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“MARKET RISK AND PROCESS UNCERTAINTY IN PRODUCTION OPERATIONS” 
 
 
 
 

ABSTRACT 
 
By adopting a real options framework we develop a production control model that jointly incorporates 
process and market uncertainties. In this model, process uncertainty is defined by random fluctuations in 
the outputs’ yield and market risk through demand uncertainty for the output. In our approach, 
production outputs represent commodities or items for which financial contracts do not trade. Outputs 
are also functionally linked to the level of input inventories. To extend the model’s applicability to a 
wide range of production industries, inputs are modeled to reflect either renewable, or partially 
renewable or non-renewable resources.  
 
Given this setting, techniques of stochastic control theory are employed to obtain value maximizing 
production policies in a constrained capacity environment. The rate of production is modeled as an 
adapted positive real-valued process and analogously evaluated as a sequence of complex real options.  
Since optimal adjustments to the rate of production also functionally depend on the outputs’ yield, we 
optimally establish “trigger boundaries” justifying controlled variations to the rate of production over 
time.  In this context, we provide closed form analytic results and demonstrate their robustness with 
respect to the stochastic (including mean reverting) processes considered. Using these results, we also 
demonstrate that the value (net of holding costs) accrued to the producer from having an inventory of 
the output is equivalent to the producer’s reservation price to operationally curb its process yield. These 
generalizations extend the scope of model applicability and provide a basis for applying the real options 
methodology in the operations arena. The model is explored numerically using a stylized example that 
allows for both output and demand uncertainty and achieves greater realism by incorporating an element 
of smoothing into the sequence of production decisions. 
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( I )   INTRODUCTION 
The integration of uncertainty and management of risk has become central to research in the operations 
arena. Research on this front addresses two fundamental questions, albeit in different contexts. First, 
how do operating (and only quite recently, financial) uncertainty and its consequent risk(s) affect 
operating policies?  Second, what are the ensuing economic ramifications and insights when uncertainty 
is explicitly accounted for and related risk(s) are truncated? In this paper we consider optimal operating 
policies for the firm in the presence of uncertainty, within an option theoretic context. The use of 
options theory enables us to examine operating policies dynamically, rather than to settle for the static 
solutions seen in most analyses of inventory problems. To that end, we exclusively focus on “quantity” 
uncertainty, its risk implications, and impact on production policies.1 “Quantity” risk is due to either 
process uncertainty, or market uncertainty, or both.  In this paper, we assume the latter. Specifically, we 
model process uncertainty by random fluctuations in the outputs’ yield and represent market uncertainty 
through variations in demand for the output. We extend our model’s applicability by considering 
situations where outputs reflect products for which financial contracts (e.g. futures contracts) do not 
trade such as the manufacturing or petrochemical industries. This is in contrast to commodity-based 
production/extraction applications of the real options methodology where the output commodity 
(copper, oil, etc.) is typically a traded asset. We model the required inputs for production as either 
renewable or partially renewable or non-renewable resources and use the state of input inventories as a 
mechanism to characterize the output levels. This generality expands the range and the nature of 
applications possible.   
 
Several factors motivate the objectives of this paper and the approach adopted for reaching them. We 
recognize that the simultaneous introduction of both demand and process (or yield) uncertainty is not an 
entirely new concept.2 For instance, in manufacturing industries firms may face demand uncertainty and 
be supplied with defective input materials. Yield uncertainty in manufacturing tends to affect 
technology choice, supplier alternatives, product design, and inventory options.  In the operations 
literature demand and yield uncertainty are customarily treated as random variables. This modeling 
alternative suggests a static approach to the analysis in that the influence of time on the assumed 
distributions and the resulting policies are effectively ignored. However, as we demonstrate, the 
concurrent treatment of demand and yield variables as (generalized) stochastic processes within a real 
options context avoids this problem. This approach also provides a dynamic framework to value the 
resulting operating policies.  
 
As remarked earlier, the majority of real options applications involve valuing investment opportunities 
in complete markets. This is typified by production efforts in mining/extraction based industries with 
                                                 
1 For most operational environments, commonly encountered sources of uncertainty may be generically classified into 
“Time”, “Quantity”, and “Price” categories. Time uncertainty is primarily due to variations in lead-times, arrival times, or 
processing times. Quantity uncertainty can be either external or internal. The former is typified by forecast errors of future 
sales or by random demand fluctuations. In the latter case, quality, design, or technology factors and complexities in 
processing often result in random variations in the actual yields observed.  Price uncertainty for any input/output in 
competitive markets results from shifts in supply and demand for the item.  In situations where the inputs/outputs reflect 
standard commodities for which futures contracts trade, their downside risk can be blocked by taking a hedged position. In 
almost all other situations the risk of price uncertainty is borne by the producer. The only exception reflects cases where prices 
are contractually fixed so that, in effect, a forward contract is at hand.  
2 See, for instance, Moinzadeh and Lee (1987). 
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outputs that are traded commodities and with output prices that reflect the major source of uncertainty. 
Market completeness implies that a portfolio of existing traded securities can be constructed that 
perfectly replicates the project’s payoffs. Thus, absent arbitrage opportunities, the market value of this 
replicating portfolio must be the same as the value of the investment project. In other words, the value 
of a non-traded investment project is “the price the investment opportunity would have if it were 
traded”.3 Market completeness is an undeniably powerful concept in the valuation of contingent claims 
in that all risks can be perfectly hedged by constructing a replicating portfolio from existing traded 
assets.4 As pointed out by Brennan and Schwartz (1985), there are several advantages to the valuation 
problem when a replicating portfolio can be constructed.5  First, the need for estimates of the expected 
growth rate in the underlying source of uncertainty is eliminated. Second, discount rates need not be 
derived since in the absence of (market priced) risks, the risk free rate is the appropriate discount rate.  
 
Other measures of market risk including exchange rate or demand uncertainty also have, albeit to a 
lesser extent, found their way into the current (real options) literature. Brennan and Schwartz (1985) 
introduce the notion of production flexibility in mining projects with multiple options to open, close and 
to subsequently abandon the project; the notion of market risk is captured through output prices, which 
are assumed random in nature. Furthermore, the output is also taken to be non-renewable, homogenous 
in its composition and therefore, not subject to variability. By extending Brennan and Schwartz’s 
elegant model to account for output variability, Kamrad and Ernst (2001) consider situations where the 
extracted resource is non-homogenous. The general solution to the classical “duration” problem of a 
long-term renewable resource is provided by Morck, Schwartz and Stangeland (1990). In their 
production control model, price and the level of inventories reflect the sources of uncertainty. Andreou 
(1990) provides a basic model for valuing flexible plant capacity when demand conditions are uncertain 
whereas Chung (1990) develops a contingent claims model of demand uncertainty with a stochastic 
production function. He and Pindyck (1992) consider an investment model of flexible production 
capacity. Kamrad and Ritchken (1994) use a multi-jump lattice approach to establish optimal production 
and inventory policies in the face of multiple input price uncertainty. Kouvelis and Sinha (1994) 
examine investment mode options and exchange rate uncertainty. Exchange rate related work includes 
Dasu and Li (1997) who develop optimal operating policies; Huchzermeier and Cohen (1996) address 
operational flexibility concerns for the purposes of strategic global manufacturing; and Kogut and 
Kulatilaka (1994) who consider production shifts among plants in a network of manufacturing centers. 
Li and Kouvelis (1999) provide an in depth analysis of risk sharing in supply contracts. Kamrad and 
Siddique (2004) also consider supply contract valuation problems in the presence of multiple exchange 
rates, profit sharing strategies and supplier reaction options.   
 
The application of real options methodology to a broader set of production-based problems, such as 
manufacturing, where the input(s) or the output(s) do not reflect traded commodities has received only 

                                                 
3 See Mason and Merton (1985) for a more detailed overview. 
4 See Harrison and Kreps (1979).                         
5 When risks cannot be perfectly hedged by a replicating portfolio (i.e. incomplete markets), preferences and aversions toward 
risk enter the analysis.  This, however, requires specifying the utility function of the representative investor.  
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limited attention. 6  In particular, there has been little discussion of “process” risk which is typified by 
reliability issues, lead-time uncertainty, system breakdowns, or output yield variability. The risk 
induced by process uncertainty is idiosyncratic and not compensated for in the financial markets. This is 
not to imply that process risk has no downside ramifications or related costs. Frequently, managers 
protect against the downside effects of process risk by producing larger lots and through maintaining 
inventories from which their contractual obligations is met. Of course, this comes at the expense of 
increased production and holding costs.  
 
In this paper, process uncertainty is characterized by output yield factor defined as the usable proportion 
of the total amount produced.7 By incorporating the yield factor into the analysis, we can explicitly 
account for the inherent heterogeneity problem existing in various forms in essentially all production 
processes. Though vastly different from the more traditional models of yield variability encountered in 
the manufacturing literature, our approach maintains the parallel that the yield factor is modeled as an 
independent multiplier to the output quantity. In light of this setup, we assume risk aversion and pursue 
a real options approach within Merton’s (1973) Intertemporal Capital Asset Pricing Model. Our model 
is derived in a general equilibrium context that parallels the findings of Constantinides (1978) and 
McDonald and Siegel (1985). Using techniques of stochastic control theory, we optimally adjust the rate 
of production in a manner consistent with a value-maximizing criterion.  
 
We assume that the risk associated with the output’s yield is idiosyncratic and does not induce an 
additional premium. We also assume a JIT production setting in that there are no finished product 
inventories. This assumption may seem counterintuitive or restrictive in the presence of a yield 
variability problem. It may reasonably be argued that stockpiling finished goods is in effect an 
operational hedge to the yield uncertainty problem especially in light of demand uncertainty and 
constrained production capacities.  However, we can justify this supposition in order to demonstrate that 
the value (net of holding costs) accrued to the producer from having an inventory of the output is 
equivalent to the producer’s reservation price to operationally hedge its process yield. In other words, 
the maximum dollar value that the management should be willing to expend in order to alleviate its 
yield risk. In that vein, we provide an upper bound premium for the inventory as an option. 
Alternatively, this value may be interpreted as the present value of a sequence of forward contracts with 
                                                 
6 Kamrad and Lele (1998) consider price uncertainty and “system failure” risk and develop an optimal production and 
maintenance expenditure policy in light of a warranty on shared failure repair costs. Hodder and Triantis (1993) consider 
production flexibility and use real options to value switching between alternative operating states.  Nembhard, Shi and Park 
(2000) and Nembehard, Shi and Aktan (2002, 2003) use a real options framework in the context of quality control and to 
evaluate the potential benefits of product outsourcing. 
7 The literature on yield problems in production enjoys a rich heritage. Initially, and motivated by yield variations in 
agricultural crops, Karlin (1958) considered the inventory implications of uncertain outputs.  By considering a multi-period 
ordering environment and assuming that production yields are binomially distributed, Mazzola, McCoy, and Wagner (1987) 
derive an EOQ model that allows for backlogging.  Given demand uncertainty and defective shipment quantities, Moinzadeh 
and Lee (1987) provide an analysis of a continuous review model. The inventory implications of a finite horizon, single 
product production model in the presence of demand and yield uncertainty is due to Gerchak, Vickson and Parlar (1988). By 
assuming a single period, single product, multistage production setting with random production yields at each stage, Lee and 
Yano (1988) develop a model indicating that stage dependent costs and a convex function of each stage’s production. Bitran 
and Dasu (1992) develop a model for establishing ordering policies in the presence of stochastic yields and demand 
substitutability. An extensive and rich review of the random yield literature can be found in Yano and Lee (1995). 
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different delivery times in order to balance out the spot output shortages that arise due to yield 
variability. Nonetheless, we assume that the producer maintains an inventory of the needed raw 
materials through which the finished goods are produced. We model this inventory system in such a 
way to allow for the full characterization of the resource to be exploited. That is, the resource in 
question may be renewable, partially renewable or non-renewable. This is important since within our 
setup we can easily distinguish the type of industry within which the production effort lies. For instance, 
if the raw material inventory is a renewable resource, the production effort represents a manufacturing 
operation. On the other hand, if the reserves reflect a nonrenewable resource, the case at hand typifies 
mining or other extraction based operations.  
 
Although our results are intended for the manufacturing industry in particular, our model lends its use in 
a number of related contexts.  For instance, with appropriate modifications the model can also be 
employed to address yield and demand variability issues in service operations including but not limited 
to the commercial airline industry.  In that case, we would define production as the number of flights 
operated at a given time, whereas the yield would be the percentage occupancy on those flights. 
 
The paper is organized as follows. In the next section we define the notation, state the necessary 
assumptions and develop an options based production control model resulting in a Bellman valuation 
equation subject to appropriate boundary conditions. In section III, we present closed form solutions for 
the optimal production policies and provide economic insights to them. In general, the Bellman equation 
does not lend itself to an analytic solution, so it must be solved numerically to obtain results.  In section 
IV, by invoking the Feynman-Kac results, we show how to derive the solution numerically along with 
the resulting optimal production policy to be followed. To that end, an efficient multinomial lattice 
approach provides the basis for approximating the stochastic evolution of the state variables. The 
numerical solutions are obtained recursively by superimposing a dynamic programming algorithm on 
the lattice. This procedure is then illustrated through a stylized example where we also include a penalty 
function to smooth the sequence of production decisions. Section V provides concluding remarks.  
 
 ( II )  Assumptions and Model Development  
Let ( )DZ t ∈ and ( )YZ t ∈ define standard Brownian motions that are martingales with respect to the 

probability space, (Ω,F,ℑ,P). The filtered probability space, (Ω,F,ℑ,P) is defined over the pre-
established time interval [0, ]τ  where the augmented filtration, ℑ = {Ft :t∈[0,τ ]}, is right-continuous 
and increasing.  In general, let the process depicting uncertainty be defined by{ ( ) :     0}X t t , where its 
sample path is posited by an Ito differential equation of the form:  

( ) ( , ) ( , ) ( )XdX t M X t dt S X t dZ t= +                                                             (1) 

The drift function, ( , )M X t denotes the instantaneous change in X(t).  The volatility function, 
( , )S X t denotes the standard deviation of the growth rate, and ( )XdZ t is an instantaneous increment to the 

Brownian motion; ( )XZ t ∈ defined above.  To develop the valuation model, let ( , , , ; )V D Y I t q  represent 
the production value at time t given that the demand is ( )D t , the yield factor is ( )Y t , the level of input 
inventory (or remaining untapped resource level) is ( )I t , and where the production rate is set at ( )q t . 
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( ) and ( )D t Y t are stochastic processes of the general type defined by equation (1)  and the 
function ( , , , ; )V D Y I t q  is taken to be Ito differentiable. The producer’s actions are depicted by the rate of 

production, ( , , )q D I t ≡ ( ), [0, ]q t t τ∈ with ( ) ( )0,q t Q∈ where Q defines the current available production 

capacity. In our set up, { ( ) : [0, ]}q q t t τ= ∈ is an adapted positive real-valued process. The flexibility 
afforded by having the option to revise operating policies in reaction to both market (i.e. demand) and 
process (i.e. yield) uncertainty is value additive and as such is viewed as a sequence of  (real) nested 
options.   We also assume that the production cost function, ( ( ))q tK  is non-decreasing in ( )q t and 
that ( ( )) 0q tK ≥′′ , depicting increasing marginal cost of producing an additional unit of the output. Finally, 
we assume that the market price for the output is deterministic and is denoted by ( )tπ  so that the yield-
affected revenue resulting from producing at rate ( )q t at time t, is ( ) ( ) ( )q t Y t tπ . We now specify the 
components of the model. 
 
Demand process 
 The output’s demand process{ ( ) : 0}D t t ≥ is depicted by one of the following alternative forms of 
equation (1): 

             ( ) ( ){ } ( ) 0( ) 0 0D D DdD t D t dt dZ t            D Dα σ= + = >                              (2a) 

         ( ) [ ( )] [ ( )] ( )D D DdD t D t dt D t dZ t= − + ηκ μ σ       0(0) 0D D= >                              (2b)   

In expression (2a), the constant drift parameter Dα represents the instantaneous expected growth rate in 

demand and the constant per unit variance of the growth rate is 2
Dσ . The demand process captured by 

(2a) implies that the conditional distribution of ( )D t given ( )D s , [0, ]t s τ> ∈ , is lognormal and 
that ( )D t >0 for all [0, ]t τ∈ , if 0 0D > .  Expression (2b) reflects a generalized “mean reverting” process.  
The mean reversion constant, 0κ ≥ can be thought of an elastic force that pulls D(t) to its long run 
mean Dμ which is assumed to be positive. As 0κ ≥ becomes smaller, the excursions around the mean 

become longer. In general,η is arbitrary. For 1η = , the process is known as an Ornstein-Uhlenbeck 
process or an inhomogeneous geometric mean reverting process. When 1 / 2η = , ( )D t follows a non-

central 2χ (chi-squared) distribution with finite mean and variance. The above specifications 
accommodate a wide range of probability distributions for the demand process depending on the 
parametric choices.  Equation (2b) formally reduces to (2a) only when 0 and D Dη μ κ α= = = − , a set 

of conditions precluded by our specification. 
 
We assume demand substitutability is not an alternative and that backlogging is not allowed. 
Furthermore, the producer does not stockpile finished products and hence there are no finished goods 
inventory concerns.  This implies that given the available production capacity, the producer aims to 
meet as much of the demand as possible. To reduce the potential for overage costs, we implicitly impose 
a penalty constraint to that effect.  We also assume that the producer’s actions do not affect the market 
demand for the output.  
 



 7

Inventory level 
Given that there are no finished good inventories in meeting the demand for the output, the producer 
simply produces at rate ( )q t in a manner that maximizes the operating profits. The producer, however, 
maintains an inventory of needed raw materials from which finished goods are produced. Let 

( ), [0, ]I t t τ∈  define time t level of input inventory. Supposing 0(0) 0I I= >  defines the initial known 
level of the resource, we have, 

    ( ) [ ( ( )) ( )]dI t q t q t dtφ= −                                        (3) 
 

The function (.)φ is used to determine whether or not the resource in question is renewable. Although, 
many forms for this function could be examined, in this paper we consider only the simple functional 
form, ( ( )) ( )q t q tφ ξ= with 0 1.0ξ ≤≤ .8 Thus equation (3) becomes ( ) ( 1) ( )dI t q t dtξ= − . When 0ξ = , the 
resource considered is non-renewable and the RHS of equation (3) simply reduces to ( )q t− .  
When 1.0,ξ = the resource is instantaneously renewable: in other words, the supply is effectively infinite. 
In a limiting sense, a JIT inventory policy illustrates the notion of 1.0ξ = .  All other cases (i.e. 0 1ξ< < ) 
present a partially renewable resource with the RHS of equation (3) becoming ( 1) ( )q tξ − .  In this case, 
the rate of depletion or extraction is faster than the rate of replenishment. Note that when 1.0,ξ >   implies 
a raw material reserve reordering policy related to production.  In an extraction-based industry this may 
be interpreted as an incentive for acquiring new reserves when the rate of production is increasing.  
 
Net output 
The net usable output resulting from production at rate ( )q t is defined as ( ) ( )q t Y t .The yield 
variable ( ), 0{ }Y t t ≥ is conceptualized as an independent multiplier to the output rate and is constrained 
such that 0 ( ) 1.0Y t≤ ≤ for all 0t ≥ . The yield process ( ), 0{ }Y t t ≥ , denoted simply by Y when no 
ambiguity arises, is assumed to follow the generalized stochastic process: 
 
         ( ) ( , ) ( , ) ( )Y YdY t Y t dt Y t dZ tμ σ= +        0(0) 0 ; 0 ( ) 1.0Y Y   Y t= > ≤ ≤   (4) 
 
Thus ( )Y t describes the state of the production process at time t and its realization is known at the instant 
that the incremental production decision is made. We defer specifying functional forms 
for (.)μ and (.)Yσ and address this concern in our results’ section and in light of a contextually meaningful 
distribution for ( ) Y t to follow.  We assume the Brownian increments defined earlier are orthogonal. 
That is, the demand and yield processes are instantaneously uncorrelated: 
 

   ( )( ) ( ) 0DY D Ydt E dZ t dZ tρ = ⋅ =            (5)   

                                                 
8 It is not within the scope of this paper to optimally establishξ .  However, the solution procedure shown in section IV can 
provide a numerical optimization approach.  



 8

Model formulation 

As a preliminary to developing our valuation model, we assume the existence of a (hypothetical) 
financial security that has the same covariance with market return as does demand.9 Suppose 

( )W t depicts the price of this traded security at time [0, ]t τ∈ and that the equilibrium growth rate on this 
financial asset is Wα . We assume that the instantaneous change in the price level of this security is 
characterized by the following stochastic differential equation, 
 

( ) ( ) ( ) ( )W W WdW t W t dt W t dZ tα σ= +                                (6) 

Expression (6) defines a geometric Brownian motion, with Wα  and Wσ reflecting the constant drift 

(expected rate of return) and volatility (standard deviation of rate of return) parameters. 
Here, Wα represents the equilibrium rate of return on a financial security having the same covariance 

with the market return as does the demand.  Let Mα and Mσ  define the instantaneous expected rate of 
return (drift) and the standard deviation of the rate of return on the market, respectively. The unexpected 
rate of return component defined by, ( )M MdZ tσ , with ( )M tZ ∈  as a standard Brownian motion that is 

also a martingale with respect to the probability space, (Ω,F,ℑ,P). The constant and riskless rate of 
return is depicted by r.  Employing Merton’s (1973) Intertemporal Capital Asset Pricing Model, the 
market premium on this financial security is given by WM Wλρ σ , which for valuation purposes is 
equivalent to DM Dλρ σ . Here, WMρ and DMρ define the instantaneous correlation on returns between the 
financial security and the market and that of the demand and the market, respectively.10  By definition,  
 

M

M

rαλ
σ

=
−                                                                                         (7) 

 Furthermore, let the rate of return shortfall be defined by W Dψ α α= − , withψ unrestricted in sign. By 

employing an intertemporal CAPM approach, the equilibrium rate of return on the financial security 
must reflect an adjustment for systematic risk.  In this context, we have: 
  

  W DM Drα λρ σ= +               (8) 

Recall, by definition that WM W DM Dλρ σ λρ σ= .11 Given this setup, we can obtain 
( ) ( , , , ; )V t V D Y I t q≡ using a replicating portfolio approach. To that end, consider portfolio 
( ) G t consisting of a long position in V(.) together with a short position ofδ  units in security, ( )W t . The 

instantaneous change in the value of this portfolio, in light of the necessary cash flow adjustment is, 
 

   ( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( )dG t dV t dW t q t Y t t K q t dtδ π= − + −                                        (9) 

                                                 
9 We will use this condition to arrive at equations (8 and 10). 
10 By definition DM M D WM M Wρ σ σ ρ σ σ= : the security has the same ‘return” covariance with the market as does the demand. 
Hence DM D WM Wρ σ ρ σ= .That is, ( ( ) ( )) ( ( ) ( ))M D D M W WE dZ t dZ t E dZ t dZ tσ σ⋅ = ⋅ which is  (8) using a CAPM framework. 
11 See also Constantinides (1979) and, McDonald and Siegel (1985). 
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The expression in curly brackets denotes the reward function ( ( )).R q t To ensure the existence of only 
diversifiable risks, set ( ) ( )( / ) ( / )tD W V Dδ ⋅ ⋅= ∂ ∂ . Absent arbitrage opportunities, this implies that the 

expected return on this portfolio, ( )( )E dG t should be the riskless rate so that, 

 
   ( )( ) ( )E dG t rV t dt=                                       (10) 

The producer seeks to maximize the net present value of the project. To that end, by applying Ito’s 
lemma to the right hand side of equation (9), taking the resulting expectations, and equating it to 
expression (10) we obtain the desired Bellman valuation equation. Using equation (2a), it follows 
without loss of generality that, 12   

2 2
2 2 2

2 2[0, ]

1 1( ) ( , ) ( , ) [ (1 )] ( ) 0
2 2D Yq Q

V V V V V VMax D r Y t D Y t q Y K q rV
D Y t D Y I

ψ μ σ σ π ξ
∈

∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫
− + + + + + − − − −⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭

=     

(11) 
 s.t.            

0
( , , , ; ) 0

→
=

Y
lim V D Y I t q        (12a) 

0
( , , , ; ) 0

→
=

D
limV D Y I t q        (12b) 

( , , , ; )
→∞

< ∞
D

V D Y I t q
D

lim        (12c) 

( ) [0, ]q t  Q∈         (12d) 
( , ,0, ; ) 0=V D Y t q        (12e) 
( , , , ; ) ( , )τ τ=V D Y I q C I         (12f) 
( , , , ; ) ( , ) 0+ ≥V D Y I t q P I t         (12g) 

                                              1
2[ ( ) ( ) ( )]D t Y t q tH ωω −=  (12h) 

 
Furthermore, in some situations, a mean reverting process is a more appropriate description for the demand 
variable. Our model can easily accommodate this adjustment. In particular, if the demand process were 
defined according to expression (2b), then the resulting Bellman valuation equation is: 
 

2 2
2 2 2

2 2[0, ]

1 1[ ( )] ( , ) ( , ) [ (1 )] ( )
2 2

0D Yq Q

V V V V V VD r Y t D Y t q Y K q rV
D Y t D Y I

Max ψ μ σ σ π ξ
∈

⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − − − −⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭

=

 
 (13) 

subject to the same constraints as before: that is (12a-g).  The only difference between the Bellman equations 
(11) and (13) is the first term inside the brackets involving the partial derivative with respect to ( ) D t with;  

with ) and   (       W D D W WD
D

κ
ψ α α μ α α κα− = += =                                (14) 

where, as in equation (8), W DM Drα λρ σ= +  

                                                 
12 Note that changes in the yield variable are assumed independent of the overall economy and therefore not priced. 
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Assumptions 
Equations (12a-h) characterize the constraints to the above Bellman equation (11). First, we assume that 
the value goes to zero as the yield goes to zero. That is, ( ) 0Y t = is an absorbing state, since the 
production effort becomes valueless (12a). Likewise, ( ) 0D t = is an implied absorbing state given 
equation (2): i.e. equation (12b). We further assume that the value function is bounded above 
by ( )cD t where c < ∞ is a constant (12c). This regularity condition is stated for completeness; it is trivially 
satisfied since the production capacity is bounded above by Q, as indicated by equation (12d). We also 
assume that the value drops to zero when the input level inventory falls to zero. The terminal value at 
the close of the project is defined by function ( , )C I τ  via equation (12f). To account for shutdown as a 
flexibility option, equation (12g) ensures that the operating value of the production effort exceeds the 
corresponding shutdown cost, as reflected by ( , )P I t .  To discourage production overages and shortages, 

we impose a penalty function characterized by constraint (12h), where the constants 1 2, 0ω ω ≥ .   

 
Several issues regarding equation (11) are noteworthy. In particular, consider the first term in equation 
(11) reflecting the quantity ( )r ψ− . This quantity has effectively replaced the original drift term of the 
demand process as a result of a replicating strategy barring arbitrage opportunities (see equations (9) 
and (10)). In the current context, the portion ( )r ψ−  is the revised drift representing the average growth 
rate for the demand process. Specifically, ( )r ψ− characterizes the “market” adjusted instantaneous 
growth rate of demand with ψ  unrestricted in its sign and where W Dψ α α= − . As stated earlier, Wα  is the 
expected rate of return on a financial asset having the same (financial) risk as the demand variable.   
When 0ψ < , it implies that the expected growth rate of demand exceeds the equilibrium rate of return on 
a security having the same financial risk in the market as does the demand. In contrast, when 0ψ > , the 
expected growth rate of demand is less than the aforementioned equilibrium rate of return.13 These 
findings are consistent with Constantinides (1978) and McDonald and Siegel (1985): the later includes a 
more detailed and intuitive discussion. In light of the above results, for valuation purposes the demand 
process initially defined by equation (2a) may be depicted as: 
 

                  ( ) ( ){ } ( ) 0( ) ( ) 0 0D DdD t D t r dt dZ t         D Dψ σ= − + = >                                 (15) 

 

In what follows, closed form results regarding the optimal policies are provided. However, the value of the 
project, as characterized by equation (11), must be solved for numerically since the Bellman valuation 
equation does not yield closed form results.  An alternative approach would be to formulate the valuation 
problem as a stochastic dynamic program, subject to appropriate constraints.  Indeed, in section IV we adopt 
such an approach to obtain results numerically. However, we believe that the CCA formulation provides 
additional and complementary insights into the decision-making process. 
 

                                                 
13 If instead of demand uncertainty we were to represent market uncertainty through stochastic prices for the output and had it 
been the case where the output were a commodity for which futures contracts traded, then ψ would have analogously 
represent the commodity’s convenience yield instead. See Brennan and Schwartz (1985). 
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(III)  Optimal Production Policies 
This section provides closed form results for the optimal operating policies. In order to obtain explicit 
results, we assume that the production cost function ( ( ))K q t  is quadratic and non-decreasing (monotone) 
in the rate of production ( )q t :  

2
0 1 2( ( )) ( ) ( )K q t k k q t k q t= + +                                                  (16) 

where the monoticity conditions imply that 1 2 0,k k ≥ .  We further assume that the drift and volatility 

function functions for the yield process are constant, so that ( , ) ( , )Y YY t   and  Y tμ μ σ σ= = . That is: 
( ) ( )Y YdY t dt dZ tμ σ= +                 0(0)Y Y= >0       (17) 

thereby implying that the distribution of the yield variable Y(t), given Y(s) with ,and , [0, ]t s t s τ> ∈  
follows a doubly truncated normal distribution with zero as an absorbing barrier and with one as a 
reflecting barrier for Y(t).  If the input inventory level at time [0, ]t τ∈ drops to zero, so will the value 
function as constraint (12e) indicates.  To ensure production remains a viable option, we assume that 
(input) inventory is strictly positive during the planning horizon.  If this were not the case, we would 
simply devise an optimal policy over time until the inventory is fully exhausted, and that would 
complete the analysis. Thus, we assume that the input inventory level remains positive over the 
period[0, ]τ . A sufficient condition for this assumption is that (0) (1 )I Qτ ξ> − . 
Theorem 1:  
 
Let (0) (1 )I Qτ ξ> − with 0 1ξ≤ < . Suppose that the demand process is defined by either expression (2a) 
or (2b), and that the production cost function, ( ( ))K q t is an increasing convex quadratic function in the 
production rate, ( )q t . The optimal production policy { *( ), * [0, ]}, [0, ]τ∈ ∈q t  q  Q  t  is given by: 

* ( )

( )
( ) [ ( ), ]C

D t

Y t
q t Min q t=                                                       (18) 

                  

where                                               

( ) ( )
*( ) ( ) ( ) ( )

*0 ( ) ( )

( )C

Q if Y t Y t

q t if Y t Y t Y t

if Y t Y t  

q t

⎧ ≥
⎪⎪= < <⎨
⎪

≤⎪⎩

  

  
with 

1

2

( )( ) ( ) ( (1 ))
( )( )

2

Vt Y t k
I tq t

k

π ξ∂ ⋅
− + −

∂=      (19) 

2 1
( )2 ( (1 ))
( )( )

( )

Vk Q k
I tY t

t

ξ

π

∂ ⋅
+ + −

∂=      (20) 

 

1/ 2
1 0 2

*

( )( (1 )) 2( )
( )( )

( )

Vk k k
I tY t

t

ξ

π

∂ ⋅
+ − +
∂=  (21) 

Proof: See Appendix A 
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Equation (19) has an economic interpretation in that the optimal production rate, given the bounds on 
the yield variable, reflects profits (revenues less the variable cost of production and inventory) adjusted 
by the marginal cost of production, namely 2k .  In a similar vein, the bounds on the yield variable also 

have an economic pitch.  That is, equations (20) and (21) essentially suggest that variable costs of 
production and inventory are discounted by the profit rates. Though subtle, this idea is seen in a simpler 
context in the next theorem.  Note too that for Theorem 1, the demand process provides an effective 
upper bound for production. Also, the raw materials inventory level directly affects the production 
decision through the term ( ) ( )/ tV I⋅∂ ∂ . Anecdotally, when the relative price of raw materials rises 
sharply, the firm may exercise its shutdown option and sell the input. The term ( ) ( )/ tV I⋅∂ ∂ also has a 
“shadow cost” implication.  In the current context, it can be interpreted as the raw material carrying cost 
rate barring the opportunity cost of capital which is implicitly integrated into the analysis through the 
shortfall term,ψ . However, this interpretation is limited to the finite resource case. In particular, as we 
have demonstrated below, when the supply of the input material is effectively infinite (i.e. 1ξ = ) the 
only relevant costs are the processing cost which is absorbed into ( ( ))K q t .  
Corollary 1:  
 
Assume that 1ξ = . In this case, the optimal production policy * *{ ( ), [0, ]}, [0, ]q t  q Q t τ∈ ∈  is given by: 

* ( )

( )
( ) [ ( ), ]C

D t

Y t
q t Min q t=                                                           (22) 

 

where                                         *

*

( ) ( )
( ) ( ) ( ) ( )

0 ( ) ( )
( )C

Q if Y t Y t
q t if Y t Y t Y t

if Y t Y t  
q t

⎧ ≥
⎪

= < <⎨
⎪ ≤⎩

    

 

with                                                      1

2

( )( )
2

Y t kq t
k

π −
=                                                                         (23) 

2 12( )
( )

k Q kY t
tπ
+

=                               (24) 

1/ 2
* 1 0 22( )( )

( )
k k kY t

tπ
+

=                                  (25) 

Proof: See Appendix A 
The above Corollary applies to production opportunities wherein the supply of levels cannot be fully 
depleted during the project’s life due to typically limited production capacities.  Specifically, the whole 
of the available raw material cannot be used up during the production horizon. We note the following 
comment: It would be desirable to smooth the production process over time, since changes are costly.  
Such changes to the model make it impossible to find a closed form solution and are not pursed further 
at the theoretical level.  However, we will incorporate this feature in the numerical example in section 
IV.  The net effect of smoothing is to make policy changes gradually, rather than the sudden switches 
implied by the theoretical results. 
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Theorem 2:   
 
Let 2 0k = and (0) (1 )I Qτ ξ> − ,with 0 1ξ≤ < .The optimal production policy { *( ), * [0, ]}, [0, ]q t  q  Q  t τ∈ ∈  
is given by: 

* ( )

( )
( ) [ ( ), ]C

D t

Y t
q t Min q t=                                                            (26) 

where                                        
*

*

( ) ( )
( )

0 ( ) ( )C

Q if Y t Y t
q t

if Y t Y t  

⎧ ≥⎪= ⎨
<⎪⎩

    

with the critical yield factor, 

                                                             
1

*

( ) (1 )
( )

( )

V k
I tY

t

ξ

π

∂ ⋅
− +

∂=                            (27) 

Proof: See Appendix A 
 
Equations (26) and (27) characterize a “bang-bang” production policy in that we produce at the 
maximum feasible rate of production, Q only if the yield factor exceeds the “profit adjusted” variable 
cost of raw material inventory and production.  To offer additional insight, recall that low realizations of 
the yield factor reduce profits relative to higher yield realizations.  In effect, only when yield adjusted 
revenues exceed the variable cost of inventory and production, as shown by the numerator of equation 
(27), it becomes profitable enough to produce at the maximum rate; otherwise, a no-production mode is 
optimal.  In the current context, the level of the raw material inventory is considered finite and 
therefore, the variable inventory cost or more appropriately “shadow cost”, ( ) ( )/ tV I⋅∂ ∂ has a direct 
bearing on the optimal production policy.  As ( )I t defines the level of a renewable resource, its shadow 
price in this context is interpreted as the holding (carrying) cost rate of the raw materials’ inventory, 
excluding the opportunity cost of capital.  The opportunity cost of capital, as remarked earlier, has been 
indirectly incorporated into the analysis when considering the return shortfall rate, W Dψ α α= − , 

or W Dψ α α= − depending on which process is used to represent the demand uncertainty. 

 
Corollary 2: 
 
 Assume that 1ξ = . Then, the optimal production policy { *( ), * [0, ]}, [0, ] q t  q  Q  t τ∈ ∈ is given by: 

* ( )

( )
( ) ( ),[ ]= C

D t

Y t
q t Min q t                                                            (28) 

where                                           
*

*

( ) ( )
( )

0 ( ) ( ) C

Q if Y t Y t
q t

if Y t Y t
⎧⎪
⎨
⎪⎩

≥
=

<
     

with the critical yield factor,                 * 1( )
( )π

=
kY t

t
                                         (29) 

Proof: Follows the proof of Corollary 1 and Theorem 2. 
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Theorem 3:  
 
Let the demand process be defined by either stochastic process (2a) or (2b). Also, let 

[ ]* ( , , , : )qMax V D Y I t qν = , ( ) (0, )q t Q∈ . *ν is unique. 

  
Proof:  See Appendix B 

 
 
Theorem 4: 
 
Consider two yield processes ( ), 0, , }{ jY t t  j L U≥ = such that ( ) ( )U LY t Y t≥  for all [0, ]t τ∈ .  Then for any 

demand process and for all [0, ]t τ∈ , ( , , , : ) ( , , , : )U LV D Y I t q V D Y I t q≥ . 
 

Proof:  See Appendix C 
 
The above theorem has a unique interpretation.  In the current context, it can be specialized to reflect an 
“idealized project” where ( ) 1.0Y t = , or ( ) 1.0Y t < as we have assumed throughout the paper.  The 
difference in value between the idealized project, 1.0( , , , : )V D Y I t q= and the actual project as we have 
considered in this paper, 1.0( , , , : )V D Y I t q< represents the maximum dollar amount that the producer 
should be willing to pay in order to alleviate its quantity risk, as defined herein.  This may be interpreted 
as the total cost, in present value terms, of a finished goods inventory option. The inventory option 
would have the objective of meeting as much of demand as possible in light of spot shortages due to 
yield uncertainty. Alternatively, it can also be interpreted as the net worth, in present value terms, of a 
sequence of forward contracts for the delivery of the spot shortages resulting from the yield variability 
problem, in satisfying as much of the demand as possible. 
 
The approach taken in this paper may be viewed as complementary to that taken in Boone, Ganeshan, 
Guo and Ord (2000).  Those authors develop guidelines to determine suitable run times in the presence 
of imperfect production processes.  Thus, the Boone et al. results are applicable when set-up costs are 
considerable.  In the present research, we also recognize that production processes are imperfect, but 
operate in continuous time, making the decision at each point in time whether to continue production.  
In the manufacturing context, when the decision is to cease production, the opportunity exists to 
“retool”.  That is, the production facility may be repaired or restored to a better level of operation, and 
production restarted under the guidelines provided by our solutions. 
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( IV ) Numerical Results 
 
 For our model, the most appropriate numerical techniques are finite difference methods and lattice 
techniques.14 The former methodology obtains numerical solutions through approximating the partial 
differential equation, which in our paper is the Bellman valuation equation. The lattice techniques 
provide results by approximating the stochastic evolution of the underlying sources of uncertainty.  
Given that there are two stochastic sources of variability, we decided to adopt a multinomial lattice 
approach. To that end, note that the stochastic process used here for defining the demand variable is 
given by expression (2a) which implies that conditional distribution of demand is lognormal.  The yield 
process implies a doubly truncated normal distribution for the yield factor. To employ the intended 
multinomial lattice approach appropriately, a simple log-transformation is needed and thereafter the 
multinomial lattice can be constructed easily. The relationship between these two processes is well 
established in Karlin and Taylor (1981). With two state variables, two types of multinomial lattices may 
be used. Here, we use the 4-jump model of Boyle, Evnine and Gibbs (1989).  An alternative approach is 
the 5-jump lattice model of Kamrad and Ritchken (1991). In general, a 5-jump lattice provides more 
accurate results.  However, for our purposes a 4-jump lattice is sufficiently accurate for the analysis 
considered. As stated earlier, a backward recursion is used to dynamically superimpose our production 
control problem on a 4-jumps lattice.15 We control for the upper and lower bound values on the yield 
process by establishing appropriate barriers at zero and one.  
 
 Our example considers demand, inventory and yield processes as specified in section II.   We assume 
that price is constant and that the input is non-renewable. Table (2) below depicts the case parameters 
and functional forms. We should like to make the following observation with regard to this example.  It 
will be observed that some of the constraints differ slightly between the theoretical model and the 
numerical example.  We believe the constraints in the numerical example to be more realistic, and thus 
we preferred to perform the numerical analysis within this framework.  However, the theoretical results 
in such circumstances would not yield closed-form solutions, so that the insights gained from the theory 
would be obscured.  First, since our model does not allow for a finished goods inventory, we impose a 
(quadratic) penalty cost to regulate overages or underages. This penalty could be viewed as the cost of 
lost sales, or as the cost of buying in inventory from elsewhere to meet the extra demand.  Likewise, if 
we overproduce the excess must be salvaged.  This penalty function is employed instead of using 
demand as an upper limit. Second, since changes in the production level are costly, we introduce a 
switching cost to smooth the production plan. The penalty function also helps to smooth out production 
operations.  
 
 
 

                                                 
14 Smith and McCardle (1998) integrate stochastic dynamic programming and option theory, while Tsitsiklis and Van 
Roy (1999) demonstrate the link between Markov decision processes and options.   
15  Due to space limitation, lattice details are omitted. However, they are available upon request from the first author. 
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Table (2): Base Case Parameters and Function Coefficients 
 

Production Cost K(q) k0 = 100.00; k1 = 15.00; k2 = 5.00 

Price π  π  = $300.00 per unit 

Initial Inventory I I0 = 20 units 

Initial Demand D0 D0 = 10 units 

Initial Yield Y0 Y0 = 0.70 per annum 

Demand Volatility σD σD = 0.30 per annum 

Yield Volatility σY σY = 0.2 per annum 

Interest Rate r r = 0.08 per annum 

Average Output Yield μ μ = 0.10 per annum 

Adjustments to drift shortfall ψ ψ = 0.03 per annum 

Production Capacity Q Q = 5 units per period 

Renewable Resource constant ξ  0ξ =  

Switching Cost Function: 2
11( )i iq q −−   

Penalty Cost Function:       
25( )i i iYH D q= −  

Shutdown Cost Function: ( , ) 0iP I t = , for 0,1, 2, ...,i n=  

Salvage Cost Function: ( , ) 0.50n n n nC I I Yτ π=  given the state at time tn 

     
The impact of increasing in the average yield on project value is depicted by Figure-1, showing the 
expected steady growth. The effect of increasing production capacity on the value function is shown 
in Figure-2 which demonstrates precisely the anticipated results. Namely, that the capacity constraint 
is relaxed (non-binding) beyond a certain point.   
 

[Figure-1]    and    [Figure-2] 

 

Of particular interest is the case where increased volatility in the yield process produces a 
corresponding increase in the value function. As Yσ increases, so will the upside potential while the 

downside risks are truncated through a “no-production” or shutdown option. Thus, on an average 
basis the project’s value improves as the yield volatility increases, as shown in Figure-3. However, 
when the volatility of the demand is increased, the project’s value diminishes, as seen in Figure-4. 
This too is logical in light of the situation at hand. As Dσ increases, it becomes harder to satisfy 
demand due to limited production capacity and the non-existence of finished goods inventory. 
Beyond this capacity, any discrepancy between demand realization and production levels are also 
penalized as constrained in Table (2). 
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[Figure-3]    and    [Figure-4] 

In Figure-5, the effect of ψ on the value function is shown. As ψ increases, the implied average 
growth rate of the demand process drops. All things being equal, and in light of our capacity 
constraint, it becomes that much easier to meet demand. This reduction in the total operating costs is 
manifested by a corresponding increase in the project’s value. 
 
 

[Figure-5]   and   [Figure-6]   and   [Figure-7] 
 
 

Finally, given our choice of parameters, we consider the project’s sensitivity toward the initial yield 
setting.  As expected, the project’s value is an increasing non-linear function of the yield factor and in 
that sense these findings echo the results in Figure 1.  This has been illustrated in Figure 6.  Of 
interest, however, is the project’s value if yield uncertainty had not been an operational problem. 
That is, the “idealized project”. In particular, we make a reference to Theorem 4 and provide in 
Figure 7 a numerical illustration of the maximum dollar value that management should be willing to 
expend to curb its quantity risk. That is, the value of perfect yield conditional on a particular yield 
realization: be it in the form of investment in finished goods inventory or by purchasing a sequence 
of forward contracts with various maturities to cover spot shortages.   
 

    V.  Conclusions 
 

The contributions of this paper are as follows. First, it introduces a framework for analyzing 
production based projects characterized by both market (demand) and process (yield) uncertainty. 
The framework introduced can be easily modified to accommodate other sources of market and/or 
process uncertainty.  Second, the paper further extends the current literature’s findings to a broader 
class of production problems. In particular, we examine manufacturing or other non-extraction based 
production control problems where the inputs may reflect renewable, partially renewable or non-
renewable resources. Third, the class of production outputs considered herein reflects non-traded 
assets. Specifically, through employing an ICAPM approach, we have made some generalizations 
regarding the applicability of this model beyond that of commodities for which futures and other 
financial contracts trade directly. In that capacity, this paper also provides for future research 
opportunities in the operations arena using a CCA approach. Fourth, the base model developed draws 
from generalized stochastic processes (Brownian motion) to depict the sources of uncertainty 
considered and to obtain closed form results. Finally, and in light of quite robust numerical results, 
the model presented in this paper is sufficiently adaptable to allow for the inclusion of other sources 
of market or process uncertainty and the stochastic processes characterizing such uncertainty.  
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Appendix A 
 
Proof of Theorem 1: 
We have from equation (11), 
 

2 2
2 2 2

2 2

1 1( ) ( (1 )) ( )
2 2D Y

V V V V V VD r D q Y K q rV
D Y t D Y I

ψ μ σ σ π ξ∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − − − =

∂ ∂ ∂ ∂ ∂ ∂
                              (A1) 

From the above equation (A1) the necessary and sufficient conditions imply that for maximization purposes, 

1 2
(.)( ) 2 (1 ) 0
( )

VY t k k q
I t

π ξ∂
− − − − =

∂
                                (A2) 

Solving for q we obtain, 

1

2

( )( ) ( (1 ))
( )( )

2

VY t k
I tq t

k

π ξ∂ ⋅
− + −

∂
=                                                                            (A3) 

At ( )q t Q= , (A2) becomes, 

2 1
(.)2 ( ) (1 )
( )

Vk Q Y t k
I t

π ξ∂
= − − −

∂
                                                                   (A4) 

implying that the minimum yield level to induce production at capacity is, 

2 1
( )2 ( (1 )

( )

Vk Q k
IY t

ξ

π

∂ ⋅
+ + −

∂=                                                                             (A5) 

Solving (A1) with ( )q t results in 
1/ 2

1 0 2
*

( )( (1 )) 2( )
( )

Vk k k
IY t

ξ

π

∂ ⋅
+ − +

∂=                                                                  (A6) 

This completes the proof. 
 
Proof of Corollary 1: 
 
The proof follows from the above in a straightforward manner.  Specifically,  

00

( )( )   0
( )

Vq t dt Q I
I t

τ
τ ∂ ⋅

≤ < = ∞ ⇒ =
∂∫                                                          (A7) 

Substituting equation (A7) into equations (17)-(19) obtains the desired results.  
 
Proof of Theorem 2: 
 
From the Bellman equation (11), it follows that ( , , , : )V D Y I t q is maximized if q(t) is either zero or at 
maximum Q since by assumption the production cost function, ( ( ))K q t is linear. Specifically, * ( )q t Q= so long 
as: 

1
(.)( ) (1 )
( )

VY t k
I t

π ξ∂
≥ + −

∂
     (A8) 

which results in equation (25). However, if the marginal operating revenues are less than the corresponding 
operating costs then, * ( ) 0q t = . 
 
Appendix B 
 
Proof of Theorem 3: 
 
To prove *ν is unique, we will prove the concavity of the value function ( )V ⋅ in q .  Differentiating Bellman 
equation (11) successively with respect to ( )q t we obtain, 

( ) ( ) ( )( (1 ))V K q Vr Y
q q I

π ξ∂ ⋅ ∂ ∂ ⋅
= − + −

∂ ∂ ∂
    (B1) 

2 2

2 2

( ) ( )V K qr
q q

∂ ⋅ ∂
= −

∂ ∂
     (B2) 



 19

The second derivative is negative by definition of ( ( ))K q t . Consider (B1) where in perfect competition, 
( ) ( ) (1 )K q VY
q I

π ξ∂ ∂ ⋅
= + −

∂ ∂
 

and in the case of monopoly, 
( ) ( ) (1 )K q VY
q I

π ξ∂ ∂ ⋅
> + −

∂ ∂
 

Therefore, the RHS of (B1) is at least zero.  Therefore, it can have at most one real maximum, that is *ν . 
 
Appendix C 
 
Proof of Theorem 4: 
 
From Theorem 1, the optimal production policy at time t is, 

                       * ( )

( )
( ) [ ( ), ]C

D t

Y t
q t Min q t=                                                           (C1) 

which can be adapted for each choice of ( ), , .jY t j U L=  Since ( ) ( )U LY t Y t≥ , then the optimal production 
policies satisfy of three conditions: 
 

1. 
( ) ( )

( )
( ) ( ) C

U L

D t D t
q t

Y t Y t
< < , 

2. 
( ) ( )

( )
( ) ( )C

U L

D t D t
q t

Y t Y t
< < , 

3. 
( ) ( )

( )
( ) ( )C

U L

D t D t
q t

Y t Y t
< < . 

 
For case: 
 

1. Demand is fully satisfied for both processes, ( ), , .jY t j U L= . Also revenues are the same. However, 
since ( ) ( )U LY t Y t≥ , less is produced under process L and thus the value is increased. 

 
2. Process U meets all demand. Process L does not even though more are produced.  This increases the 

production cost and therefore the profit levels are lowered.  Thus, the value under process L is lower 
relative to process U. Hence, if ( ) ( )U LY t Y t> at any time t, value is increased. 

 
3. We produce the same amount regardless of the process (L or U).   However, production costs will be 

lower with regard to process U, and therefore a higher net value is at hand. 
 
It follows that if{ ( ) ( ), 0 }U LY t Y t  t τ≥ ∀ ≤ ≤ the project value must be higher for process U.  In particular, we 
know that { ( ) 1.0, 0 }Y t  t τ≤ ∀ ≤ ≤ so that ( ) 1.0Y t =  for all t represents an upper bound. 
 
The difference in value between the actual project and the idealized project (i.e. ( ) 1.0Y t = ) represents the 
maximum dollar amount that the producer should be willing to pay in order to alleviate its yield uncertainty or 
quantity risk.  This may be interpreted as the cost of a finished goods inventory option to meet as much of the 
demand as possible in light of spot shortage or net cost of a sequence of forward contracts for the delivery of the 
spot shortages, all due to the yield variability problem. 
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Figure - 1
Effect of Average Yield on Project Value
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Figure - 2
Effect of Production Capacity on Project Value

0

100

200

300

400

500

600

3 4 5 6 7 8 9 10 11 12 13 14 15

Production Capacity, Q

Pr
oj

ec
t V

al
ue

, V
(0

) (
in

 d
ol

la
rs

)

 
 
 
 
 
 
 



 23

 

Figure - 3
Effect of Yield Volatility on Project Value
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Figure - 4
Effect of Demand Volatility on Project Value
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Figure - 5
Effect ofψ on Project Value
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Figure - 6
Effect of Initial Yield on Project Value
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Figure 7 
Value of Perfect Yield Conditional on Different Yield levels
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