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1 Introduction

Patents and R&D can be regarded as real options (Schwartz, 2004). In pre-
vious option-based analyses of imperfect patent protection, the probability of
litigation typically appeared as an exogenous parameter (Dixit and Pindyck,
1994, p. 173). In reality, litigation is the result of value-maximizing behavior on
the part of potential challengers. Technically speaking, the model presented
endogenizes patent risk, which, as will become clear, is best treated as an
option to litigate.

Generally speaking, the aim of this dicussion is to illucidate the applicability
of option pricing in the wider context of uncertain property rights and flexible
managerial decisions surrounding them.

Beyond its methodological appeal, the issue is of enormous practical relevance.
For instance, Lemley (2001) points out a noticeable degradation of patent
examination quality at the USPTO in recent years. However, because the
vast majority of patents are of no appreciable business value, the incremental
cost associated with marginally improving patent examination would not be
justified by a substantial reduction in litigation costs.

In light of such serious deficiencies and heightened levels of competition,
patenting has come to resemble the purchase of a lottery ticket, admittedly
complicated by interdependencies between individual patents. Lemley and
Shapiro conclude: 1

“Under patent law, a patent is no guarantee of exclusion but more precisely
a legal right to try to exclude. . . . [M]ost patents represent highly uncertain
or probabilistic property rights. By this we mean that patents are a mixture
of a property right and a lottery.” (2004, p. 2)

As discussed in detail by Lanjouw and Schankerman (2001), the cost of engag-
ing in litigation over intellectual property (IP) assets diminishes their value
as an incentive to invest in research.

Translating the vague notion of a lottery into a consistent valuation approach,
the author will demonstrate how patents can be described as a mixture of a
property right and a short option to litigate. The option-based view (OBV) of
imperfect patent protection proposed may serve as a starting point for further
investigations into the impact of patent risk on firm values and innovation
incentives.

The analysis of patent risk as an endogenous parameter in option-based mod-

1 The paper was published in final form as Lemley and Shapiro (2005).
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els of IP is still in its infancy. To the author’s best knowledge, the only detailed
discussion of the option value of litigation is due to Marco (2005). His paper,
however, has a strong empirical focus. Furthermore, the approach to formaliz-
ing patent risk differs from the one adopted here. Aoki and Hu (2003) discuss
time factors of patent litigation and licensing in a deterministic setting, also
examining the role of settlement.

Roughly speaking, the discussion is structured as follows. The intuition behind
the formal model and some basic definitions are provided in subsection 2.1,
before subsection 2.2 lays out the details. Section 3 hints at a number of vari-
ations and extensions of the original setup. Section 4 concludes and contains
suggestions for future research.

2 The model

Over the years, the literature on investment under uncertainty has seen a
variety of generic (real) options, covering investment as well as disinvestment
decisions. Since litigation, in a way, represents an investment with uncertain
outcome, it seems natural to examine more closely the option value of litigation
and its impact on capital budgeting decisions.

2.1 Formalization

The incumbent innovator owns a patent expiring at time T allowing him or her
to commercialize some pharmaceutical product. Commercialization is associ-
ated with some expected revenue, which fluctuates randomly. This randomness
is captured by specifying the revenue rate as a stochastic process.

While a variety of specifications are possible, a common choice is to let such
variables evolve in analogy to the standard stock price model (Samuelson,
1965; Schwartz, 2004). Abstracting from operating costs, the dynamics of the
associated profit rate or net cash flow Πt under the martingale measure P

∗

are then described by

dΠt = α∗Πt dt + σΠt dWt, 0 < Π0 = ̟, (1)

or, in integral notation,

Πt = Π0 +
∫ t

0
α∗Πs ds +

∫ t

0
σΠs dWs, (2)

where α∗ = r − δ = r − (µ − α) is the risk-adjusted drift, µ the risk-adjusted
rate of return, σ the corresponding volatility, that is standard deviation of
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returns, and W = {Wt}t≥0 is one-dimensional Brownian motion. According to
the risk-neutral pricing approach, (1) and (2) describe the profit rate process
in an equivalent risk-neutral world, making it possible to discount cash flows
at the risk-free rate (Harrison and Kreps, 1979; Harrison and Pliska, 1981).

Without further emphasis, risk-neutral pricing is adopted for the rest of this
analysis. While, in practice, incomplete markets may pose serious valuation
issues (Hubalek and Schachermayer, 2001), similar shortcomings are shared by
all capital budgeting techniques. Whoever accepts the validity of the CAPM is
also likely to accept the existence and uniqueness of the risk-neutral measure
P

∗.

Another assumption worth pointing out is the non-negativity of net cash flows
resulting from (1). It seems restrictive at first, but is sensible in many practical
applications, including, in particular, pharmaceutical patents. Commercializa-
tion itself is almost always value-enhancing, because the lion’s share of costs
is incurred during R&D.

Due to the limited life of patents, however, cash flows will not continue indefi-
nitely. The profit rate usually drops sharply upon expiration of the patent. In
this model, the patent is taken to have a terminal value of MΠT , where M is
some multiple. The fiercer competition by imitators, or generics manufactur-
ers, the lower M .

Let EP∗ [·] denote the expectation operator under the risk-neutral measure. In
the absence of additional costs, the value of the project to the incumbent at
time t, conditional on the information available to him or her at that time, is
then given by

VI(Πt, t) = EP∗

[∫ T

t
Πt e−r(s−t) ds + MΠT e−r(T−t)

∣∣∣∣∣Ft

]
. (3)

Note that, throughout this paper and in line with the notation employed by
Dixit and Pindyck (1994), V is used to refer to the project, whereas F signifies
the option.

Following arguments now standard in the literature, the commercialization
value must satisfy the partial differential equation (PDE)

1
2
σ2Π2

t

∂2VI(Πt, t)

∂Π2
t

+ (r − δ) Πt
∂VI(Πt, t)

∂Πt

− rVI(Πt, t) + Πt +
∂VI(Πt, t)

∂t
= 0 (4)

with boundary condition

VI(ΠT , T ) = MΠT . (5)
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Ruling out speculative bubbles and assuming perfect patent protection, the
complete solution to this problem can be derived as

VI(Πt, t) =
(
1 − e−δ(T−t)

)
Πt/δ + e−δ(T−t) MΠt. (6)

As argued by Schwartz (2004), the associated process exhibits, in terms of risk
premium and volatility, characteristics identical to those of the underlying cash
flow process. It is thus possible to estimate a risk-premium η = α−α∗ as well
as σ from data on the drift and volatility of comparable completed projects. 2

One has also pointed out that the project value is linear in Πt and indepen-
dent of volatility. However, this conclusion hinges on the absence of flexibility
once the incumbent has committed to commercialization. This not only means
taking an unrealistic now-or-never view of decision-making on the side of the
incumbent. It also neglects the effect of competitive action which is similarly
contingent on how the revenue rate develops over time.

In the context of patent risk, which is the main focus of this analysis, it
is important to note the profound impact a potential challenger has on the
incumbent’s optimal investment policy, as will be shown in more detail below.
In the spirit of the real options paradigm, patent risk can thus be regarded
as one of the many manifestation of optionality. As option value is heavily
influenced by volatility, the project turns out to be sensitive to changes in this
important parameter as well.

The discussion now proceeds by formalizing the above intuition. Based on the
alleged infringement of a related patent, a challenger may decide to litigate
at any time τ ∈ [0, T ] and, if successful, receives a damage award, equal to
a fraction ζ ∈ [0, 1] of the value of past cash flows, compounded to time τ . 3

Furthermore, the successful challenger may claim a fraction θ ∈ [0, 1] of future

net cash flows. Due to improved monitoring after litigation, this fraction may
very well be higher than the proportion of past net cash flows claimed.

If, on the one hand, the challenger is not willing or able to commercialize the
patent, the incumbent will continue to market the product for the challenger
as long as his or her participation constraint is fulfilled. Abstracting from a
possible super-game, some marginally small profit is sufficient for this to be
the case. Competition in other products and the threat of various forms of
opportunistic behavior, however, may lead to concessions on the side of the
challenger.

2 Since VI(Πt, t) represents the value of a completed project under perfect patent
protection, additional adjustments may become necessary in practice.
3 For reasons of simplicity, litigation has to take place within the specified timeframe
and cannot be postponed beyond patent expiration.
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If the challenger, on the other hand, does not depend on the incumbent to
market the product, θ becomes unity. Furthermore, legal practice prevents a
patent holder from obtaining damages for a time span during which he or she
was aware of the alleged infringement, but did not take action. Otherwise, the
challenger would be well-advised to wait for all market uncertainty to resolve,
before taking the risk of a costly patent dispute. While it might prove difficult
to establish the exact point in time at which the challenger took notice, the
resulting damages award, expressed as a proportion of past cash flows, should
be comparatively low.

Although, in principle, it might be interesting to examine the case in which
the challenger is active in the market from the outset and, together with the
incumbent, forms a duopoly, the challenger is assumed to be idle at time t = 0.
Such a variation of the model would lower the challenger’s expected gain over
the status quo and thereby also diminish the incentive to litigate. Moreover,
an alternative scenario with mutual litigation is conceivable.

According to the so-called American rule, both parties have to pay their
lawyers out of their own pockets. For now, the American rule is applied to
calculate litigation costs incurred by the incumbent and the challenger, which
are denoted by LI and LC, respectively. In addition, let p denote the proba-
bility of successful litigation. The expected payoff from litigation becomes

EP∗ [VC(Πτ , τ) − LC | Fτ ] = p


ζ

(∫ τ

0
er(τ−t) Πt dt + 1{τ=T}MΠT

)

+EP∗

[
θ

(∫ T

τ
e−r(t−τ) Πt dt + 1{τ<T} e−r(T−τ) MΠT

) ∣∣∣∣∣Fτ

]
− LC. (7)

Given the information available at the time of litigation, cash flows are known
for all t ≤ τ . Cash flows beyond this point are still uncertain, making it
necessary to take expectation over all possible realizations. Litigation costs
are constant and known in advance.

The expected payoff is maximized by choosing an optimal litigation time. At
time t = 0, the option to litigate is worth

FC(̟, 0) = sup
τ∈[0,T ]

EP∗

[
e−rτ

(
VC(Πτ , τ) − LC

)+
]

= EP∗

[
e−rτ∗

(
VC(Πτ∗ , τ ∗) − LC

)+
]
. (8)

All agents are assumed to follow a policy of value-maximization. Of course,
the optimal litigation time τ ∗ cannot be specified in advance, but is chosen by
the challenger in response to the resolution of uncertainty related to Πt over
time. For this reason, the stopping time τ ∗ is stochastic and can be described
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as the first time Πt exceeds a critical level Π∗
t ,

τ ∗ = inf{t : Π∗
t < Πt}, (9)

which is sufficiently high to justify the cost of litigation. If litigation has not
become optimal by the time the patent expires, no action is taken. Intuitively,
the value of the project to the incumbent, including patent risk, becomes

ṼI(̟, 0) = EP∗

[(
1 − e−δT

)
̟/δ + MΠT e−δT

]

− FC(̟, 0) − EP∗

[
1{τ∗≤T} e−rτ∗

(LI + LC)
]
, (10)

that is the expected present value of cash flows from commercialization, less
the option value of litigation, less the present value of additional litigation
costs. In option terms, the incumbent is long the commercialization project
and short an option to litigate.

2.2 Analysis

The deterministic and the stochastic case are examined in turn, presenting
results for finite and infinite protection periods.

2.2.1 Deterministic payoff

As a benchmark, this subsection considers optimal litigation under certainty.
In contrast to the stochastic case, an optimal litigation time τ ∗ is straightfor-
ward to determine.

2.2.1.1 Finite protection period Since deriving closed-form solutions
in the presence of a finite patent protection period poses no difficulties under
certainty, the analysis will focus on the more general model, before examining
the limiting case of infinite patent duration.

With σ = 0, (2) reduces to

Πt = ̟ +
∫ t

0
α ds, (11)

which implies Πt = eαt ̟. Assuming intense competition after patent expira-
tion, there will be no revenue for all t > T , which implies M = 0. Further
assuming 0 < α < r, the discounted payoff from litigation at some future time
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τ becomes

e−rτ
(
VC(̟, τ) − LC

)
= p

(
ζ
∫ τ

0
e−(r−α)t ̟ dt

+θ
∫ T

τ
e−(r−α)t ̟ dt

)
− e−rτ LC

= p

(
ζ
(
1 − e−(r−α)τ

)

+θ
(
e−(r−α)τ − e−(r−α)T

)) ̟

r − α
− e−rτ LC.

(12)

The Marshallian rule commonly used in practice neglects timing issues alto-
gether and simply requires positive net present value, or 0 < VC(̟, 0) − LC.
If, in addition, the value of waiting is accounted for, one obtains a critical
revenue rate ̟∗ that triggers litigation, provided there is a positive expected
payoff. This view leads to the following proposition for the deterministic case.

Proposition 1 A critical cash flow rate ̟∗, above which immediate litigation

becomes optimal, exists if and only if ζ < θ, and it is given by

̟∗ =
LCr

p (θ − ζ)
. (13)

Proof of proposition 1 Consider the optimization problem

FC(̟, 0) = max
τ∈[0,T ]

(
GC(̟, 0)

)+
, (14)

where
GC(̟, 0) = e−rτ

(
VC(̟, τ) − LC

)
. (15)

A necessary condition for a maximum is

∂GC(̟, 0)

∂τ

∣∣∣∣∣
τ=τ∗

= e−rτ∗

(
LCr − p (θ − ζ) eατ∗

̟
)

= 0. (16)

The optimal policy depends on the ratio ζ/θ. If θ ≤ ζ , that is the successful
challenger receives a larger proportion of past than of future cash flows, (15)
is strictly increasing in τ , there is no interior solution, and it is optimal to
postpone litigation as long as possible. Recall that, by assumption, 0 < α < r.
Provided ζ < θ, (13) holds, and

τ ∗ =






0 if ̟∗ < ̟,
1
α

ln LCr
p(θ−ζ)̟

if e−αT ̟∗ < ̟ ≤ ̟∗,

T otherwise.

(17)
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It is easily verified that the sufficient condition is always fulfilled, because

∂2GC(̟, 0)

∂τ 2

∣∣∣∣∣
τ=τ∗

= −LCrα

(
p (θ − ζ)̟

LCr

)r/α

< 0. (18)

For the critical cash flow rate τ ∗ = 0, so that, by (17), the deterministic trigger
is in fact given by (13). 2

The lower the probability of success, the longer the optimal time to litigation.
Increases in the fraction LCr/

(
p (θ − ζ)̟

)
make postponing litigation more

attractive. This result corresponds to the Jorgensonian investment rule,

p (θ − ζ)̟∗ = LCr, (19)

which triggers investment when the marginal revenue product equals the user
cost of capital (Jorgenson, 1963). This rule applies regardless of patent dura-
tion, that is the deterministic trigger ̟∗ is independent of patent length.

Nevertheless, patent duration does have an impact on whether it will be ever
optimal to litigate at all, because optimal timing alone does not automatically
lead to a positive payoff. Substituting (17) into (12) yields

FC(̟, 0) =
(
pζ
(
1 − e−(r−α)T

) ̟

r − α
− e−rT LC

)+

, (20)

if ̟ < e−αT ̟∗, that is litigation takes place at the end of the protection
period (τ ∗ = T ). Immediate litigation (τ ∗ = 0) is optimal if ̟∗ < ̟, and

FC(̟, 0) =
(
pθ
(
1 − e−(r−α)T

) ̟

r − α
− LC

)+

. (21)

For any profit rate that does not exceed the critical level, but is greater than
e−αT ̟∗, there is an interior solution to the optimization problem (0 < τ ∗ <
T ), and

FC(̟, 0) =


p

(
ζ − θ e−(r−α)T

) ̟

r − α
+

LCα

r − α

(
p (θ − ζ)̟

LCr

)r/α



+

. (22)

Intuitively, (22) decomposes the option value of litigation into two perpetu-
ities and an option (see fig. 1). This observation comes in handy also under
uncertainty (see sec. 2.2.2).

One implication of the above analysis is that, in the absence of substantial
litigation costs, immediate legal action always maximizes the expected payoff
from litigation.
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t 0 τ T ∞

+pζΠt • •

−pθΠt • •

+p (θ − ζ)Πt • •

Total pζΠt pθΠt 0

Fig. 1. Decomposing the payoff from litigation. Total payoff from litigation can be
decomposed into two perpetuities and one option, creating two closed and one open
interval with distinct profit rates. While T is pre-specified, the stopping time τ is
chosen to maximize litigation payoff.

If litigation costs are comparatively high, however, challengers who, on the one
hand, are likely to experience difficulties in claiming the full amount of their
damage in court, but, on the other hand, will probably be able to negotiate
participation in future cash flows benefit from immediate litigation.

Firms that aim at being compensated in full and cannot participate in future
increases of commercial value should postpone litigation. Since, in reality,
litigation costs are usually substantial, optimal timing becomes essential. Op-
timal timing is determined by the ratio ζ/θ capturing a firm’s relative ability
to participate in past and future profits.

The impact of this ratio is illustrated by figure 2, which shows the discounted
expected payoff from litigation as a function of litigation time for p = 0.5,
̟ = 1.0, r = δ = 0.05, α = 0.1, θ = 1.0, T = 20.0, and LC = 10.0.
Simply inserting these parameters and ζ ∈ {0.0, 0.5, 1.0} into (13) yields the
thresholds

̟∗
1 =

10.0 × 0.05

0.5 (1.0 − 0.0)
= 1.0,

̟∗
2 =

10.0 × 0.05

0.5 (1.0 − 0.5)
= 2.0.

Furthermore,

lim
ζ→1.0

10.0 × 0.05

0.5 (1.0 − ζ)
= ∞.

Setting ζ = 0.0 or ζ = 1.0 thus produces the limiting cases of immediate liti-
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τ

e−
r
τ
( V

C
(̟

,τ
)
−

L
C

)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−2.5

0.0

+2.5

+5.0

+7.5

+10.0

+12.5

Fig. 2. Discounted expected payoff from litigation as a function of litigation time
(p = 0.5, ̟ = 1.0, r = δ = 0.05, α = 0.1, θ = 1.0, T = 20.0, and LC = 10.0).
If ζ = ζ/θ = 0.0, immediate litigation is optimal (solid line); if ζ = ζ/θ = 1.0,
postponing litigation to the end of the protection period is the value-maximizing
strategy (long dashes). For ζ = ζ/θ = 0.5, the rational investor will litigate at time
τ = 6.93 (short dashes and vertical line).

gation and litigation at the end of the protection period. An interior solution,

τ ∗ =
1

0.1
ln

2.0

1.0
= 6.93,

exists only for ζ = ζ/θ = 0.5.

2.2.1.2 Infinite protection period At this point, an additional simplify-
ing assumptions is introduced, which makes it possible to separate the effects
of patent expiration and patent litigation, namely that the protection period
T is infinite. This assumption also greatly facilitates the derivation of closed-
form solutions for the stochastic case, analyzed in section 2.2.2. Equation (8)
becomes

FC(Πt) = max
τ∈[0,∞)

p
(
ζ + e−(r−α)τ (θ − ζ)

) Πt

r − α
− e−rτ LC

= p
(
ζ + e−(r−α)τ∗

(θ − ζ)
) Πt

r − α
− e−rτ∗

LC. (23)

Recall that the trigger deduced previously applies regardless of patent length
and thus continues to hold if the protection period is infinite. In addition,

ṼI(Πt) =
Πt

r − α
− FC(Πt) − e−rτ∗

(LI + LC) . (24)
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For example, immediate litigation of a perpetual patent implies

FC(Πt) = VC(Πt) − LC = pθ
Πt

r − α
− LC (25)

and thus

ṼI(Πt) =
Πt

r − α
−
(
pθ

Πt

r − α
− LC

)
− (LI + LC)

= (1 − pθ)
Πt

r − α
− LI. (26)

If litigation is successful, there is no damage award, simply a participation in
future cash flows from commercialization.

Previous discussions served to highlight timing flexibility in patent litigation
under certainty, that is for the special case σ = 0. Under certainty, the value
of waiting is solely driven by the ratio ζ/θ. As this ratio increases, so does the
critical cash flow rate. Nevertheless, this view neglects the impact of σ, which
is another important value driver.

Hence, in the following section, the effect of uncertainty on the litigation de-
cision will be considered. The case of an infinite protection period under cer-
tainty is not examined further, because it obviously represents a limiting case
of the stochastic model.

2.2.2 Stochastic payoff

With the option value of litigation under certainty established, it is now possi-
ble to extend the model to a stochastic setting. The option value of litigation
interacts with the option value of investing into R&D. Proceeding backwards
in time, a sequential stochastic game for patent valuation will be developed.

2.2.2.1 Option to litigate The first step involves determining the payoff
from commercialization, accounting for the short option to litigate held by a
potential challenger.

Recall from section 2.1 that, under uncertainty,

dΠt = α∗Πt dt + σΠt dWt, Π0 = ̟, (27)

and, by assumption, 0 < α∗ < r. The simplified optimization problem with
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no terminal value becomes

FC(Πt) = sup
τ∈[t,∞)

EP∗

[
p
(
ζ
∫ τ

t
e−rs Πs ds

+θ
∫ ∞

τ
e−rs Πs ds

)
− e−rτ LC

]
. (28)

It looks challenging at first glance, but decomposes into tractable parts just
like the deterministic model. Equation (28) can be re-written as

FC(Πt) = sup
τ∈[t,∞)

EP∗

[
−p (θ − ζ)

∫ τ

t
e−rs Πs ds − e−rτ LC

]

+ EP∗

[
pθ
∫ ∞

t
e−rs Πs ds

]
(29)

and

EP∗

[
pθ
∫ ∞

t
e−rs Πs ds

]
= pθ

∫ ∞

0
e−(r−α∗)s Πt ds

=
pθΠt

r − α∗
. (30)

The second term in (29) is thus independent of τ and can be neglected in
determining an optimal stopping time.

Proposition 2 Assuming ζ < θ, the option value of litigation is

FC(Πt) =





pθΠt/δ − LC if Π∗ < Πt,

A+Πγ+

t + pζΠt/δ otherwise,
(31)

where

Π∗ =
γ+

γ+ − 1

LCδ

p (θ − ζ)
(32)

denotes the critical cash flow rate,

A+ =
LC

γ+ − 1

(
1

Π∗

)γ+

=

(
p (θ − ζ)

γ+δ

)γ+ (
γ+ − 1

LC

)γ+−1

, (33)

and

γ+ = 1
2
−

r − δ

σ2
+

√√√√
(

r − δ

σ2
− 1

2

)2

+ 2
r

σ2
. (34)

Proof of proposition 2 For convenience, define

ΨC(Πt) = sup
τ∈[t,∞)

EP∗

[
−p (θ − ζ)

∫ τ

t
e−r(t−s) Πs ds − e−rτ LC

∣∣∣∣Ft

]
. (35)
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Under the abovementioned assumption that the risk in Πt can be spanned by
existing assets, it is possible to construct a risk-free portfolio consisting of one
unit of the claim ΨC(Πt) and a short position of n units of Πt. This feat is
accomplished by choosing an appropriate quantity n.

Economically speaking, the claim ΨC(Πt) represents an abandonment (put)
option on a project yielding a profit rate of −p (θ − ζ)Πt. Holding the portfolio

yields a “dividend” of −
(
p (θ − ζ) + nδ

)
Πt dt. Expanding dΨC(Πt) using Itô’s

Lemma gives the “capital gain” on the portfolio, which is

dΨC(Πt) − n dΠt =


αΠt

(
∂ΨC(Πt)

∂Πt
− n

)
+ 1

2
σ2Π2

t

∂2ΨC(Πt)

∂Π2
t


 dt

+ σΠt

(
∂ΨC(Πt)

∂Πt
− n

)
dWt. (36)

For the portfolio to be risk-free, set n = ∂ΨC(Πt)/∂Πt and assume continuous
rebalancing. Total return equals the risk-free return:

(
1
2
σ2Π2

t

∂2ΨC(Πt)

∂Π2
t

− p (θ − ζ)Πt −
∂ΨC(Πt)

∂Πt
δΠt

)
dt =

r

(
ΨC(Πt) −

∂ΨC(Πt)

∂Πt
Πt

)
dt (37)

or

1
2
σ2Π2

t

∂2ΨC(Πt)

∂Π2
t

+ (r − δ) Πt
∂ΨC(Πt)

∂Πt

− rΨC(Πt) − p (θ − ζ)Πt = 0. (38)

A general solution, which holds in the continuation region, is

ΨC(Πt) = A+Πγ+

t + A−Πγ−

t −
p (θ − ζ)Πt

r − α∗
, (39)

where {γ+, γ−} are roots of the quadratic equation

1
2
σ2γ (γ − 1) + (r − δ) γ − r = 0, (40)

sometimes referred to as the “fundamental quadratic.” Given that α∗ = r − δ,

γ± = 1
2
−

α∗

σ2
±

√(
α∗

σ2
− 1

2

)2

+ 2
r

σ2
. (41)

The constants A+ and A− are to be determined. Setting A− = 0 ensures that
ΨC(Πt) is bounded near Πt = 0. Since the option grants the holder the right
to exchange uncertain negative profits for a negative cash flow known with
certainty, it should be worthless for small Πt.
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In the stopping region, immediate exercise is optimal and ΨC(Πt) = −LC.
Hence,

ΨC(Πt) =




−LC if Π∗ < Πt,

A+Πγ+

t − p(θ−ζ)Πt

r−α∗
otherwise.

(42)

Imposing C1-continuity at Πt = Π∗ as usual leads to

A+(Π∗)γ+

−
p (θ − ζ)Πt

r − α∗
= −LC (43a)

and

γ+A+(Π∗)γ+−1 −
p (θ − ζ)

r − α∗
= 0. (43b)

These equations are the value-matching and smooth-pasting conditions, re-
spectively. Solving (43b) for A+, substituting the result in (43a) and subse-
quently solving for Π∗ leads to

Π∗ =
γ+

γ+ − 1

LC (r − α∗)

p (θ − ζ)
(44)

⇔
p (θ − ζ)Π∗

r − α∗
=

γ+

γ+ − 1
LC (45)

and

A+ =
1

γ+

p (θ − ζ) (Π∗)1−γ+

r − α∗
. (46)

Since α∗ < r (by assumption) and 1 < γ+, Π∗ will take positive values if and
only if ζ < θ. Since Πt = 0 is an absorbing barrier, litigation will never be
optimal otherwise.

Summing up, provided ζ < θ, by (29), (35), and (42), the option value of
litigation is given by (31). 2

As expected (32) is analogous to the deterministic case from (13), but, in
addition, includes the well-known “option value multiple” γ+/ (γ+ − 1). It is
increasing in σ, which implies a higher value of waiting for higher levels of
uncertainty. Also note that, compared to the Jorgensonian rule, r − α∗ re-
places r. As volatility approaches zero, the stochastic trigger converges to the
deterministic trigger:

lim
σ→0

γ+

γ+ − 1

LC (r − α∗)

p (θ − ζ)
=

LCr

p (θ − ζ)
. (47)

Convergence is demonstrated by figure 3. Litigation will be postponed as long
as possible if θ ≤ ζ and

FC(Πt) =
pζΠt

r − α∗
. (48)
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Fig. 3. Impact of uncertainty on the option value of litigation (p = 0.5, r = 0.05,
α = r − δ = 0.01, θ = 1.0, ζ = 0.5, and LC = 10.0). As volatility decreases
(σ ∈ {0.1, 0.2, 0.3}), option values converge to the deterministic solution.

The latter result obviously fundamentally relies on the assumption of infinite
patent protection and is thus primarily of theoretical relevance.

If the revenue rate lies above the critical level, that is immediate litigation is
optimal, the option value equals the expected share of future revenues, less
litigation costs. Below the critical level, the option value has two components.
One component is the expected payoff from litigation under the assumption of
indefinite postponement. Continuation in this setting implies that the holder
of the option acquires an (expected) claim on past cash flows. The other com-
ponent is the value of flexibility. Under the condition that the initial revenue
rate is sufficiently high, the option holder will litigate and give up this flexi-
bility in exchange for immediate benefits.

The net payoff from commercialization corresponds to the value a rational
investor would attribute to a patent if he or she were to enter the relevant
market immediately. As outlined previously, it equals the net present value
of expected profits, less the option value of litigation, less the expected value
of additional litigation costs. The latter component deserves more detailed
analysis.

With the option value of litigation known, determining the gross payoff from
commercialization to the incumbent under patent risk ṼI(Πt) seems straight-
forward. However, one has to account for the fact that the cost of litigation for
the incumbent and the challenger might differ, that is LI 6= LC. It is therefore
insufficient to simply subtract the “short position.” Finding the appropriate
discount rate for the correction introduced in (10), however, is non-trivial,
because the occurrence of litigation is random. Consequently, one needs to
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form expectations about the “first hitting time” τ ∗ (Dixit and Pindyck, 1994,
pp. 315–316).

Theorem 3 If Π∗ ≥ Πt is a fixed upper threshold, and τ ∗ ≥ t is the first

hitting time,

EP∗

[
e−r(τ∗−t)

∣∣∣Ft

]
=
(

Πt

Π∗

)γ+

. (49)

Similarities between (49) and the option pricing formula of proposition 2 are
no coincidence. As outlined in the appendix, patent value under uncertainty
can also be derived based on the first hitting time (see sec.A).

Theorem 3 holds in the continuation region of the litigation option. Immediate
litigation obviously implies τ ∗ = 0. Therefore, the following proposition can
be derived.

Proposition 4 The gross payoff from commercializing in the presence of im-

perfect patent protection is

ṼI(Πt) =





(1 − pθ) Πt/δ − LI if Π∗ < Πt,

(1 − pζ)Πt/δ − B+Πγ+

t otherwise,
(50)

where

Π∗ =
γ+

γ+ − 1

LCδ

p (θ − ζ)
. (51)

is the critical profit rate, and

B+ =

(
LI +

γ+

γ+ − 1
LC

)(
1

Π∗

)γ+

. (52)

Proof of proposition 4 Since litigation risk hinges on the ratio ζ/θ, it be-
comes necessary to distinguish the cases ζ < θ and θ ≤ ζ .

On the one hand, provided that ζ < θ and Πt is in the continuation region,
combining (24) and proposition 2 yields

ṼI(Πt) = Πt/δ − FC(Πt) − EP∗

[
e−rτ∗

(LI + LC)
]

= Πt/δ −



 LC

γ+ − 1

(
Πt

Π∗

)γ+

+ pζΠt/δ



−EP∗

[
e−rτ∗

]
(LI + LC)

= (1 − pζ)Πt/δ −
LC

γ+ − 1

(
Πt

Π∗

)γ+

− (LI + LC)
(

Πt

Π∗

)γ+

= (1 − pζ)Πt/δ −

(
LI +

γ+

γ+ − 1
LC

)(
Πt

Π∗

)γ+

. (53)
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If the cash flow rate exceeds the critical level, the challenger will litigate im-
mediately, resulting in litigation costs of LI. With probability p, the challenger
is successful and obtains a fraction of future profits, namely θΠt/δ. The gross
present value of cash flows from commercialization thus becomes

ṼI(Πt) = Πt/δ − (pθΠt/δ − LC) − (LI + LC)

= (1 − pθ) Πt/δ − LI. (54)

If, on the other hand, θ ≤ ζ one obtains

ṼI(Πt) = (1 − pζ)Πt/δ. (55)

The cost of litigation, which takes place in the very distant future, becomes
negligible in present-value terms. 2

Intuitively speaking, gross payoff equals the value of the project if the chal-
lenger were to litigate immediately, plus the value of waiting, less the expected
present value of litigation costs. 4

Figure 4 shows ṼI as a function of Πt. Interestingly, rising profit rates un-
der imperfect patent protection may result in declining patent value. This
seemingly counter-intuitive result is due to litigation risk, which—under cer-
tain conditions—may over-compensate the positive effects of heightened prof-
itability. The adverse effects of patent risk are particularly pronounced if the
challenger’s litigation costs are small compared to those incurred by the in-
cumbent.

Since the payoff from commercialization includes a short position, it may also
turn out to be negative.

2.2.2.2 Option to commercialize The analysis can be carried one step
further by examining the option to invest held by the incumbent who owns
the patent, but has not yet commenced commercialization. This view implies
that a patent is properly valued by pricing a (compound) call on a portfolio
consisting of a project and a short option to litigate.

The extended decision problem is a sequential game in continuous time. Its
discrete-time equivalent is depicted in figure 5.

4 While this intuition served as the starting point for the proof just presented, the
appendix offers an alternative derivation of proposition 4, based on the expected
first hitting time (see sec. B).
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(b) Patent quality

Fig. 4. Gross payoff from commercialization under endogenous patent risk when the
protection period is infinite (σ = 0.1, r = δ = 0.05, ζ = 0.1, and θ = 0.5). Panel (a)
shows ṼI(Πt) for p = 0.5. Assuming LC = 10, an increase in the incumbent’s litiga-
tion cost LI from 10 to 20 results in a downward shift of the corresponding graph, but
does not affect the trigger (long dashes). In contrast, holding the incumbent’s litiga-
tion cost constant at LI = 10, an increase in the challenger’s litigation cost LC from
10 to 12 leads to a higher investment threshold Π∗ (vertical lines), but, for obvious
reason, has no influence on ṼI(Πt) in the stopping region (short dashes). Panel (b)
illustrates the impact of patent quality, measured by the probability of litigation suc-
cess p, on ṼI(Πt). As p decreases, higher profit rates are required to trigger litigation;
and ṼI(Πt) eventually equals VI(Πt) (LI = LC = 10 and p = {0.4, 0.5, 0.6}).

Proposition 4 gives the value of commercialization under litigation risk. The
value of the patent is the result of the nested optimization problem

F̃I(Πt) = sup
τ∈[0,∞)

EP∗

[
e−rτ

(
ṼI(Πτ ) − I

)]

= EP∗

[
e−rτ∗∗

(
ṼI(Πτ∗∗) − I

)]
, (56)
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Fig. 5. Sequential game for patent valuation. At each node in {I1, I2, I3, . . . } the
incumbent decides whether to commercialize the patent (c) or wait an additional
period (w). Once the incumbent has decided to commercialize, the challenger faces
a similar sequence of choices {L1, L2, L3, . . . }. At each node he or she may either
litigate (l) or postpone litigation to a later point in time (w). In the event of litiga-
tion, nature determines the outcome at {N1, N2, N3, . . . }. The sub-tree starting at
L1 corresponds to the litigation option discussed in the previous subsection.

where I denotes the up-front investment required to commercialize the patent.

Due to the non-linear payoff function, deriving specific patent value requires
careful analysis. Among other parameters, the ratio ζ/θ plays a key role.

Consider the case θ ≤ ζ . As shown previously, litigation will be postponed as
long as possible, and the underlying becomes linear in Πt. Option exercise is
only optimal above some threshold Π∗∗, making the claim quite similar to a
conventional perpetual call option:

F̃I(Πt, t) =





ṼI(Πτ ) − I if Π∗∗ < Πt,

C+Πγ+
t otherwise,

(57)
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Substituting (55) one obtains the value-matching and smooth-pasting condi-
tions

C+(Π∗∗)γ+

= (1 − pζ)Π∗∗/δ − I, (58a)

γ+C+(Π∗∗)γ+−1 = (1 − pζ) /δ. (58b)

Consequently,

C+ =
1

γ+
(1 − pζ) (Π∗∗)1−γ+

/δ

=
I

γ+ − 1

(
1

Π∗∗

)γ+

, (59)

where

Π∗∗ =
γ+

γ+ − 1

Iδ

1 − pζ
. (60)

These equations correspond to (44) and (46), respectively. In summary, the
dynamic value of a patent under imperfect patent protection is

F̃I(Πt) =





(1 − pζ)Πt/δ − I if Π∗∗ < Πt,

I
γ+−1

(
Πt

Π∗∗

)γ+

otherwise.
(61)

For obvious reasons, patent value does not dependent on θ. Patent value is
almost completely analogous to the case of perfect patent protection, with the
noteworthy exception of an expected payment to the challenger litigating in
the very distant future.

Consider now the case ζ < θ. If Πt is very large, both options will end up in
their respective stopping regions, so that

F̃I(Πt) = (1 − pθ)Πt/δ − LI − I. (62)

The incumbent commercializes, followed by immediate litigation. Neverthe-
less, the option value will proof to be more complicated to determine for a
wide range of moderate cash flow rates. In order to provide a more compre-
hensive picture under various assumptions, especially with respect to patent
duration, further analysis are best carried out numerically.

Hence, in the following, a numerical method for determining patent value
under litigation risk is described. Taking advantage of a decomposition similar
to the one depicted in figure 1 it also captures the effect of a finite protection
period.

In order to improve accuracy, not a standard Cox–Ross–Rubinstein (CRR)
tree, but the log-transformed variant proposed by Trigeorgis (1991) is con-
structed. Based on Itô’s Lemma, the discrete-time equivalent of the profit
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Fig. 6. Log-transformed binomial tree for the numerical valuation of patents under
endogenous litigation risk.

rate process under the risk-neutral measure is

Πt+∆t = Πt exp
((

r − δ − 1
2
σ2
)

∆t + σ∆Wt

)
. (63)

Furthermore, consider the transformation Xt ≡ ln (Πt) and u ≡ σ2t (Trigeor-
gis, 1996, p. 321), so that X = {Xu}u≥0 becomes arithmetic Brownian motion
(ABM), and time is expressed “in units of variance.” Assuming the protection
period is divided into intervals of equal length ∆t ≡ T/n, this choice implies
∆u ≡ σ2∆t. Over each interval, Xi,j ≡ Xi∆X,j∆u increases by

∆X = ln
(

Πt+∆t

Πt

)

=
(
r − δ − 1

2
σ2
)

∆t + σ∆Wt (64)

or decreases by the same amount. The probability of an upward movement is
q. Figure 6 shows the binomial tree representing this discrete-time process.

Parameters for the log-transformed tree are chosen to mirror continuous-time
dynamics. Set µ ≡ (r − δ) /σ2 − 1

2
. 5 Hence, one obtains

E[∆X] = µ∆u

= q∆X − (1 − q)∆X

= 2q∆X − ∆X (65)

and

V[∆X] = ∆u

= E

[
∆X2

]
− (E[∆X])2

= ∆X2 − (E[∆X])2 . (66)

5 Deviating from the notation employed earlier, µ here does not signify the risk-
adjusted rate of return.
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Solving for the risk-neutral probability leads to

q = 1
2

(
1 + µ

∆u

∆X

)
, (67)

where

∆X =
√

∆u + (µ∆u)2. (68)

Note that the procedure is unconditionally stable (Trigeorgis, 1996, p. 322).

Recall from (29) that the option to litigate decomposes into a call option and
a perpetuity. However, in order to solve the optimization problem, it becomes
necessary to choose a slightly different decomposition, namely

FC(Πt, t) = EP∗

[
pζ
∫ T

t
e−r(s−t) Πs ds

∣∣∣∣∣Ft

]
+ ΨC(Πt, t), (69)

where

ΨC(Πt, t) = sup
τ∈[t,T ]

EP∗

[
p (θ − ζ)

∫ T

τ
e−r(s−t) Πs ds − e−r(τ−t) LC

∣∣∣∣∣Ft

]

= EP∗

[
p (θ − ζ)

∫ T

τ∗

e−r(s−t) Πs ds − e−r(τ∗−t) LC

∣∣∣∣∣Ft

]
. (70)

The stopping times derived lead to the gross present value of commercializa-
tion under patent risk, which is

VI(Πt, t) = EP∗

[
(1 − pζ)

∫ τ∗

t
e−r(s−t) Πs ds

− e−r(τ∗−t) LI + (1 − pθ)
∫ T

τ∗

e−r(s−t) Πs ds

∣∣∣∣∣Ft

]
(71)

or, after rearranging,

VI(Πt, t) = EP∗

[
(1 − pζ)

∫ T

t
e−r(s−t) Πs ds

∣∣∣∣∣Ft

]
+ Ψ̃I(Πt, t), (72)

where

Ψ̃I(Πt, t) = EP∗

[
−p (θ − ζ)

∫ T

τ∗

e−r(s−t) Πs ds − e−r(τ∗−t) LI

∣∣∣∣∣Ft

]
. (73)

For implementation purposes, the algorithm has to be translated into discrete-
time formulae.

Employing the log-transformed model described above, a profit rate tree is
constructed. Once the value of the underlying has been determined at each
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node, it is not difficult to calculate the present value of cash flows. Starting at
the leaves of the tree, one obtains

Vi,n = Πi,n∆t. (74)

For all previous periods, the expected present value of cash flows is

Vi,j = Πi,j∆t + e−r∆t (qΠi+1,j+1 + (1 − q)Πi−1,j+1) . (75)

Standard dynamic programming techniques lead to the flexible component of
option value, namely

ΨC(Πi,n, n∆t) = max {p(θ − ζ)Vi,j − LC, 0} (76)

and

ΨC(Πi,j, j∆t) = max
{
p(θ − ζ)Vi,j − LC,

e−r∆t
(
qΨC (Πi+1,j+1, (j + 1)∆t)

+ (1 − q) ΨC (Πi−1,j+1, (j + 1) ∆t)
)}

. (77)

The resulting policy is then used to arrive at the corresponding component of
project value. At the end of the protection period,

Ψ̃I(Πi,n, n∆t) =




−p(θ − ζ)Vi,n − LI if Π∗ < Πi,n,

0 otherwise.
(78)

For all previous nodes, if option exercise is optimal (Π∗ < Πi,j),

Ψ̃I(Πi,j, j∆t) = −p(θ − ζ)Vi,j − LI. (79)

If continuation is optimal (Πi,j ≤ Π∗),

Ψ̃I(Πi,j, j∆t) = e−r∆t
(
qΨI (Πi+1,j+1, (j + 1)∆t)

+ (1 − q)ΨI (Πi−1,j+1, (j + 1) ∆t)
)
. (80)

Using (69) and (72), one obtains the option value of litigation as well as the
gross payoff from commercialization.

For example, consider the illustrative example shown in table 1, where ∆t =
T/n = 20.0/2 = 10.0. Assuming an initial profit rate of Π0 = 1.00, cash flow
volatility of σ = 0.1, r = δ = 0.05, p = 0.5, ζ = 0.1, θ = 0.5, LC = 2, and
LI = 10, the option value of litigation is

FC(Π0,0, 0) = pζV0,0 + ΨC(Π0,0, 0)

= 0.5 × 0.1 × 19.755 + 1.951 = 2.939.
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Gross payoff from commercialization under patent risk becomes

ṼI(Π0,0, 0) = (1 − pζ)V0,0 + Ψ̃I(Π0,0, 0)

= (1 − 0.5 × 0.1) × 19.755 − 13.951 = 4.816.

Accurate patent and project values, however, require significantly larger trees.

Figure 7 presents selected numerical results graphically. Although discretiza-
tion brings about visible inaccuracies around the challenger’s critical thresh-
old, the overall shape of curves is in line with analytical project values pro-
vided earlier. In addition, figure 7(b) shows that longer protection periods are
associated with higher project values, but also make litigation attractive at
comparatively low levels of profitability.

Under finite patent protection, the potentially adverse effect of rising profit
rates on gross payoff from commercialization are more pronounced. As evident
from figure 7(a) and in analogy to the case of an infinite protection period,
comparatively high costs of litigation for the incumbent cause project values
to drop sharply as rising profit rates approach the critical threshold.

Finally, dynamic patent value can be quantified by pricing an option on the
gross payoff from commercialization, that is

ṼI(Πi,j, j∆t) = (1 − pζ)Vi,j + Ψ̃I(Πi,j, j∆t). (81)

Patent values at the leaves of the tree are given by

F̃I(Πi,n, n∆t) = max
{
ṼI(Πi,n, n∆t) − I, 0

}
. (82)

Proceeding backwards in time, all previous nodes are calculated as follows:

F̃I(Πi,j, j∆t) = max
{
ṼI(Πi,j, j∆t) − I,

e−r∆t
(
qF̃I

(
Πi+1,j+1, (j + 1)∆t

)

+ (1 − q) F̃I

(
Πi−1,j+1, (j + 1)∆t

))}
. (83)

Figure 8 shows dynamic patent value as a function of the initial profit rate
under various assumptions concerning litigation costs and the investment re-
quired to commercialize the patent. Obviously, the resulting diagram differs
substantially from the familiar “hockeystick” associated with plain-vanilla call
options—real or financial. Although the drop in patent value due to rising
patent risk is mitigated by the value of flexibility, it is still noticeable, in
particular if commercialization is inexpensive.
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Table 1
Log-transformed binomial model for patent valuation under endogenous litigation
risk (Π0 = 1.00, σ = 0.1, r = δ = 0.05, p = 0.5, ζ = 0.1, θ = 0.5, LC = 2,
LI = 10, T = 20.0, and n = 2). Carrying out the steps described, it is possible
to determine the gross payoff from commercialization, which is indispensable for
calculating dynamic patent value. Panel (d) shows the challenger’s optimal policy,
ones indicating nodes at which litigation is optimal.

(a) Underlying

State Πi,j

t = 0 t = 10 t = 20

+2 1.897
+1 1.377

0 1.000 1.000
−1 0.726
−2 0.527

(b) Present value

State Vi,j

t = 0 t = 10 t = 20

+2 18.971
+1 22.134

0 19.755 10.000
−1 11.668
−2 5.271

(c) Option

State ΨC(Πi,j, j∆t)

t = 0 t = 10 t = 20

+2 1.794
+1 2.427

0 1.951 0.000
−1 0.334
−2 0.000

(d) Policy

State Policy

t = 0 t = 10 t = 20

+2 1
+1 1

0 1 0
−1 1
−2 0

(e) Project

State Ψ̃I(Πi,j , j∆t)

t = 0 t = 10 t = 20

+2 −13.794
+1 −14.427

0 −13.951 0.000
−1 −12.334
−2 0.000

(f) Patent

State F̃I(Πi,j, j∆t)

t = 0 t = 10 t = 20

+2 8.022
+1 11.028

0 8.767 0.000
−1 1.084
−2 0.000

Correspondingly, the optimal policy is far more complicated than for the fairly
simple litigation option. For very low profit rates, early exercise is unattractive.
As profit rates rise, early exercise becomes optimal, before increasing patent
risk renders it unattractive again. Eventually, profit rates are high enough to
justify early exercise despite the threat of litigation. Figure 9 shows numerical
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Fig. 7. Gross payoff from commercialization under endogenous patent risk when the
protection period is finite (σ = 0.1, r = δ = 0.05, p = 0.5, ζ = 0.1, θ = 0.5, and
n = 500). Panel (a) shows ṼI(Πt) for T = 20.0, the base case (LC = LI = 10.0)
represented by a solid line. In analogy to previous analyses, long and short dashes
illustrate results for LI = 20.0 and LC = 12.0, respectively. Panel (b) depicts gross
payoff for T = 20.0 (solid line), T = 25.0 (long dashes), and T = 30.0 (short dashes).

approximations of the resulting boundaries Π∗
t , Π∗∗

t , and Π∗∗∗
t as a function of

time, assuming LC = 1.0, LI = 10.0, and I = 1.0.

In summary, increased litigation activity in newly-discovered growth markets
calls for careful analysis. In particular, novel platform technologies may be
difficult to defend using patents. Investments in promising pieces of IP, more
precisely the profit opportunities associated with them, tend to attract po-
tential challengers and increase litigation activity—to the point where lower
profit rates would be preferable.

Patent risk makes the blue oceans turn red (Kim and Mauborgne, 2005). An
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Fig. 8. Dynamic patent value under endogenous patent risk when the protection
period is finite (σ = 0.1, r = δ = 0.05, p = 0.5, ζ = 0.1, θ = 0.5, T = 20.0, and
n = 500). Panel (a) shows patent values for I = 10.0. Again, the base case with
LC = LI = 10.0 is represented by a solid line, while long and short dashes serve to
illustrate the sensitivity of patent value to changes in these parameters. Moreover,
panel (b) depicts how increases in the investment amount required to commercialize
lower patent value (I ∈ {10.0, 20.0, 30.0}).

option-based view of perfect patent protection is capable of capturing many
of the contingencies involved in this challenging decision problem.

3 Variations and extensions

Stylized models like the one presented can always be extended in a number of
ways. In the following, a selection of possible extensions will be discussed in
more detail.
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Fig. 9. Incumbent’s critical thresholds under endogenous patent risk when the pro-
tection period is finite (Π0 = 1.0, σ = 0.1, r = δ = 0.05, LC = 1.0, LI = 10.0,
I = 1.0, p = 0.5, ζ = 0.1, θ = 0.5, and T = 20.0). Again, approximations of
the boundaries were obtained using a log-transformed binomial tree with n = 500
timesteps.

3.1 Alternative litigation systems

An important area of research is the design of the legal system, and the patent
system in particular, addressing important issues such as the optimal length,
breadth, and depth of patents. Moreover, incentives to litigate and the outcome
of disputes are determined by the cost of litigation.

3.1.1 Settlement

Apart from litigation, settlement of patent disputes plays an important role
in the value-based management of property rights (Bebchuk, 1984; Crampes
and Langinier, 2002). Lanjouw and Schankerman (2002) find that some 95%
of patent lawsuits are settled prior to a court judgment. More importantly, as
argued by Shapiro (2003, p. 391), a wide range of commercial arrangements
involving IP—including patent licenses, mergers, and joint ventures—can be
regarded as settlements of IP disputes, effectively or even literally. Royalty
rates in licensing deals, for instance, reflect the bargaining power of the con-
tracting parties, which fundamentally depends on the likelihood of winning in
court.

Technically speaking, the tradeoff between seeking a decision in court or opting
to settle most likely involves the calculation of Nash bargaining solutions. The
current model may be used to establish suitable threat points.
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3.1.2 European rule

As mentioned before, the American rule requires both parties to bear their own
legal costs. However, legal systems differ in the treatment of such expenses. If
the loosing party or the state covers costs of litigation, different option values
result. A thorough comparison of alternatives could provide insights into the
impact on innovation incentives.

3.1.3 Variable cost of litigation

Almost needless to say, assuming a constant cost of litigation is a simplification
of the actual process, because lawyers might claim a proportion of the damage
award. In essence, variable costs of litigation correspond to a stochastic strike
price, which, depending on the choice of parameters, could lead to a higher or
lower option value of litigation. Again, an extensive sensitivity analysis would
be required to draw meaningful conclusions.

3.2 Alternative underlying dynamics

Simulation results might change considerably, depending on the dynamics em-
ployed to capture the development of expected cost to completion and cash
flow rates. Common variations of the standard stock price model, include mean
reversion and stochastic interest rates.

3.2.1 Mean reversion

Cash flow rates usually track a product-specific lifecycle. In contrast, cash
flow rates in this paper were assumed to follow geometric Brownian motion
(GBM) with a positive drift, on average leading to an increase in profitability
as the end of the protection period approaches. While a variety of alternative
specifications are conceivable, mean-reversion processes probably better reflect
the stylized facts. One example is the Ornstein–Uhlenbeck process

dΠt = ϑ
(
Π − Πt

)
dt + σ dWt, (84)

where ϑ is the speed of reversion and Π denotes the long-run average level of
profitability, to which Π tends to revert.

Similar SDEs are very popular in option-based models of natural resource
investments. One way to answer the question of whether GBM indeed matches
empirical data is the application of unit root tests (Dickey and Fuller, 1981).
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3.2.2 Stochastic interest rates

As pointed out by Schwartz (2004), analyzing patent value under stochastic
interest rates is facilitated by the Monte Carlo approach. In principal, it suf-
fices to specifiy a suitable model, generate the required number of interest rate
processes and carry out all calculations employing a time-variant discount fac-
tor (Longstaff and Schwartz, 2001, pp. 131–135). Similarly, stochastic interest
rates can be accounted for in tree-based option pricing, for example employing
the widely-used Heath–Jarrow–Morton model of interest rates. 6

3.3 Exit option

Due to the fact that the current setup abstracts from operating costs, exit
options during the commercialization phase have so far been neglected. In-
troducing an exit option along the lines of existing analyses would compli-
cate matters somewhat, but should not pose severe difficulties (McDonald
and Siegel, 1985; Dixit and Pindyck, 1994). It is important to note, however,
that—at least in the pharmaceutical industry—firms very rarely exercise the
option to stop commercializing, mainly due to the paramount importance of
expenditures during R&D.

3.4 Industry equilibrium

A closer look at industry equilibrium would call for a demand-level model.
Roughly speaking, excess profits earned by commercializing certain patents
are likely to attract challengers, thereby increasing patent risk. In equilibrium,
these excess profits are exactly offset by the threat of litigation. Moreover, it
is important to note that reputation is sure to play an important role in any
type of repeated litigation game.

4 Conclusion

The aim of this paper was to develop a deeper understanding of patent risk,
looking beyond the seemingly random occurrence of patent-related events,
suggested by jump-diffusion models of the R&D process. Following introduc-
tory definitions and the model setup in section 2.1, section 2.2.1 served to

6 Other possibilities include the Black–Derman–Toy model, the Hull–White model,
and its Black–Karanski modification, all of which are available in commercial im-
plementations (Heath et al., 1992; Black et al., 1990; Hull, 2000).
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discuss the option value of litigation under certainty. Building on some basic
insights into the composition of cash flows, section 2.2.2 outlined a sequential
stochastic game for patent valuation, which was studied using both analyti-
cal and numerical methods. Finally, section 3 hinted at some variations and
extensions of the basic framework presented.

Among the many noteworthy findings is the non-obvious functional relation-
ship between cash flow rates and commercialization payoff with important
implications for the option value of R&D under imperfect patent protection.
As outlined in detail, higher profitability not necessarily goes along with higher
patent values.

This insight highlights an important stylized fact of market entry in research
intensive industries. Common sense dictates that a high probability of litiga-
tion is an indicator of attractive commercial opportunities. Not only do high
profits attract potential challengers; high profits are often the result of novel
products and services, which due to the limited experience of all parties in-
volved, are typically difficult to protect through patents. This uncertainty, in
turn, gives rise to increased litigation activity. Consequently, potential entrants
have to trade off growth and profit potential in markets driven by innovation
for a comparatively high reliability of IP protection in more mature markets.

While, as a result of various barriers to entry imposed by incumbent oligo-
polists, this consideration appears somewhat theoretical on the level of whole
industries, similar issues arise on the project level. The formal model analyzed
in this paper may be seen as a first step to more comprehensive models of R&D
and commercialization, demonstrating that the impact of litigation on patent
value in strategic settings can in fact be anticipated and, to some degree, even
quantified.

As put forth earlier, the type of model proposed might be regarded as a suitable
tool for studying the optimal level of patent protection from an option-based
perspective, including, for example, not only the length of the protection pe-
riod, but also other aspects, such as the reliability of patent protection, which
may differ substantially across countries and industries. Using the term in-
troduced by Lemley and Shapiro (2005), the option-based view of patent risk
developed in this paper represents a formal strategic model of probabilistic

patents.

In addition, the discussion served to present the option-based view of patent
risk as a special case of a more general reconceptualization of uncertain prop-
erty rights, capturing legal risk as embedded short options to litigate. It should
be interesting to investigate how this idea can be developed further.
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A Proof of proposition 2

The option value of litigation was introduced in section 2.2.2. The same result
can be obtained in a slightly different manner, using first hitting times.

Again, the option value of litigation is decomposed into a controlled and an
uncontrolled diffusion process, resulting in

FC(Πt) = max
Π∗∈[0,∞)

EP∗

[
−p (θ − ζ)

∫ τ∗

t
e−r(s−t) Πs ds − e−r(τ∗−t) LC

+ pθ
∫ ∞

t
e−r(s−t) Πs ds

∣∣∣∣∣Ft

]
. (A.1)

An expression that can be employed to discount the cost of litigation, is known
from previous analyses (see theorem 3) and is restated here for convenience:

EP∗

[
e−r(τ∗−t)

∣∣∣Ft

]
=
(

Πt

Π∗

)γ+

. (A.2)

The first integral remains to be evaluated. Dixit and Pindyck (1994, pp. 315–
316) provide the following theorem.

Theorem 5 If Π∗ ≥ Πt is a fixed upper threshold, and τ ∗ ≥ t is the first

hitting time,

EP∗

[∫ τ∗

t
e−r(s−t) Πs ds

∣∣∣∣∣Ft

]
= Πt/δ − Π∗/δ

(
Πt

Π∗

)γ+

. (A.3)

Proof of theorem 5 The present value formula follows directly from theo-
rem 3, because

EP∗

[∫ τ∗

t
e−r(s−t) Πs ds

∣∣∣∣∣Ft

]
= EP∗

[∫ ∞

t
e−r(s−t) Πs ds

− e−r(τ∗−t)
∫ ∞

τ∗

e−r(s−τ∗) Πs ds

∣∣∣∣Ft

]

= Πt/δ − EP∗

[
e−r(τ∗−t)

∣∣∣Ft

]
Π∗/δ, (A.4)

which is equivalent to (A.3).

It is then straightforward to deduce proposition 2 by substituting (A.2) and
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(A.3) in (A.1), which yields

FC(Πt) = max
Π∗∈[0,∞)

−p (θ − ζ)



Πt/δ − Π∗/δ
(

Πt

Π∗

)γ+




− LC

(
Πt

Π∗

)γ+

+ pθΠt/δ. (A.5)

A necessary condition for the threshold to be optimal is

(
γ+LC

Π∗
− p (θ − ζ)

γ+ − 1

δ

)(
Πt

Π∗

)γ+

= 0. (A.6)

Solving for the critical profit rate yields

Π∗ =
γ+

γ+ − 1

LCδ

p (θ − ζ)
, (A.7)

which is the trigger deduced earlier. As is easily verified, the sufficient condition
is also fulfilled. Inserting (A.7) in (A.5) leads to

FC(Πt) =
LC

γ+ − 1

(
Πt

Π∗

)γ+

+ pζΠ/δ (A.8)

for dynamic patent values in the continuation region.

B Proof of proposition 4

In section 2.2.2, gross payoff from commercialization under patent risk was
derived as a portfolio of claims. Alternatively, one may arrive at the same
result directly, again making use of the expected first hitting time and the
threshold of proposition 2 (see sec.A).

Gross payoff from commercialization is

ṼI(Πt) = EP∗

[ ∫ ∞

t
e−r(s−t) Πs ds

− p

(∫ τ∗

t
e−r(s−t) ζΠs ds +

∫ ∞

τ∗

e−r(s−t) θΠs ds

)

− e−r(τ∗−t) LI

∣∣∣∣∣Ft

]
(B.1)
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t 0 τ ∞

(1 − pθ)Πt • •

p (θ − ζ)Πt • •

Total (1 − pζ)Πt (1 − pθ)Πt

Fig. B.1. Decomposing the payoff from commercialization. Total payoff from litiga-
tion can be decomposed into one perpetuity and one option, creating one closed and
one open interval with distinct profit rates. The stopping time τ is chosen by the
challenger to maximize litigation payoff.

Rewrite this equation to obtain

ṼI(Πt) = (1 − pθ)EP∗

[∫ ∞

t
e−r(s−t) Πs ds

∣∣∣∣Ft

]

+ p (θ − ζ)EP∗

[∫ τ∗

t
e−r(s−t) Πs ds

∣∣∣∣∣Ft

]

−EP∗

[
e−r(τ∗−t)

∣∣∣Ft

]
LI. (B.2)

Recall that the first and second terms represent the gross payoff from com-
mercialization under the assumption of immediate litigation and the value of
waiting, respectively. Figure B.1 illustrates this decomposition graphically.

The second and the third integral follow from (A.2) and (A.3). Applying the
critical profit rate and taking expectations over first hitting times leads to

ṼI(Πt) = (1 − pθ)Πt/δ + p (θ − ζ)


Πt/δ − Π∗/δ

(
Πt

Π∗

)γ+

− LI

(
Πt

Π∗

)γ+

= (1 − pζ)Πt/δ −

(
LI +

γ+

γ+ − 1
LC

)(
Πt

Π∗

)γ+

, (B.3)

thus verifying proposition 4.
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