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Abstract

This paper develops a stochastic differential game framework for analyzing strate-
gic exercise of options. We focus on research and developmé&iD)Rompetition in
information technology (IT) investment projects with technical and market uncertainty.
According to the theory of real options and game theory, uncertainty generates an op-
tion value of delay which can be diminished by the threat of competition. An important
feature of the IT projects is that the firms make investment decision on an ongoing basis
before the success of th&® process. Consequently, repeated strategic interactions may
facilitate self-enforcing tacit collusion on&D. We explore the possibility of defining a
collusion (cooperative) equilibrium based on the use of a trigger strategy with an infor-
mation time lag. When the information time lag is long, a preemptive (noncooperative)
equilibrium emerges in which the option values of delay are reduced by competition.
When the information time lag is sufficiently short, a collusion equilibrium emerges in
which investment is delayed more than the single-firm counterpart. An analysis of the
equilibrium exercise policies of firms provides a potential explanation for several other-
wise puzzling innovation market phenomenons. We also analyze the role of uncertainty
on the likelihood of tacit collusion on&D and provide implications of strategic effects
for antitrust and merger control policies.

Keywords: Investment Under Uncertainty, Stochastic Differential Games, Real Options,
Information Technology, Trigger Strategy, Tacit Collusion, Information Time Lag



1. Introduction

The valuation of Research and Development &[Rinvestment projects is an important
problem for Information Technology (IT) firms. &D investments in IT have experienced a
rapid growth in the past 20 years, and were at the center of the high-tech boom and bust of
the late 1990s. The complexity of8fD projects makes a proper analysis of the associated
investments particularly challenging. Much of the difficulty arises from technical and market

uncertainty.

Investment under uncertainty problems have been analyzed using the real options ap-
proach, which improves upon traditional net present value (NPV) evaluation by recognizing
the flexibility of managers to delay, suspend, or abandon a project once it has started. Imple-
menting this approach helps to structure the project as a sequence of managerial decisions over
time and clarify the role of uncertainty in project evaluation, which allows us to apply models
that have been developed for valuing financial options to project investments (Schwartz and
Zozaya-Gorotiza (2003), Berk, Green, and Naik (2002)). A key featurekdd Rivestments,
however, is that they cannot be held independently of strategic considerations. When the op-
tions are held by a small number of firms with an advantage to the first mover, each firm’s
ability to wait is diminished by the threat of preemption. Firms also may have an incentive to
delay R&D investments to enhance corporate profits by avoiding &b Rvar. The compet-
itive pressure and possibility of tacit collusiérof many R&D projects create the motivation
for a systematic analysis of the effect of strategic interactions on the firms’ optimal exercise
strategies. When and how do we need to account competition and tacit collusion in evaluating

R&D projects? What is the role of uncertainty on the likelihood of tacit collusion?

In this paper, we develop an game-theoretic framework which include the possibility of

tacit collusion and preemption based on a trigger strategy to solve for optimal option exercise

1Tacit collusion needs not involve any collusion in legal sense, and needs to involve no communication be-
tween the parties. Since explicit collusion is usually banned by antitrust law, we will focus here on the possibility
of tacit collusion.



strategies. In order to demonstrate the applicability of such an approach, we focus on a par-
ticular real-world example: the behavior of innovation markets information technology
industry. 3 This analysis of the strategic equilibrium exercise policies of firms conducting
R&D investments provide a potential explanation for several otherwise puzzling innovation
market phenomenons. For example, some strate§id Rivestments have been prone to be
more delayed than the single form counterpart. Thus, one can use the model to examine the in-
vestment thresholds. Firms, fearing to start @&Rwar, hold back from investing to proceed

a tacit collusion equilibrium, which corresponds to a higher threshold. Similarly, séfi® R
markets have been prone to overinvestment, wherefdd Rar may lead to a resumption of a
previously discontinued &D program even when market conditions might still be worse than
when they were discontinued. The model provides a potential rational explanation for this
phenomenon. Firms react to a deviation from the collusive path with retaliation to follow a
preemption equilibrium with lower thresholds. We also analyze the role of uncertainty on the
likelihood of tacit collusion on B.D and provide implications of strategic effects for antitrust

and merger control policies.

Consideration of strategic exercise of investment projects using the result of a merger be-

tween the real options and game theory approaches is an emerging research trend in recent

2Innovation markets, sometimes called R markets, are markets in which firms compete in research and
development. Introduced in the 1995 Antitrust Guidelines for the Licensing of Intellectual Property, innovation
markets has quickly become an accepted part of the government’s antitrust arsenal. Historically, antitrust focused
on price and output effects in markets for goods and services, based on an analysis of historic market shares. In
today’s dynamic high-tech industries, anticompetitive effects on innovation can have far greater impact than
effects on price. Therefore it is not surprising that merger enforcement in these industries often focuses on so-
called innovation markets. Two cases are SNIA S.p.A., FTC Dkt. No. C-3889 (July 28, 1999), and Medtronic,
Inc., FTC Dkt. No. C-3842 (Dec. 21, 1998). (Morse 2001)

3The IT sector spends much more on research and development, relatively speaking, than industry as a whole
does. IT companies accounted for a disproportionate share of company-fuded3® percent). Its BRD
intensity (i.e., R.D spending divided by industry sales) is three times the national average (U.S. Department
of Commerce 2003). IT &D investments have a high-upside potential, high uncertainty, and indirect returns,
and face intensive competitive pressure and propensity to collusion. Thus they are good candidates for being
evaluated with a strategic&D investment framework. For example, effective use of economics is critical in
defining the relevant market of high-end ERP research and development and explaining competitive effects and
coordinated effects in the DOJ v. Oracle/PeopleSoft case. SAP, Oracle and PeopleSoft are three big players in
the ERP industry. The merger of Oracle and PeopleSoft may lead to anticompetitive concern. Another example
is the EDA duopoly market of Cadence and the Synopsys, which came after Synopsys’ acquisition of Avant! in
2001.



years. For example, Smets (1991) considers irreversible entry for a duopoly facing stochastic
demands. Grenadier (1996) uses the strategic exercise of options games to provide a ratio-
nal explanation for development cascades and recession-induced construction booms in real
estate markets. Huisman (2001) studies option games in a technology adoption context. Be-
sides combining irreversible investment under uncertainty with strategic interactions, Weeds
(2002) examines &D by taking technical uncertainty into account. She identifies a preempted
leader-follower solution and a joint-investment outcome as two forms of noncooperative equi-

librium. The joint-investment outcome leads to greater delay than the single-firm counterpart.

However, these papers typically assume a one-shot investment cost within a stopping time
game formulation. The value of active ongoing management&DRnvestment projects
4 is not captured in the standard one-shot model. In that type of model, a firm can neither
stop the project once it starts, nor resume investment once it terminates the project. In real-
ity, when a firm has an opportunity to invest in a& R project, it owns an option to invest.
After the R& D project begins, a firm maintains the&® process by making continuous ex-
penditures and receives no income until successful completion of the project. Thus, during
the active investment period, it has an option to suspend & Rroject. In fact, firms face
the investment decision of whether to invest or suspe&dRn each time period until the
project is completed. Under such circumstance, the strategic delay outcome mentioned by
Weeds (2002) is no longer a noncooperative equilibrium as each firm can manage its invest-
ment actively over time. The ongoing (continuous) nature of matpRrojects creates the
motivation for a systematic analysis o&® investment decision with ongoing (continuous)

resource requirements.

In this paper, we analyze a duopoly case in which &DRproject requires ongoing (con-
tinuing) costs by developing a stochastic differential game model that allows for consideration

of technical and market uncertainty and strategic interactions among firms. There i&Bne R

4Cooper, Edgett, and Kleinschmidt (1998) have an intensive study of portfolio management as currently
practiced in industry and define decision-making process on individual projects on an ongoing basis. The Real
Options Group has applied an option-based strategic planning and control framework of Trigeogis (1996) to
active management of investment projects over time.



investment opportunity in a new product or technology. The firms compete by their choice of
individual investment strategies. The potential future market cash flow uncertainty is taken as
an exogenous state of the system, represented by a controlled stochastic process. The techni-
cal uncertainty of the RD process is modeled as a Poisson jump proceséle formulate

a stochastic optimal control problem which is governed by stochastic differential equations
(SDEs) of a type known as Ito equations. Our goal is to synthesize optimal feedback controls
for systems subject to SDEs in a way that maximizes the expected value of a given objective
function. This one-player stochastic optimal control problem is then expanded to a two-player

stochastic differential game.

The games considered here are non zero-sum, in that the sum of the payoffs achieved by
the firms is not a constant, and cooperation between the two firms may lead to their mutual
advantage. In a Nash equilibrium, no firm can improve its payoff by a unilateral deviation
from the equilibrium strategy. However, joint deviations by more than one firm could lead
to such improvements. In particular, Nash equilibria are usually not Pareto efficient, that is,
maximizing the sum of the payoffs to the two firms. This deviation raises the question of
whether there exists efficient Nash equilibria at all and whether there are any general methods
to construct such equilibria. This paper presents one such method which is based on the use
of trigger strategies. These trigger strategies monitor an implicit Pareto optimal cooperative
solution and implement a punitive plan when there is an indication that at least one firm is

departing from the cooperative solution.

Evidence of the existence of trigger stratégguilibria in a discrete-time stochastic games
was first given by Green and Porter (1984). They view the oligopolistic interaction as a re-
peated game with imperfect public information and propose a monitoring scheme where a
change in the mood of play from cooperation to retaliation would occur when the observed

price falls below a triggering level. The application of game theory to continuous-time mod-

5Technical uncertainty is similarly modeled as a Poisson arrival in Weeds (2002), Dixit (1988), Reinganum
(1983), Lee and Wilde (1980), Dasgupta and Stiglitz (1980), Loury (1979).

Trigger strategies have been mainly discussed in the framework of infinitely repeated games in discrete time
(supergames); see e.g. Friedman (1986), Friedman (1991).



els’ is not well developed and can be quite challenging. Stochastic nonzero-sum differential
games have not been extensively used in modeling economic competition as the mathemati-
cal apparatus is quite complicated, the Hamilton-Jacobi-Bellmen (HJB) equations do not lead
easily to a qualitative analysis of their solutions, and only the noncooperative feedback Nash
solution has been characterized for this class of games. Haurie, Krawczyk, and Roche (1994)
is an exception. They formulate a stochastic differential game for fisheries management and
identify a collusion equilibrium based on a memory strategy with an extended observable state.
Usually the implementation of a numerical approximation technique adapted from stochastic
control problems is necessary to circumvent the difficulties that arrive in trying to solve this
problem directly. Our approach allows us to obtain a close form solution or a sufficiently
tractable nonlinear approximation solution and to provide qualitative and quantitative analysis
of the solution. We construct a dominating collusion equilibria by implementing monitoring
with trigger strategies, which is related to the results of Dockner, Jorgensen, Van Long, and
Sorger (2000). They define trigger strategy equilibria by assuming that players observe a de-
fection by any opponent immediately and react to it with a fixed positive time detay.

Our approach assumes an observation delay with an information time lag, which allows us to

remains the subgame perfectness of the trigger strategy equilibrium.

We explore the possibility of defining a so-called collusion equilibrium based on the use of
a trigger strategy with an information time lag. When the information lag is long, a preemptive
equilibrium emerges in which the option values of delay are reduced by competition. When
the information lag is sufficiently short, a collusion equilibrium emerges in which investment
is delayed more than the single-firm counterpart and delayed less than that from a one-shot

investment cost formulation like that in Weeds (2002).

"The value of continuous-time method lies in the clarity, with which optimal strategy or equilibria can be
characterized using HIB equations. The continuous-time approach also significantly simplifies the computation
of values and risk premium.

8References of stochastic differential game see Fleming (1969), Fleming and Rishel (1975), Uchida (1978),
Uchida (1979), Basar and Olsder (1995), pierre Cardaliaguet and Plaskacz (2003), Buckdahn, Cardaliaguet, and
Rainer (2003)



While economic theory provide many insights on the nature of tacit collusive conducts,
it says little on how R.D in a particular industry will or will not coordinate on a collusion
equilibrium. Collusion on R.D has been considered as very unlikely, though still possible
(Ivaldi, Jullien, Rey, Seabright, and Tirole 2003). The situation may have changed with the
rapid growth of R.D expenditures and recent consolidation trend &Rintensive industry.
US government began to respond with the new approach based on the analysis of innovation
market introduced in the 1995 Antitrust Guidelines. This generates the need to study the

likelihood of tacit collusion on R.D.

The evaluation of tacit collusion calls for a structural quantitative approach, rather than a
pure “check list” factors method, to incorporate the various effe¢t¥he main problem is
that models incorporating all the relevant dimensions would in most cases be unmanageable
and unlikely to yield clear-cut predications. (Ivaldi, Jullien, Rey, Seabright, and Tirole 2003).
We analyze the characteristics that can affect the sustainability of collusion with a structural
guantitative approach from the application of our framework. The goal of this paper is to
analyze the role of technical uncertainty and market uncertainty on the likelihood of tacit
collusion in innovation marketers of IT industry. In particular, we determine the impact of
probability of successful innovation, market growth drift and market volatility on the degree

of market transparency that is necessary to sustain the collusion.

This paper, inspired by the single decision maker analysis in Berk, Green, and Naik
(2002), develops a stochastic differential game approach to consider strategic interactions in
the duopoly case. A similar attempt can be found in Garlappi (2003) to analyze the impact of
competition on the risk premium of&D projects. By developing a more general stochastic
differential game framework, we are able to study response maps and introduce a noncoop-

erative collusion equilibrium with a trigger strategy. Miltersen and Schwartz (2003) develop

9Another reason for little evidence of tacit collusion o B may be that in the past there lacked a structural
guantitative approach to assess the likelihood of tacit collusion. The qualitative analysis by government in the
DOJ v. Oracle/PeopleSoft case was not accepted by the district court. Anticipating such result, government may
take less blocking actions as really needed. So it might not be the small likelihood of tacit collusion, but the
difficulty to implement and win in court makes it seemed unlikely.



a model to analyze patent-protecte& R investment projects when there is competition in

the development phase and marketing phase of the resulting product. Numerical methods to
deal with optimal stopping time problems (Longstaff and Schwartz (2001)) make it possible to
analyze their complex model. Their focus is on the impact&Rcompetition on production
markets and prices instead of the nonprice competition on innovation markets, focused on in

this paper.

In summary, the main contributions of this paper are: (1) the development of a stochastic
differential game model that allows consideration of technical uncertainty, market uncertainty,
strategic interactions and ongoing decision making, (2) the derivation a tacit collusion equi-
librium and a preemption equilibrium based on a trigger strategy of nonprice competition in
innovation markets, (3) the construction of a structural quantitative approach to evaluate the
likelihood of tacit collusion by analyzing the information time lag, (4) the application of the
proposed model to provide a potential explanation of several innovation market phenomena,
and (5)the analysis of the role of uncertainty on the likelihood of tacit collusion to provide im-
plications for antitrust and merge control in IT industry. These contributions, however, are not
limited to IT R&D investments because the basic framework developed in this paper can be
applied to other types of highly uncertair&® investments in which flexibility and strategic

interaction among competing firms plays a major réfe.

An outline of the remainder of the paper is as follows. Section 2 describes the formal
model structure and various equilibria and solutions. Section 3 presents analytical results
by solving the coupled Hamilton-Jacobi-Bellman equations. Section 4 applies the framework
from the model to the case of duopoly competition for o@Rproduct within a winner-take-
all market environment. section 5 examines the role of uncertainty on the likelihood of tacit

collusion. Finally, section 6 presents our conclusions and discusses potential future research.

10For example, new drugs development in biotech/pharmaceutical industry , and alternative technology fuel
cell vehicles or hybrid electric cars in automotive industry.



2. Model

2.1. Setup

Figure 1 illustrates the flow chart of the model.

We are given a standard Brownian motiin R on a probability spac&Q, F,P). We fix
the standard filtratioff = { % :t > 0} of # and the time horizof0, T]. *

The potential cash flow stream of a project when ti&[Ris completed is modeled as a
processi{X,t > 0} valued in the state spadecC R. We will assume that the process follows

a geometric Brownian motion, i.e% satisfies the stochastic differential equation

d% = pXdt+ oXdBR, Xo = Xo, @)

whered BP is the increment oB under a risk-neutral Q-martingalt?

Now we consider two firms A and B that are competing for one product. Denote the
index set{A,B}. Suppose there are N stages for th&Rprocess. Then firm i's stagg €
{0,1,...,N}, for all i € {A,B}. Denote byn;' € {0,1,...,N} the stage of the other firm. We
denote the system stage= (ni,n;") for all i € {A B}.

WhenT = oo, the horizon is denotef, «).

2| traditional financial option pricing models, the approach to valuation is based on no-arbitrage augments,
where one can trade the underlying asset and a riskless asset so that the option is replicated. However, the as-
sumptions about the liquidity of the underlying assets for such approach is questionable when the applications of
this model involve real assets like technology projects. An equilibrium approach relaxes the tradability assump-
tions needed for arbitrage pricing, although an appropriate equilibrium model must be chosen. This equilibrium
model will be used to derive the corresponding Bellman equation. For example, Grenadier (1995) uses the
continuous-time version of the capital asset pricing model of Merton (1973).



We model the success of an activ& B process as a Poisson process with paranteter

i.e.,

dNi B 1 with probability rgdt
0 with probability 1 — mgdt

Each firm’s decision at each point of time, given that it has not yet completed&lii® R
process, is whether to invest ir&®, i.e. to choose a control variahlefrom its set of feasible
controlsU' : [0,T] — A, where the actions sdt = {0,1}. Denoteu™ as the control of the

other firm beside firm i.

The R&D cost process is defined &4, wherel is the intensity level of the &D invest-

ment,u' € U' is an admissible control for firm i.

Let 8- X; denote firm i's cash flow from the complete&R project at time t, wheré
can have two possible value8, and s, respectively, corresponding to the market pioneer
and the follower. The so called market pioneer is the firm that completesé&li® fRocess
first while the market follower is the firm that finishes th& B process second. Here we refer

the market pioneer and market follower as lower case p and f, respectiely.

The payoff functionals

Lt du) = [ e 0o - dids+e " TUR (X € (AB) ()
t

whereF (Xt,nt) is the terminal payofft is the discount factor, and

. 1 ifn=N
i - "

0 otherwise

13_ater, we will refer the R.D Leader and R.D Follower as upper case letter L and F, whe&RLeader is
the firm that choose a lower investment threshold a&dHFollower is the firm that choose a higher investment
threshold.

10



is the complete characteristic function for firm i.

Firm i's expected payoff functional is defined as

Vit x, e, U u™) = E2 L' (6%, n, ul,u™)|j € {A,BY] (3)

2.2. Definition of Solutions

In this section, we describe different solution concepts for this differential game.

2.2.1. Noncooperative Equilibrium

The information structure with feedback control is defined by the function

nt) = {%,n},t € [0,0], wheren, = (nf,nB). The information space for firm N}] is

induced by its informatiom'.

A 2-tuple differential game is formulated as (1),(2) with the admissible contIU',i €

{A, B} and the information structurg. We shall use the notatidh, (xo, 0) for this game.

A strategy for firm i inPy(xo,0) is a mappingy : [0, T] x N} — U'". Formally u'(t) =

@ (t,x,n), fori € {A,B} and allt € [0, T].

A 2-tuplep= (¢*, ¢P) of strategies is called a strategy profile. Denote the set of all feasible
strategy profiles folPy(xo,0) by . The set ofg is denoted byg,. The set ofp ™' = ¢/,
i,j € {A,B},i # | for which there exist a strategy such that@,¢ ') € § is denoted by, .
Finally, the set of feasible responses by firm i to a gigehe S;" is denoted by, (™).

Firm i's expected payoff functional can be denoted as

Vit x,ne, @, 07 = ER LI (t, %, e, U, u™) Ul (t) = @ (t, %, 1), j € {AB}] (4)

11



Definition 1. A Nash equilibrium for the differential gam, (x,n,t) is a strategy profile
= (@*, @) such that for alli € {A,B} and all strategie® < $ @) it holds that

V'(t X, e, @, @) > Vit %, e, @)

2.2.2. Cooperative Optimum

The cooperative solution is usually required to be Pareto optimal.

Definition 2. A cooperative (Pareto) solution for the differential gafigxo,0) is a strategy
profile ¢°* = (¢°™, @~C™) such that for all strategy profie= (¢, ') it holds that

iciap V(XM @07 ) > 5 s VX, L @07

2.2.3. Response Solution

Definition 3. A response solution by firm i to a givepr' € S is a strategy’ € S(¢') such
that for all strategie® € S(@') it holds thatv'(t,x, ., @", @) > V' (t,x, e, @, 7).

2.2.4. Trigger Strategy Equilibria

Although the cooperative solution is Pareto optimal, it is not an equilibrium with feedback
control. The response strategy of a cooperative outcome is to increase investment with a lower
threshold. It is then important to design a cooperative policy which retains the properties of

equilibrium and generates outcomes that dominate the Nash feedback equilibrium.

The basic idea for constructing such an equilibrium is to design a new game with history

dependent strategies and to construct a Nash equilibrium for this new game.

Now suppose firms can observe rival’s actions with information timedlathe informa-

tion structure with delayed action observation is then defined by function

12



hi(t) = {X,M,Us 5,5 € [0,t]},t € [0,T], whereus = {uj,ug'}, us = Up, fors< 0. The

information space for firm il,\lﬂ,, is induced by its informatioh'.

We denotePy(Xp,0) as a 2-tuple differential game formulated by (1),(2) with the admissi-
ble controlu' € U')i € {A B} and the information structute Denote the set of all feasible

strategy profiles foPy(xp,0) by S,.

Firm i's expected payoff functional is defined as

Vit h, g, 7)) = EQ [L(t, %, n, U, u™)ul(t) = @ (t, )] , @€ Sh, j € {A B} (5)

Specially, at initial time, the payoff functional might be conveniently denoted' by, xo, no, @, @ ).

Definition 4. A Nash equilibrium for the differential gam@,(xp, no,0) is a strategy pro-
file @ = (¢*,¢~™*) such that for ali € {A B} and all strategieg/ € S,'(¢~™*) it holds that
V'(0,%0,M0,@*, ¢ ) > V'(0,%0,M0, ¢, ¢ ™)

We now introduce the trigger strategye S, used to enforce a given target profjie S,.
At any time instant’ € [0, ), firm i € {A B} can decide whether to cooperate and continue

to play his target strategy or to defect by deviating fronp'.

We assume that if a firm defects from its target path at smis opponent will observe
the deviation and start to punish it at tirse= ' + 5. 14 It is furthermore assumed that the
punishment lasts forever. Under these assumptions a trigger strategy for firm i with target

profile € S, can be defined as follows:

i @(t,-) if no firm has defected before and at tine &

¢'(t,-) if a defection has occurred at or before timed

14pefection of strategy may not lead to defection of action at some state region. As strategy is difficult to
observe, we assume only action is observable.

13



whered = (¢',0~") € S, is a strategy profile which we call the threats or the punishment

strategies.

Denote the target path corresponding to the target pri)ﬁiy;ﬁt. Now consider the deci-
sion problem of firm i at time t under the assumption that before time t no firm has defected. It
can either continue to cooperate, in which case its discounted payoff over the remaining time
horizon isVi(t, ﬁt,fd,fp*i), or it can defect at t. If we denote firm i's defection strategygby

then we can write its discounted payoff over time intefvab) in the case of defection as

VliDEF(taF]tv(dazp_i)
o ~ A . . ~ . .
= EJ /tt+ e 'S V(0Xs— 0l )ds+ e "V (t+8,h 5.0, 0] i € {AB}  (7)

Wherez, 0, a) andh are the complete characteristic function, value parameter, control path,

and information path, respectively, corresponding to the strategy prfite{).

Proposition 1. Let @ be a given target profile for the gani® (xp,0) and leth; be the cor-
responding target path. The strategy profile= (4, B) defined in (6) constitutes a Nash
equilibrium for the gamé(xo, 0) if and only if

s~
|

V|i3EF(t7F]T7d7 _)Svi(t7ﬁ7€dv€p_i) (8)
holds for alli € {A,B}, all t € [0,), and all feasible defection patlgs € ,(¢).

There is only one condition to be satisfied by threats in order for a trigger strategy profile
to constitute a Nash equilibrium: the threats must be effective as described by condition (8).
However, in many situations the most effective threats may not be credible. A necessary

condition for threats to be credible is that they constitute a subgame perfect Nash equilibrium.
15

15A feedback Nash equilibriung for gameP,(Xo,Ng,0) is subgame perfect if, for eadx,n;,t) € X x
{0,1,...N}2 x [0,), the subgamé,(x,n,t) admits a feedback Nash equilibriugn such thatyi(y, ns,s) =

14



Let us assume thatis a feedback perfect Nash equilibrium of the gaPgéxo, no,0). The

expected payoff in the case of defection is then

V[i)EF(tvﬁta(d7€pii)
o) s . . A . .
= B /t e 0 QL8 — s e TVt 45, P 01,0 )
= V(t.h.¢,0") +EX{e PNV (t+8,h5 0,07 VIt 43R 5¢, 7))
foralli € {A B}.

Proposition 2. Let @ be a given target profile for the gani& (xo,0) and let¢ € S, be a
feedback perfect Nash equilibrium. Denote the corresponding target path fp dred let
h be as defined before. The strategy profile= (@, W) defined in (6) constitutes a Nash
equilibrium for the gaméy(Xo,0) if and only if
Vith o) —Vith, @07 <
EC{e OV (t+8,hy5,¢,07) V' (t 48,7y 5.0",07)]) ()

holds for alli € {A,B}, all t € [0,), and all feasible defection patig < S, (o).

3. Valuation

This section presents firms’ value of noncooperative strategy and cooperative strategy by solv-

ing the coupled HJB equations.

d(y,ns,s) holds for(y,ns,s) € X x {0,1,...N}2 x [0,). A feedback Nash equilibrium which is subgame perfect
is also called a feedback perfect Nash equilibrium

15



3.1. Noncooperative Equilibrium

Proposition 3. For a 2-tuple nonzero-sum stochastic differential game of prescribed fixed
duration [0, T], described by (1), (2), the admissible contbe U' c Ui € {A,B} and the
information structure), 2-tuple of feedback strategi¢e* € S,;i € {A,B}} provides a Nash
equilibrium solution if there exists suitably smooth functidhs[0, T] x N,i] — R,i € {A B},

satisfying the Hamiltonian-Jacobian-Bellman equation:

DJ'(t,x,np,ng ') +{16'% (10)
+ sup{u () (3"t m+1,ng) = It x i, ne ) =1} (11)
uel!
+ @ (ng) I x g +1) = 3t x.n,ng )] =0 (12)
J(T,xn,ng') = F'(x,n,ng) (13)
where
DI (t,x,n,n ') = %ozszﬁ(er uxJ 43 —rd' (14)

where the subscript refers to the partial derivative.

Lemma 1. SupposeX (J'(t,x,ni +1,n;") — J'(t,x,n,n;")) > 0,i € {A,B}. Then firms have
threshold strategy, i.eu' = @/ (t, X, Nt) = Ly sxi+(t.n)» -° With a thresholdd* (t, ny)

When the feedback strategy is threshold stratehy, x,n;) = x>x(t,n) for threshold
X (t,ny). Itwould be convenient to denot(t, x, iy, X, x ) =V'(t, %, n, @, @) for threshold
pairx,x~". In addition, we may denoté' (t,x, n) = V'(t,x,n,x,x") for simplicity.

161,.ueis a characteristic function. It equals 1 if value is true or 0 if value is false.
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We start by assuming that one firm (th& R Leader) invests not later than its rival (the
R&D Follower), i.e.x-* < x™*, wherex** andx™* are Leader and Follower’s thresholds. The

R&D Leader or R.D Follower is not necessarily the market leader or market follower.

Theorem 1. Supposey < N,i € {L,F}. For a 2-tuple nonzero-sum stochastic differential
game of duration0, «), as described by (1), and (2), and under feedback information pattern,
e, u(t) = @(t,x, ). LetVSS(t,x,n),VIS(t,x,n),VI(t,x,n) be functionals solved by
HJB equations (10) witku",u™) = (0,0), (u-,u") = (1,0), (u-,u") = (1, 1), respectively, for

i € {L,F}. SupposeZ(J(t,x,nf+1,n") —Ji(t,x,nl,nc")) > 0,i € {L,F}. Then a 2-tuple

of feedback strategiefg* € S'q;i € {L,F}} provides a Nash equilibrium solution such that

(ﬂ*(t,Xt,nt> = lX(ZXi*(Lnt) .
The follower’s value is
VPSSt xn) x<xH(t,n). ut=u" =0

VEtxm) = ¢ VSt xn) x(tn) <x<xFrt,n).ut=1uF =0  (15)

VEeCt x,n) xFr(t,m) <x.ub=uF =1
The leader’s value is

VESS(t,x ) x< x-(t,ny). u-=uF =0
VEExm) = ¢ Vit xm) X <x<xFrtm).u-=1,u" =0  (16)
viee x,my) xFr(t,m) <x.ub=uF =1

with
Vh(t,0,n) =VF(t,0,n) =0 (17)
lim Vit x,ny) Ox (18)
)!irr!oVF(t,x, ) 0 x (19)
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whenx = xt(t, nt),

VESS(t, x, ) = VESS(t, x, ny) (20)

5 VESS(t,x, ) = 5 VEes(t, x, ) (21)

VSt x, ny) = VFeS(t, x, ny) (22)

&VFSS(t,x,nt) = %(VFCS(t,x,nt) (23)
m(VE(t,x,n"+1,n7) —Vvt(t,x,nt nF)) —1 =0 (24)

whenx = xF*(t,nt),

VLCS(t,X,nt) =Vt x, ny) (25)

Svtes(txm) = SVHeE(t o) (26)

VESS(t, x, ) = VFC(t, x, ny) (27)

%(VFCS(t,x,nt) = %(VFCC(t,x,nt) (28)

(VP x,n" +1,nh) —VvF(t,xnF,.nt))—1=0 (29)

The R&D Leader and RD Follower’s values follow from HJB equations (10) via some
notation changes from A and B to L and F. Equation (17) to (19) are standard boundary condi-
tions. The value matching conditions, (20,22,25,27) smooth pasting conditions (21,23,26,28)
and transitional boundary conditions (24), (29) are sufficient to solve for the parameters. For a
heuristic argument of the value matching conditions, and smooth pasting conditions see Dixit
(1993, Section 3.8); a rigorous proof is in Karatzas and Shreve (1991, Theorem 4.4.9). The

transitional boundary conditions follows from HJB equations (10).

Corollary 1. Supposen{ < N,i € {L,F}. For a 2-tuple nonzero-sum stochastic differential
game of duration0, «), as described by (1), and (2), and under feedback information pattern,

e, u(t) =@t x,n). LetVSS(t,x,n),VIoS(t,x,n),VI(t,x,n) be functionals solved by
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HJB equations (10) witku", u™) = (0,0), (u-,u") = (1,0), (u-,u") = (1, 1), respectively, for
i € {L,F}. Suppose (J'(t,x,n +1,n;") = (t,x,ni,n; ")) > 0,i € {L,F}.

(i)(Response) For some firng {L,F }, suppose the other firm’s threshold strategy is given
as @' (t,%, M) = Ly ox-i(tn) then firm i's response strategy(t,x,n) = 1y >yt n)» Where
X =R(x™") =argmax; V'(t,x,n,x,x"). Leader and Follower’s value functionals are solved
from equation (15) to (29) by ignoring corresponding transitional Boundary Condition (24)
or (29).

(i) Forall i € {L,F}, suppose firm i’ threshold strategy is given@, x, ny) = Ly (tne)»
then Leader and Follower’s value functionals are solved from equation (15) to (29) by ignoring

transitional Boundary Conditions (24) and (29).

3.2. Cooperative Optimum

Now consider the case in which the two firms make their investment strategies cooperatively.

Proposition 4. For a 2-tuple nonzero-sum stochastic differential game of prescribed fixed du-
ration [0, T], described by (1), (2), the admissible conbk U',i € {A, B} and the informa-

tion structuren, a 2-tuple of feedback strategiéepCi* € Sq i € {A B}} provides a cooperative
equilibrium solution if there exists suitably smooth function functins [0, T] x N; — R,

satisfying the Hamiltonian-Jacobian-Bellman equation:

DJIC(t,x, ) + (L7 + 768X,
+suqh:(u{7u;i){u{[n‘(n{)(JC(t,x, nlt + 17 ntii) _‘]C(tvx7 n{, ntii» - l]
+ut7i[n_i(nt7i)(‘]c(tﬂx7 nia ntii + 1) _Jc(ta)(?n{v ntii)) - l]} =0 (30)
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JE(T, %,k ng) = F(x,nl, ng) (31)

where

1
DJIC(t, x, ) = éc:zsz)%(Jr uxE +J° —rJ¢ (32)

where the subscript parameter dfefers to the partial derivative.

Denote the cooperative Leader and Follower’s threshold§'gsandx“F*. Thenxth <

XCF-.

Theorem 2. For a 2-tuple nonzero-sum stochastic differential game of durdfion), as de-
scribed by (1), and (2), and under feedback information patterni.@), = ¢/ (t,x, ni,n;"),
foric {L,F}, letVEsst, x, m),VEos(t, x, v ), VEO(t, ;, it ) be functionals solved by HIB equa-
tions (30) with(u-,u™) = (0,0), (u-,u") = (1,0), (u-,uF) = (1,1), respectively. Suppose
2 (3(t,x,nl+1,n") = IC(t,x,ni,n;")) > 0,i € {L,F}, Then a 2-tuple of feedback strategies
{¢" € §,},i € {L,F} provides a cooperative equilibrium solution such tigat(t,x,n;) =

1XtZXCi* (t7nt) .

The combined value to two cooperative firms is described by

VOsYt,x,n) x<xXH. ub=uF =0
VE(txn) = & VOt xn) b <x<xXCFr Ut =1,uF =0 (33)

Veeet, xny) XF <x.ub=uF =1

with

VE(t,0,n) =0 (34)
lim VE(t,x,ny) Ox (35)

X—00
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whenx = xCL,

VESx,0,0) = VC(x,0,0) (36)

i Cs _ E Ccs,
de x,0,0) = de (x,0,0) (37)
T[L(t7 nt)(vc(taxv ntL + 17 ntF) _Vc(t7X7 ntL7 ntF)) —1=0 (38)

whenx = xCF*,

VE5%x,0,0) = VC(x,0,0) (39)

E Cs _ i Ccs
OIXV ¥%,0,0) = de (x,0,0) (40)
T (t, ) (VE(t, b, +1) =VE(t,xnE,nf) —1=0 (41)

4. Solution

We now consider a one stag&R process with infinite horizon and winner-take-all market

environment, that ifN = 1, T = o, andB¢ = 0. Without loss of generality, lé, = 1.

The stationary strategy profile solution with feedback information patten is defined by
@(t,x,n) = Ly >xiny)»1 € {AB}, wherex refers to the corresponding investment thresh-
old. Then it will be convenient to denote the payoff functional of firm i defined in (2) by
L' (x,ng,x,x~"), and then firm i's expected payoff functional can be writte¥ g, ny, X, x ) =
V(% @, 07).

At equilibrium point (X*,x~*), the equilibrium value functional might be denoted as

V%, ne) = Vi (%, ng, X x 1)
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4.1. Noncooperative Equilibrium

Proposition 5. Suppos@ = o, N=1,6,=1,0¢f =0. Then fori € {L,F},

Vix,n'=1,n"'=0)= — 42)
vix,n=0n"=1)=0 (43)
At stagen = (0,0), the R D Follower’s value is
agE X Vs x<x*. ut=u"=0
VF(x,0,00 = bieX YLt 4 hopx Y2t X< x<xFr Ut =1,uF =0 (44)
CopX Y2r+m+mf 4 egex4cap X <x ut=uF =1
The RD Leader’s value is
(
ag X Vs x<x*. ut=u"=0
b Xfyl,rﬂﬂ- +b Xfyz,r+n|-
Vix0,00 = ¢ " . (45)
+bg X+ ba. X <x<xFr ub=1,u" =0
\ Co X Yor+mti 4oy x+cqy XF<xu=uF=1
whereys y, Y2y solve302(—y)(—y— 1) +p(—y) —y =0, assume > 0.
m— \/m¢ + 2ya?
yl7y = 0.2 < 07
m-+ /N2 4 2yc?
Yoy = 02+ >0 (46)
m=p—a2/2

This solution allows us to derive analytical characterization of the value and optimal strat-

egy. Here we can show closed form solutions for some special cases. In the general case the

22



complexity of this formulation does not allow closed form solution. But it can be easily solved

by numerical methods.

The monopoly case In the monopoly casex® = . Then the threshold for the firm A

becomes

A I(r—p) (r+1—p (Vorire —Yor) (T + 1) =Ty, (47)
™ T (Vo= Vo) (T = W) — (1T e

The R&D Follower case In the follower casex? = 0. 17 Then the threshold for firm A as

the follower becomes

A =P (r+m+18—p) (Vor st ime = Yorind) (F+TO+TE) =T, e

X' =
™ M+ (Vo — Yo (FH T+ T8 — ) — 83 (1+ V2,r+nA+(12ng)

The symmetric case In the symmetric caser* = 12, thenx” = xB. Then the threshold for

both firm A and firm B becomes

N 1(r— 1) (r+ 1+ 1 — ) (Yo, 4réme — Yor) (T + ™+ 10) — T[AV2,r+nA+nB

S T S S <v2,r+mne—v1,r><r+rﬁ+n8—u>—nt\<1+v2,r+wn29)

4.2. Cooperative Optimum

Now consider the case in which the two firms decide on their investment strategies coopera-

tively.

1"The follower case means the situation that the other firm will always invest.
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Proposition 6. Supposd =, N =1,8,=1,0¢ =0. ThenV®(x,1,0) =VC(x,0,1) = 20

alX—VLr X < XCL*
VC (X, O, 0) = blx_y17r+n'- + bzx_yz,r+nL + b3X—|— b4 XCL* <X< XCF* (50)
CoX 2r+mta | cax+Cy xCF* < x

where

e

SRR oY
b4:_r+|nL (2)
-+ 1t
T[T )
2
Y &9

The values of;,b; and b, are obtained by solving nonlinear equation (50) by optimization

methods.

The symmetric case In the symmetric caset* = 1, thenx’™ = xX“F*. Then the threshold

for both firm A and firm B becomes

3 — I(r—w) (r+ 4T — 0y (Vz,r+nA+nB — Y1) (r+ ™+ TlB) — 2T[Ay2,r+T[A+T[B

™ r+m+m (Vz,r+nA+nB — Y1) (r+ T+ T8 — ) — 2T[A(1+V2,r+nA+T(t35)5)

24



4.3. Analysis of noncooperative and cooperative solutions

We now analyze the noncooperative solution and the cooperative solution for two symmetric

firms. 18

Considerx® as a response function &®, asx(xB), it is observed from (47), (48), (49)
and (55) thak”(0) < xN* < xA(ew) < X**. Under uncertain future cash flow market condition,

the investment thresholds of the two firms are positively correldfed.

Response Map Denote the response ma&p: X — X for firm i, i.e., X (x ) = R(x™") =
argmay; V' (t,%,n,x,x™). The value ofR(x"),i € {A,B} follows from Corollary 1 by re-
placing the transfer boundary condition (29) or (24) with the given threshidiheni refers

to Leader or Follower.

Figure 2 demonstrates the positive correlations between the two firms’ thresholds. It is
noted that the response functi®fx) is an increasing monotone functiolR(0) < R(X) <

R(0),0 < X < co.

Notice that as showed in figure 2, cooperative solufigti, xX**} is not a noncooperative
equilibrium sinceR(x%*) < x&*.

Figure 3 illustrates the relations between the firms’s value and their threshold under the
response strategy. The response strategy threshold pefir i€ (x*)), wherexB(xA) = R(x*)).
The value of a firmy/, is represented by the value af (refer to equation (44) or (45)) as a
function of threshold”. The solid-dotted line refers to the value of firm A and the dash-dotted
line refers to firm B. Firm A's optimal investment threshold for response strategyis then

firm B’s optimal investment threshobd'B* = xB(xNA),

18The asymmetric cooperative case has the difficulty in agreeing asymmetric investment rules and the need for
side-payments implicit in cooperative outcome, so it is not easy to be considered for tacit collusion.
BUnder certain future cash flow market condition, the investment thresholds of the two firms are independent.
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Figure 3 also illustrates the relations between the symmetric firms’s value and their thresh-
old under the cooperative strategy. The cooperative threshold padrisB). NoteVCA =
VCB xCB = xCAin the symmetric case. The value of a fivh,is represented by the valueaf
(refer to equation (50)) as a function of thresheftd. The solid line refers to the value Wf*
as a function of the cooperative threshaid. The optimal investment cooperative threshold
is XCA = xCB — xCx_ It is observed thay; (XCA, xCB) > ag; (XN xNB) 'which implies the
cooperative solution is more efficient than the noncooperative solution. It is also observed that

x* > xN*, which implies that the Pareto optimal solution leads to strategic delay.

The cooperative solution, however, is not an equilibrium with feedback strategy. Consider
the response strategy of one firm, say firmxB(x***) < x°B_ It is observed from Figure 3
thatagg (XCA%, xB(XCA)) > agg (XA, XCB), aga (A, xB(XA)) < aga (XA, x°B*). The impli-
cation is that firm B receives higher benefits through deviation, while firm A gets less benefits
by firm B’s deviation. It is also observed thaga (x4, xXNB*) > aga (XA, xB(xCA)), which
indicates that firm A has incentive to choose the feedback noncooperative solution facing the
deviation of firm B. These observations suggest that both firms have incentive to deviate from
the cooperative solution. They also indicate that the feedback noncooperative solution pro-

vides a credible threat.

These findings are also demonstrated in Figure 4, which illustrates the value of symmetric
firms A and B with various investment strategies. When one and only one firm has deviated,
the solid-pentagram line refers to the value of the firm that devistf@¢x; xP*, X°*), and the
solid-plus line refers to the value of the other firm which has not devidted (x; xP*, xX**),
wherexP* = R(x**). The solid-star line refers to the value of the firm pursuing a cooper-
ative strategyv® (x;xX**,x**). The solid-dotted line refers to the value of the firm pursuing
a non-cooperative equilibrium strategy(x; xV*,xN*). It is observed thay/P' (x;xP*, xX**) >
VE (6 xE* ) > VI (x; xN* xN*) > V=Dl (x; xP* xC*), These observations imply that the coop-

erative optimum is more efficient than the noncooperative equilibrium, the cooperative opti-
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mum is not an equilibrium, and the threat to punish from being deviated to the noncooperative

equilibrium is credible.

The interesting thing to note is that the Pareto optimal cooperative solxi6h, x°&)
is not a noncooperative equilibrium. We will show that a collusion equilibria with a trigger
strategy generates payoffs which dominate those obtained via the classical noncooperative

equilibrium.

4.4. Trigger Strategy

The trigger strategy is described as followed. Symmetric firms choose coooperative threshold
X&*, which is from Theorem 2, at the start of first period and continue pursuing it so long as
no firm has ever deviated. If any firm has ever deviated, say firm i has deviated to a response
xP* = R(x**), then after time lag, both firms choose non-cooperative threshdld, given

by Theorem 1. Thus the threshold pairs for the target stra([éggp:i), deviation strategy
(@, @ 1), and punitive strateggp’, o) are (X, X*), (xP*,xC*) and (xN*, xN*), respectively.

There are three phases when two firms exercise the trigger strategies, coordination phase,
deviation phase and retaliation phase. In the coordination phase, both firms choose the Pareto
optimal threshold*, which exceeds the noncooperative feedback threstBladf the puni-
tive phase. These findings have implications for the understanding and assessment of empirical

investment behavior.

For example, investment occurs late due to the strategic behavior of the firms who delay
their investment in the fear of setting a&R war to the deviation phase and then the retal-
iation phase. Hence, delay is due to strategic interactions between firms, not just the option
effect of uncertainty. Investment is also more delayed than that when a single firm has the
opportunity to invest. Such strategic delay is similar to that described by Weeds (2002) but

arising for different reasons.
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Similarly, firms exercise investment according to threshold strategies in both the coordi-
nation phase and the retaliation phase. It implies that investment will occur after a period
of stagnation when market conditions rise and disappear after a period of investment activity
when market conditions fall. In addition, firms may deviate to the deviation phase and result
in the retaliation phase when the tacit collusion is not sustainable. This suggests tl§aban R
war may lead to a resumption of a discontinueglRprogram, with a sudden burst of compet-
itive activity, even when the market conditions are declining or unchanged, a phenomenon that
contrasts strongly with the usual presumption that investment starts when market conditions

increase.

5. Likelihood of Tacit Collusion on R&D

In this section, we analyze the characteristics that can affect the sustainability of collusion
with a structural quantitative approach. The goal is to analyze the role of technical uncertainty
and market uncertainty on the likelihood of tacit collusion. There are some basic structure
variables, such as the number of competitors, barriers for entry and market transparency. In
particular, we determine the impact of the probability of successful innovation, market growth
drift and market volatility on the degree of market transparency that is necessary to sustain the

collusion.

5.1. Measures of the degree of market transparency

The information time lag represents the degree of market transparency. We define two

threshold“* andd™* to analyze the sustainability of collusion.
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To check whether the trigger strategy constitutes a Nash equilibrium or the threat is ef-
fective for a given information la@, we can go one step further from proposition 2 with

conditionsT = o, N = 1,6, = 1,0¢ = 0. Inequality equation (9) can then be written as

Vi(Xt,0,0,(d,Ep_i) _Vi(xt?O7o7€dv€p_i) S
E'[Q{eiréll’ng:(O,O) [VI (Xt+57 07 07 (d ) Epii) - Vi (Xt+5; 07 07 ¢i ’ ¢7i )]} (56)

Lemma 2.
1> Pr(n 5= (0,0)|n = (0,0),¢/,9 ) > & M+ (57)
Theorem 3. Supposd = oo,N = 1,8, = 1,0 = 0. The strategy profile) = (*, yB) defined

in (6) constitutes a Nash equilibrium for the gaigxo, 0) if

VI(%,0.0,¢,¢) ~V'(%,0,0.§,§7) <
ef(rJrnAJrnB)éEtQ[Vi (Xt+57 07 07 (d ’ E’pii) _Vi (Xt+57 07 07 ¢i ’ ¢7i)] (58)

holds for alli € {A,B}, all t € [0,), and all feasible defection patlgs € §,(¢').

The strategy profile) = (¢*, ¢B) defined in (6) fails to constitute a Nash equilibrium for
the gamePy(xo,0) if there exits a feasible defection pathe S'n(fp_i) for somet € [0, ),
i € {A,B} such that

Vi(%,0,0,¢,¢") —V'(%,0,0,¢,¢7") >
e_raE'[Q[Vi (Xt+5> 07 07 (PiaZp_i) _Vi (Xt+57 07 07 ¢i ’ ¢_i)] (59)

holds.

Denote

f1(x,8) =V'(x,0,0,¢,97) —Vi(x,0,0,§,§7)

| o . o (60)
— e_(r+T[A+T[B)5EtQ[VI (Xt+5707 Ov(d7(p_l) _VI(Xt—i-&O? 07¢I7¢_I)]
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f2(x,8) =V'(%,0,0,¢,¢ ") —V'(x,0,0,@,¢")
i

| L o (61)
—e PEPV (%115:0.0.¢,¢7) = V' (% 15,0,0,0',0 )]
8 (x) = min{f1(x8) > 0} (62)
o min{ti'-(x)} (63)
3 (x) = méax{fZ(x, 3) <0} (64)
d* = mxin{esH (x)} (65)

Corollary 2. Supposel = o,N = 1,6, = 1,0t = 0. Let the threshold pairs for the target
strategy(@, @ 1), deviation strategyq, @), and punitive strategg’,d—) are (xCi*, x~Ci¥),
(xP1*, x~Ci) and (X*,x 1), respectively. Suppose th&%%% - 0 for k= {1,2}. Then the
corresponding strategy profilg = (WA, Q) defined in (6) constitutes a Nash equilibrium for
the gameP;,(xo,0) if & < 8-*. The corresponding strategy profilefails to constitute a Nash
equilibrium for the gamé@ (xo, 0) if & > .

Calculation of deviation condition In order to apply the inequality equation (58) and (59),
it will be convenient to writeV' (x,5,0,0,¢,¢7") = Vi (x5 x5, xF), Vo€ S, @) = Loy,
with i € {L,F} refers to Leader or Follower, respectively, atidx™ refers to the two thresh-

olds for the Leader and Follower, respectively.

Then
agx Vur x<x-.u-=uF=0
VIxEXT) = byx et fbgyix Vet fbhgxtby Xt <x<xT.ub=1uF =0
CoiX Y2+t 4 caiX+ Cyi xXF<xu=uF=1
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Notice that

—rd —VYi, _rd _
ECle a1i% 5 Ly sot] = EC[e e Vsl o, Lety= Inx,y- = Inxt

= ajj G<y|_’ 67 —Vl,r, 1)

where

o
G(y;8.0.K) = Elexs(~ [ rsd9e& ey (60

Then

Ele "V (x5, X5, X7)] = agiG(Inx"; 8, —yar, 1)
+by[G(INX;8, =y 1) — G(INX; 8, =y e, 1)]
+ b2i [G(In x; 8, —Y2,r4+m 1) — G(In x; 8, ~Yor4nts1)]
+bsi[G(InX";5,1,1) — G(Inx; 8,1, 1)] (67)
+ b4 [G(InxF;8,0,1) — G(Inx-; 3,0, 1)]
+ 2 G(—InXT;8, Vo 4y, 1) + CaiG(— InxT; 8,1, —1)
+¢4G(—Inx";5,0,—1)

So, if we can compute the function G, we can tell from proposition 3 whether a firm

deviates or not with information lagy

Whenri=r, |k =, 0t =0,

T e OB
e edyoﬂfr*(“*%02)d+%d202)5¢(—H%\%%OZ)G +0dvd) k<0

where®() is the cumulative normal distribution.
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Figure 5 illustrates the impacts of factors like information de3egndx on the decision
to deviate or not. The deviation decision only mattersxar [x°*,x**]. Deviations won't
happen whe® < 8-(x), while deviation will happen whea > 87 (x), whered-(x) andd" (x)
are defined in (62) and (64). It is also observed that gdethe deviation is more likely to

happen whem is near the middle af®* andx“*, and less likely to happen whetris nearxP*

or X,

Figure 5 also demonstrat®s* andd™*, defined in (63) and (65), respectively. We can tell

whether there is a tacit collusion equilibrium following corollary 2.

Sufficiently Long Information Lag & 2° The cooperative solution that follows from

Theorem 2 {x“* x*B} is not a noncooperative equilibrium for the gamxo, 0).

Sufficiently Short Information Lag & The cooperative solution following from Theo-
rem 2, {x*A xCB}under trigger strategy, is a Nash equilibrium for the gafneo, 0) for

symmetric two firms.

In summary, these findings suggest that information or observation of rivals actions pro-

vide a scheme to induce tacit collusion.

5.2. Comparative Statics

We now examine the effects of changes in underlying parameters on the information time lag
thresholds. In particular, we consider three potential influence®oandd™*: the success

rate (1), the drift of market growtt{p), and the volatility of marketo).

Consider the effect of the success rate on time lag thresholds. Figure 6 demonstrates that

the effect of increasing likelihood of innovation success is a decrease in both information time

20For example, in the extreme caSe- «, the two firms are required to commit to a threshold at the start of
the game or they can’t observe their rival’s actions.
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lag thresholds. The intuition is that if the probability of successful innovation is substantial, the
firms then anticipate that innovation is coming soon and thus put less emphasis on the future
retaliation and are more tempted to cheat on collusion. Therefore, the more likely innovation

is, the more difficult it is to sustain collusion.

Now consider the effects of changes in the drift of market growth on the propensity of tacit
collusion. Figure 7 illustrate that the effect of increasing absolute value of drift of market is a
decrease in the two information time lag thresholds. It is also showed that a positive drift leads
to lower information time lag thresholds than a negative drift does, given the same abstract
drift value. A possible explanation to understand this is that the deviation only happens when
x is in the deviation region, i.ex € [xP*,x**] and the retaliation only matters wheris in
the retaliation region, i.ex € [x"*,x**]. When|y| > 0, firms, anticipating thak_ 5 may be
out of the retaliation region, put less emphasis on future retaliation and thus are more tempted
to defect. In additiony, 5 is more likely out of the retaliation region when> O than it is
whenp < 0, given the same absolute value. Therefore, the intuition is that collusion is easier
to sustain in stagnating market, less likely to sustain in declining market and most difficult to

sustain in growing market.

Finally consider the effects of changes in the volatility of market on the propensity of tacit
collusion. Figure 8 illustrate that the effect of increasing volatility of market is first an increase

and then a decrease in the two information time lag thresholds.

There are debates on the effects of demand volatility on likelihood of tacit colludton.
The implication from this analysis is that a simple “check list” factors method is not enough
when the relation is not a simple one. This paper provides a structural quantitative approach

to evaluate the likelihood of tacit collusion.

21For example, The European Court of First Instance (CFI) has recently overturned the decision by the Euro-
pean Commission to prohibit the merger between UK tour operators Airtours plc and First Choice plc. As regards
market conditions, the Commission had argued that the volatility of demand which characterized the market was
conducive to collusive behavior. However, the CFI noted that economic theory suggests the opposite (i.e. volatil-
ity of demand renders the creation of a collective dominant position more difficult) and that the Commission had
failed to establish that economic theory did not apply or that volatility in demand was conducive to the creation
of collective dominance. (Court of First Instance 6 June 2002)

33



6. Conclusion and Future Work

Motivated byR&D investments currently taking place in industry, we develop a stochastic
differential game approach to analyz& B investment under technical and market uncertainty
with strategic interactions and ongoing costs. The model demonstrates that investment options
might be exercised based on a trigger strategy and lead to either a tacit collusion equilibrium
or a preemption equilibrium, depending on the length of the associated information time lag.
In such a collusion equilibrium, a cooperative solution is played as long as the deviation never
happens. If a deviation occurs, a punishment strategy derived from the preemption equilibrium
will follow that forever. When the information lag is long, a preemptive equilibrium emerges

in which the option values of delay are reduced by competition. When the information lag
is sufficiently short, a collusion equilibrium emerges in which investment is delayed more
than the single-firm counterpart and delayed less than that from a one-shot investment cost
formulation like that in Weeds (2002).

The solution for this option exercise game provide an underlying theory from which one
may begin to understand and assess empirical investment behavior. For example, some strate-
gic R&D investments have been prone to be more delayed than the single firm counterpart.
The model is able to isolate the conditions that make such phenomenons more or less likely.
In addition, some B D markets have been prone to overinvestment, wheredab Rar may
lead to a resumption of a previously discontinuefilRprogram even when market condi-
tions might still be worse than when they were discontinued. While this is often regarded as

irrational , the model provides a rational foundation for such exercise patterns.

We also provide implications of tacit collusion in8® for antitrust and merger control
policy. Tacit collusion has been dealt with under the notion of coordinated effects in a number
of court decisions and corresponds to the “collective dominance” studied in Europe. Rather
than a pure “check-list” of relevant factors, this paper provides an attempt of a structural

guantitative analysis for a clear understanding of why each dimension is relevant, as well
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as how it affects collusion and it is affected by a merger. This helps to facilitate an overall

assessment when several factors have a role and push in different directions.

The model of strategic D investments can be applied to a variety of settings. More
recently, innovation market allegations have become common place, particularly in actions in-
volving the pharmaceutical industry, where drugs are introduced only after years of laboratory
and clinical testing and good information is available at least to the government about drugs in
advanced stages of8/D. In other industries, practical difficulties often arise in applying the
theory, given the secrecy of8D. Consider also alternative technology hybrid electric cars
in automotive industry. For example, GM stopped its hybrid project in 1998 and resumed it

recently after observing Toyota’s success in its hybrid car project of Prius.

Motivated by the sequential radical technology innovations like hybrid car and fuel cells
vehicles currently being pursued in the automobile industry, Yao (2004) applies this stochastic
differential game approach to product development and to project selection problem. That
paper considers not only technical and market uncertainty as well as strategic interactions
among firms but also interactions among multiple products. A more general analysis form of
market share outcomes replaces the strong winner-take-all assumption employed here. That
approach can be used to explain the phenomenons of multiple technofdgyrdtes in the

automobile and information technology industries.

A. Appendix

One player problem The one player objective functional, similar as two player’s version

(2), is denoted as:

;
L(t, %, N, U) = /t e "5V (20Xs — ugl Yds+ e " TVF (Xr, nr). (69)
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The expected utility functional is defined as

V(t, %, M, W) = EQ[L(t, %, N, U)]

From Ito’s formular with jumps,
d\t = py (t)dt + oy (1)dBR + Bs(t)d Z(t)

dZ(t) = K(Z(t—)u(t, Xt)dN.

where

K(0)=1;k(1)=0

N is a Poisson process,

N — 1 with probability rdt
0 with probability 1 — mdt

(70)

(71)

(72)

The procesZ(t) = n; has two possible stages, say 0 and 1. When in stage 0O, given the

investment decision(t, X ) = 1, the proces& moves to stage 1 after a time whose probability

distribution is exponential with parametar Stage 1 is an absorbing stage whg(e) will

stay there forever.

Let\t = f(Z, X%, t), then

d\t = Dfdt+ fsos(t)dBE + f(Z, X, t) — f(Ze—, %, 1),

whereDf = %O%fss-l- Msfs+ ft.
Moreover,d\t = Wy (t)dt+dY, forY a local martingale and
W (t) =Df +mt)G(1),
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where

G(t) = f(Z +K(Z(t=)u(t, %), X, t) — F(Z_, X%, 1)

Proposition 7. For a one player stochastic differential equation of prescribed fixed duration
[0,T], described by (1), and the objective functional (69), the admissible cangr@l and the
information structure), a feedback strategyp” € S, } provides a optimal control if there exists
suitably smooth function functiods [0, T] x N, — R, satisfying the Hamiltonian-Jacobian-

Bellman equation:

DJ(t,x,nt) + (0% + suu[}){ut[n(nt)(\](t,x, n+1)—J(t,x,n))—1]} =0 (74)
we
J(T,x,nT) = F(X,nT) (75)
where
DJ(t,x,ny) = %ozszxer X+ —rd (76)

where the subscript parameter dfefers to the partial derivative.

Proof. This result follows from Fleming (1969) or Fleming and Rishel (1975) with application

of Ito’s formula with jumps. For a treatment of jumps see Duffie (2001, Appendix F). ]

Proof of Proposition 1  Obvious.

Proof of Proposition 2 Obvious.

Proof of Proposition 3 This result follows from the definition of Nash equilibrium and from

proposition 7, since by fixing all players’ strategies, except the ith one’s at their equilibrium
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choices, which are known to be feedback by hypothesis, we get a stochastic optimal control

problem covered by proposition 7 and whose optimal solution is a feedback strategy.

Proof of Lemma 1 Noticex*(t,n;) = argmin{Ji(t,x,ni +1,n7") — Ji(t,x,ni,n7") > O},

Proof of Theorem 1 The R&D Leader and B.D Follower’s values follow from HIB equa-

tions (10) via some notation changes from A and B to L and F. Equation (17) to (19) are
standard boundary conditions. The value matching conditions, (20)(22)(25)(27) smooth past-
ing conditions (21)(23)(26)(28) and transitional boundary conditions (24), (29) are sufficient
to solve for the parameters. The value matching conditions, and smooth pasting conditions fol-
low from Karatzas and Shreve (1991, Theorem 4.4.9). The transitional boundary conditions

follows from HJB equations (10).

Proof of Proposition 4 This result follows from the definition of Nash equilibrium and from
proposition 7, with a two elements array replacing the one dimension variable such as defining

u= (UCL7 uCF)'

Proof of Theorem 2 The values follow from HIB equations (30) via some notation changes

from A and B to CL and CF. The value matching conditions, smooth pasting conditions and
transitional boundary condition are sufficient to solve for the parameters. The value matching
conditions, and smooth pasting conditions follow from Karatzas and Shreve (1991, Theorem

4.4.9). The transitional boundary conditions follows from HJB equations (30).

Proof of Lemma 2 1> Pr(n.,5 = (0,0)|rx = (0,0),¢,¢ ") is obvious. To see the second
inequality, noticee(M+™)8 — Pr(n, 5 = (0,0)|ny = (0,0),u' = 1).

Proof of Theorem 3 Plug (57) in (56).
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Figure 1. The flow chart of the model
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Figure 2. Response Maps (Reaction CurvesThis figure illustrates the relations of the strat-
egy thresholdg” andxB. The dash-dotted line refers to firm B’s threshold as a response func-
tion of firm A ’s thresholdx®(x*). The solid-dotted line refers to firm A ’s threshold as a re-
sponse function of firm B ’s threshoid (xB). The non-cooperative equilibrium threshold pair

is (x*,xB*). The cooperative optimum threshold pai(i&*,x°B*). The pairs of one firm’s
cooperative threshold and the other firm’s responsive thresholgk&te= R(x*B*), x°B*} and

{xXCA xPB = R(x*A)1, whereR(.) is a responsive function, which imply that the cooperative
optimum is not an equilibrium as both firms have incentives to deviate.
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Figure 3. The effect of threshold on values with response and cooperative strategies.
This figure illustrates the relations between the symmetric firms’s value and their threshold,
under the response strategy or cooperative strategy, respectively. In the response strategy,
firm A choose its threshold first, firm B then select a threshold as a response of firm As.
The response strategy threshold paitx8, xB(x*) = R(x")), whereR(.) is a response func-

tion. In the cooperative strategy, symmetric firms A and B choose the same threshold. The
cooperative threshold pair 54 X°B), wherex®® = x°A. The value of a firmy, is rep-
resented by the value @ (refer to equation (44), (44) or (50)) as a function of threshold

xA or X°A. The solid-dotted line refers to the value of firm A and the dash-dotted line refers
to firm B, both as functions of threshold. The response optimum for symmetric firms is
exactly the noncooperative equilibrium. Thus firm A's optimal investment threshold for the
response strategy 8", firm B’s optimal response threshattd® = xB(xXN*). The solid line

refers to the value 0" as a function of the cooperative threshafd®. NoteV¢A =VCB,

in the symmetric case. The optimal investment cooperative threshafdis= xX°B*. It is
observed thas§' (xXC*,xCB) > al (xN* xNB+) i ¢ {A B}, which implies that the coopera-

tive optimum is more efficient than the noncooperative equilibrium. It is also observed that
aB(xXCA XB(XCA)) > T (XA XEB) > aft (X, xB(xCA)), which indicates that the coopera-

tive optimum is not an equilibrium.
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Value of Deviation from Coop solution, Coop solution, and Noncoop equilibrium
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Figure 4. Noncooperative equilibrium, cooperative optimum, and deviation from coop-
erative optimum. This figure illustrates the value of symmetric firms A and B with various
investment strategy. When one and only one firm has deviated, the solid-pentagram line refers
to the value of the deviated firMP' (x;xP*,xX°*), and the solid-plus line refers to the value

of the other firm which has not deviat&t P! (x;xP*,xX**). The solid-star line refers to the
value of the firm with cooperative strateyf§ (x;X**,X**). The solid-dotted line refers to the
value of the firm with non-cooperative equilibrium stratagyx; xN*, xXN*). It is observed that
VDI (5, xP* xC*) > VO (3 xXC xC*) > VI xN*, xN*) > V=PI (x;xP* x**). These observations
imply that the cooperative optimum is more efficient than the noncooperative equilibrium, the
cooperative optimum is not an equilibrium, and the threat to punish from being deviated to the
noncooperative equilibrium is credible.

45
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Figure 5. The effect of information time lag and market flow income on the deviation
decisions. This figure illustrates the impacts of factors like information dedagnd flow
incomex on the decisions to deviate or not. The deviation decision only matters for x in
deviation region, i.e.[xP*,x**]. Deviation won’'t happen whed < &“(x), while deviation

will happen whend > & (x), whered-(x) andd-(x) are defined in (62) and (64). It is also
observed that gived, the deviation is more likely to happen wheis near the middle ofP*
andx®*, and less likely to happen whexris nearx®* or xX&*.
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The effect of success rate on information time lag thresholds
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Figure 6. The effect of success rate on information time lag threshold3his figure demon-
strates that the effect of increasing likelihood of innovation success is a decrease in both in-
formation time lag thresholds.
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The effect of market growth drift on information time lag thresholds
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Figure 7. The effect of market growth drift on information time lag thresholds. This
figure illustrate that the effect of increasing absolute value of drift of market is a decrease in
the two information time lag thresholds.
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The effect of market volatility on information time lag thresholds when p # 0
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Figure 8. The effect of market volatility on information time lag thresholds. This figure
illustrate that the effect of increasing volatility of market is first an increase and then a decrease
in the two information time lag thresholds.
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