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Abstract

This paper analyzes investment timing in the presence of agency conflicts and information

asymmetries. It is assumed that an owner of an investment project (a real option) needs

specialized expertise in order to make the investment. There are n firms with the required

knowledge, and these ”expert firms” compete about a contract that gives the contract win-

ner the right to manage the investment. Each competitor chooses an unobserved effort that

influences the probability of its investment cost level. When effort is made, each expert firm

privately observes its own investment costs, but not the competitors’. The winner of the

contract is the firm that (truthfully) reports the lowest investment cost.

The private information problem increases the critical price of investment compared to the

case of no inefficiency. When moral hazard is included in the model, the effect on the trigger

value is ambiguous for n > 1. In the case in which there is one expert firm (n = 1), the moral

hazard problem always mitigates the inefficiency cost due to private information. The last

result is consistent with findings in Grenadier and Wang (2005).



1 Introduction

Over the last decade, real options theory has made its way into standard textbooks on cor-

porate finance, as well as textbooks on derivatives and risk management. This reflects the

increasing importance of the real options framework as a tool for making investment decisions

in corporations.

The standard real options approach does not take into account agency issues in project

evaluation, although there often are private information problems and hidden action conflicts

inherent in project decisions. Such ”inefficiencies” reduce project values of owners, and change

optimal investment strategies of real options. Agency problems in combination with real

options are studied in this paper.

The setting is a firm that considers to invest in a project, but needs to rely on a supplier of

some technological solutions in order to make the investment. Examples of such investments

are a firm’s adoption of technological innovations, an oil company needing some equipment

in order to produce oil, and a firm that needs construction services in order to build a new

building. Typically, all these investments require specialized expertise, implying that suppliers

of products and services may have private information and exert hidden effort that influence

costs of the investments.

In the model it is assumed that there are several potential suppliers of technical solutions,

and that each of these ”expert firms” will have private information about their respective costs

of exercising the real option. Each expert firm observes its investment cost level after it has

made an effort. The effort affects the probability of the investment cost level: an increase in

effort increases the probability of a low investment cost level.

The project owner aims to contract with the expert firm that maximizes the project owner’s

value. This optimization problem is solved using a private values auction model.

We find that private information increases the critical project value of investment, com-

pared to the benchmark case of no incentive problems. When we have both types of incen-

tive problems simultaneously, hidden effort mitigates the under-investment problem caused by

private information for a subinterval of possible investment cost levels. However, numerical
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examples indicate that for high investment cost levels, the hidden effort problem enlarges the

under-investment effect. Only in the case in which we have one firm with private information

and hidden effort, does the hidden effort problem mitigate the under-investment effect for all

investment cost levels.

We do not take into account that the project owner may choose the number of expert firms

to participate in the auction. However, numerical examples of the model indicates a trade-off

of how many firms to invite to submit bids: The more firms that submits bids, the higher is

the competition, and the lower is the cost of exercising to option to invest. On the other hand,

the more firms that submit bids, the higher is the owner’s cost of giving the firms incentives

to choose high effort, leading to rent dissipation.

In Grenadier and Wang (2005) a similar problem is analyzed for the case in which there

is only one party with private information and agency problems. This is a natural restric-

tion in their setting, as they study the situation where shareholders delegate an investment

decision to a manager with private information, and who influence the investment project by

an unobservable action. Grenadier and Wang (2005) finds that private information leads to

under-investment (i.e., the critical value for investment increases compared to the case of no

private information), whereas hidden effort mitigates this effect on the critical value. These

results are consistent with the results of the model below for the special case in which one firm

only has private information and hidden effort (i.e., when n = 1).

The model presented in this paper builds on Mæland (2002, 2005): a real option owner

needs an expert to make the investment decision, and the expert has private information about

the (constant) cost of investing in the project. In these papers moral hazard problems are not

included. Similarly to Grenadier and Wang (2005), Mæland (2002, 2005) finds that the critical

value of the investment project increases due to private information.

Other papers that combine agency conflicts with real options include Bjerksund and Stens-

land (2000), Moel and Tufano (2000), and Antle, Bogetoft, and Stark (2001).

The rest of the paper is outlined as follows: In section 2 uncertain future cash flows are

evaluated, and a benchmark case of symmetric information and no agency issues is presented.

The auction model is formulated and the results are discussed in section 3. Section 4 gives
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some concluding remarks.

2 Evaluation of future cash flows: A first-best benchmark

It is assumed that a firm has an opportunity to invest in a project, where the investment

opportunity can be formulated as a perpetual American call option: by paying an investment

cost the firm obtains the market value of the net future cash flows from the completed project.

Under a risk neutral probability measure, the market value of the project when the investment

is made, St, is given by the stochastic process

dSt = (r − δ)Stdt + σStdBt, s = S0. (1)

In equation (1), r is a constant risk-free interest rate per year, δ denotes a constant convenience

yield per year, σ is the yearly volatility, and Bt is a Wiener process. The value of the completed

project, St, is often referred to as ”the value of the asset in place” (McDonald and Siegel (1986)).

In the benchmark case we assume that the real option owner observes the respective invest-

ment cost levels of the expert firms, and that the owner enters into a contract with the expert

with the lowest investment cost, denoted KL. Let E[·|Ft] denote the expectation under a risk

neutral probability measure conditional on the information at date t, Ft. As the expert’s profit

from managing the investment cost is zero in absence of agency costs, the owner’s optimization

problem is

V FB(s;KL) = sup
τ

E
[
e−rτ (Sτ −KL)+|F0

]
, (2)

where τ is a stopping time.

The investment opportunity in equation (2) is formulated as a perpetual option. Time-

homogeneity implies that the present value operator E[e−rτ |Ft] can be formulated as a function

of the asset value, s, and a critical value for investment, Ŝ(KL). Define D(s; Ŝ(KL)) =

E[e−rτ |Ft]. The corresponding ordinary equation equals

1
2
σ2s2Dss + (r − δ)sDs − rD = 0, (3)
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with boundary conditions lims↑Ŝ D(Ŝ) = 1 and lims↓0 D(0) = 0. The solution of the ordinary

differential equation is given by

D(s; Ŝ(KL)) =


(

s
Ŝ(KL)

)β

when s < Ŝ(KL)

1 when s ≥ Ŝ(KL)
(4)

The function D(s; Ŝ(KL)) is interpreted as the present value of one unit of money received at

the first moment when the asset value reaches Ŝ(KL).

Using the result in equation (4), the real option owner’s optimization problem in equation

(2) is obtained as,

V FB(s;KL) =


(

s
S∗(KL)

)β (
S∗(KL)−KL

)
for s < S∗(KL)

s−KL for s ≥ S∗(KL),
(5)

where the optimal trigger value, S∗(KL), equals

S∗(KL) =
β

β − 1
KL, (6)

and

β =
1
σ2

σ2

2
− (r − δ) +

√(
r − δ − σ2

2

)2

+ 2rσ2

 > 1. (7)

Equation (5) shows that the project owner’s value when immediate investment is the optimal

decision, is given by the value of the completed project, s, reduced by the investment cost KL.

When waiting is the optimal strategy, the owner’s value equals the present value of the critical

price for investment, S∗(KL), minus the investment cost. The solution in (5)-(7) is analogous

to the solution of a perpetual American call option under the assumption that the underlying

asset follows a geometric Brownian motion process. It also equals the real option values in

McDonald and Siegel (1986), Dixit (1989), and Bjerksund and Ekern (1990), among others.

Note that the project value V FB(s;KL) is based on ex post information, i.e., it is assumed

the option owner observes the investment cost KL. The value of the project given ex ante
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Figure 1: The stages of the model.

information, i.e., before the project owner observes the investment cost, equals

∫ K

K
V FB(s;KL)fH(KL)dKL, (8)

where fH(KL) is the probability density of the investment cost, and K and K are the lower

and upper limits of the investment cost.

3 The auction model

3.1 Economic setting

We now turn to the investment problem under the assumption that there are n firms with the

required expertise to contract with the project owner. The stages of the model are shown in

figure 1.

The project owner organizes an auction in order to contract with the expert firm that

maximizes the owner’s investment opportunity. The two incentive problems, hidden effort and
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private information, are in the model included as follows: Ex ante each firm i makes an effort.

Effort is costly, but a high effort increases the probability of being a ”low-cost” type. Ex post,

i.e., when an effort is made, firm i observes its cost, Ki, of making the investment. Each

firm reports an investment cost, K̂i ∈ [K,K], to the project owner. The vector of reported

investment cost levels is represented by K̂ = [K̂1, K̂2, ..., K̂n].

The project owner’s optimization problem is solved using a second-price sealed-bid private-

values auction1. However, by the revenue equivalence theorem2, it can be shown that under

our assumptions (i.e., that the contract goes to the bidder with the best bid, and any bidder

with the worst bid expect zero surplus) the results do not depend on the organization of the

auction. Thus, in our model, the winner of the contract is the firm that reports the lowest

investment cost.

For simplicity, we assume that the firms can choose between only to effort levels, high effort

or low effort. The cost of exerting high effort is ξ, whereas the cost of low effort is (without

loss of generalization) zero.

The project owner’s incentive scheme is based on the reported investment cost levels, K̂. Let

yi(K̂) be a control variable by which the project owner chooses the winner of the contract, i.e.,

yi equals 1 if firm i wins the contract, and is zero otherwise. Firm i’s expected compensation by

participating in the auction is given by wi(K̂), and the investment strategy (the stopping time)

is denoted τi(K̂). Thus, the project owner’s incentive scheme is given by {yi(K̂), wi(K̂), τi(K̂)}.

In the presentation below it is assumed that the asset value at time 0, s, always is lower

than the critical value of investment Si. This is without loss of generalization, and simplifies

the presentation of the model. Firm i’s value based on information after the firm has observed

its cost level (i.e., based on ex post information), is given by

vi(s,Ki; K̂i) = EH,Ki

( s

Si(K̂)

)β (
wi(K̂) + yi(K̂)(K̂i −Ki)

) . (9)

1As the name of the auction indicates, in such an auction, each bidder simultaneously submits a bid, without
seeing others’ bids, the contract is given to the bidder who makes the best bid, the contract is priced according
to the second-best bidder, and truth-telling is a dominant strategy. This type of auction is also called a Vickrey
auction. For a survey of auction theory, see Klemperer (1999).

2The revenue equivalence theorem was first shown by Myerson (1981) and Riley and Samuelson (1981).
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The superscript Ki in the expectation operator EH,Ki [·] indicates that firm i observes its own

investment cost, but not the other firms’ respective investment cost level. The superscript H

states that the expectation is taken under the choice of high effort. Each firm i optimizes its

value function in (9) with respect to the report K̂i. Equation (9) shows that firm i’s value

equals the present value of the compensation, transferred at the time of investment, and the

present value of the difference between the reported investment cost and the true investment

cost, adjusted by the probability of being the winner of the contract. Thus, if firm i wins

the contract (in which case yi = 1) the project owner at the time of investment transfers

the compensation wi, as well as the reported investment cost K̂i, to the contract winner.

The contract winner’s value at the investment time is reduced by its true cost of making the

investment, Ki.

We restrict the set of incentive schemes, or contracts, to the set of truthful contracts. This

simplifies the project owner’s optimization problem, and is done without loss of generalization3.

Given truth telling constraints, the first- and second-order conditions for optimization of firm

i’s value equal
∂vi(s,Ki; K̂i)

∂K̂i

∣∣∣∣∣
K̂i=Ki

= 0 (10)

and
∂2vi(s,Ki; K̂i)

∂K̂2
i

∣∣∣∣∣
K̂i=Ki

≤ 0, (11)

respectively.

Evaluation of the first-order condition leads to

dvi(s,Ki)
dKi

= EH,Ki

[(
s

Si(K)

)β

yi(K)|FKi
0

]
. (12)

The project owner’s value function can be formulated as

vO(s;Si(K), yi(K), wi(K)) = E

[
n∑

i=1

{(
s

Si(Ki)

)β

(Si(K)−Ki)yi(K)− Vi(s;Ki)

}]
, (13)

3For references on the revelation principle, see for instance Baron and Myerson (1982) and Laffont and Tirole
(1993).
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where the expectation operator E[·] represents the expectation based on the project owner’s ex

ante information (i.e., the owner’s information before the owner has received the cost reports

from the n firms). Recall that yi = 1 if firm i wins the contract, and zero otherwise. Thus,

the first term inside the brackets of equation (13) is the value of the project given that firm i

wins the contract, and zero otherwise. This term is summed over all the n firms. The project

owner’s value is reduced by the present values of the compensations to the n firms, as shown

by the second term inside the brackets. Under truthful contracts, each firm i’s value is the

discounted value of the expected compensation, i.e.,

Vi(s;Ki) = EH,Ki

[(
s

Si(K)

)β

wi(Ki)

]
. (14)

Firm i’s value may be interpreted as its value of private information.

Note that in equation (13) the control variable with respect to firm i, Si(K), depends on all

the (truthfully) reported investment cost levels, not only on firm i’s own cost level. However,

it can be shown that firm i’s critical price for investment in optimum depends on its own

investment cost, Ki, only. This result is based on an analogous result in Laffont and Tirole

(1987).

Thus, the project owner’s value function can be simplified to

v̂O(s;Si(Ki), Y H
i (Ki)) =

n∑
i=1

∫ K

K

[(
s

Si(Ki)

)β

(Si(Ki)−Ki) Y H
i (Ki)− Vi(Ki)

]
fH(Ki)dKi,

(15)

where Y H
i (Ki) is firm i’s probability of winning the contract, i.e., Y H

i (Ki) ≡ EH,Ki [yi(K)].

We interpret fH(Ki) as the probability density when high effort is chosen. The correspond-

ing cumulative distribution is given by FH(Ki) =
∫Ki
K fH(x)dx. Analogously, the probability

density and the distribution function of low effort are fL(Ki) and FL(Ki), respectively. The

probability distributions are assumed to be absolutely continuous, common knowledge, and the

fraction F j(Ki)/f j(Ki) is non-decreasing, j = {L,H}. As high effort increases the probability

of a low investment cost, we need the condition FH(Ki) ≥ FL(Ki). Firm i’s probability of

being the contract winner given effort level j = {L,H}, Y j
i , equals the probability that firm i
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has the lowest cost is in a sample of n firms, i.e., Y j
i (Ki) = [1− F j(Ki)]n−1.

By partial integration and equation (12), the ex ante value of firm i when it chooses to

exert effort level j, j ∈ [L,H], can be formulated as

∫ K

K
Vi(s;Ki)f j(Ki)dKi =

∫ K

K

(
s

Si(Ki)

)β

Y j(Ki)F j(Ki)dKi.

3.2 The optimization problem

By the simplifications above we can now formulate the project owner’s main optimization

problem: for each firm i from 1 to n,

sup
Si(Ki)

∫ K

K

[(
s

Si(Ki)

)β

(Si(Ki)−Ki)Y H
i (Ki)− Vi(s,Ki)

]
fH(Ki)dKi, (16)

subject to the four restrictions,

(i) The ex post incentive constraint (private information),

dVi(s,Ki)
dKi

= −
(

s
Si(Ki)

)β
Y H

i (Ki) for any Ki ∈ [K,K], (17)

(ii) the ex post participation constraint,

Vi(s,Ki) ≥ 0 for any Ki ∈ [K,K], (18)

(iii) the ex ante incentive constraint (moral hazard),

∫ K

K

(
s

Si(Ki)

)β (
Y H

i (Ki)FH(Ki)− Y L
i (Ki)FL(Ki)

)
dKi ≥ ξ, (19)

and

(iv) the ex ante participation constraint,

∫ K

K

(
s

Si(Ki)

)β

Y H
i (Ki)FH(Ki)dKi ≥ 0. (20)
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Note that the optimization implicitly presupposes that it is always optimal to give the

expert firms an incentive to exert high effort. This assumption is made as this is the interesting

situation to analyze, i.e., the case where the two incentive problems interact.

The truth telling constraint in (17) is derived using equation (12). The ex post participation

constraint in equation (18) states that each firm’s value must be positive, as it otherwise will

choose not to participate in the auction. The ex ante incentive constraint in (19) says that firm

i’s value of choosing high effort,
∫K
K

(
s

Si(Ki)

)β
Y H

i (Ki)FH(Ki)dKi − ξ, must be higher than

its value of low effort,
∫K
K

(
s

Si(Ki)

)β
Y L

i (Ki)FL(Ki)dKi. The ex ante participation constraint

in equation (20) is never binding, because the inequality is satisfied as long as the ex ante

incentive constraint is fulfilled, as the cost of high effort, ξ, is positive.

3.3 The optimal investment strategy

When the effort cost ξ is too low for the ex ante incentive constraint in (19) to bind, the

optimal investment strategy is given by

SI
i (Ki) =

β

β − 1

(
Ki +

FH(Ki)
fH(Ki)

)
. (21)

The optimal critical price for investment is higher under private information than full infor-

mation, thus implying under-investment with respect to the timing of the investment. The

fraction FH(Ki)/fH(Ki) is interpreted as an inefficiency cost due to private information. We

observe that in the case of private information only, the optimal investment strategy does not

depend on the number of firms with private information.

When both incentive constraints bind, the solution of the optimization problem implies the

optimal critical price for investment is equals

SAI
i (Ki) =

β

β − 1

(
Ki +

FH(Ki)
fH(Ki)

− λ

(
FH(Ki)
fH(Ki)

− Y L
i (Ki)

Y H
i (Ki)

FL(Ki)
fH(Ki)

))
, (22)

where λ is a positive Lagrangian multiplier. The Lagrangian multiplier λ is given by the
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equality ∫ K

K

(
s

SAI
i (Ki)

)β (
Y H

i (Ki)FH(Ki)− Y L
i (Ki)FL(Ki)

)
dKi = ξ. (23)

Note that the second-order condition for truth telling in (11) implies that the inequality

β ∂Si(Ki)
∂Ki

Y H
i (Ki)

Si(Ki)
− ∂Y H

i (Ki)
∂Ki

≥ 0 (24)

must be satisfied (a[n incomplete] sketch of the proof is shown in appendix A.1). As the last

term is negative, the condition in (24) will always be satisfied if ∂Si(Ki)
∂Ki

is positive. This means

that the truth telling condition is satisfied in the case where private information is the only

binding incentive constraint, as SI
i (Ki) is increasing in the investment cost Ki. When both

incentive constraints bind, satisfying restrictions for the second-order truth telling condition to

hold, are that the fraction FL(Ki)/fH(Ki) is increasing in Ki, fH(Ki) ≥ fL(Ki), and λ ≤ 1.

These conditions ensure that the optimal investment strategy SAI
i increases in Ki, shown in

appendix A.2. The restriction on the Lagrangian multiplier λ implies that the effort cost ξ

cannot be ”too high”, as implicit differentiation of (23) shows that dλ/dξ > 0.

As opposed to the optimal investment strategy when only private information is a binding

incentive constraint, equation (22) shows that when both constraints bind the optimal invest-

ment strategy depends on the number of expert firms, n, through dependence of n on Y L
i and

Y H
i . For n > 1, we do not know in general whether the moral hazard problem mitigates the

private information effect on the critical price for investment, or whether it further increases

the inefficiency problem: the affluence of the effort cost on the optimal investment strategy

depends on the relationship,

dSAI
i (Ki)
dξ

=


< 0 if F H(Ki)

fH(Ki)
− Y L

i (Ki)

Y H
i (Ki)

F L(Ki)
fH(Ki)

> 0

> 0 if F H(Ki)
fH(Ki)

− Y L
i (Ki)

Y H
i (Ki)

F L(Ki)
fH(Ki)

< 0
. (25)

The expression of dSAI
i (Ki)/dξ is presented in appendix A.3.

In the case where there is only one firm with private information, and both incentive

constraints bind simultaneously, the hidden action problem reduces the private information
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problem on the critical price for investment. This is an analogous case to Grenadier and Wang

(2005).

3.4 Implementation of the contract

Firm i’s ex post value of participating in the auction is given by

Vi(s,Ki) =
∫ K

Ki

(
s

SJ
i (u)

)β

Y H
i (u)du, (26)

where J = {I, AI}. Firm i’s expected compensation given an optimal investment strategy is

represented by w∗
i (Ki). The expected compensation w∗

i (Ki) is derived by equations (14) and

(26),

w∗
i (Ki) =

∫ K

Ki

(
SJ

i (Ki)
SJ

i (u)

)β

Y H
i (u)du. (27)

Note that the compensation function w∗
i (Ki) is an expected compensation, adjusted for the

probability of winning the contract managing the investment of the project. The compensation

of the contract winner, denoted w̃i(K), K = [K1,K2, ...,Kn], can be found by evaluation of

EH,Ki [w∗
i (K)y∗i (Ki)], where the optimal control variable is given by

y∗i (Ki) =

 1 if Ki < minj 6=i Kj

0 if Ki > minj 6=i Kj

. (28)

Equation (28) states that the firm with the lowest investment cost wins the contract. If

Ki = minj 6=i Kj , the project owner is indifferent between which firm to choose as the winner

of the contract. The contract winner’s compensation equals

w̃i(K) =
∫ Kj

Ki

(
SJ

i (Ki)
SJ

i (u)

)β

du. (29)

Hence, the contract winner’s compensation depends on the investment cost level of the firm

with the second-lowest cost report.

12



4 Concluding remarks

In this paper interactions of private information, moral hazard and competition are studied for

an investment in a project. The investment decision is formulated as a standard real option

problem of finding the optimal time to invest in the project.

Private information and moral hazard problems are included in the model by assuming

that the real option owner needs specialized expertise in order to make the investment. There

are n ≥ 1 expert firms that compete about the contract of managing the investment. The

competitors make ex ante an unobservable effort. A higher effort implies a higher probability

of realizing a lower investment cost level. After making an effort, each expert firm privately

observes their own investment cost.

We find that private information increases the critical price of investment compared to a

benchmark without private information. The additional effect of a binding moral hazard prob-

lem is ambiguous for when the number of expert firms is larger than one. For a large interval

of possible investment cost levels the moral hazard conflict mitigates the private information

problem. However, for high intervals of investment cost levels, the moral hazard problem in-

creases the inefficiency in the optimal investment strategy, i.e., the critical price of investment

increases more. Only for the case in which n = 1 does the hidden action problem reduce the

inefficiency for all levels of Ki. This result is consistent with Grenadier and Wang (2005).

The model of this paper is not optimized with respect to the number of expert firms,

n, participating in the auction. However, numerical examples indicate that a choice of an

optimal n is a trade-off: The more firms with private information, the lower is the value of

private information, which increases the project owner’s value. In addition, a high number of

experts means that the contract winner’s cost in probability is lower. On the other hand, a

large number of participants in the auction implies that the total effort costs are higher, which

may lead to higher compensation to the contract winner.
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A Appendix

A.1 A sketch of the proof of the second-order truth telling condition in

equation (24)

Given that the optimal investment strategy of firm i is found to depend on its own investment

cost only, and not its competitors’, firm i’s value function in equation (9) can be reformulated

to

v̂i(s,Ki; K̂i) =
(

s

Si(Ki)

)β (
wi(K̂i) + Y H

i (K̂i)(K̂i −Ki)
)

. (30)

The second-order condition ∂v̂i(s,Ki; K̂i)/dK̂i ≤ 0 for K̂i = Ki is simplified by differentiating

the first-order condition with respect to Ki, and substitute the result of the differentiation into

the second-order condition. This leads to the result in equation (24).

A.2 Differentiation of the optimal investment strategy SAI
i (Ki) with respect

to firm i’s investment cost Ki

Differentiating equation (22) with respect to Ki leads to

dSAI
i (Ki)

dKi

=
β

β − 1

(
1 + (1− λ)

∂(F H (Ki)/fH (Ki))

∂Ki

+ λ

(
Y L

i (Ki)

Y H
i

(Ki)

∂(F H (Ki)/fH (Ki))

∂Ki

+
∂(Y L(Ki)/Y H (Ki))

∂Ki

F L(Ki)

fH (Ki)

))
, (31)

where

∂(Y L
i (Ki)/Y H

i (Ki))
∂Ki

= (n−1)
(1− FL(Ki))n−2

(1− FH(Ki))n

[
fH(Ki)(1− FL(Ki))− fL(Ki)(1− FH(Ki))

]
.

Thus, given fH(Ki) ≥ fL(Ki),
∂(Y L

i (Ki)/Y H
i (Ki))

∂Ki
≥ 0. Under the assumption that FL(Ki)/fH(Ki)

increases in Ki and λ ≤ 0, we find that dSAI
i (Ki)
dKi

≥ 0.

14



A.3 The impact of an increase in the effort cost ξ on the optimal investment

strategy

Differentiation of SAI
i (Ki) in equation (22) with respect to xi:

dSAI
i (Ki; ξ)

dξ
= − β

β − 1
dλ

dξ

(
FH(Ki)
fH(Ki)

− Y L
i (Ki)

Y H
i (Ki)

FL(Ki)
fH(Ki)

)
(32)

The Lagrangian multiplier increases in the effort cost, as

dλ

dξ
= s

β − 1
β2

[∫ K

K

(
1 +

1
fH(Ki)Y H

i (Ki)

)(
Y H

i (Ki)FH(Ki)− Y L
i (Ki)FL(Ki)

)
dKi

]−1

≥ 0.

Thus, the sign of dSAI
i (Ki;ξ)

dξ in (32) depends on the sign of the term inside the parenthesis in

(32), as shown in (25).
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