markup over the competitive price after 10 years for

10,000 demand realisations with and without price cap.

7 Conclusions

This paper presented a continuous time model of irreversible investment

in an oligopolistic industry with stochastic demand, and introduced two

critical characteristics of investments in electricity markets, a price cap and

a construction time lag. The contribution of this paper is twofold.

First, we solved the Nash-Cournot symmetric industry equilibrium and

demonstrated that the investment price trigger is an increasing function of

market concentration, demand uncertainty, and of the length of the construc-

tion time lag (and therefore the industry installed capacity is a decreasing

function of these parameters). We demonstrated that under demand un-

certainty, perfectly-rational, well-informed, risk-neutral investors will delay

and underinvest in new capacity in an industry characterised by oligopolistic

(Cournot) competition and a construction time lag. Numerical simulations

showed that the investment delay and under-investment due to the exercise
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of market power, a construction time lag, or a non optimal price cap can

be signi�cant. This gives some weight to the claim that electricity markets

are likely to see delayed or under-investment, because of the industry con-

centration or the remaining non market mechanisms such as price caps that

prevent prices from moving up freely and remunerate investors appropriately

in times of capacity scarcity.

Second, the model provided some new insights about the intertemporal

e¤ects of price cap regulation on investment under uncertainty. Our results

underline the importance of taking into account the option value e¤ect aris-

ing out of uncertainty in demand. As in the static models, we demonstrated

that the optimal price cap level corresponds to the perfect competition entry

price, but setting the price cap at the competitive level does not realise the

competitive investment outcome and leads to under-investment. Contrary to

perfect competition models, the investment price trigger is a non-monotonic

function of the level of the price cap, as the price cap has two e¤ects on

investment which work in opposite directions. On the one hand, the price

cap has a negative impact on the option value e¤ect associated with demand

uncertainty, as it caps potential upside pro�ts while leaving unchanged po-

tential downside losses, thereby providing a disincentive to investment. On

the other hand, when the price cap is binding, increasing capacity in a Nash

Cournot game does not lead to a reduction in price, hence providing an in-

centive to increase investment. We found that for a price cap lower than the

competitive entry price, the impact of the price cap on the option value e¤ect

dominates, such that the investment price trigger is a decreasing function of

the price cap. Conversely, the market power mitigation e¤ect dominates for

a price cap higher than the competitive entry price, such that the investment

price trigger is an increasing function of the price cap.

Moreover, we showed that the optimal price cap is an increasing func-

tion of the volatility of demand and of the length of the construction time

lag. Sensitivity analyses and simulations suggest that not recognising the

option value e¤ects arising out of uncertainty in demand when determining

the optimal level of a price cap can have a signi�cant negative impact on

investment. We showed for instance that a price cap set at a conventionally

optimal level without taking into account demand uncertainty can actu-

ally be counter-productive in an industry characterised by relatively highly

volatile demand, as it may reduce investment and increase prices. Similarly,
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a conventionally optimal price cap set without taking into account the im-

pact of the construction time lag on investment might reduce investment as

compared to the oligopolistic case without price cap, and distort technol-

ogy choices in favour of teh technologies with the shortest construction lead

time.

8 Appendices

8.1 Appendix 1

In this appendix we prove that producers produce always at full capacity.

The pro�t of �rm i is given by equation (5). The marginal pro�t resulting

from a marginal increase in capacity is given by

@�

@q
= XQ�1=
 � 1=
XQ�

1


�1
q (40)

Given that q = Q
N , a little algebra gives

@�

@q
= XQ�1=


N
 � 1
N


= P
N
 � 1
N


(41)

As we assume that 
 > 1
N ,

@�
@q > 0 which demonstrates that producers

produce always at full capacity.

8.2 Appendix 2

We name �1and �1the roots of the 2nd degree polynomial characteristic

equation of the di¤erential equation (8):

1

2
�2�(� � 1) + �� � � = 0 (42)

The two roots are de�ned by the two following equations

�1 =
1

2
� �

�2
+

r
(
�

�2
� 1
2
)2 +

2�

�2
> 1 (43)

and

�2 =
1

2
� �

�2
�
r
(
�

�2
� 1
2
)2 +

2�

�2
< 0 (44)
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The solution of the di¤erential equation (8) takes the following form

m(P (Q); Q�i; q) = H0(Q)P
�1 +H1(Q)P

�2 +A0P +B0 (45)

where A0 and B0 are two constants.

�2 < 0 implies that H1(Q) = 0 (because P
�2 tends to in�nity as P goes

to zero.

A0P +B0 is a particular solution of the di¤erential equation, which gives

after a little algebra the equation (16) for A0 and B0 = 0.

Using now the two boundary conditions (10) and (11) yields after a little

algebra the analytical expression of the investment price trigger P � given in

equation (17) and of the function H0(Q) given in equation (15).

Lastly,
@P �

@N
=

@

@N
(
C (�� �)�1
(�1 � 1)

N


N
 � 1) (46)

which gives
@P �

@N
=
C (�� �)�1
(�1 � 1)

(�
)
(N
 � 1)2 < 0 (47)

because 
 > 0 , � > � , and �1
(�1�1)

> 0:

8.3 Appendix 3

The system of four equations (24), (25), (26), and (27) with four unknowns

(H1;H2;H3;
_
P
�
) de�nes the symmetric Nash Cournot equilibrium invest-

ment strategies of a �rm when prices are capped at
_
P . An analytical ex-

pression of these four equations is given below by equations (48), (49), (50)

and (51):

H2
_
P
��1

+H3
_
P
��2

+

_
P

�
= C (48)

H2�1
_
P
��1�1

+H3�2
_
P
��2�1

= 0 (49)

H1
_
P
�1
+

N
 � 1
N
 (�� �)

_
P = H2

_
P
�1
+H3

_
P
�2
+

_
P

�
(50)

H1�1P
�1�1 +

N
 � 1
N
 (�� �) = H2�1

_
P
�1�1

+H3�2
_
P
�2�1

(51)

This system is non linear but possesses unusual features which make it

possible to solve and �nd an analytical solution for
_
P
�
.

42



We provide a sketch of the calculations and leave the intermediary steps

to the interested reader.

Subtracting
_
P
�

�1
:(49) from (48) to eliminate H2 yields

H3 =
_
P
�(��2)

(C �
_
P

�
)

�1
�1 � �2

(52)

Subtracting
_
P
�1
:(51) from (50) to eliminate H2 yields

H3 =
_
P
(1��2) [

(�1�1)
�(���) �

�1
� ]

�1 � �2
(53)

where we introduce � = N

(N
�1) to simplify the notations:

Equating (52) and (53) to eliminate H3 gives

_
P
��2

=
�1

(�1�1)
�(���) �

�1
�

(C �
_
P

�
)
_
P
(�2�1)

(54)

which upon rearrangement yields the following analytical solution for
_
P
�

_
P
�
= [�(

_
P

�
� C)

_
P
(�2�1)

]1=�2 (55)

with � de�ned as

� =
�1

(1��1)
�(���) �

�1
�

(56)

8.4 Appendix 4

In this appendix we prove that there exists an interval [
_
Pmin;

_
Pmax] over

which the introduction of a price cap lowers the investment price trigger as

compared to the oligopolistic industry investment trigger without price cap

(i.e.
_
P
�
� P �).

_
Pmaxis equal to the investment price trigger P � without

price cap above which the price cap is irrelevant.

Let us de�ne� =
_
P
�
�P � the di¤erence between the industry investment

price trigger with and without price cap at
_
P : To demonstrate proposition

(16), it is su¢ cient to prove that � � 0 over the interval [
_
Pmin;

_
Pmax] .
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From (28) and (17) we have

� = [�(

_
P

�
� C)

_
P
(�2�1)

]1=�2 � �C �1
(1� �1)

(57)

To simplify the calculations we de�ne � = �C �1
(1��1)

; so that � � 0 is

equivalent successively to

[�(

_
P

�
� C)

_
P
(�2�1)

]1=�2 � � (58)

and because �2 < 0 to

�

�

_
P
�2 � �C

_
P
(�2�1) � ��2 � 0 (59)

Analytical solutions of this non-linear inequality cannot be found in the

general case.

However, we can �nd an analytical solution in the particular case in

which �2 = �1: In this case (59) becomes

�

�

_
P
(�1)

� �C
_
P
2
� �(�1) � 0 (60)

which is equivalent to
_
P
2
� ��
�

_
P + ��C � 0 (61)

Noting
_
Pmin and

_
Pmaxthe two roots of this second degree polynomial

equation, de�ned as follows

_
Pmin =

��
� �

q
(��� )

2 � 4��C
2

(62)

and
_
Pmax =

��
� +

q
(��� )

2 � 4��C
2

(63)

we obtain that � =
_
P
�
� P � � 0 over the interval [

_
Pmin;

_
Pmax]:
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8.5 Appendix 5

From (28) we have

_
P
��2

= �(

_
P

�
)�2 � �C

_
P
(�2�1)

(64)

Di¤erentiating this expression relatively to the price cap
_
P we obtain

@(
_
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)

@
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= �2
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@
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_
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�(�2�1)
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(65)

@
_
P
�

@
_
P
= 0 implies

�

�
�2

_
P
(�2�1)

= �C(�2 � 1)
_
P
(�2�1)

(66)

and the optimal level of the price cap
_
P optis therefore given by the following

expression
_
P opt =

�C(�2 � 1)
�2

(67)

In the rest of this appendix we demonstrate that this later expression is

equal to (20), the investment price trigger in a competitive industry.

�1 and �2 are the two roots of the characteristic equation of (8) and

therefore verify the two following relations:

�1 + �2 = 1�
2�

�2
(68)

and

�1�2 = �
2�

�2
(69)

From (68) and (69) we obtain

�� � = ��
2

2
[�1�2 � (�1 + �2) + 1] (70)

Using again (69) to replace ��2

2 by �
�1�2

and rearranging inside the

brackets yields

�� � = �

�1�2
[(�2 � 1)(�1 � 1)] (71)
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and therefore the optimal level of the price cap is equal to the investment

price trigger in the competitive industry without price cap:

_
P opt =

�C(�2 � 1)
�2

= C
(�� �)�1
(�1 � 1)

= P �N=1 (72)

8.6 Appendix 6

By changing variables with t = t� � in equation (32), the marginal value of
a �rm becomes

m = exp(���)E
" R

@
@qi
(�i (qi(t) ; Q�i(t) ; X(t+ �))) exp(��t)dt

� @
@qi

R
C exp(��t)dqi(t)

#
(73)

which, omitting the time index t can also be written as

m = exp(���)E [m(X(�); Q�i; qi)dX(0) = X0] (74)

Following the procedure detailed in the appendix of Bar-Ilan and Strange

(1996), we obtain

E [X(�); Q�i; qi)dX(0) = X0] = E [(X(t+ �)dX(t) = X(t) exp(��)] (75)

which yields �nally

exp(���)E [(X(t+ �)dX(t) = X(t) exp((�� �)�)] (76)

with � < �.

8.7 Appendix 7

The system of four equations (24), (25), (26), and (27) with four unknowns

(H1;H2;H3;
_
P
�
) de�nes the symmetric Nash Cournot equilibrium invest-

ment strategies of a �rm when prices are capped at
_
P . Applying the ad-

ditional discount factor of respectively exp((� � �)�) and exp(���) in the
cases without and with price cap in the modi�ed demand curve faced by an

investor yields the following analytical expression of the system:

H2
_
P
��1
� +H3

_
P
��2
� + exp(���)

_
P

�
= C (77)
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H2�1
_
P
��1�1
� +H3�2

_
P
��2�1
� = 0 (78)

H1
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+exp((�� �)�) N
 � 1

N
 (�� �)
_
P = H2

_
P
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+H3
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�2
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�
(79)

H1�1P
�1�1 + exp((�� �)�) N
 � 1

N
 (�� �) = H2�1
_
P
�1�1

+H3�2
_
P
�2�1

(80)

Similarly to the system solved in Appendix 3, this system is non linear

but possesses unusual features which make it possible to solve and �nd an

analytical solution for
_
P
�
�. We provide below a sketch of the calculations.

Subtracting
_
P
�

�1
:(78) from (77) to eliminate H2 yields
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Subtracting
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:(80) from (79) to eliminate H2 yields
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(82)

where we introduce � = N

(N
�1) to simplify the notations:

Equating the last tow equations to eliminate H3 gives
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which eventually yields the following analytical solution for
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P
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8.8 Appendix 8

From (35) we have

_
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�1 exp(��)C
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(�2�1) �

_
�1
�

exp(��) �1�1�(���) �
�1
�

_
P
�2

(85)

Di¤erentiating this expression relatively to the price cap
_
P we obtain

@(
_
P
��2
� )

@
_
P

= �2
@
_
P
�
�

@
_
P

_
P
�(�2�1)
� (86)

=
�1 exp(��)C

exp(��) �1�1�(���) �
�1
�

(�2 � 1)
_
P
(�2�2)

(87)

�

_
�1
�

exp(��) �1�1�(���) �
�1
�

�2
_
P
(�2�1)

(88)

@
_
P�

�

@
_
P
= 0 implies

�2
_
P
(�2�1)

= exp(��)C(�2 � 1)
_
P
(�2�2)

(89)

and the optimal level of the price cap
_
P �optis therefore given by the following

expression
_
P �opt = exp(��)

�C(�2 � 1)
�2

= exp(��)
_
P opt (90)
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