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In this paper, we characterize the optimal contract for investment in trans-
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of stochastic preferences. The relevant decision variables are the timing of in-

vestment and the supply path (in the limit of the installed capacity). Both

variables depend on market dynamics. The need to balance the budget of the

investor in expectation (the second best environment) trades-o¤ the social ef-

�ciency against longer delay of investment and, in case the demand exhibits

variable price elasticity, higher consumer rationing. The best moment to in-

vest remains unchanged whenever the government expects to subsidize the

�rm if the market falls signi�cantly and cost recovery becomes impossible.

The supply path instead is downward distorted, as compared to the second

best, the distortion being proportional to the level of uncertainty.

Keywords: Stochastic demand; investment timing; public-private partner-

ship

J.E.L. classi�cation numbers: D6; D8; L5

�Université Lyon 2, Laboratoire d�Economie des Transports, 14 Av. Berthelot, F-69363, Lyon
(France); Tel: 33 (0)472726517; Fax: 33(0)472726448; E-mail: danieldanau@let.ish-lyon.cnrs.fr



1 Introduction

1.1 Scope of analysis

Essential facilities, such as infrastructures for long-distance transportation ser-

vices, involve signi�cant investment costs. Public transfers, ultimately �nanced by

taxpayers, can be avoided if the government awards exclusive franchising contracts

to private consortia that are willing to invest. Examples are concession contracts

for highways and the Eurotunnel project.

Most of the time, the conditions on the downstream market, from which in-

frastructure costs are to be recovered, are uncertain. In this sense, the bene�t of

involving private �rms can only materialize if the �nancial risk of the project is

transferred from the public budget to the private sector. However, �rms tend to

renegotiate the contracts in case bad market conditions realize after the investment

process. This has been the case for many concession contracts in Latin America (see,

for instance, Nombela and Rus, 2003, Guasch et Al., 2003, Engels et Al., 1997). The

transfer of the �nancial risk to the �rm is thus limited. Guasch et Al. (2003) argue

that the reliance on ex post ine¢ cient public transfers reduces if the initial contract

internalizes the risk of renegotiation. Engels et Al. (1997) argue that renegotiation

is avoided if the �rm is perfectly insured and suggest signing �exible term contracts

that allow the �rms to obtain a certain amount of market returns.

In the studies previously mentioned, uncertainty is introduced in a two-period

setup. For the purpose of characterizing the optimal monopoly franchising contracts,

it is opportune to generalize and extend the presence of uncertainty to a longer time

horizon, which better stylizes the uncertain dynamics the demand follows in real-

world situations. Indeed, even though the conditions on the transportation market

itself may remain unchanged over time, it is possible that exogenous shocks, which

are dynamic and uncertain, a¤ect consumer tastes and so the demand for the service.

For instance, such shocks are changes in GDP across periods.

An additional decisional dimension proves to be relevant in infrastructure projects,

when such a generalization is performed, namely the timing of investment. Indeed,

the achievable social e¢ ciency is the one which emerges from the trade-o¤ between

the loss which is incurred by delaying investment in any given decisional period and

the bene�t associated to having more optimistic forecast in the future, when the

risk of market decline becomes lower. Moreover, for a given project, the �nancial

risk exceeds the social one. Hence, if the budget balance must be satis�ed, there

exists a trade-o¤between social e¢ ciency and �nancial viability of the project, while

deciding when to invest.

While the real options literature has largely investigated the optimal timing for

investment in di¤erent market structures (see Dixit and Pindyck, 1994 Part IV,



Grenadier, 2002) the aforementioned trade-o¤ has not been yet examined, despite

the importance it acquires in the current political tendency to involve private �rms

in projects for essential facilities through public-private partnerships. The present

paper examines this issue as for a market of transportation infrastructure in two

contexts, namely no risk insurance and full risk insurance of investors, which avoids

renegotiation.

In what follows we describe the methodology and the relevant decision variables

in the environment just outlined.

1.2 Methodology and main insight: investment timing and

endogenous congestion

Consider the recent project for building a railway to link France and Italy be-

tween Lyon and Turin. The forecasts of the demand for the perspective service are

based on the current tra¢ c in the trans-alpin area, which leads to pessimistic re-

sults. This is why it has been decided that the investment is to be postponed until

the demand for other transportation modes induces more optimistic forecasts. The

current demand might increase, for instance, if GDP increases during the following

years. Investment timing is thus relevant because forecasted demand is dynamic.

The scale of operation is another decision to be made at the project evaluation

stage, as it is strictly linked to that of timing. In order to understand this link we

�rst notice that the capacity to be installed is not continuous in demand changes.

The decision maker cannot really choose the number of kilometers to be built for

covering the distance between any two regions. Divisible capacity units can be built

for satisfying local demand, not the long distance demand, such as the inter-regional

one in the trans-alpin area between France and Italy. Moreover, even if capacity is

divisible, the dynamics of consumer tastes for the service translate into consumers

exhibiting over time di¤erent sensitivity for the same congestion level, associated

to any given capacity. From this perspective, the congestion level of the capacity

becomes endogenous to the problem of choosing the best moment to invest.

Keeping in mind these circumstances, we assume that the project required one

capacity unit to be installed by means of a one-shot investment, the size of which is

not a choice variable. The relevant decisions are the timing of investment in this unit

and the congestion level (operation scale) at which it is optimal to operate. We �nd

that, as the two decisions are bundled, they both depend on the level of uncertainty.

We subsequently study the contractual form, provided that the �nancial risk cannot

be transferred from the public budget.
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1.3 Outline

The paper is organized as follows. In Section 2 the model and the optimal

bundling of investment timing and operation scale as depending on the level of

uncertainty are presented. In Section 3, we move to the second-best symmetric

information environment, where the private investor�s budget balance is secured by

relying on public subventions and market returns. In Section 4, we characterize the

trade-o¤ that arises between social e¢ ciency and �nancial viability when the �rm

must be insured her reservation utility. Section 5 concludes.

1.4 Related literature

This paper combines works about �exible period of investment (as based on the

standard real options approach) and monopoly franchising contracts.

Methodologically speaking, our paper is mainly related to Sodal (2001). The

latter shows that, when a one-shot investment is to be made, a double option is

available to the investor, namely the time when to invest and the scale at which to

operate on the supply market. Our work di¤ers from Sodal (2001)�s because, instead

of choosing capacity, the decision-maker selects the level of congestion at which (the

exogenous) capacity is to be operated.

Furthermore, this study di¤ers from similar works about monopoly franchising

contracts in that the uncertainty about the demand is dynamic. As compared to

those works, the framework is here enriched in two ways. Firstly, we take the timing

of investment to be a choice variable in contracting for investment and operation of

the essential facilities. Secondly, we make congestion endogenous to the problem of

investment timing.

2 The model

We consider a project which requires that the investor bears a signi�cant sunk

cost I for building an essential infrastructure. The social planner o¤ers the �rm a

contract for investing in a long distance transport infrastructure. The �rm subse-

quently recovers her cost from market revenues. For the sake of simplicity, both the

social planner and the operator are assumed to be risk neutral. The crucial decisions

to be made are the timing of investment, depending on the stochastic demand shifts,

and the scale of service operation.

2.1 Market demand and value of the project

We assume that, in the market under scrutiny, the demand for transportation

service changes unpredictably as random shocks occur. Time is continuous and
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indexed by t 2 [0;1). The inverse demand at any time t � 0 is given by

pt = p (Dt) yt: (1)

As (1) shows, pt is composed of two parts. The �rst, p (Dt), is a mapping

Dt : R+ ! R+ describing the non-stochastic component of the inverse demand
function. The second, yt, shifts the aggregate willingness to pay between any two

periods and for any quantity of the good, according to a random shocks a¤ecting

the industry.

Let us explain �rst the deterministic demand. As usual in real options theory,

p (Dt) follows from the market conditions. For instance, Grenadier (2002), assumes

that �rms act on a competitive market and characterizes the Nash equilibrium in

investment decisions. Boyer et Al. (2005) describe p (Dt) as characterized by com-

petition in a Cournot duopoly. As we refer to an "infrastructure" activity we assume

that the investor is the only �rm that operates the service and bene�ts from the

demand �ow throughout the duration of the contract. Indeed, �rms in the trans-

portation industry obtain monopoly franchising contracts and so competition is not

feasible before the �rm recovers the investment cost. We denote by Qt the amount

of service supplied at any t. Because Qt = Dt; the deterministic part of inverse

demand can be written as p (Qt) : The literature generally assumes that the demand

function exhibits constant price elasticity. In contrast, in this study, we allow for

a variable elasticity. We will show that, as far as the capacity size is exogenous

to investor, relaxing the assumption of constant elasticity signi�cantly a¤ects the

optimal decisions.

Uncertainty is represented by a complete probability space (
;z; P ). The shock
yt follows a geometric Brownian motion with drift � > 0 and volatility � � 0, so

that

dyt = �ytdt+ �ytdzt: (2)

y0 is the value it takes at the current date t0 = 0; while zt is a simple Brownian

motion de�ned on (
;z; P ). The �ow of information on which decisions are based
is expressed by the �ltration (zt)t�0 = (� fytjv � tg)t�0 generated by (yt)t�0.
In what follows, we make two assumptions, which are important in the subse-

quent analysis. Neither of them is particularly strong, rather they are similar to

hypotheses usually adopted by the literature.

� Assumption 1 : p (Qt) is strictly decreasing, continuously di¤erentiable and
integrable on R+ and independent of the current shock yt. Moreover, the
mapping Qt ! Qtp (Qt) is strictly concave and p (0) satis�es the inequalities

0 < p (0) <1.

� Assumption 2 : We denote by r, such that 0 < r < 1 the discount rate of any
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riskless asset in the economy. The drift �, which we introduced in (2), and r

satisfy the inequality � < r; which means that the unit shift of the demand is

lower than the unit discount rate.

Assumption 1 ensures that, excluding operational costs, an optimal scale of op-

eration from both a social and a �nancial perspective exists. Moreover, Qt at any

given value yt, is unique and �nite. Assumption 2 states the convergence condition,

which is standard in the real options literature and guarantees that the optimal

waiting period is also �nite.

2.2 Firm�s technology

As previously illustrated, the project requires an irreversible �xed cost I; once

the latter is borne, a total capacity Q is made available for operation. In our

framework, capacity means the maximum tra¢ c that the infrastructure to be built

can technologically support during a speci�c period. We assume that the agent that

makes the investment recovers it from market revenues. This agent either provides

the service himself or he subcontracts the service. In any case, the service is provided

in quantityQt � Q, which imposes on the investor instantaneous costs c (Qt) = cQt1.
Consumers bene�t from the new service immediately after the lump-sum investment

is made.

2.3 Investment timing and options to scale at social opti-

mum

The decision maker chooses the optimal threshold y that de�nes the stochastic

period at which the investment should be realized. She also selects the optimal scale

Qt at which the �rm should operate the service. In what follows, we analyze the

choice of timing and scale at social optimum. At a later stage, we shall explore the

more realistic cases where budget balance must be satis�ed in expectation, while

the �rm bears the risk of market decline. Subsequently, we will treat the decisional

process when the �rm must be insured her reservation utility with public funds.

Assuming that the period of operation is in�nite, the net social value of the

project is given by the expectation of the discounted �ow of net surplus. Evaluated

at period � , de�ned as � � inf ft � 0 s:t: yt = yg, the net value of the project is
written

Ey
�Z 1

�

S (yt; Qt) e
�r(t��)dt�

Z 1

0

C (I;Qt) e
�r(t��)dt

�
; (3)

1Strictly speaking, an operational cost function as in the text exhibits constant returns to
scale. However, the proposed formulation is adopted because it accomodates well for the presence
of capacity constraints. More precisely, the marginal cost of production is assumed to be constant
for Q � Q and to become in�nite at Q. Hence, up to capacity, one has constant returns in
operation, but overall increasing returns to scale due to the presence of I (see Tirole, 1988).
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where C (I;Qt) = c (Qt) + rI is the instantaneous cost of operation plus the rate of

investment cost.

Whenever the installed capacity is not fully used for operation, the optimal

supply that derives from (3) is characterized by

S (yt; Qt) = C (I;Qt)
"CQt
"SQt

; (4)

"SQt � SQtQt=S and "CQt � CQtQt=C are the elasticities of instantaneous �ows
of surplus and cost with respect to Qt at any time t. (4) says that the ratio of

surplus over cost in instantaneous and absolute values must equal at social optimal

supply the inverse ratio of their elasticities. This expression is similar to the one of

Sodal (2001). The di¤erence is that Qt here means the level of supply, rather than

the level of capacity, as in his analysis.

We next add two more assumptions to be relied upon in the subsequent discus-

sion. We �rst de�ne R (yt; Qt) � Qtp (Qt) yt the instantaneous revenues from the

service provision at any t. Moreover, we denote the elasticity of revenues to quantity

by "RQt, so that "RQt � RQtQt=R. We are then ready to state:

� Assumption 3 : @

@Qt

�
S

C

�
< 0 at any Q � 0: This condition holds if and only

if "CQt > "SQt :

� Assumption 4: @

@Qt

�
S

R

�
� 0. Equivalently, "SQt � "RQt.

Assumption 3 is quite a standard one. It establishes the condition under which

(4) has economic sense. Together with Assumption 3, Assumption 4 ensures that

"CQt="SQt is an increasing function of Qt. Notice that Assumption 4 is not restric-

tive. For instance, it is satis�ed with equality if the demand exhibits constant price

elasticity and it is strictly satis�ed by a linear demand function.

We denote Q (yt) the quantity that solves (4). Full capacity is reached whenever

the hitting value y is realized, as derived from the equality Q (y) = Q. The corre-

sponding price of the service, in the region yt > y; is given by p
�
Q
�
yt and is such

that p
�
Q
�
yt > c. In presence of a capacity constraint, the optimal supply at any

t > 0 is thus given by (
Q (yt) ; if yt < y

Q; if yt � y

We thus distinguish two di¤erent regions of values yt that de�ne the optimal

supply. They are graphically represented in Figure 1 below.
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0=ty yyt =

Dynamic supply at price c Constant supply at Q
Increasing values

( )tt yQQ = QQt =

Figure 1: The path of the supply at social optimum

The value of the project di¤ers between the two regions. For notational conve-

nience, we denote by � the stochastic period when the value y realizes for the �rst

time. Indeed, � is de�ned as � � inf ft � 0 s:t: yt = yg. The derivation of the social
value of the project is standard. Evaluated at � , such that � � � (or y < y), the

general form of the social value is written as (see the Appendix for computational

details)

V (y) = Ey
Z 1

�

(S (yt; Q (yt))� C (I;Q (yt))) e�r(t��)dt+ (5)

+
1� �2
�1 � �2

�
y

y

��1 �
S
�
y;Q

� 1

r � � � E
y

Z 1

�

S (yt; Q (yt)) e
�r(t��)dt

�
+

+
�2

�1 � �2

�
y

y

��1  C �I;Q�
r

� Ey
Z 1

�

C (I;Q (yt)) e
�r(t��)dt

!
:

The �rst line in the expression of V (y) represents the value the project would

have if, at every moment in time, marginal cost pricing (equation (4)) were to be

applied and the quantity Q (yt) was not capacity constrained. Furthermore, the

terms in the second and the third line express the change in discounted social value

induced by the restriction of dynamic operation to values Q (yt) � Q. These terms
are negative; �1 > 1 and �2 < 0 are the two roots of the quadratic equation

� (� � 1) �2
2
+ �� = r.

Let us now move to the decision about the timing of the investment for a project

of value V (y). In closed form, the discounted value of the project at y0, such that

y0 � y, is written�
y0
y

��1
Ey
Z 1

�

�
S (yt; Q (yt))� C (I;Q (yt)) e�r(t��)dt

�
+

�
y0
y

��1
	(S) : (6)

In (6) we have used the notation 	(S) ;

	(S) =
1� �2
�1 � �2

�
S
�
y;Q

� 1

r � � � E
y

Z 1

�

S (yt; Q (yt)) e
�r(t��)dt

�
+

+
�2

�1 � �2

 
C
�
I;Q

�
r

� Ey
Z 1

�

C (I;Q (yt)) e
�r(t��)

!
:

as this expression plays no role in the investment timing decision.
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Remember that Q (yt) is optimal in the social objective function (6). By the

envelope theorem, the �rst-order condition in (6) is written as

Ey
Z 1

0

S (yt; Q (yt)) e
�r(t��)dt =

�1
�1 � 1

Ey
Z 1

0

C (I;Q (yt)) e
�r(t��)dt (7)

Let us now relate the quantity decision to the timing of investment decision. At

this aim, we evaluate (4) at Q (yt) and then integrate, which yields

Ey
Z 1

�

S (yt; Q (yt)) e
�r(t��)dt = Ey

Z 1

�

C (I;Q (yt))
"CQt
"SQt

e�r(t��)dt (8)

Thus, if the activity is initiated at Q (y) < Q, (7) and (8) must both be satis�ed

so that the following equality is established

Ey
Z 1

�

C (I;Q (yt))
"CQt
"SQt

e�r(t��)dt = Ey
Z 1

�

C (I;Q (yt))
�1

�1 � 1
e�r(t��)dt: (9)

(7) and (9) are the conditions which characterize the optimal bundle of invest-

ment timing and supply path within the �rst region of Figure 1.

(7) is a standard condition and suggests that, if Qt is at Q (yt) at any t during

the operation interval, then the expected �ow of gross surplus exceeds the total cost

of investment and operation by an amount �1= (�1 � 1) > 1, direct proportional

with � and �, the shift and volatility parameters of dyt. There exists a trade-o¤

between the bene�t of investing immediately and the gain accrued from delaying

the investment to a moment when market conditions are more favorable. Therefore,

�1= (�1 � 1) "measures" the market dynamics that determine the aforementioned
trade-o¤.

Furthermore, (9) reveals that the ratio "CQt="SQt is increasing in �1= (�1 � 1).
From Assumptions 3 and 4 it follows that Q (yt) is also increasing in �1= (�1 � 1).
Indeed, whenever the investment is delayed because uncertainty is high, optimal

operation shifts to a higher trajectory. If the inequality
"CQ
"SQ

< �1
�1�1

holds, then the

operation starts at full capacity. Throughout the rest of our analysis, without loss

of generality, we assume that
"CQ
"SQ

> �1
�1�1

so that the operation starts optimally at

Q (y) < Q. Once the hitting value y and the quantities Q (yt), where yt � y are

determined, the stochastic period � when the capacity is expected to be entirely

used for the �rst time, is characterized as well.

The interesting aspect of the solution above is the following. It suggests that

it may be optimal to invest at a stage when the demand is not very large and the

available capacity is not entirely used in operation. Even though the installed ca-

pacity Q can be used for no purpose other than the provision of the transportation

service, the social bene�t of early investment, when some capacity remains idle (at

least for some periods) maybe high enough, when compared to the cost of invest-
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ment and operation, that any additional delay is wasteful. This result is not per

se surprising but it leads to an important insight for the transportation industry.

Two characteristics of this market are essential for the conclusion we have drawn:

�rstly, the investment in a new railway or highway is indivisible, whereas the traf-

�c (hence, the extent to which such capacity is utilized) may well �uctuate across

periods. Indivisibility makes the level of capacity congestion (at investment period)

to be endogenous to the problem of investment timing. On the other hand, optimal

congestion is dynamic and follows the evolution of consumers preferences during the

period of operation.

Provided that timing and scaling are bundled decisions, it becomes important

to understand how they are jointly set when the price of the transportation service

must be selected so that it satis�es the investor�s budget constraint. This issue is

examined below. We will show that, in the presence of a pro�t constraint, investment

associated with partial use of capacity is even more easily justi�ed. We �rst argue

and show analytically that the social planner relies on sources other than public

money for investment, because this strategy avoids costly public funds. We assume

that a private investor, who recovers the cost from market revenues, is available for

contracting. We then investigate the optimal timing-scale bundle that ensures the

investor�s participation. We �nally examine the situation when the �rm must be

insured her reservation utility against market decline during the contract interval; we

explore the associated implications that follow in terms of timing-scale combination.

3 Second-best: budget balance and no insurance

3.1 Subventions, market revenues and motivation for pri-

vate participation

It can be easily shown that the solution (y;Q (yt)) that solve (7) and (9) is

not �nancially viable. However, a public �rm must be insured budget balance ex

post investment while a private �rm would not participate if the expected payo¤

were negative. Moreover, if the social planner provides subventions, they come at a

marginal social cost �.

Suppose that the consumer surplus and the pro�t of the �rm are attributed the

same weight in social welfare. The programme is written as8<: Max
y;Qt

�
y0
y

�� �
Ey
R1
�
(S (yt; Qt)� C (I;Qt)) e�r(t��)dt� �x

�
s:t: Ey

R1
�
(R (yt; Qt)� C (I;Qt)) e�r(t��)dt+ x � 0

(10)

The objective function is that of the previous Section less the social cost of the

public transfer x. The constraint suggests that a combination of market revenues
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and direct subventions satisfy the budget balance of the �rm. We denote by � the

marginal cost of the pro�t constraint. The Lagrangian of (10) is written�
y0
y

�� �
Ey
Z 1

�

(S (yt; Qt)� C (I;Qt)) e�r(t��)dt+ (�� �)x+ (11)

�

�
Ey
Z 1

�

(R (yt; Qt)� C (I;Qt)) e�r(t��)dt+ x
��

In case � � � the marginal loss attached to the taxation system is higher than

the welfare loss from consumers�rationing, when the price is such that the budget

constraint is satis�ed. Otherwise, state aid should complete market returns. How-

ever, in both cases, outside investment recovered from market returns is optimal (at

least partially).

The planner can rely either on capital market or on a private �rm that is o¤ered

a monopoly franchising contract. We assume in our study that the second solution

is adopted. Subsequently, the constraint in (10) is satis�ed with equality at social

optimum, which means that the private investor bears all the risk of market decline

during the period of operation. In the next Section, we will relax this assumption and

show how the social decisions change when the �rm must be insured her reservation

utility in operation.

3.2 Solution

When the constraint (10) is satis�ed with equality, the function (11) to be max-

imized is rewritten as�
y0
y

��1 �
Ey
Z 1

�

(S (yt; Qt)� C (I;Qt)) e�r(t��)dt + (12)

�

�
Ey
Z 1

�

(R (yt; Qt)� C (I;Qt)) e�r(t��)dt
��

:

The optimal quantity Q (yt) at any t such that the capacity is not entirely used

solves the standard Ramsey-Boiteaux formula

S (yt; Qt) = C (I;Qt)
"CQt
"SQt

+
�

1 + �

�
S (yt; Qt)�

"SQt
"RQt

R (yt; Qt)

�
: (13)

Obviously, the need to satisfy the budget balance induces consumers rationing

with respect to the social optimum. Indeed, comparing (13) with (4), we notice that

by Assumption 3, Q (yt) is lower in (13) than the one at social optimum. However,

in order to evaluate the second best supply we need to �nd the values yt at which

the equation (13) is evaluated.

Similarly to the benchmark case in the previous Section, the discounted value of
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the project in closed form and optimal supply is written�
y0
y

��1
Ey
Z 1

�

�
S (yt; Q (yt)) + �R (yt; Q (yt))� (1 + �)C (I;Q (yt)) e�r(t��)dt

�
+

+

�
y0
y

��1
	(S + �R)

The functional form above is found by replacing the instantaneous �ow S (:) �
C (:) from social optimum of previous Section by S (:) + �R (:)� (1 + �)C (:).
By the envelope theorem, the optimality condition for the value of y that triggers

investment is

Ey
Z 1

�

S (yt; Q (yt)) e
�r(t��)dt =

�

� � 1E
y

Z 1

�

C (I;Q (yt)) e
�r(t��)dt+ (14)

�

1 + �
Ey
Z 1

�

(S (yt; Q (yt))�R (yt; Q (yt))) e�r(t��)dt

We rewrite (13) at optimal supply Q (yt) and integrate it, so that we obtain

Ey
Z 1

�

S (yt; Q (yt)) e
�r(t��)dt = Ey

Z 1

�

C (I;Q (yt))
"CQt
"SQt

e�r(t��)dt+ (15)

+
�

1 + �
Ey
Z 1

�

�
S (yt; Q (yt))�

"RQ
"SQ

R (yt; Q (yt))

�
e�r(t��)dt

(14) and (15) hold simultaneously when their right hand sides are equal so that

Ey
Z 1

�

C (I;Q (yt))
"CQt
"SQt

e�r(t��)dt = (16)

= Ey
Z 1

�

�
C (I;Q (yt))

�

� � 1 �
�

1 + �

�
1� "RQ

"SQ

�
R (yt; Q (yt)) e

�r(t��)dt

Like in benchmark case, (14) and (16) characterize the optimal bundle of invest-

ment timing and operation scale in the constrained problem. Equations (14) and

(15) show that Q (yt) and y must be such that the discounted gross surplus is higher

than the one at social optimum, due to the internalization of the cost of the con-

straint. Either downward distorting the supply or delaying the investment until the

market is higher than at social optimum allow the �rm�s budget constraint be sat-

is�ed. Furthermore, any supplementary delay induces higher trajectory of optimal

supply, as shown in the previous Section. Henceforth, the path of the output that

is bundled to the trigger decision derives from two countervailing e¤ects: downward

"Ramsey-Boitteaux" distortion versus upward scaling when the investment decision

is delayed.

Once the presence of the two e¤ects is understood, we can observe the resulting

second best supply path in (16). Remember that by Assumption 4, "RQ � "SQ.
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Consider �rst the case where the price elasticity along the demand curve is constant.

"RQ = "SQ in (16) and the path of the supply turns to be the social optimal one,

expressed in (9). Waiting for higher demand and scaling upwards the operation

perfectly compensates the Ramsey-Boitteaux distortion. This result is determined

by the fact that the price p (Qt) yt in (13) is constant at any Q (yt) < Q; whenever

the elasticity of the demand is constant. Thus, a unit change of yt causes a constant

change of p (Qt) at any t.

In contrast, the case where "RQ < "SQ corresponds to a decreasing price elas-

ticity of the demand along the demand curve. The optimal price that satis�es

the Ramsey-Boitteaux formula di¤ers at di¤erent realizations of yt. Consequently,

quantity reduction dominates the �ow of options to scale up the operation through

additional delay. Decreasing elasticity at higher output makes the quantity decision

a valuable instrument for solving the trade-o¤ between the social e¢ ciency and the

�nancial viability of the social project.

However, the fact that the market is dynamic reduces the cost of the constraint

in consumers utilities. Indeed, the distortion of any quantity in (13) is evidently

lower when the supply (or pricing) decision is bundled with the investment timing

decision in a dynamic market, as in (16).

3.3 Examples

Figures 2.1 and 2.2 illustrate the �ndings of the �rst and the second-best analyses,

for a linear demand function (LD) and a constant elasticity demand function (CED)

respectively.

In Figure 2.1., the inverse demand function is assumed to be p (Qt) = 30�0; 3Qt.
In Figure 2.2., the deterministic inverse demand is p (Qt) = 60Q

� 1
1;3

t . The exogenous

capacity is assumed to be Q = 96 and its installation costs I = 6000. The unit cost

of operation is c = 9. The other default parameter values are r = 0:05; � = 0:03,

� = 0:175 and y0 = 0:5.

We illustrate a speci�c path of yt and the corresponding quantities Q (yt). We

use both vertical axes to de�ne the relevant scales. Thus, the left hand vertical axis

in each �gure presents the scale of yt while the right hand one presents the scale of

quantities Q (yt). The trajectory of yt is the same in both graphs, allowing for the

values of Q (yt) to be easily compared between the two cases.

First, we notice that the path of Q (yt) of the CED function is below the one

of the LD function, but that the values Q (yt) in the former case increase faster.

Indeed, in the solution (9) of �rst-best analysis, "SQt is constant in the CED case

while it decreases with Qt in the LD case since the price elasticity of LD is decreasing

along the demand curve. As a consequence, the �rst-best operation starts in Figure

2.1. at higher values (Q (y) = 67 ) than in Figure 2.2. (Q (y) = 16). Subsequently,

12



the e¤ect of any upward change of yt in Q (yt), once the operation starts, is lower in

Figure 2.1. than in Figure 2.2. Moreover, the investment is made earlier in the LD

case (period 1-2) than in the CED case (period 4-5). Indeed, the bene�t of delaying

the investment reduces if the demand becomes more inelastic at higher supply, in

contrast to the case where it remains constant.

At second-best, the initial supply is downward distorted from the �rst-best so-

lution for LD (Q (y) = 58) while it is equal to the �rst-best solution for CED

(Q (y) = 16). The investment is delayed in both Figures from �rst-best: period 4-5

in Figure 2.1. and period 7-8 in Figure 2.2. Thus, the initial demand is rationed in

Figure 2.1., as suggested by the solution (16) for the case when the demand function

has decreasing elasticity along the demand curve. In contrast, for CED, (16) shows

that scaling up the operation while delaying investment perfectly compensates the

quantity rationing imposed by the constraint, as in Figure 2.2.

Figure 2.1 -The case of linear demand
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Figure 2.2 - The case of constant elasticity demand
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4 Risk insurance

All along the previous analysis, we have assumed that the decision variables are

optimally chosen in such a way that the investment cost is expected to be recovered

over the entire contract duration (in our case, the entire life of the asset). This is

the case when the risk can be transferred to the �rm, the latter�s budget constraint

being met only in expected terms.

In reality, if market conditions fall signi�cantly during the contract execution,

then governments tend to intervene and provide subsidies to the �rms so as to cover

their losses. Thus, governments revise the initial contracting terms in order to limit

the award of ex post ine¢ cient transfers. In what follows, we develop this point.

As at the second best, budget balance must be satis�ed in order to ensure �rm�s

participation. We have

x+ Ey
Z 1

�

(R (yt; Qt)� C (I;Qt)) e�r(t��)dt � 0: (17)

If the �rm is to be perfectly insured, then a supplementary constraint adds to

the social problem. Evaluated at the period � of investment, the new constraint

writes as �
y

yb

��
x0 + Eyb

Z 1

�b

(R (yv; Qv)� C (I;Qv)) e�r(v��)dv
�
� 0: (18)

This equation states that if the demand falls at some yb during the operation

period, where yb < y, an additional transfer x0 needs be o¤ered to the �rm, so that
the latter is able to cover the expected losses of Eyb (R (yv; Qv)� C (I;Qv)) < 0 at
any v � � b.
The stochastic period when the amount x0 of public funds should be transferred

to the �rm is de�ned as � b � inf ft � 0 s:t: yt = ybg. We �rst saturate (17) and (18)
and then replace into the social problem, so that we obtain the new social function�

y0
y

��1 �
Ey
Z 1

�

(S (yt; Qt)� C (I;Qt)) e�r(t��)dt+ (19)

�Ey
Z 1

�

(R (yt; Qt)� C (I;Qt)) e�r(t��)dt+

�

�
y

yb

��
Eyb

Z 1

�b

(R (yv; Qv)� C (I;Qv)) e�r(v��b)dv
��
:

The problem is to be solved by backward induction. Firstly, the social planner

�nds the optimal demand at which it is preferable to cover the �rm�s costs by means

of public subsidies, rather than through market revenues. Secondly, he identi�es the

optimal time-scale bundle.
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Public subsidies of expected value x0 should be provided when the demand is at

the value yb that satis�es the �rst order condition of (19), which is written as

Eyb
Z 1

�b

�
R (yv; Qv)�

�2
�2 � 1

C (I;Qv)

�
e�r(v��b)dv = 0: (20)

In some sense, the interpretation of the value yb that solves (20) is similar to

that of the "bankruptcy" trigger found by Leland (1994). The latter argues that a

manager who bears the risk of a project decides to declare bankruptcy whenever the

expected revenues are "marked down" by �2= (�2 � 1) < 1 from the cost incurred

by continuing the activity. Our solution shows that a public authority facing a risky

project takes a "similar" decision. She identi�es the optimal level of the demand

at which the transfer x0 should take place. Because the public transfer is costly,

it is optimal to rely on public funds just when the market revenues are a fraction

�2= (�2 � 1) of operation costs.
It is noteworthy that, since the value yb is endogenous to the social problem, so is

the risk of having to spend public money to cover operation losses. The government

trades-o¤ the e¢ ciency of time-scale bundle (the �rst-best one) against both ex

ante budget balance (the second-best constraint) and ex post budget balance (the

risk-insurance constraint).

Let us next evaluate the social function in (19) at the optimal value of yb. This

yields �
y0
y

��1 �
Ey
Z 1

�

(S (yt; Qt)� C (I;Qt)) e�r(t��)dt + (21)

�

�
Ey
Z 1

�

(R (yt; Qt)� C (I;Qt)) e�r(t��)dt
�
+

�Eyb
Z 1

�b

1

�2 � 1
C (I;Qv) e

�r(v��)dv

�
We can now �nd the optimal supply trajectory in the current context. Whenever

capacity is not entirely used, the �rst-order condition with respect of Qt is given by

St =

8<: Ct
"CQt
"SQt

+ �
1+�

�
St �

"SQt
"RQt

Rt

�
; if � � t < � b;

Ct
"CQt
"SQt

+ �
1+�

�
St �

"SQt
"RQt

Rt

�
� 1

�2�1
Ct

"CQt
"SQt

; if t � � b:
(22)

Looking at the �rst line of (22), we notice that, before the demand falls signi�-

cantly, the �rst-order condition with respect to Qt is the same as in the second-best

problem, namely (13). The �rst-order condition in the second line of (22), captures

the risk of public transfers which arises when the market falls.

The optimal path of the demand, evaluated at optimal investment timing, solves

the equation
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Z 1

0

Ct
"CQt
"SQt

e�r(t��)dt =

Z 1

0

�
Ct

�1
�1 � 1

� �

1 + �

�
1� "SQt

"RQt

�
Rt

�
e�r(t��)dt

� 1

1� �2

Z 1

�b

Ct
"CQt
"SQt

e�r(t��)dt (23)

We are now able to discuss how the optimal supply is determined in the pres-

ence of risk insurance. Let us compare the solution above with the one we found

in the second-best environment. The di¤erence resides in the additional term

� 1
1��2

R1
�b
Ct

"CQt
"SQt

e�r(t��)dt < 0 which appears in (23). The sign of this term, to-

gether with Assumption 3, which involves that, at each t during the operation in-

terval, "CQt="SQt is set lower than in the second-best case, reveals that the expected

trajectory of the supply is downward distorted as compared to the second best.

Equation (23) completely characterizes the optimal trade-o¤ in a project with

�exible investment timing and risk insurance. The �rst term in the right-hand side

suggests that the timing of investment is delayed and the quantity is increased when

uncertainty increases. Indeed, �1= (�1 � 1) is larger, the higher the uncertainty, so
that "CQt="SQt also increases and the quantity path moves upward. This was found

already in the �rst-best environment.

The second term, namely ��= (1 + �)
R1
0
(1� "SQt="RQt)Rte�rtdt; reveals that

the quantity results as the net e¤ect between rationing required under budget bal-

ance and upward scaling induced by investment delay. As the reader should recall,

this appeared already in the second-best scenario, where we also pointed that the

term previously mentioned behaves di¤erently according to the elasticity of the de-

mand function and that the investment delay is necessary to avoid ine¢ cient public

transfers.

Lastly, the third term in the right-hand side of (23), � 1
1��2

R1
�b
Ct

"CQt
"SQt

e�r(t��)dt,

is speci�c of the regime under scrutiny and shows that quantity rationing occurs also

when the operator is risk insured. This allows to reduce the risk that subventions

need to be awarded during the operation interval. In this sense, the timing-scale

bundle is such that social e¢ ciency is traded-o¤ against ex ante budget balance

and ex post budget balance (that is, risk insurance). A couple of observations

are worth making, before concluding. Firstly, the quantity distortion previously

mentioned is present whatever the demand elasticity. Secondly, as the volatility �2

of the exogenous demand path gets higher, �2 becomes less negative and quantity

rationing increases. The intuition behind this is that, the higher the uncertainty,

the more important the risk of providing public transfers during operation, which

negatively impacts social e¢ ciency.
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5 Conclusion

In this paper, we have considered an infrastructure project in the presence of

stochastic preferences for the associated service and characterized the optimal timing

of investment and scale of operation in the limit of the installed capacity. We have

found that if the capacity is given to the decision maker, the optimal congestion level

is endogenous to the problem of investment timing and varies during the operation

period according to the changes in the preferences of the infrastructure users.

In the second-best environment, the budget constraint of the investor must be

satis�ed. The investment needs be postponed with respect to the socially optimal

moment. Moreover, quantity is rationed in case the price elasticity of demand varies

in the quantity itself. The second-best time-quantity bundle adjusts more easily,

being the congestion level endogenous. In de�nitive, the level of congestion and the

investment time are those which solve the trade-o¤ between social e¢ ciency and

�nancial viability of the project.

Providing full insurance to the investor by transferring public funds further in-

creases consumer rationing, an e¤ect which is present indi¤erently of the demand

elasticity.

Our results suggest that the tra¢ c prevision that is at the basis of the evaluation

of transportation projects, should clearly di¤erentiate between the demand compo-

nent which depends on the characteristics of the service and the exogenous demand

component. The former is an instrument under the control of the decision maker,

whereas the latter results from exogenous shocks in the economy, hence it is not

manageable.

Our analysis also reveals the importance of the demand elasticity to price (whether

constant or variable). Many times in transportation studies, it is assumed that the

elasticity of the demand is constant. This hypothesis may prove inappropriate to

an accurate evaluation of such projects.

In the framework of this study, the issue of contract duration becomes inter-

esting. Observe that a �exible contract term, of the kind proposed by Engels et

Alii (1997), would be endogenously determined in our timing-scale allocation. Du-

ration would be in�nite in our second-best environment. On the other hand, it

would reduce proportionally in the level of uncertainty, should the operator be in-

sured against market fall. However, to clearly understand how the contract duration

should be endogenized in the timing-scale decision, we should explicitly model the

post-contract social bene�ts. This is left for further research.

In our work, operation frictionlessly adjusts to demand variations. Yet it is not

clear that, in reality, supply can immediately adapt to any exogenous change in

consumers preferences. In railways, for instance, adjustment costs weaken supply

adaptability to demand. In highways, by contrast, the tra¢ c �ow fully re�ects the
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dynamics of road user valuations and sensitivity to congestion across periods. This

suggests that the various modes would require speci�c approaches, as they exhibit

di¤erent degree of adjustment �exibility, due to their operational technologies.
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Appendix

Le us take a value F (yt) based on the stochastic process (2) ; any such value

satis�es the standard Ito�s lemma

�ytFytdt+
1

2
�2y2Fytyt � rF + A0 = 0; (24)

that has the general solution

F (yt) = A0 + A1y
�1
t + A2y

�2
t ; (25)

where �1 > 1 and �2 < 0 are known constants (see Dixit and Pindyck, 1994), while

A0, A1, A2 are constants of derivation, as determined by the boundary conditions

of (24).

The value of the project at any period � when the stochastic demand takes the

value y� = y is written in general form as

V (y) = Ey
Z 1

�

(S (yt; Qt)� C (I;Qt)) e�r(t��)dt+ A1y�1 + A2y�2 : (26)

The �rst term of the right hand side is the value of the project if the marginal

cost pricing is held constant. Equivalently, the optimal supply is always evaluated

at Q (yt). The other two terms express the fact that Q (yt) is restricted to the region�
0; Q

�
, and so the marginal cost pricing is restricted. The constant A1 is determined

at the intersection of the �rst and second region in Figure 1 in the main text. The

term A2y
�2 expresses the possibility of temporary suspension in the future, should

the demand be very low. We exclude this case from our analysis as it is not really

relevant for the transportation industry. Therefore we set A2 = 0.

At any y in the future such that y > y, the value of the project is written in

general form as

V (y) = Ey
Z 1

�

�
S
�
yt; Q

�
� C

�
I;Q

��
e�r(t��) +B1y

�1 +B2y
�2 : (27)

The �rst term of the right hand side is the discounted �ow of net surplus, in

expectation over y, from operation at full capacity all over the future. B1y�1 is the

expected change of social �ow if yt increases in the future. This term is economically

irrelevant so that we set B1 = 0. The term B2y�2 shows how the social �ow changes

when yt falls below y in the future and the social value becomes again that of (26).

For the subsequent analysis we need to express the relative values of the net
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�ows at Q (yt) and Q. By envelope theorem,

@

@y
Ey
Z 1

�

(s (Q (yt)) yt � c (I;Q (yt))) e�r(t��)dt

= Ey
Z 1

�

�
(s0 (Qt) yt � c)Q0 (yt) e�(r��)(t��) + s (Q (yt)) e�(r��)(t��)

�
dt

= Ey
Z 1

�

s (Q (yt)) e
�(r��)(t��)dt:

At Q, the relative value is written

@

@y
Ey
Z 1

0

�
s
�
Q
�
yt � c

�
I;Q

��
e�rtdt = s

�
Q
� 1

r � �:

The absolute and relative values of (26) and (27) are equal at y:

It follows that

Ey
Z 1

�

(s (Q (yt)) yt � C (I;Q (yt))) e�r(t��)dt+ A1y�1 =

= Ey
Z 1

�

�
S
�
yt; Q

�
� C

�
I;Q

��
e�r(t��)dt+B2y

�2

Ey
Z 1

�

s (Q (yt)) e
�(r��)(t��)dt+ �1A1y

�1�1 = s
�
Q
� 1

r � � + �2B2y
�2�1

From which it follows that

�2A1y
�1 = �2

�
s
�
Q
� y

r � � � E
y

Z 1

�

s (Q (yt)) yte
�r(t��)dt

�
�

��2
�
C (I;Q)

r
�
Z 1

�

C (I;Q (yt)) e
�r(t��)

�
+ �2B2y

�2

�1A1y
�1 = s

�
Q
� y

r � � � E
y

Z 1

�

s (Q (yt)) ye
�(r��)(t��)dt+ �2B2y

�2

Substracting the two equations above gives

A1y
�1 =

1� �2
�1 � �2

�
s
�
Q
� y

r � � � E
y

Z 1

�

s (Q (yt)) ye
�(r��)(t��)dt

�
+ (28)

+
�2

�1 � �2

�
C (I;Q)

r
� Ey

Z 1

�

C (I;Q (yt)) e
�r(t��)

�
:

We replace (28) in (26) so that we obtain the value of the project V (y) expressed

in (5) in the main text.
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