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Abstract 

Using the framework of real options, we develop a model and derive the optimal 

solution for the case of asset renewal. In contrast to capital replacement of physical 

assets, the applicable contexts for asset renewals are those in the service sector such 

as hotels, commercial web-sites and human resources, where the decision to renew 

depends on both the revenue the asset generates and the operating and maintenance 

cost it incurs. An analytical solution is derived for the model involving the two 

distinct but stochastically dependent sources of uncertainty without recourse to 

homogeneity of degree one to reduce the model’s dimensionality. We find that under 

plausible conditions the value of the existing asset plus its renewal option is an 

increasing function of the underlying volatilities while the trigger level for revenue 

signalling renewal is a decreasing function. In the presence of increasing uncertainty, 

patience has to be exercised before making the renewal decision. Further, the capital 

outlay required for renewal, the discount rate and the change rate for cost have a 

negative effect on the value of the existing asset plus its renewal option and on the 

trigger level for revenue while the starting revenue following renewal and the change 

rate for revenue have a positive effect. Finally, we determine the conditions under 

which homogeneity of degree one can be justified and show that these conditions are 

not upheld for the present analysis. 
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1. Introduction 

Investing in a productive asset creates a set of embedded real options: to renew the 

asset which deteriorates in quality (and possibly loses cost efficiency) over time; or 

offers possible expansion, contraction or abandonment alternatives.  We examine the 

first set of renewal or revitalization or redevelopment alternatives, where other 

authors (such as Sick, 1989) require the assumption of homogeneity of degree one for 

quality and cost in order to obtain a closed-form solution.   

 

Renewal options have their origin in the various sources of uncertainty associated 

with deploying the asset and arise from variability in revenues and cost amongst 

others, coupled with the opportunity the firm’s management has to change the 

underlying state of the asset. At any instant of time, the management can assess the 

economic viability of the asset’s continued deployment through conducting a real 

options analysis and can decide whether the time is appropriate to change the state of 

the asset by renewing it in some way or by replacing it with a new version. 

Replacement and renewal decisions typically entail determining the conditions 

signalling when it is economically acceptable to discontinue the use of the asset in its 

current state and to make an investment that will restore its former potential. The real 

options methodology has revealed a significant contrast between capital investment 

decisions formulated under the assumption of certainty with those formulated under 

uncertainty due to the time value of waiting. McDonald and Siegel (1986) and Dixit 

and Pindyck (1994) have demonstrated that in the presence of uncertainty a firm 

should wait before making an investment until the value of an investment opportunity 

exceeds the cost of that investment by an amount equalling the value of option to 

defer the investment. Further since the value of this waiting option increases with the 

underlying volatility, firms should in the presence of uncertainty act with greater 

patience and shun investing prematurely. 

 

In the absence of uncertainty, the standard method for evaluating the optimal time 

between asset replacements is to conceive replacement as an infinite chain, to treat the 

present value of future cash flows as an annuity and then to minimise the equivalent 

annual amount. This formulation is founded on the net present value technique and 

presupposes that the investment cost of the replacement, the revenues it yields and the 
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costs it incurs are all known with certainty before the original investment is made. An 

alternative approach that yields exactly the same solution is to reformulate the capital 

replacement problem using a dynamic programming model. This has the advantage 

that the model can be updated with new information as it becomes available. Since the 

dynamic programming principle is invoked that the optimal decision identified at any 

point in time is based on the optimality of all future subsequent decisions, the model 

can be re-evaluated at any time during the lifetime of the existing asset in order to 

incorporate new information on the exogenous parameters as and when it is revealed 

and a revised optimal decision can then be identified. However, both the net present 

value model based on equivalent annual amount and the dynamic programming 

formulation are not robust in the presence of uncertainty. An additional limitation is 

the discrete nature of these formulations that rules out the possibility of reaching any 

analytical solutions from which it would be possible to derive general results on the 

opportune conditions signalling replacement and on how the various exogenous 

factors influence those conditions. A real options analysis overcomes both of these 

limitations. 

 

This paper applies the real options methodology to derive an analytical solution for 

the case of optimal asset renewal in the presence of two dependent sources of 

uncertainty, revenues and costs. Three similar papers, McLaughlin and Taggart 

(1992), Mauer and Ott (1995), Dobbs (2004), assume that the capital asset under 

consideration is physical equipment that provides a constant revenue over time but 

whose functionality degrades with accumulative usage so that its operating and 

maintenance costs increase with time. When the physical equipment deteriorates to 

the extent that its operating and maintenance costs have attained a high bar level, the 

asset is replaced by a new version at a known outlay cost and its costs revert to the 

original favourable level. Outside of this world of physical equipment exists a world 

of assets whose functionality similarly degrade with usage so that their operating and 

maintenance costs increase over time, but whose revenue stream is not constant. 

Hotels at the time of their establishment and newly constructed blocks of apartment 

flats or commercial property can all command premium prices relative to their 

respective incumbent rivals because of their newness, novel features or ease of use. 

Over time, the asset deteriorates and the differentiating factors that distinguished it 

from the competition fade.  Consequently the operating and maintenance costs 
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increase and revenues wane as the asset attractiveness declines. As the difference 

between revenues and costs narrows, a point will be reached that signals the 

replacement, renewal or refurbishment of the asset to bring it back to its original 

condition. Following the capital outlay required to restore the asset to its former state, 

the revenues and costs will revert to their more favourable levels. The process of asset 

usage accompanied by escalating costs and flagging revenues will then re-commence 

and continue until the conditions signalling re-investment are attained, when the entire 

process is repeated again. This regenerative process of eroding revenues and 

escalating costs followed by renewal investment seems to be a credible representation 

for many phenomenons other than rented real estate. It seems to be applicable for 

elements of the travel industry such as cruise liners and vehicle rentals, for elements 

of the media business such as commercial web-sites and media production, for 

elements of the entertainment business such as theatres, stadium and theme parks, and 

for elements of professional clubs such as football teams. Indeed most human 

resources, and especially those that are specialised like professionals, require 

revitalization through periodic re-education, so perceived standards are upgraded and 

cost efficiency restored. All these assets develop increasing costs but falling revenues 

from increasing accumulated usage until the asset condition is restored through an 

injection of capital spending that brings the revenue and operating and maintenance 

cost back to their former favourable levels. In this way, the asset progresses endlessly 

though consecutive stages of usage and renewal. Whereas physical assets seem to 

experience deterioration through accumulative usage that leads to escalating costs, 

assets deployed by service industries seem to experience both falling revenues and 

increasing costs in line with accumulative usage. 

 

The presence of two or more distinct sources of uncertainty that can influence the 

value of an option on a real asset introduces a significantly higher level of complexity 

into both the formulation of the model and particularly the derivation of an analytical 

solution. Real option analyses involving two or more sources of uncertainty have 

typically adopted one of two methods to overcome the difficulty imposed by 

multidimensionality. The first method reduces the dimensionality of the resulting 

partial differential equation. Dixit and Pindyck (1994) treat the option value as a 

function of homogeneity of degree one. Homogeneity of degree one implies that the 

partial differential equation for the option value under continuance can be expressed 
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in terms of the ratio of two variables and the resulting equation can be solved using 

the normal methods. An equivalent approach is to conceive the model in terms of an 

exchange option formulation and to use the results of Margrabe (1978) to derive the 

solution. Their equivalence stems from the assumption of homogeneity of degree one 

that Margrabe (1978) uses to derive his results. The limitation of this first method 

pivots on the validity of the assumption of homogeneity of degree one. Even if the 

underlying asset value is a function with homogeneity of degree one, the inference 

that the option value is similarly a function with homogeneity of degree one (as in 

Paxson and Pinto, 2005) is not a proof. The second method relies on numerical 

procedures to solve the multidimensional partial differential equation, as in 

Boyle (1988), Brennan and Schwartz (1978), Cortazar (2001), Geske and Shastri 

(1985), and  Schwartz and Moon (2000). However, numerical methods do not have 

the elegance of an analytical solution. In our real options analysis of asset renewal 

under two distinct sources of uncertainty, we identify an analytical solution that 

satisfies the partial differential equation for the option under continuance and then 

proceed to derive an analytical solution. Further, we demonstrate that the analytical 

solution does not require an assumption of homogeneity of degree one and in fact 

refutes it. 

 

Sick (1989) and Williams (1991) applied the exchange option analogy to capital 

budgeting (“now, if we double both P and K, the option value must double”).  

McLaughlin and Taggart (1992) developed an early application of real options 

analysis involving capital replacement. Their focus is to determine the opportunity 

cost of excess capacity through evaluating the change in the option value before and 

after diverting the existing capacity to produce an alternative product. Their 

formulation, however, assumes a known lifetime for the equipment and uses a 

discretised binomial lattice representation to determine the option value. Mauer and 

Ott (1995) applied a continuous time real options framework to capital equipment 

replacement under uncertainty. In their model, operating and maintenance cost is 

expressed as geometric Brownian motion with a drift parameter reflecting asset 

deterioration and revenues are treated as known and constant. The authors incorporate 

a depreciation tax shield in the cash flow, subtract the after tax salvage price gain on 

disposal from capital replacement outlay and postulate that depreciation and salvage 

price are both functions of the operating and maintenance cost. In line with the 
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common finding between option value and waiting time, the authors demonstrate that 

the expected time between capital replacements is an increasing function of the 

underlying volatility. They also show that the expected time between capital 

replacements is an increasing function of the replacement outlay but a decreasing 

function of the salvage price.  They extend their analysis to incorporate uncertainty 

concerning the arrival of new more efficient technologies and tax changes. Dobbs 

(2004) makes similar assumptions concerning the nature of cost and revenue but 

produces a simplified model variant by excluding the effects of depreciation and the 

salvage price gains on disposal. He similarly demonstrates that in the presence of 

uncertainty, the level of operating and maintenance cost signalling the replacement of 

the capital equipment is an increasing function of the underlying volatility and 

extends the model to reveal the relationship between the option value and the salvage 

price. 

 

There exists a parallel thread of investigations emanating from the management 

science literature on analytical techniques for dealing with uncertainty and the capital 

replacement decision for real assets. Simulation techniques used in capital budgeting 

have been explored by Hertz (1964) and Hull (1980). Apeland and Scarf (2003) 

develop a Bayesian approach to updating the capital replacement decision on the 

release of new information. Analytical methods more aligned to the analysis of this 

paper include Massé (1962), Jorgenson, McCall and Radner (1967), Kamien and 

Schwartz (1971), Feldstein and Rothschild (1974), Rust (1987) and Ye (1990). This 

paper extends their analyses by determining an analytical solution to the capital 

replacement option function under uncertainty in the presence of two sources of 

stochastic variation. 

 

The rest of the paper is organised in the following way. The next section investigates 

the continuous model of asset renewal under certainty by treating the variables, 

revenue and cost, as deterministic functions of time in order to use the results as a 

benchmark against which we can compare the results from the stochastic model. 

Section 3 is devoted to the formulation and solution of the model under uncertainty. 

The two uncertain variables, revenue and cost, are inserted into the fundamental 

partial differential equation expressing the option’s value under continuance through 

Ito’s lemma. It is demonstrated that the option’s value is a function whose degree of 
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homogeneity is never one. Although we have an analytical function of the option’s 

value, we need numerical methods to derive the levels of the two variables signalling 

renewal. The numerical methods we use are discussed in section 4. This is followed 

by the sensitivity analysis of the solution that explores the way the various parametric 

values influence the solution. Since the condition of homogeneity of degree one is not 

fulfilled for the current formulation, section 6 investigates the circumstances that have 

to be obeyed in order to adopt homogeneity of degree one to safely reduce the 

dimensionality of the partial differential equation. The final section is the conclusion. 

 

2. Renewal Decision under Certainty 

A firm owns a capital asset that has a significant impact on its business performance 

and is seeking to identify the economic conditions triggering its renewal to restore its 

economic potential. The investment in the asset is treated as irreversible in the sense 

that the firm is only able to recover an insignificant proportion of the total capital 

outlay if the project is divested. The net cash flow (or profit) associated with this asset 

at any time is the differences between the revenue the asset generates and the 

operating and maintenance cost it incurs. The output revenue is denoted by P  and the 

associated cost by C , so the net revenue at any time is ( )P C− . The revenue at the 

origination of the asset is 0P  and P  is assumed to decline at the annualised continuous 

rate of 0α ≤  because of the asset’s fading attractiveness to generate revenue. The 

operating and maintenance cost at the origination is 0C  and C  is assumed to grow at 

the annualised continuous rate of 0θ ≥  since the asset’s efficiency deteriorates with 

usage. The initial cost of the capital investment is denoted by K. It is assumed for 

convenience that the residual salvage value of the asset is zero at the time of its 

renewal; this has no material bearing on the results since it can be absorbed in K  as 

long as the residual value is constant or at least not stochastic. The present value of 

the project V  for a specified lifetime T  is derived from discounting future net 

revenue cash flows at the annualised continuous risk-adjusted rate of µ : 

 ( )0 0
0

T
t t tV P e C e e dtα θ −µ= −∫ . (1) 
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We will assume that the asset is financially viable for some definite lifetime so that 

α < µ  and θ < µ . To determine the optimal lifetime for the asset, we consider the 

conceptual infinite project having value W, which is defined as the sequential chain of 

identical projects replaced at equal intervals of time T: 

 ( ) TW V W K e−µ= + − . (2) 

Equation (2) assumes that when the existing asset is renewed by a brand new variant 

so that the output revenue and cost levels revert to their original values of 0P  and 0C  

respectively instead of their prevailing values. The optimal lifetime is found from 

differentiating equation (2): 

 ( ) ( )0 0
T T T T TdW dW

P e C e e e W K e
dT dT

α θ −µ −µ −µ= − + − µ − . (3) 

Using the suffix * to denote the optimal value for the variables in the deterministic 

formulation, the first order condition for a maximum is: 

 ( ) ( )
1

T* T* T*
T*

V * K
P * C * e W * K e e

e
−µ −µ −µ

−µ

−
− = µ − = µ

−
,  

so, 

 ( ) ( )1 T*e
P * C * V * K

−µ−
− = −

µ
. (4) 

The right hand side of equation (4) represents the value generated from re-investing in 

the asset with an optimal lifetime. In contrast, the left hand side of the equation 

represents an annuity with a lifetime T *  where the annuity amount equals the 

optimal net revenue. When the left hand side value is greater than V * K− , then it is 

more valuable to continue with the existing project until the equality specified by 

equation (4) is realised. If on the other hand, the left hand side is less than V * K− , 

then it is more valuable to discontinue the existing project and to renew it. The 

switching point as specified by equation (4) defines the optimal lifetime to occur 

when the net value generated from renewing the existing asset is equal to an annuity 

with the annuity amount equalling the difference between the optimal revenue and the 

cost and with an annuity duration equalling the project’s optimal lifetime. 

 

Since: 
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( )

( )( ) ( )( )

0 0

0 01 1

T*
t t t

o

T* T*

V* P e C e e

P C
e e

α θ −µ

− µ−α − µ−θ

= −

= − − −
µ − α µ − θ

∫
 

then equation (4) becomes: 

 0 01 1T* T* P Ce e
P * C * K

−µ −µ⎛ ⎞ ⎛ ⎞α θ
+ × − + × = − −⎜ ⎟ ⎜ ⎟µ µ µ − α µ µ µ − θ µ − α µ − θ⎝ ⎠ ⎝ ⎠

. (5) 

 

Since 0
T*P* P eα=  and 0

T*C* C eθ= , the optimal value of T  can be found by 

solving equation (5); because of its non-linearity, the solution has to be evaluated 

through using a numerical solving procedure such as goal seek provided by Excel®. 

 

Differentiating equation (4) again and evaluating at 0dW
dT

=  yields: 

 ( )
2

2 1

T*

T*

d W e
P * C *

dT e

−µ

−µ= α −θ
−

.  

The optimal solution is a maximum whenever the incremental change in net revenues 

with respect to time is negative around the turning point. A negative change in net 

revenues heralds the trigger point for replacing the asset. Although there are a range 

of alternative values forcing ( ) 0P * C *α −θ < , a strong condition for a point of 

maximum occurs when simultaneously, revenues are declining proportionately, 

0α < , and costs are increasing proportionately, 0θ > . We can surmise that it is only 

when the distance between revenues and costs sufficiently narrows that the renewal of 

the asset becomes economically tenable. If in contrast, the output price is an 

increasing function of time and unit costs is a decreasing function, then there is no 

apparent economic reason for renewing the existing asset at all.  

 

3. Renewal Decision under Uncertainty 

We will develop the stochastic model by allowing the output revenue P  and operating 

and maintenance cost C  to follow distinct but dependent stochastic processes, instead 

of behaving as deterministic functions of time. In line with the previous real options 

analysis on capital replacement by Mauer and Ott (1995) and Dobbs (2004), we will 

adopt the simplest stochastic process that is the basis for many continuous time real 
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options analyses, see Dixit and Pindyck (1994), Trigeorgis (1996), by assuming that 

each of the two variables follows the geometric Brownian motion process with drift. 

The stochastic process for revenue P  is described by: 

 P PdP Pdt P dz= α + σ . (6) 

The change in the value of P  over an interval t  to t dt+  is explained by a 

proportional deterministic drift component α  and an incremental Wiener term 

comprising the stochastic component. The Wiener process is defined by 

P t,Pdz u dt=  where t,Pu  follows a standard Normal distribution with zero mean 

and unit variance, implying that E dP Pdt= α⎡ ⎤⎣ ⎦  and 2 2
PVar dP P dt= σ⎡ ⎤⎣ ⎦ . In the 

same way, the stochastic process for C  is described by: 

 C CdC Cdt Cdz= θ + σ , (7) 

with similar definitions. We will treat the stochastic evolutions of revenue and cost to 

be dependent by allowing the exogenous shocks affecting the variables P  and C  to 

be correlated. This potential dependence is described by the covariance of the two 

shock variables, and so: 

 P CCov dP,dC PCdt= ρσ σ⎡ ⎤⎣ ⎦ , 

where the correlation coefficient ρ  is constrained by 1ρ ≤ . 

 

The decision facing management is whether the existing asset should be renewed 

immediately by a new variant or whether it should continue to be deployed until less 

favourable values of P  and C  are revealed. The decision that management makes 

ought to be based on the prevailing values of  P  and C . The solution for the 

deterministic model tells us that the capital asset will be renewed only when the levels 

of the revenue and cost have sufficiently narrowed and that the optimal values of P  

and C  signalling renewal occurs simultaneously at a single point in time. Let the 

levels triggering the renewal of the asset under uncertainty be P�  and C�  for P  and C  

respectively. Treating P  and C  as independent, we can envisage a trigger revenue 

level P�  where 0P P≤�  that will prompt the renewal of the asset, and a trigger cost 

level C�  where 0C C≥�  that will prompt the asset’s renewal. This is in line with the 

strong sufficient condition for a maximum for the deterministic model.  However, in 

contrast to the deterministic model, we are not necessarily searching for single pair of 
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trigger points { }P,C��  when the variables are stochastic. The time when P  attains its 

trigger level may not coincide exactly with the time when C  attains its trigger level. 

Moreover, it is as rational to replace the asset when relatively P  is moderate when C  

is low as when P  is high when C  is moderate. The conditions signalling the asset’s 

renewal can only be described by a possibly infinite set of pairs { }P,C�� , which can be 

represented by the locus function ( ) 0G P,C =��  such that the asset is renewed 

whenever ( ) 0G P,C ≤��  and is not renewed when otherwise. At every instant of time, 

management has to compute the value of the function ( )G P,C  based on the 

prevailing values of P  and C , and then make a decision based on the functions’ value 

on whether the existing asset should continue to be deployed or whether it should be 

renewed. 

 

We introduce the function F , which is defined as the value of the existing asset plus 

the option to renewed it at the exercise price K. The function F  will depend on the 

prevailing values of both revenue and cost, so ( )F F P,C= . Our analysis is to 

identify the function F  and to reveal its properties. We first proceed to identify the 

relevant boundary conditions for the function F , which are expressed as its 

asymptotic values and the economic requirements governing the renewal of the 

existing asset at the cost of K . Secondly, we determine the function F  under the 

condition for the continuance of the existing asset, and then finally use the boundary 

conditions to identify the pairs of trigger points P�  and C� . 

 

The function F , which has to be non-negative otherwise there would be no 

investment in the asset, can be separated in principle between the value of the existing 

asset ( )VF P,C  and the renewal option value ( )OF P,V , so V OF F F= + . Since the 

option value is always non-negative, VF F≥ , Trigeorgis (1996). Assuming an infinite 

lifetime,  

 ( )V

P C
F t → ∞ = −

µ − α µ − θ
 (8) 
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When P  becomes very large, there is little or no economic justification for replacing 

the asset so the renewal option value tends to zero and ( )VF t → ∞  dominates the 

value of F . In contrast, a value of  P  close to zero makes the renewal of the asset 

almost inevitable and this is reflected in a significantly large value for the renewal 

option so the value of  OF  dominates the value of VF . Similarly, we can argue that 

there is little or no economic justification for renewing the asset when the costs 

become very small and consequently, the value of the renewal option will be 

relatively small and dominated by the value of VF . In contrast, there is strong 

economic justification for renewing the asset when C  becomes significantly large. 

This implies that the value of the renewal option becomes relatively large and 

dominated the value of VF . We can express all these conditions as: 

 ( ) ( ) ( ) ( )0 0 0 0o o o oF ,C ,F ,C ,F P, ,F P,∞ = = ∞ = ∞ = ∞ . (9) 

 

We can extend the boundary condition developed by Dobbs (2004) to the current 

formulation. The boundary condition defining the switching region at P P= �  and 

C C= �  is derived by replacing W  by F  in equation (2) and temporarily treating F  as 

a function of T : 

 ( ) ( ) ( )( ) ( )0
T*

T* Tt

T

F T P C e dt F K e−µ −−µ= − + −∫ . (10) 

Allowing T  to equal T *  and rewriting equation (10) in terms of the variables P  and 

C : 

 ( ) ( )0 0F P,C F P ,C K= −�� . (11) 

This is the value matching condition, Dixit and Pindyck(1994). It defines the point 

values for variables P P= �  and C C= �  when management is indifferent between the 

continuance of the existing asset and its renewal and it represents the condition 

defining the trigger for switching between the existing asset and its renewal. 

Associated with this is the smooth pasting condition that demands that the two 

functions representing the continuance of the existing asset and its renewal, expressed 

respectively as the left and right hand sides of equation (11), have identical slopes at 

the trigger point. This requires that: 
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 0
P P,C C

F
P = =

∂
=

∂ ��
, (12) 

and 

 0
P P,C C

F
C = =

∂
=

∂ ��
, (13) 

since the right hand side of equation (11) is a constant. 

 

Applying the general result developed by Dixit and Pindyck(1994), the function F  

assuming continuance of the existing asset is derived from the dynamic programming 

principle: 

 ( )Fdt P C dt E dFµ = − + ⎡ ⎤⎣ ⎦ , (14) 

where E denotes the expectation operator. Equation (14) states that over the time 

interval t  to t dt+ , the expected return from owning the asset F  is equal to the 

profit flow ( )P C dt−  that the asset generates and the expected capital appreciation 

of F . As in the deterministic case, we assume that 0-µ α > and - 0µ θ> . As a function 

of both P andC , dF  can be found using Ito’s lemma, Trigeorgis(1996): 

 

2 2 2
2 2 2 21 1

2 22 2P C P C

P P C C

F F F
dF P C PC dt

P CP C

F F F F F
P C dt P dz C dz
P C t P C

⎛ ⎞∂ ∂ ∂
= σ + σ + ρσ σ⎜ ⎟∂ ∂∂ ∂⎝ ⎠

∂ ∂ ∂ ∂ ∂⎛ ⎞+ α + θ + + σ + σ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (15) 

When taking the expectation of dF , the terms involving Pdz  and Cdz  in equation 

(15) fall to zero. Also, we can set 0F
t

∂
=

∂
 since the conceptual time horizon is infinity 

and the parameters α  and θ  are treated as independent of time, Dixit and 

Pindyck (1994). It follows that equation (14) after dividing by dt  can be rewritten as: 

 

( )

2 2 2
2 2 2 21 1

2 22 2

0

P C P C

F F F
P C PC

P CP C
F F

P C F P C
P C

∂ ∂ ∂
σ + σ + ρσ σ

∂ ∂∂ ∂
∂ ∂

+α + θ − µ + − =
∂ ∂

 (16) 

 

The solution to this partial differential equation is made up of the particular solution 

and the homogenous solution. The particular solution is:  
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P C

F = −
µ − α µ − θ

, (17) 

which takes the same form as (8). This implies that the homogenous solution 

represents the renewal option value minus a quantity reflecting the extent that the 

existing asset only has a finite lifetime.  

 

The simplest kind of function satisfying the homogenous part of the partial 

differential equation takes the form: 

 F AP Cβ η=  (18) 

where A is a parameter to be determined. This generic functional form can be justified 

on two counts. In their analysis of cost and price uncertainty, Dixit and 

Pindyck (1994) reach the same functional form as (18) with the additional 

requirement that the exponents comply with homogeneity of degree one, 1β+η = . In 

our formulation, we make no assumptions on the degree of homogeneity of  F . 

Secondly, the functional form (18) satisfies the partial differential equation (16); 

substituting (18) in (16) yields: 

 ( ) ( )( )2 21 1
2 21 1 0σ β β − + σ η η − + ρσ σ βη + αβ + θη − µ =P C P C F .  

It follows that the parameters β  and η  must satisfy the relationship: 

 ( ) ( ) ( )2 21 1
2 21 1 0P C P CQ ,β η = σ β β − + σ η η − + ρσ σ βη + αβ + θη − µ = . (19) 

The function ( ) 0Q ,β η =  defines an ellipse since the square of the coefficient for the 

term βη  is less than four times the product of the coefficients for the terms 2β and 2η , 

Kaplan and Lewis (1971), that is: 

 ( ) ( )2 2 21 1
P C P C2 2ρσ σ <4 σ σ . 

The function ( ) 0Q ,β η = crosses the η  axis for the pair of β  values: 

 
2

1 1
2 22 2 2

2
+ −

⎛ ⎞ ⎛ ⎞α α µ
β = − ± − +⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠
,

P P P

, (20) 

Dixit and Pindyck (1994) establish that 0+β ≥  and 0−β ≤ . Similarly, the function 

( ) 0Q ,β η =  crosses the β  axis for the pair of  η  values: 

 
2

1 1
2 22 2 2

2
+ −

⎛ ⎞ ⎛ ⎞θ θ µ
η = − ± − +⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠
,

C C C

, (21) 
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where 0+η ≥  and 0−η < .  

 

The ellipsoidal shape ( ) 0Q ,β η =  is illustrated in figure (1a, 1b and 1c), which 

exhibits the function Q  for the following set of parametric values that define the base 

case: 

α  θ  µ  σP  σC  

-5% 10% 25% 25% 25% 

and for ρ  equal to 0.5, 0.0 and -0.5 respectively. Because of (20) and (21), the 

function ( ) 0Q ,β η =  intersects the two axes at identical points irrespective of the 

value of ρ : for the base case these are: 

 

 

 

 

Figure (1) reveals that the parameterρ  influences the tilt of the ellipsoid. Denoting by 

ϕ the angle required to rotate the axes in a clockwise direction in order to eliminate 

the term in βη , then: 

 1
2 2 2

2⎛ ⎞ρσ σ
ϕ = ⎜ ⎟σ − σ⎝ ⎠

-1 P C

C P

tan , 

except when σ = σP C , in which case 4
πϕ = ±  whose sign depends on the sign of ρ , 

Kaplan and Lewis (1971).  

 

Although constrained by ( ) 0Q ,β η = , the possible values of β  and η  can belong to 

any of the four quadrants, that is: 

 

{ }
{ }
{ }
{ }

1 1 1 1

1 2 1 2

2 1 2 1

2 2 2 2

0 0

0 0

0 0

0 0

, , ;

, , ;

, , ;

, , .

β η β ≥ η ≥

β η β ≥ η ≤

β η β ≤ η ≥

β η β ≤ η ≤

 

This implies that the homogenous solution has the general form: 

 1 1 1 2 2 1 2 2
1 2 3 4F A P C A P C A P C A P Cβ η β η β η β η= + + + . (22) 

 Positive Root Negative Root 

β  4.413 -1.813 
η  1.935 -4.135 
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The values of the coefficients for equation (22) can be assessed in line with the 

conditions expressed in equation (9). Since ( )0 0F ,C = ∞  then 0β < , and since 

( )0F P,∞ = ∞  then 0η > , which together imply that 3 0A ≠ . In contrast, since 

( )0 0F ,C∞ =  then 1A  and 2A  are both zero, and since ( )0 0 0F P, =  then 4 0A = . 

Collectively, equation (22) reduces to: 

 2 1
3

β η=F A P C . (23) 

 

Stitching together the homogenous solution (23) with the particular solution (17) 

yields the overall solution: 

 2 1
3

β η= + −
µ − α µ − θ
P C

F A P C . (24) 

Substituting the value matching condition (11) in (24) yields: 

 2 1 2 1 0 0
3 3 0 0

β η β η+ − = + − −
µ − α µ − θ µ − α µ − θ

���� P CP C
A P C A P C K . (25) 

The two smooth pasting conditions, equations (12) and (13) respectively, imply that: 

 2 11
3 2

1 0β − ηβ + =
µ − α

��A P C , (26) 

 2 1 1
3 1

1 0β η −η − =
µ − θ

��A P C . (27) 

Collectively, the four equations (19), (25), (26) and (27) contain five unknowns; these 

are 2β , 1η , 3A , �P and �C . Since it is not possible to determine unique values for all 

five unknowns, the model seems to be indeterminate and on the surface flawed. 

 

In their analysis of investment under two distinct sources of uncertainty, Dixit and 

Pindyck (1994) instead of identifying unique levels signalling investment for the two 

stochastic variables, determine a boundary that discriminates between continuance 

and investment based on the values for two variables. Their solution involves 

identifying the function that defines discriminating boundary as a function of the two 

variables rather than their unique levels. A single pair of trigger values { }P,C��  

signalling the investment does not make economic sense in the presence of two 

sources of uncertainty since we can envisage any number of distinct scenarios all 

indicating asset renewal. Management would equally renew the asset when C  is high 
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and  P  is moderate as when C  is moderate and  P  is low. Further, since the 

probability of simultaneously attaining the single pair of trigger values { }P,C��  is 

remote, we could argue that the appropriate trigger region should be specified by say 

{ }P P,C C≤ ≥ �� , which states that the renewal of the existing asset would be signalled 

when the prevailing revenue falls below some floor level and prevailing cost rises 

above some ceiling level. However, this decision rule ignores the possibility of any 

trade-off between the respective movements of revenue on one hand and operating 

and maintenance cost on the other. When the boundary discriminating between 

continuance and renewal is smooth, then along this boundary management would hold 

on to the same decision since any positive (negative) increment in  C  could be 

compensated by a positive (negative) increment in P . In the presence of a trade-off, 

the boundary discriminating between continuance and renewal is described by a 

smooth function, ( )G P,C 0=�� . 

 

The function ( )G P,C 0=��  is derived using the following procedure. We start by 

specifying the value of one of the unknowns, say C� . From this starting value, it 

should be feasible at least in principle to determine the values of the remaining four 

unknowns, including the corresponding value of P� . By varying the starting value of 

C�  in a systematic way, the corresponding values of P�  can be generated and we can 

build up the set { }P,C��  and map out the locus of values satisfying ( )G P,C 0=�� . A 

more detailed description of the mechanics of the procedure is discussed in the next 

section. 

 

Combining (26) and (27), we obtain: 

 
( ) ( )2 1 2 13

2 1

1 1
β η β η

= − × = ×
β µ − α η µ − θ

��
� �

P C
A

P C P C
, (28) 

and: 

 2

1

β µ − α
= − × ×

η µ − θ
��P C . (29) 

Substituting the values of 3A  and �P  from (28) and (29) respectively into (25) yields: 
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( )

( )
( )

2
2 1

2 1

20 0 0 0
2 1

1 1

1
−β

β η

β +η

⎛ ⎞⎛ ⎞−β µ − α⎜ ⎟− β − η − = − −⎜ ⎟⎜ ⎟⎜ ⎟η µ − θ η µ − θ µ − α µ − θ⎝ ⎠⎝ ⎠

�
�
P C P CC

K
C

. (30) 

For a pre-specified value of C� , the solution values of 2β  and 1η  can be derived from 

(19) and (30). Since the functions involved are non-linear in character and it is not 

feasible to develop analytical solutions for 2β  and 1η , we have to resort numerical 

techniques to derive their solution. This is explained in the next section. From 

knowing the values of C� , 2β  and 1η , the corresponding value of P�  can be sought 

from (29). By varying the pre-specified value of C�  over a reasonable range the 

corresponding value of P�  can be evaluated and the resulting pairs of values then 

satisfy the function ( ) 0G P,C =�� .. 

 

Since both P�  and C� are intrinsically non-negative and µ − α  and µ − θ  are assumed 

to be non-negative, then (29) implies that these conditions are upheld only when 

either 2 0β < and 1 0η >  or  2 0β > and 1 0η <  apply. The second of these conditions 

means that the renewal of the asset occurs for very large values of P  and very small 

values of C and since this defies economic logic, we can safely ignore this possibility. 

Equation (29) suggests that P�  is an increasing function C�  but this has to be tested 

since the parameters 2β  and 1η  are variable rather than fixed constants. Further, since 

2 0β <  and 1 0η >  then (28) implies that 3 0>A . 

 

Since the quantity: 

 ( )0 0oF P ,C K− > , 

otherwise we would not invest in the asset in the first place, then combining (25), (28) 

and (29) yields: 

 ( ) ( ) ( ) ( ) ( )2 1 2 1
2 1

1 1 0= β + η − = − β − η >
β µ − α η µ − θ

���� P C
F P,C . (31) 

From (31), it follows that 1 21η < − β . The function F  is not homogenous of degree 

one but less than one, so that a doubling of  P  and C  will not produce a doubling of 

the value of F , but rather a value slightly less than a doubling. 
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The stochastic model for asset renewal should revert to its deterministic variant when 

the underlying volatilities are set equal to zero. Specifying  in (16), 0Pσ =  and 

0Cσ = : 

 ( ) 0F F
P C F P C
P C
∂ ∂

α + θ − µ + − =
∂ ∂

.  

The solution to this partial differential equation takes the form: 

 
P C

F AP Cβ η= + −
µ − α µ − θ

  

Focusing on the homogenous solution, then: 

 ( ) 0β η = αβ + θη − µ =Q , . (32) 

To demonstrate the equivalence of the solutions for the deterministic and stochastic 

variants of the model when 0Pσ =  and 0Cσ =  requires establishing from the value 

matching condition (25) that the quantity: 

 0 0
P C

AP C AP Cβ η β η− + −
µ − α µ − θ

����  (33) 

equals the left hand side of equation (5). Combining (29) and (32) to eliminate η  yields: 

 
1 C

P

⎛ ⎞α θ µ − α⎛ ⎞= − ⎜ ⎟ ⎜ ⎟⎜ ⎟β µ µ µ − θ ⎝ ⎠⎝ ⎠

�
� . (34) 

We note that: 

 ( )( ) ( )0 0P C
exp T exp T

P C

β η
⎛ ⎞ ⎛ ⎞

= − αβ + θη = −µ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

� �
� � . (35) 

Using (29), (34), and (35) sequentially, then after some simplification (33)  becomes: 

 
( ) ( )

0 0

0 0

1 1

β η β η

β η

β η

−µ −µ

− + −
µ − α µ − θ

= − + × + −
β µ − α β µ − α µ − α µ − θ

⎛ ⎞ ⎛ ⎞α θ
= + × − + ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟µ µ µ − α µ µ µ − θ⎝ ⎠ ⎝ ⎠

� �

����

�� � �
��

��
T T

P C
AP C AP C

P CP P P C
P C

e e
P C ,

 

which is the required result. The formulation and the solution for the stochastic 

variant of the model based on two sources of uncertainty produce identical results as 

the deterministic variant when the underlying volatilities for the two variables are set 

equal to zero. The derivation did not require any statement on the feasible signs of the 
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various parameters since it is implicit. Equations (26) and (27) imply that A  and η  

share the same sign, but the opposite sign to β . Rewriting equation (30) as: 

 ( )( ) 0 0
0 0 1

P P C C
AP C exp T Kβ η ⎛ ⎞⎛ ⎞− −

µ − = − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟µ − α µ − θ⎝ ⎠ ⎝ ⎠

��� , (36) 

and since to be economically meaningful, the optimal value of the asset, which is: 

 ( ) 0 0P P C C
V T

⎛ ⎞⎛ ⎞− −
= − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟µ − α µ − θ⎝ ⎠ ⎝ ⎠

��� , 

has to be greater than the cost of the capital investment K , it follows that the right 

hand side of equation (36) has to be positive, and so 0A > . By implication, 0β <  

and 0η > . 

 

4. Applied Numerical Methods for the Stochastic Model 

Since (19) and (30) involve complicated non-linear relationships between the 

unknown quantities and no analytical solution exists, this section discusses the 

numerical procedures and techniques used to evaluate the solution for the stochastic 

model and the numerical sensitivity analysis that is performed in the next section. We 

define the function ( )2 1 0β η =H ,  from (30): 

 
( ) ( )

( )
( )

2
2 1

2 1

20 0
2 1 2 1

1 1

0 0

1

0

−β
β η

β +η

⎛ ⎞⎛ ⎞−β µ − α⎜ ⎟β η = − β − η − ⎜ ⎟⎜ ⎟⎜ ⎟η µ − θ η µ − θ⎝ ⎠⎝ ⎠

− + + =
µ − α µ − θ

�
�
P CC

H ,
C

P C
K

 (37) 

which is explored numerically by extending the base case to: 

0P  0C  K  C�  α  θ  µ  σP  σC  ρ  

80 20 100 40 -5% 10% 25% 25% 25% 50% 

 

The function ( )2 1 0β η =H ,  is displayed in figure (2) for the quadrant values where 

1 0η > and 2 0β < . Although the function is continuous over the quadrant, the exhibit 

reveals a discontinuity at the apex, which is due to imprecision arising from the 

numerical method used. It can be demonstrated that by re-writing equation (37) as: 

 
( )

( )
( )

0 0 0 01 0
P C P CC

K
C

β
β η

β+η

⎛ ⎞⎛ ⎞η µ − θ ⎛ ⎞⎜ ⎟− β − η − − η + + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟µ − θ −β µ − α µ − α µ − θ⎝ ⎠⎝ ⎠⎝ ⎠

�
�  
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that 2 0β → −  and 1 0η → +  is a solution to ( )2 1 0β η =H ,  and that the function 

exhibits a cusp and local maximum for 2β  at these values. This revealed numerical 

discontinuity has no significant effect on evaluating the pair of values, 1η  and 2β . The 

function ( )2 1 0β η =Q , , (19), can only pass through the origin for 1η  and 2β  both 

zero when the rate of return 0µ = , which would entail that either or both of the 

assumptions that 0µ − α >  and 0µ − θ >  were violated. We can discount the 

possibility that the solution values for 1η  and 2β  being infinitesimally close to zero to 

be irrelevant in practice. In its continuous form, the function takes on a hair-pin shape 

with its apex at the origin ( )1 20 0η = β =,  and with two splayed legs emanating from 

the apex, both having negative slope.  

 

The solution values of 1η  and 2β , which occur at the intersection of the two functions 

( )2 1 0β η =Q ,  and ( )2 1 0β η =H , , can be found from figure (3). Since the function 

( )2 1 0β η =H ,  has two splayed legs, there exists in principle two points of 

intersection and it becomes necessary to identify which of the two solution points is 

relevant. For the extended base case, the values of 1η  and 2β  at the two points of 

intersection with the corresponding value of P�  are as follows: 

Intersection Point  

I II 

1η  1.586 0.824 

2β  -0.994 -1.622 

P�  50.12 157.51 

One of these two points of intersection has to be excluded for the solution to provide a 

unique answer. In the presence of a single source of uncertainty, it is known that the 

separate conditions on the two parameters are that 2 0β <  when revenue is the 

stochastic variable, Adkins (2005) and 1 1η >  when cost is the stochastic variable, 

Dobbs (2004). Although the condition on 2β  is satisfied for either point of 

intersection, the condition on 1η  is only satisfied for intersection point I. We would 

also expect the point triggering a capital renewal for the variable P�  to lie in the region 
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0P P<�  when the cost variable takes on the value 40C =� , which again eliminates 

point II. We can safely conclude that the intersection point of interest occurs when 

1 1η >  and possibly when 0P P<� , and our analysis will focus on point I solutions 

only. The solution space is therefore defined by the region bounded by 1 1η > , 

2 0β <  and 1 21η < − β . This solution space can be narrowed for 2β  even further by 

leveraging the information contained in the function ( )2 1 0β η =Q , . When 1 1η = , 

the negative root for 2β  is: 

 
( )2

1 1
2 22 2 2

2
C C

L
P P P P P

µ − θ⎛ ⎞ ⎛ ⎞ρσ ρσα α
β = − − − − − +⎜ ⎟ ⎜ ⎟σ σ σ σ σ⎝ ⎠ ⎝ ⎠

.  

When 1η = − β , the negative root for 2β  is: 

 
( ) ( ) ( )2

1 1
2 22 2 2

2
U

⎛ ⎞ ⎛ ⎞α − θ α − θ µ − θ
β = − − − +⎜ ⎟ ⎜ ⎟

σ σ σ⎝ ⎠ ⎝ ⎠
,  

where 2 2 2 2P C P Cσ = σ + σ − ρσ σ . The solution space for the two parameters is 

specified by their lower and upper bounds: 

 2β ≤ β ≤ βL U , 

 11 1≤ η ≤ − βU . 

 

Solving for 1η  and 2β  from the two equations ( )2 1 0β η =Q , and ( )2 1 0β η =H ,  is 

not straightforward since both functions are non-linear and identifying the relevant 

point of intersection requires an effective numerical solution method. The usual 

technique for solving for n unknown variables given n independent non-linear 

equations is to use Newton’s method of successive approximations.  This begins the 

process of deriving the solution values by starting with realistic initial guesses of the n 

unknown variables and then uses the analytical first derivatives (Jacobian matrix) to 

generate the successive approximations. In theory, Newton’s method converges to the 

correct solution provided that the functions are continuously differentiable, that the 

Jacobian matrix is not close to singularity and that the initial guesses are sufficiently 

close to the roots. A further complication arises when one or more of the functions in 

the set of n equations is so mathematically complicated that determining the 

derivative analytically and then numerically is prone to error. In their work on the 
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computational analysis of economic and finance problems, Miranda and Fackler 

(2002) advocate the use of Broyden’s method. Like Newton’s method, this alternative 

also uses realistic guesses of the n unknown variables to start the process of 

evaluating the roots and generates the successive approximations based on the first 

derivatives which are numerically evaluated instead of being derived from the 

analytical Jacobian matrix. Determining the Jacobian matrix numerically by 

calculating the slopes over very small intervals around the focal values rather than 

analytically can be more efficient since the algorithm can be applied to any set of n 

equations and it avoids any pitfalls of having to derive the derivatives analytically and 

then numerically without error. 

 

Like Newton’s method, the effectiveness of Broyden to yield robustly precise 

solutions for the roots depends on the good behaviour of the first derivatives of the 

functions and the closeness of the initial guesses of the roots. Figure (3) reveals that 

the choice of the initial guesses is instrumental in identifying the relevant solution 

from the two possibilities and concentrating the search process to an area of the graph 

where the Jacobian matrix is well defined. Since a poor choice for the initial guesses 

may entail the unacceptable root to emerge or the first derivative of ( )2 1 0β η =H ,  to 

become irregular, then for a given value of C� , the initial guesses for the roots were 

identified visually from figure (3). Broyden’s method was then applied to yield the 

solution values of 1η  and 2β  satisfying the two equations ( )2 1 0β η =Q ,  and 

( )2 1 0β η =H , .  It was observed that the convergence towards the solution was rapid, 

due to the distinctive slopes of the two functions. The corresponding value of P�  was 

then evaluated from equation (29). A small change was made to the variableC� , its 

value was inserted into equation (37) and Broyden’s method was re-applied using the 

solution values of 1η  and 2β  from the previous process as the initial guesses. After 

evaluating the solution values for 1η  and 2β  for this value of C� , the corresponding 

value of P�  was calculated. In this way, it is possible to build up two vectors of values 

for P�  and C�  that satisfy the relationship ( ) 0G P,C =�� . These are displayed in 

figure (4). 
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This figure reveals that the relationship between P�  and C� , the pairs of values 

signifying the trigger point  for asset renewal, is positive and that the strategy of 

continuing with the existing asset is sustainable when an increase in costs is supported 

by a sufficiently high level of or significant increase in revenue. Figure (4) also shows 

that for the majority of occasions the value P�  that triggers the renewal exceeds the 

corresponding value C�  and that profit (the difference between revenue and cost) has 

to drop below a positive floor level in order to signal the switch between the existing 

asset and its brand new version. Although the relationship between P�  and C�   is 

monotonically increasing, it increases at a decreasing rate so that for large values of  

P�  and C�  the absolute increase in the value of P�  is less than that for C�  so that 

inevitably the value of C�  exceeds P� . In principle the decision to replace the existing 

asset with a new version may have to wait until the profit becomes negative. The cut-

off value for C�  where the decision to switch is based on a zero profit floor level is 

derived by eliminating 2β  from (19) through using (29) when P C= ��  and solving the 

quadratic equation for single variable 1η . The positive solution value of 1η  is then 

used to derive 2β , and these values are fed into equation (30) to identify the value of 

C� . The values specifying a zero profit floor level are: 
η  β  C�  P�  

1.6805 -0.8403 103.3849 103.3849

Based on these values, we can discount the possibility that the trigger point occurs for 

zero profit or less for our base case since it is highly unlikely that the calculated 

values of  P�  and C�  will ever be attained in practice. 

 

The solution based on the stochastic framework involving the two sources of 

uncertainty can be compared with its deterministic variant. For the base case 

conditions assuming no stochastic variability 0Pσ =  and 0Cσ = , we use (5) to 

determine the optimal time for replacing the asset T * . Using the goal seek facility, 

the value of T *  is 7.2566 years and the corresponding optimal values of P  and C  

are 55 6565=P* .  and 41 3217C* .= . For the base case conditions with stochastic 

variability and letting the pre-specified value of C�  be 41 3217C .=� , the 

corresponding optimal value of P  is 51 2498P .=� . This suggests that for a given 
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value of C� , the optimal renewal rule for P  based on the deterministic formulation of 

the model exceeds that for the stochastic variant and that management should exercise 

patience in the presence of uncertainty before renewing the existing asset. Before 

renewing the existing asset with its net operating revenues, management has to be 

reassured that the existing asset is genuinely performing unsatisfactorily and that it is 

economically prudent to renew the asset at the investment cost that entails. Dixit and 

Pindyck (1994) refer to this waiting to make sure that the revenue has hit some 

unsustainable floor level rather than being the result of a statistical aberration as 

hysteresis and this reflects that the process of decision making is path dependent. 

 

5. Sensitivity Analysis 

This section explores the sensitivity analysis performed on the solution in order to 

establish that the results engendered by our analysis are intuitively sound and that the 

underlying analytical methods are credible. A combination of numerical and 

analytical methods is used to identify the effects of parametric changes on the value of 

the existing asset plus the renewal option and the trigger levels signalling the asset’s 

renewal. The impact of the various parameters on the values of the 1η  and 2β , and 

consequently on the values of P�  and ( )= �� �F F P,C , is not straightforward due to their 

complicated behaviour as expressed by the functions ( )2 1 0β η =Q ,  and 

( )2 1 0β η =H , . We relegate to the Appendix most of the analysis specifying the 

values and signs of the key derivatives that form the building blocks for determining 

the effect that the exogenous parameters exert on endogenous quantities. 

 

Initially, we will explore the impact of the volatilities, Pσ  and σC ,  on the values of 

the parameters 1η  and 2β , and through them on the shape and behaviour of the 

functions P�  and �F , while keeping C�  a constant. We establish that the value of the 

parameter ρ  exerts significant influence on the shape and behaviour of these 

functions and on how the remaining exogenous factors affect the endogenous 

quantities. 
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The effect of changes in Pσ  ( )Cσ  on P�  and �F  are transmitted through 2β  and 1η  

along the functions Q  and H . In the Appendix, we establish that the signs of 2∂β
∂σP

 

and 1∂η
∂σP

 depend on the signs of 
P

Q∂
∂σ

 and 
P

Q∂
−
∂σ

 respectively. Now, from (19): 

 ( )2 2 2 11 0∂
= σ β β − + ρσ β η ≥

∂σ P C
P

Q
. (38) 

so  2 0∂β
≥

∂σP
 provided that 0ρ ≤ . However, when 0ρ > , the second term on the 

right hand side of (38) can dominate the first term, which happens when Pσ  is 

relatively small, and then 2 0∂β
<

∂σP
. The quantity 2 0∂β

<
∂σP

 when 

2 1

21
η

σ < × ρσ σ
− βP P C ; that is when the variance for the stochastic variations in 

revenue is less than the covariance multiplied by the factor 1

21
η
− β

. Also, the value of 

Q  attains a minimum when: 

 1

21
η

σ = × ρσ
− βP C .  

A similar argument can be used to establish that 1 0∂η
<

∂σP
 and that 1η  is a decreasing 

function of Pσ  when 2 1

21
η

σ > × ρσ σ
− βP P C , which is always true for 0ρ ≤ . 

 

The possible convex and concave nature of 2β  and 1η  are exhibited respectively in 

figures (5a and b). These two graphs represent the relationships between Pσ  with 2β  

and 1η  respectively for ρ  equalling -1.0, -0.5, 0.0, 0.5 and 1.0. All five curves for the 

two respective relationships radiate from the same points where 0Pσ = . From there 

on, the five curves can be distinguished by whether or not they possess a turning 

point. For 0ρ ≤ , 2β  and 1η   are respectively increasing and decreasing functions of 

Pσ  and do not display a turning point over its recorded range. In contrast, when  
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0 5.ρ =  or 1 0.ρ = , the relationships between Pσ  with 2β  and 1η  respectively reveal 

a point of minimum and maximum respectively, after which the curve follows a 

similar shape as for the cases when 0ρ ≤ . The turning point can be derived from (38) 

except that both 2β  and 1η  vary with Pσ  and so it is more convenient to identify the 

turning points for  2β  and 1η  numerically. These are exhibited in table (1) with the 

corresponding value of Pσ . 

 

Table 1: Turning point values for 2β , 1η , P�  and ( )F P,C�� , and 

corresponding values of Pσ  for the specified values of ρ  
 

ρ  { }Min β  { }Max η { }Max P� ( ){ }Min F P,C��
Pσ  

-1.0 -1.0495 1.6422 51.0620 65.7225 0.0000 

-0.5 -1.0495 1.6422 51.0620 65.7225 0.0000 

0.0 -1.0495 1.6422 51.0620 65.7225 0.0000 

0.5 -1.1011 1.6975 51.8931 63.4082 0.1010 

1.0 -1.3368 1.9355 55.2554 55.2968 0.2071 

 

 

Provided that 2 1

21
η

σ > × ρσ σ
− βP P C , implying that 2 0∂β

>
∂σP

 and 1 0∂η
<

∂σP
, P�  is a 

monotonic decreasing function and F�  is a monotonic increasing function of Pσ : see 

the Appendix  and the figures (6a and b) respectively that depict the profiles for 

various specified values of ρ .  However, since 2 1

21
η

σ < × ρσ σ
− βP P C  can arise for 

0ρ >  and certain small values of Pσ , the profiles for  P�  and F�  can exhibit a point of 

maximum and minimum respectively. When a turning point does exist, it occurs at the 

value of Pσ  that yields turning points for 2β  and 1η . The corresponding maximal 

values for P�  and minimal values for F�  are displayed in table 1 for the various 

specified values of ρ .  
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We can apply the same line of argument for determining the effect of variations in Cσ  

on the endogenous quantities. In the Appendix, we establish that the signs of 2∂β
∂σC

 

and 1∂η
∂σC

 depend on the signs of ∂
∂σC

Q  and ∂
−
∂σC

Q  respectively. Again, from (19): 

 ( )1 1 2 11 0∂
= σ η η − + ρσ β η ≥

∂σ C P
C

Q
, 

when 2 2

1 1
−β

σ ≥ × ρσ σ
η −C P C , which is always true provided 0ρ ≤ . The possible 

convex and concave nature of 2β  and 1η  are exhibited respectively in figures (7a and 

b). The turning points exhibited in figures 5 and 7 are not identical because of the 

differences in the underlying conditions for each case.  Figures (8a and b) exhibit the 

profiles for  P�  and F�  versus σC  for various specified values of ρ . These show that P�  

and F�  are respectively monotonically decreasing and increasing functions of σC  for 

all values of 2

1 1
−β

σ ≥ × ρσ
η −C P . 

 

A common result of options analysis is that the option value is a monotonically 

increasing function of the underlying volatility, Dixit and Pindyck (1994). Our 

findings from this analysis agree with this common result provided that 0ρ ≤ . When 

this condition is not met, the function F�  is possibly convex and exhibits a point of 

minimum. The convexity of the function F�  is due to the convexity of 2β , or 

equivalently the concavity of  1η , and this arises when the function ( )2 1β ηQ ,  

exhibits a turning point with respect to one of Pσ  or σC . At each of these turning 

points, the function ( )2 1β ηQ ,  minimised. Since the quantity: 

 ( ) ( ) ( )2 21 1
1 2 1 2 2 1 1 2 12 21 1β η = σ β β − + σ η η − + ρσ σ β ηP C P CQ ,  

is a measure of composite volatility, F�  is a convex function when the measure of 

composite volatility displays a minimum. The function F�  can decrease for increasing 

values of an underlying volatility when the composite volatility measure is 

decreasing. Any convexity displayed by F�  is reflected in the concavity of P� , but 

when the condition stated above is met then P�  is a monotonically decreasing function 
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of the underlying volatility. Each of the previous real option analyses of capital 

replacement, Mauer and Ott (1995), Dobbs (2004) and Adkins(2005), demonstrates 

that a rise in the underlying volatility causes an increase in the trigger level for the 

operating and maintenance cost signalling asset replacement or a decrease for the 

revenue, and that management has to exercise greater patience before making the 

replacement decision. The current model involving two sources of uncertainty 

supplies similar results as the single dimensional variants. 

 

The behaviour of the function representing the value of the existing asset and its 

renewal option and of the trigger level signalling renewal conform to previous studies 

and intuition. Any convexity in F�  or concavity in P�  can be explained by a decrease in 

the composite volatility measure even though one element of the volatility is 

increasing. However, since the convexity in F�  or concavity in P�  is eliminated when 

the correlation coefficient ρ  is equal to zero or less, it is reasonable to enquire 

whether realistic values for ρ  are confined to the region 1 0− ≤ ρ ≤ . The context for 

the model is an asset that deteriorates and fades through usage so that the operating 

and maintenance cost it incurs tend to increase over time and the revenue it generates 

tends to decrease over time. In this context, an exogenous shock leading to a positive 

(negative) change in the operating and maintenance cost is more likely to be 

correlated with one that leads to a negative (positive) change in revenue. Because of 

this, it is reasonable to expect that the stochastic evolutions for revenue and cost are 

negatively correlated so that we can treat the correlation coefficient as falling in the 

region 1 0− ≤ ρ ≤ . This implies that the functions F�  and P�  are respectively 

monotonically increasing and decreasing with the underlying volatility. In the 

remainder of this section, we will investigate the effect of other changes in the 

exogenous factors on the behaviour of F�  and P�  by adopting a neutral position with 

0ρ = . 

 

The effect of variations in the investment outlay K  required to renew the asset on the 

value of the existing asset and its renewal option F�  and the trigger level for revenue 

P�  signalling a renewal is exhibited in figure 9. Both of the profiles are downward 

sloping. The effect of increasing the investment outlay is to reduce the net value 



30 

generated by the asset and its renewal option. The investment outlay enters the value 

matching condition as a negative quantity and its effect is to depress F� . The 

increasing decline in the net value generated by the asset will inevitably reach the 

point F 0<�  when it will be no longer viable to replace the existing asset. Since the 

way to compensate for increases in the investment outlay is to retain the asset for a 

longer period, the trigger level for revenue P�  signalling asset renewal will have to be 

increased to maintain the asset’s viability. 

 

The profiles of the value of the asset and its renewal option F�  and the trigger level for 

revenue P�  signalling a renewal due to variations in the revenue immediately 

following renewal 0P  are exhibited in figure 10. Both of the profiles are upward 

sloping. Since the value of any capital budgeting project is improved through 

increases in the positive cash flows, we would expect 0P  to have a positive effect on 

F� . Any increase in the revenue level immediately following renewal is reflected in 

the value of asset and its renewal option through the value matching condition. 

Further, any improvement in F�  implies that the asset can be held for a longer time 

before it becomes opportune to renew it. It follows that any increase in 0P  will be 

manifested in an increase of P� . 

 

The effect of variations in the rate of return µ  on the value of the asset plus the 

renewal option F�  and the trigger level for revenue P�  signalling a renewal are 

exhibited in figure 11. Both profiles are downward sloping. Generally, the discount 

rate has a negative impact on the value of a capital budgeting project since it contracts 

the present value of future cash flows. This negative effect is exhibited by the profile 

of the asset value and its renewal option. While the graph has been drawn for a 

discount rate in the range 15% 30%≤ µ ≤ , reductions in the value of µ  will 

continuously force up the value of F�  until  tends to infinity. Increases in the discount 

rate imply that the cost of renewing the asset becomes increasingly more expensive. 

Because of this, management will defer and wait longer before replacing the existing 

asset and this will cause the trigger level for revenue to fall as a consequence. 
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The impact of change in the continuous rate of change for revenue on the value of the 

asset plus the renewal option F�  and the trigger level for revenue P�  signalling a 

renewal are exhibited in figure 12. Both of the profiles are upward sloping. Increases 

in the parameter α  will make the asset more valuable because of the rise in the 

revenue cash flow and this will be reflected positively in the value of the existing 

asset and its renewal option. Although the value of the parameter α  was specified as 

negative, we can observe from the figure that the model accommodates both positive 

and negative values for α . When α  becomes increasingly more negative the 

economic viability of owning the asset declines until F 0=�  when we question the 

benefit from holding the asset. In contrast, increases in the value of  α  make owning 

the asset increasingly more desirable and the value of F�  tends to infinity as α→µ . 

Besides making the asset more attractive, increases in α  mean that we can afford to 

renew the asset more readily and this is reflected in the increased trigger level for 

revenue P� . 

 

The effect of variations in the continuous rate of change for the operating and 

maintenance cost θ  on the value of the asset plus the renewal option F�  and the 

trigger level for revenue P�  signalling a renewal are exhibited in figure 13. Both 

profiles are downward sloping. Positive changes in the value of θ  lead to increases in 

the future operating and maintenance cost and this increase contributes negatively to 

the value of the asset plus its renewal option. As the value of θ  increases towards µ , 

the value of F�  becomes infinitely negative. Since increases in the value of θ  reduces 

the value of F� , there exists a value of θ < µ  for which F 0=�  when we are indifferent 

between holding the asset or not. Increasing the value of θ  also depresses the trigger 

level for revenue P�  signalling asset renewal. An increase in the operating and 

maintenance cost due to a rise in θ  means we have to keep the asset for a longer 

period in order to maintain the same return from the asset and this implies that the 

trigger level for revenue will decline as a consequence. 

 

6. Homogeneity and Model Indeterminacy 

In their real options analysis of price and cost uncertainty, Dixit and Pindyck (1994) 

derive their solution from a partial differential equation similar to (16), a value 
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matching condition and two smooth pasting conditions. From these four equations, 

the authors have to derive solutions for the five unknowns. They proceed to reduce the 

dimensionality of the model and more particularly of the partial differential equation 

by assuming that the function representing the option value is homogenous of degree 

one. They argue that when revenues and costs are doubled, this will double the value 

of the project, and then assume that the value of the underlying option will 

consequently double. Homogeneity of degree one implies that the optimal decision 

will depend only on the ratio of the two variables and their solution for the trigger 

values, which is expressed in terms of this ratio, is represented by a ray passing 

through the origin. This ray separates the values of the two focal variables into two 

distinct regions that distinguish the type of decision to be pursued. When the 

prevailing values of the two focal variables belong to one side of the ray, the optimal 

decision is continuance whilst the optimal decision is to exchange the option for the 

asset if otherwise. The optimal decision rule is founded on a set of optimal pairs of 

values for the two focal variables. Model indeterminacy of the type experienced in our 

model should not therefore be interpreted as a flaw in the model’s construction. It is 

the recognition that the instance when the option is exercised and the existing asset is 

renewed cannot be captured by a single pair of points but by a set of infinite pairs of 

points. 

 

An alternative procedure for reducing the dimensionality of the partial differential 

equation, which is applied by Errais and Sadowsky (2005), relies on the work by 

Margrabe (1978) on exchange options. It conceives the investment opportunity as an 

option to exchange one stochastic asset for another stochastic asset.  In this way, the 

authors show that the resulting partial differential equation describing the exchange of 

stochastic assets can be represented by an equation involving a single variable instead 

of two variables. The solution that they derive is identical in form with the one 

presented by Dixit and Pindyck (1994). It is interesting to note that in his analysis, 

Margrabe (1978) uses the properties of homogenous functions of degree one in order 

to derive his results. 

 

The condition of homogeneity of degree one can be perceived as a ploy for reducing 

the dimensionality of the model or as a desirable assumption that facilitates the 

analytical solution of the model. Although the assumption of homogeneity of degree 
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one can make the model more tractable and simplify the analysis, the underlying 

validity for adopting this assumption lies not in making a mental jump from inferring 

that since the underlying assets possess this property so the option must also possess 

this property, but within the nature of the value matching and smooth pasting 

conditions of the model in hand. Generally, the value matching condition can be 

expressed as the equality at the time of exercising the option between the function 

( )1f X, Y , which represents the value of the option to continue, and the two functions 

( )2f X  and ( )3f Y , whose difference represents the net value generated from 

exercising the option, where the vectors X  and Y , of size n  and m  respectively are 

defined by { }1 2 nX X , X , , X= …  and { }1 2 mY Y , Y , , Y= … . The value matching 

condition is: 

 ( ) ( ) ( )1 2 3f X, Y f X f Y= −  

Now we know from the properties of homogenous functions of degree one that if both 

2f  and 3f  are homogenous functions of degree one then 1f  is also a homogenous 

function of degree one. This result can also be demonstrated from the smooth pasting 

conditions: 

 

1 2

i i
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j j

f f i,
X X

ff j.
Y Y

∂ ∂
= ∀

∂ ∂
∂∂

= − ∀
∂ ∂

 

This implies that: 

 
n m n m

31 1 2
i j i j

i 1 j 1 i 1 j 1i j i j

ff f fX Y X Y
X Y X Y= = = =

∂∂ ∂ ∂
+ = −

∂ ∂ ∂ ∂∑ ∑ ∑ ∑ . 

Then by Euler’s equation: 

 
n m

1 1
i j 2 3 1

i 1 j 1i j

f fX Y f f f
X Y= =

∂ ∂
+ = − =

∂ ∂∑ ∑ , 

which implies that  1f  is a homogenous function of degree one. The assumption of 

homogeneity of degree one can be tested for the model in hand from the property of 

its value matching condition. It can be easily verified from the value matching 

condition for our model, (25), that the function depicting the option value is not 

homogenous of degree one so we would have been mistaken to make this assumption. 
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Equally, our analysis has demonstrated that the function is not homogenous of degree 

one. 

 

7. Conclusion 

The context of previous studies investigating the capital renewal decision using 

continuous time real options models has been mainly confined to physical assets, 

plant and equipment, where there is a single focal stochastic variable, operating and 

maintenance costs. This paper has considered an alternative contextual canvas and has 

extended the analysis to two focal stochastic variables, revenue and cost. This 

contextual canvas is characterised by assets whose deterioration through usage leads 

to revenue decline due to the asset’s erosion in market attractiveness and an escalation 

in operating and maintenance cost due to the loss in equipment’s efficiency. Because 

of their deteriorating value, these assets are after a period of sustained use renewed 

through a capital injection that restores their worth through bringing its earning 

potential and cost structure back to more favourable levels. Typical assets falling into 

this category are those used in the service sector, including amongst others real estate, 

theatres, commercial web-sites and human resources. Through usage, these assets 

experience variations in both the revenue they generate and the cost they incur and 

then they have to be renewed whenever their revenue and cost hit critical levels. 

 

The real options model of asset renewal involving two distinct but stochastically 

dependent variables is constructed from the concept that the overall return from an 

asset equals its periodic cash flow plus its expected capital gain over the period. The 

two sources of stochastic variability are introduced through Ito’s lemma and the 

resulting partial differential equation is solved in conjunction with the value matching 

and smooth pasting conditions to yield an analytical functional form for the value of 

the existing asset and its renewal option. In contrast to previous studies involving two 

stochastic variables, no resort is made to homogeneity of degree one or a similar ploy 

to reduce the problem’s dimensionality. In fact, the solution demonstrates that the 

resulting analytical form does not comply with homogeneity of degree one, and so its 

adoption would have produced a flawed solution. When the number of stochastic 

variables included in the model increases above one, then in line with other studies 

involving two sources of uncertainty we set out to identify the boundary 

discriminating between continuance and renewal, which is defined by a certain 
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function. Unfortunately, an analytical solution cannot be derived for the function 

defining the boundary discriminating between the decisions of continuance and 

renewal owing to the complexity of functional forms. Instead, we map out the 

function by using numerical methods. These methods, which have the advantages of 

being adequately robust and easily transferable to other models, enables us to map out  

the boundary function that is monotonically increasing, which demonstrates that the 

decision between continuance and renewal implies a trade-off between revenue and 

cost. 

 

The credibility of the formulation and the results it produces is tested by examining 

whether the consequences derived from the model are sound and intuitively 

appealing. Our analysis starts by identifying the solution to the deterministic variant 

of the model, which is constructed on the replacement chain concept and uses non-

random functions to describe the evolutions of the two variables. We demonstrate that 

the solution to the stochastic variant of the model always reduces to the deterministic 

solution when the underlying volatilities are set equal to zero. Both the deterministic 

and stochastic variants produce identical solutions in the presence of certainty. 

Secondly, we consider the behaviour of the value of the existing asset and its renewal 

option and the trigger level for revenue that signals asset renewal. A common result 

from the analysis of options is that the option value varies increasingly with increases 

in the underlying volatility. The results from the present analysis echo this conclusion 

with one insignificant limitation. Our analysis demonstrates that the value of the 

existing asset and its renewal option is a monotonically increasing function of the 

underlying volatility from either of the two sources provided that the correlation 

coefficient for the two sources of uncertainty is not positive. This limitation is not 

significant for two reasons. Since the context for the model is an asset whose value 

deteriorates through usage owing to declining revenue and escalating cost, we would 

expect any exogenous stochastic shift to impact on the two variables quite differently. 

An exogenous shift that is adverse is likely to produce an increase in cost and at the 

same time a decrease in revenue. For our context, we can treat 0ρ ≤ . Secondly, we 

suggest that the case of a fall in the value of the existing asset plus its renewal option 

due to an increase in volatility arises when the composite variance measure decreases 

owing to the nature of the correlation between the two variables. We can safely assert 



36 

that our model supports common result that the option value varies increasingly with 

increases in the underlying volatility. Within this limitation, the analysis also 

demonstrates that the trigger level for revenue that signal asset renewal is a monotonic 

decreasing function of the underlying volatility so that management has to act with 

greater patience in the presence of increasing uncertainty. Finally, we examined the 

behaviour of two endogenous quantities in the light of separate changes in the other 

parameters including the capital outlay required to renew the asset, the starting 

revenues following renewal, the discount rate, and the rates of change for revenue and 

cost. In each case, the results conform to intuition. 

 

The method of involving homogeneity of degree one in order to reduce the model’s 

dimensionality down to one was not adopted in the present analysis since it did not 

apply. This raises the question of when homogeneity of degree one, or similar ploys, 

is a valid assumption to make. We demonstrate that the validity of homogeneity of 

degree one emanates fundamentally from the nature of the value matching condition. 

If the expressions on the right hand side of the value matching condition, representing 

the value of the asset after the change in state, are individually homogenous functions 

of degree one and if they are linearly combined to produce the left hand side, then the 

expression on the left hand of the value matching condition, representing the option 

under continuance, is also a homogenous function of degree one. This is established 

either from the properties of homogenous functions of degree one or equivalently 

from the smooth pasting conditions. Before homogeneity of degree one is invoked to 

reduce the model’s dimensionality, we can test the validity of the assumption from the 

value matching condition. Whenever the value matching condition fails to conform to 

homogeneity of degree one, as in the present analysis, then adopting this assumption 

will clearly lead to error. 

 

The present analysis represents an important extension to the previous studies on 

capital replacement by expanding the context to consider asset renewal and by 

including two distinct sources of uncertainty through Ito’s lemma. It also extends 

previous analytically based studies on real options involving two sources of 

uncertainty by not having recourse to homogeneity of degree one or other ploys to 

reduce the model’s dimensionality. Although we apply the dynamic programming 

principle to derive the formulation and the solution, the model can be recast in a 
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contingent claims framework provided that twinning market traded assets exists for 

the two sources of uncertainty. The methods adopted in this paper can be applied to 

consider alternative sources of uncertainty including the salvage price on disposal, the 

amount of the capital injection required for renewal, or other exogenous factors that 

are naturally stochastic. The focus of the analysis has been asset renewal. There exists 

a family of options other than renewal, including the option for the original 

investment opportunity, for the suspension of activities, expansion or divestment. 

These can be gainfully incorporated into the analysis if they are relevant for the 

particular context under consideration. 

 
 
Appendix: Derivation of the Derivatives 

The derivatives of the various functions developed in this appendix assume that C�  is 

a constant unless specifically qualified. The subscripts for β  and η  have been omitted 

without loss of meaning. 

 

From (19) and (37) respectively, we have: 

 ( ) ( ) ( )2 21 1
2 21 1 0β η = σ β β − + σ η η − + ρσ σ βη + αβ + θη − µ =P C P CQ , , 

( ) ( )
( )
( )

0 0 0 01 0
−β

β η

β+η

⎛ ⎞⎛ ⎞−β µ − α⎜ ⎟β η = − β − η − − + + =⎜ ⎟⎜ ⎟⎜ ⎟η µ − θ η µ − θ µ − α µ − θ⎝ ⎠⎝ ⎠

�
�
P C P CC

H , K
C

. 

We note that: 

 
P C

H H 0∂ ∂
= =

∂σ ∂σ
. 

 
From equations (29) and (31), we define the functions 1G  and 2G  respectively: 

 ( )1 0G , ,P P C
β µ − α

β η = + × × =
η µ − θ

�� � , (39) 

 ( ) ( ) ( )2 1 0C
G , ,F Fβ η = − − β − η =

η µ − θ

�� � . (40) 

Then: 

 1 0∂ µ − α
= >

∂β η µ − θ

�G C
, (41) 

 1
2 0∂ β µ − α

= − >
∂η η µ − θ

�G C
, (42) 



38 

 2 1 0∂
= >

∂β η µ − θ

�G C
, (43) 

 2
2

1 0∂ − β
= >

∂η η µ − θ

�G C
. (44) 

 
 

Variations in P�  due to changes in Pσ  are delivered through β  and η  along the 

functions Q , H  and 1G . Then from Kaplan and Lewis (1971): 

 

( )
( )
( )
( )

1

1

P

P

Q,H,G
, ,P
Q,H,G

, ,P

∂
∂ β η σ∂

= −
∂∂σ

∂ β η

�

�

 (45) 

where: 

 
( )
( )

1

1 1 1

P

P P

P

Q Q Q

Q,H,G H H H
, ,

G G G

∂ ∂ ∂
∂β ∂η ∂σ

∂ ∂ ∂ ∂
=

∂ β η σ ∂β ∂η ∂σ

∂ ∂ ∂
∂β ∂η ∂σ

 (46) 

 

and: 

 
( )
( )

1

1 1 1

Q Q Q
P

Q,H,G H H H
P, ,P

G G G
P

∂ ∂ ∂
∂β ∂η ∂

∂ ∂ ∂ ∂
=

∂β ∂η ∂∂ β η
∂ ∂ ∂
∂β ∂η ∂

�

��

�

 (47) 

Similarly, variations in F  due to changes in Pσ  is derived from: 

 

( )
( )
( )
( )

2

2

P

P

Q,H,G
, ,F
Q,H,G

, ,F

∂
∂ β η σ∂

= −
∂∂σ

∂ β η

�

�

 (48) 

where: 
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( )
( )

2

2 2 2

P

P P

P

Q Q Q

Q,H,G H H H
, ,

G G G

∂ ∂ ∂
∂β ∂η ∂σ

∂ ∂ ∂ ∂
=

∂ β η σ ∂β ∂η ∂σ

∂ ∂ ∂
∂β ∂η ∂σ

 (49) 

and: 

 
( )
( )

2

2 2 2

Q Q Q
F

Q,H,G H H H
F, ,F

G G G
F

∂ ∂ ∂
∂β ∂η ∂

∂ ∂ ∂ ∂
=

∂β ∂η ∂∂ β η
∂ ∂ ∂
∂β ∂η ∂

�

��

�

 (50) 

Now since: 

 0Q H Q H
P P F F

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂� � � � , 

and: 

 1 2 1G G
P F

∂ ∂
= =

∂ ∂� �  

then it follows that from equations (47) and (50) that: 

 
( )
( )

( )
( )

1 2Q,H,G Q,H,G
D

, ,P , ,F

∂ ∂
= =

∂ β η ∂ β η� � , 

where: 

 
Q H Q H

D
∂ ∂ ∂ ∂

= × −
∂β ∂η ∂η ∂β

. (51) 

 

We will now proceed to derive all the partial derivatives forming the expressions in 

(45) and (48).  

 

Differentiating ( ) 0Q ,β η = , (19), with respect to β  yields: 

 2 21
2P P P C

Q∂
= σ β − σ + ρσ σ η + α

∂β
. (52) 
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Since 0β <  and we expect 0α ≤ , then the first, second and fourth terms on the right 

hand side of equation (52) are negative. Further, we can expect the absolute sum of 

these terms to exceed the third term and we can treat 0Q∂
≤

∂β
. 

 

Differentiating function ( ) 0Q ,β η =  with respect to η  yields: 

 2 21
2C C P C

Q∂
= σ η − σ + ρσ σ β + θ

∂η
. (53) 

Since 1η >  and we expect 0θ ≥ , the first and fourth terms on the right hand side of 

equation (53) are both positive and we can expect their sum to exceed the sum of the 

second and third terms. We can treat 0Q∂
≥

∂η
. 

 

Differentiating function ( ) 0H ,β η =  with respect to β  yields: 

 
( )

( )

0 0 0

0 0

1
P P CH C

ln
C C C

P CC e
ln

C C

−ββ η

−ββ η

⎧ ⎫⎛ ⎞∂ − −β µ − α⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= + ×⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂β η µ − θ η µ − θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −β µ − α −β µ − α⎛ ⎞ ⎛ ⎞⎪ ⎪× ×⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟η µ − θ η µ − θ η µ − θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

�
� � �

�
� �

 (54) 

Substituting the relationship (29) between C�  and P� , (54) becomes: 

 
( )

01 1
PH C

Z ln
P

⎧ ⎫⎡ ⎤∂ − ⎛ ⎞⎪ ⎪= + −⎨ ⎬⎢ ⎥⎜ ⎟∂β η µ − θ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

�
� , (55) 

where 0 0P C
Z

P C

β η
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠� � . Now we expect 0 1

P
P

>� , so 0 1
P
P

β
⎛ ⎞ <⎜ ⎟
⎝ ⎠�

; also we expect 

0 1
C

C
<� , so 0 1

C

C

η
⎛ ⎞ <⎜ ⎟
⎝ ⎠�

 ; so we can treat  the quantity 0 1
P

Z ln
P

⎡ ⎤⎛ ⎞ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦�  as a small 

negative number which is dominated by the value one. Therefore, we can treat 

0H∂
<

∂β
. 

 

Differentiating function ( ) 0H ,β η =  with respect to η  yields: 
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( )
( ) ( )

( )

( )

0 0
2 2

0 0 0

0 0
2

1C P CH C
C C

P C CC
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C C C

P CC
C C

−ββ η

−ββ η

−ββ η

− β ⎛ ⎞∂ −β µ − α⎛ ⎞ ⎛ ⎞= − + ×⎜ ⎟⎜ ⎟ ⎜ ⎟∂η η µ − θ η µ − θ η µ − θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞−β µ − α⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ×⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟η µ − θ η µ − θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞β −β µ − α⎛ ⎞ ⎛ ⎞− ×⎜ ⎟⎜ ⎟ ⎜ ⎟η µ − θ η µ − θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

� �
� �

�
� � �

�
� �

 (56) 

Substituting the relationship (29) between C�  and P� , (56) becomes: 

 
( )
( )

0
2

1
1 1

1
C CH

Z ln
C

⎧ ⎫− β ⎡ ⎤∂ η ⎛ ⎞⎪ ⎪= − − −⎨ ⎬⎢ ⎥⎜ ⎟∂η η µ − θ − β ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

�
� . (57) 

Using a similar train of arguments, we can treat 0H∂
<

∂η
. 

 

Given the signs of the various terms comprising D , equation (51) it follows that 

0D > . 

 

Since variations in β  arising from changes in Pσ  occur along both the functions 

( ) 0Q ,β η =  and ( ) 0H ,β η = , then 
P

∂β
∂σ

 is found from: 

 

( )
( )
( )
( )

P

P

Q,H
,
Q,H
,

∂
∂ σ η∂β

= −
∂∂σ
∂ β η

, (58) 

where: 

 
( )
( )

P

P P

P

Q Q
Q,H Q H
, H H

∂ ∂
∂σ ∂η∂ ∂ ∂

= = ×
∂ σ η ∂σ ∂η∂ ∂

∂σ ∂η

. 

Since: 

 
( )
( )

Q Q
Q,H

D
, H H

∂ ∂
∂ ∂β ∂η

= =
∂ β η ∂ ∂

∂β ∂η

, 

then from (58): 
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1

P P

Q H
D

∂β ∂ ∂
= − ×

∂σ ∂σ ∂η
. (59) 

From (59), it follows that the sign of 
P

∂β
∂σ

 depends on the sign of 
P

Q∂
∂σ

. 

 

The sign of 
P

∂η
∂σ

 can be determined in a similar fashion: 

 

( )
( )
( )
( )

P

P

Q,H
,
Q,H
,

∂
∂ β σ∂η

= −
∂∂σ
∂ β η

 (60) 

where: 

 
( )
( )

P

P P

P

Q Q
Q,H Q H
, H H

∂ ∂
∂β ∂σ∂ ∂ ∂

= = − ×
∂ β σ ∂σ ∂β∂ ∂

∂β ∂σ

. 

From equation (60), it follows that:  

 
1

P P

Q H
D

∂η ∂ ∂
= ×

∂σ ∂σ ∂β
. (61) 

It follows that the sign 
P

∂η
∂σ

 depends on the sign of 
P

Q∂
−
∂σ

. 

 . 

From equation (29), differentiating P�  with respect to Pσ  yields: 

 2
P P P

dP C C
d

⎛ ⎞ ⎛ ⎞µ − α ∂β µ − α β ∂η
= − +⎜ ⎟ ⎜ ⎟σ µ − θ η ∂σ µ − θ η ∂σ⎝ ⎠ ⎝ ⎠

� ��
, 

so: 

 
1 1

P PP

dP
Pd

∂β ∂η
= −
β ∂σ η ∂σσ

�
� . (62) 

Substituting the results from equations (59) and (61), then we can re-write (62) as: 

 1

PP

NdP Q
DPd

∂
=

∂σσ

�
� , 

where: 
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( )
( )

( )

( ) ( )

1

0
2

0
2

2

1 1

1
1

1

1

1

H H
N

C C
Z Zln

C

PC
Z Zln

P

C
Z Zln Z .

∂ ∂
= − −

β ∂η η ∂β

− β ⎧ ⎫η ⎛ ⎞= − +⎨ ⎬⎜ ⎟βη µ − θ − β ⎝ ⎠⎩ ⎭

⎧ ⎫β ⎛ ⎞+ − +⎨ ⎬⎜ ⎟βη µ − θ ⎝ ⎠⎩ ⎭

⎡ ⎤= − +⎣ ⎦βη µ − θ

�
�

�
�

�

 (63) 

Now for reasonable values of P�  and C� , 1 0N < . It follows that: 

 1 0
PP

NdP Q
DPd

∂
= <

∂σσ

�
� , (64) 

 provided that 0
P

Q∂
>

∂σ
. 

 

From (31): 

 
( ) ( )1C

F = − β − η
η µ − θ

�
, 

differentiating with respect to Pσ  yields: 

 
( ) ( )1 1
1

⎧ ⎫∂ ∂η ∂β
= − − β + η⎨ ⎬∂σ η − β − η ∂σ ∂σ⎩ ⎭P P P

F
F

. (65) 

Substituting the results from equations (59) and (61), then we can re-write equation 

(65) as: 

 
( )

21
1

∂ ∂
= −

∂σ η − β − η ∂σP P

NF Q
F D

 

where: 
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( )

( )
( )

( )
( )

( )
( )

2

0 0 0

0 0 0

1
0 0 0 0

1

1
1 1

1
1 1

1

H H
N

C P C P
ln

P PC

C P C C
ln

P C C

C P C P C
ln

P PC C

β η

β η

β η β−

∂ ∂
= − β − η

∂β ∂η

⎧ ⎫− β ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= − − −⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟η µ − θ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫− β ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪+ − − η⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟η µ − θ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

− β ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜η µ − θ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

�
� � �

�
� � �

�
� � � � .

η⎧ ⎫⎛ ⎞⎡ ⎤⎞⎪ ⎪⎜ ⎟− β + β⎢ ⎥⎨ ⎬⎟⎜ ⎟⎠⎢ ⎥⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

 (66) 

Now for reasonable values of P�  and C� , 2 0N < . It follows that: 

 0∂
>

∂σP

F
, (67) 

provided that 0
P

Q∂
>

∂σ
. 

 

We will now determine the derivatives defining the variations in P�  and ( )F P,C��  due 

to a change in Cσ . Differentiating function ( ) 0Q ,β η =  with respect to Cσ  yields: 

 ( )1C P
C

Q∂
= σ η η − + ρσ βη

∂σ
. (68) 

Since 0β <  and 1η > , then 0
C

Q∂
≥

∂σ
 whenever 0ρ ≤ ; when 0ρ >  then 0

C

Q∂
≥

∂σ
 

provided 
1
P

C

−ρσ β
σ ≥

η −
 but if Cσ  is sufficiently small, 

1
P

C

−ρσ β
σ <

η −
, 0

C

Q∂
<

∂σ
. 

 

The partial derivative 
C

∂β
∂σ

 is found from: 

 

( )
( )
( )
( )

C

C

Q,H
,
,

Q,H
,

∂
∂ σ η∂β

= −
∂∂σ
∂ β η

 

where: 
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( )
( )

C

C C

C

Q Q
Q,H Q H

.
, H H

∂ ∂
∂σ ∂η∂ ∂ ∂

= = ×
∂ σ η ∂σ ∂η∂ ∂

∂σ ∂η

 

It follows that: 

 
1

C C

Q H
.

D
∂β ∂ ∂

= − × ×
∂σ ∂σ ∂η

 (69) 

Given the signs of the various terms in equation (69), which have been derived above, 

the sign of 
C

∂β
∂σ

 depends on the sign of 
C

Q∂
∂σ

. 

 

The value of 
C

∂η
∂σ

 can be found in a similar fashion: 

 

( )
( )
( )
( )

C

C

Q,H
,

,
Q,H
,

∂
∂ β σ∂η

= −
∂∂σ
∂ β η

 

where: 

 
( )
( )

C

C C

C

Q Q
Q,H Q H

.
, H H

∂ ∂
∂β ∂σ∂ ∂ ∂

= = − ×
∂ β σ ∂σ ∂β∂ ∂

∂β ∂σ

 

It follows that: 

 
1

C C

Q H
.

D
∂η ∂ ∂

= × ×
∂σ ∂σ ∂β

 (70) 

Given the signs of the various terms in equation (70), which have been derived above, 

the sign of 
C

∂η
∂σ

 depends on the sign of 
C

Q∂
−
∂σ

. 

 

Following the same analytical arguments as for the derivations of 
P

dP
dσ

�
 and 

( )
P

dF P,C

dσ

��
, then it can be established that: 
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 1 0
C C

dP P Q
N

d D
∂

= × <
σ ∂σ

� �
, 

and: 

 
( )

2
2 0

P P

NdF C Q
d D

∂
= − >

σ η µ − θ ∂σ

�
, 

provided that in each case 0
C

Q∂
≥

∂σ
; otherwise the sign is reversed. 

 

Further derivatives are available from the first author on request. 
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Figure 1a: Profile of ( )Q , 0β η =  for 0.5ρ =  

 
 
 
 
Figure 1b: Profile of ( )Q , 0β η =  for 0ρ =  
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Figure 1c: Profile of ( )Q , 0β η =  for 0.5ρ = −  
 

 
 
 
 
 
 
Figure 2: Profile of ( )2 1H , 0β η =  
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Figure 3: Profiles of ( )2 1Q , 0β η =  and ( )2 1H , 0β η =  
 

 
 
 
Figure 4: Profile of ( )G P,C 0=��  
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Figure 5a: Profiles of 2β  versus Pσ  for Variations in ρ  
 
 

 
 
Figure 5b: Profiles of 1η  versus Pσ  for Variations in ρ  
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Figure 6a: Profiles of P�  versus Pσ  for Variations in ρ  
 
 

 
 
 
Figure 6b: Profiles of F�  versus Pσ  for Variations in ρ  
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Figure 7a: Profiles of 2β  versus Cσ  for Variations in ρ  
 

 
 
Figure 7b: Profiles of 1η  versus Cσ  for Variations in ρ  
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Figure 8a: Profiles of P�  versus Cσ  for Variations in ρ  
 

 
 
Figure 8b: Profiles of F�  versus Cσ  for Variations in ρ  
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Figure 9: Profiles of F�  and P�  versus for variations in K  
 

 
 
Figure 10: Profiles of F�  and P�  versus for variations in 0P  
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Figure 11: Profiles of F�  and P�  versus for variations in µ  
 
 

 
 
 
Figure 12: Profiles of F�  and P�  versus for variations in α  
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Figure 13: Profiles of F�  and P�  versus for variations in θ  
 
 

 
 
 
 
 
 
 
 
 
 
 


