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Abstract

We price the surrender option embedded in two common types of guaranteed par-

ticipating Italian life contracts and we adopt the Least Squares Monte Carlo approach

following Longstaff and Schwartz (2001) giving a comparative analysis with the results

obtained through a Recursive Tree Binomial approach according to Bacinello (2003). We

present an application to a major Italian life policies’ portfolio at two different market

valuation dates. We use a Black&Scholes-CIR++ economy to simulate the reference fund;

we estimate the fair value of portfolio’s liabilities according to De Felice and Moriconi

(2001), (2002) and Pacati (2000) extending the framework to price the embedded sur-

render options.
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1 Introduction

The most common types of life policies issued by Italian companies present two intimately

linked faces: one actuarial and the other financial. From an actuarial point of view, these

products provide a financial service to individuals that wish to insure themselves against

financial losses which could be the consequence of death, sickness or disability. At the same

time these products often include interest rate guarantees, bonus distribution schemes and

surrender options that represent liabilities to the insurer. In the past, for example in the

1970’s and 1980’s when long term interest rates were high, some of these options have

been viewed by insurers as far out of the money and were ignored in setting up reserves,

but the value of these guarantees rose as long as term interest rates began to fall in the

1990’s. If the rates provided under the guarantee are more beneficial to the policyholder

than the prevailing rates in the market, the insurer has to make up the difference.

The problem of accurately identifying, separating and estimating all the components

characterizing the guarantees and the participation mechanism has attracted an increasing

interest both of researchers and practitioners from a risk management and option pricing

point of view. In their seminal contributions, Brennan and Schwartz (1976),(1979b) and

Boyle and Schwartz (1977) have employed the techniques of contingent claims analysis to

provide a valuation framework in order to estimate the fair value of a guaranteed equity-

linked contract.

According to the recent literature (Jensen, Jørgensen and Grosen (2001), Grosen and

Jørgersen (2000) and Bacinello (2003), a life policy contract can be viewed as a participat-

ing American contract that can be splitted into a participating European contract and a

surrender option. In the participating European contract the benefit is annually adjusted

according to the performance of a reference fund, a bonus option, and a minimum return

is guaranteed to the policyholder, minimum guarantee option; the literature is rich and we

recall Norberg (1999) (2001), Bacinello (2001a), De Felice and Moriconi (2001), (2002),

Pacati (2000), Consiglio, Cocco and Zenios (2001a) and (2001b).

The surrender option is defined as an American-style put option that enables the poli-

cyholder to give up the contract receiving the surrender value. Commonly surrenders can

be modelled by actuarial methods using experience-based elimination tables. The ration-
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ality of exercise as for an American put option in the financial markets is assumed in the

literature and we recall Albizzati and Geman (1994), Bacinello (2003), Jensen, Jørgensen

and Grosen (2001) and Grosen and Jørgersen (2000). The behavior of the policyholder in-

tuitively can be affected by other motivations where redemptions appears to be essentially

driven by the evolution of personal consumption plans and the contract can be given up

also if is not rationale from a strong financial point of view. In many practical situations

the American options embedded in financial contracts turn out to be not rationally exer-

cised as outlined by Schwartz and Torous (1989) referring to mortgage-backed securities

and Brennan and Schwartz (1977) and Anathanarayanan and Schwartz (1980) referring

to Canadian savings bonds. The surrender option may have significant value if it is not

adequately penalized and is rationally exercised as we will give evidence in this paper. We

are dealing with long term American put options which are intrinsically sensitive to the

interest rate level and the asset allocation decisions achieved by the insurance company’s

management.

In addition, traditional Italian policies enable the policyholder to give up the contract

either receiving the surrender value, a cash payment, or converting the surrender value

into a guaranteed annuity, payable through the remaining lifetime and calculated at a

guaranteed rate, which can be greater than market interest rate as outlined recently by

Boyle and Hardy (2003) and Ballotta and Haberman (2002). Another factor added to the

cost of these guarantees, according to Ballotta and Haberman (2003) and Lin and Tan

(2003), is the following: the mortality assumption implicit in the guarantee did not take

into account the improvement in mortality which took place in the last years.

In this paper our main purpose is to price the surrender option embedded in the Italian

life guaranteed participating policies by Least Squares Monte Carlo approach proposed by

Longstaff and Schwartz (2001) giving a comparative analysis with the results obtained by

a Recursive Tree Binomial approach according to Bacinello (2003) without considering the

actuarial uncertainty. Lattice or finite difference methods are naturally suited to coping

with early exercise features, but there are limits in the number of stochastic factors they

can deal with. These limits are due to the increase in the size of grid or the lattice which

is used to discretize the space. On the contrary, one of the major strengths of Monte

Carlo simulation is just the ability to price high-dimensional derivatives considering many
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additional random variables.

Our approach is to jointly take into account the term structure of interest rates and

the stock index market making use of a Black&Scholes-CIR++ economy to simulate the

reference fund, composed by equities and bonds. We present an application to a relevant

portion of RAS SpA life policies’ portfolio at the two different valuation dates, 31 December

2002 and 30 June 2003, characterized by significant different market conditions in terms

of interest rates level and at-the-money cap implied volatilities. The policies analyzed are

characterized by different premium payment styles (single and constant periodical) and are

endowments including both a bonus option and a minimum guarantee option. We derive

the fair value of portfolio’s liabilities according to De Felice and Moriconi (2001), (2002)

and Pacati (2000). We extend the Least Squares Monte Carlo approach considering the

actuarial uncertainty according to Bacinello (2003) in order to price also the embedded

surrender options. We analyze how the fair value of liabilities and the embedded options

are affected by financial features as different composition of reference fund and different

market interest rates conditions and actuarial features as bonus premia and surrender

penalties. The results are purely indicative and the comments do not represent the views

and/or opinion of RAS management.

Section 2 discusses the surrender option and the related literature. The Least Squares

Monte Carlo approach proposed by Longstaff and Schwartz (2001) to price an American-

style option is discussed also and a comparative analysis with the results obtained by a

Recursive Tree Binomial approach according to Bacinello (2003) is presented. Section 3

describes the approach followed in the simulation of the reference fund and in the estim-

ation of the fair value of liabilities. An extension of Least Squares Monte Carlo approach

to derive the American contracts and to price the surrender option according to Bacinello

(2003) is discussed. Then we proceed to analyze the numerical results. Finally, Section 4

presents conclusions.

4



2 A Least Squares Monte Carlo Approach to Price the Sur-

render Option

2.1 Surrender Option

Our purpose is to value the surrender option embedded in the endowment life Italian

policies. The surrender option is an American-style put option that enables the policy-

holder to give up the contract and receive the surrender value. We implement a method

that uses Monte Carlo simulation, adapting it, so that it can work also with products

that present American-exercise features. In particular, we follow the Least Squares Monte

Carlo approach presented by Longstaff and Schwartz (2001).

We make a comparative analysis, where only financial risks are treated, between the

Least Squares Monte Carlo approach and the Binomial Tree approach adopted by Grosen

and Jørgensen (2000) and Bacinello (2003). The effect of mortality is not considered and

the riskless rate of interest is assumed to be constant.

We briefly summarize the problem analyzed: at time zero (the beginning of year one),

the policyholder pays a single premium to the insurance company and thus acquires a con-

tract of nominal value C0. The policy matures after T years, when the insurance company

makes a single payment to the policyholder. However, the contract can also be terminated

depending on the policyholder’s discretion before time T . The insurance company invests

the trusted funds in an asset portfolio, that replicates a stock index, whose market value

A(t) is assumed to evolve according to a geometric Brownian motion,

dA(t) = µA(t)dt + σA(t)dZ(t), A(0) = A0, (1)

where µ, σ and A(0) are constants and Z(·) is a standard Brownian motion with respect

to the real-world measure. Under the risk neutral probability measure Q the evolution is

given by

dA(t) = rA(t)dt + σA(t)dZQ(t), A(0) = A0, (2)

where ZQ(·) is a standard Brownian motion under Q and r is the instantaneous spot rate.

The rate credited to the policyholder once a year from time t−1 to time t, t ∈ {1, . . . , T},
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is denoted rC(t) and is guaranteed never to fall below smin, the contractually specified

guaranteed annual interest rate:

rC(t) = max
(

βI(t)− itec
1 + itec

, smin

)
, smin =

imin − itec
1 + itec

, (3)

this is due to the policy holder at regular time dates defined by the contract (for example

on annual or monthly base). We define itec as the technical interest rate that is used for

reducing the rate of return given to the policyholder, smin is the minimum rate guaranteed

every time the return of reference fund is calculated and β ∈ (0, 1] is the participation

coefficient of the policy holder to the return of reference fund. Generally it assumes

values from 80% to 95% and the difference 1-β is retained by the insurance company and

provides an incentive to the insurance company on the asset allocation decisions achieved.

The annual rate of return of the reference fund at time t, I(t), is defined as:

I(t) =
A(t)

A(t− 1)
− 1, (4)

The nominal value C0 grows according to the following mechanism:

C(t) = (1 + rC(t)) · C(t− 1), t ∈ {1, 2, . . . , T}, C(0) = C0. (5)

According to Grosen and Jørgensen (2000) and Bacinello (2003) we define two contract

types: the European contract and the American contract. The former is simply the

contract that pays C(T ) at the maturity date T , whereas the latter can be exercised

depending on the policyholder’s discretion at any time t in the set {1, 2, . . . , T}. If the

policyholder decides to exercise at time t, he receives C(t). The surrender option value is

given by the difference between the American contract value and the European contract

value.

In order to price the American contract, Grosen and Jørgensen (2000) and Bacinello

(2003) implement a binomial tree model á la Cox, Ross and Rubinstein (1979) while

Jensen, Jørgensen and Grosen (2001) develop and implement a finite difference algorithm.

Grosen and Jørgensen (2000) and Jensen, Jørgensen and Grosen (2001) use a different
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type of revaluation mechanism with respect to equation (3):

rC(t) = max
{

β

(
B(t− 1)
C(t− 1)

− γ

)
, rG

}
, (6)

where γ is the target buffer ratio, rG is the contractually specified guaranteed annual

interest rate similar to smin and B(t) = A(t)− C(t). C0 grows according to the equation

(5) as for the Italian mechanism, C0 = 100 and B0 = 0. Because of the dependence

of the contract values on both A(·) and C(·), the size of the trees which keep track of

these variables grows exponentially with T and Grosen and Jørgensen (2000) are forced

to implement a recursive scheme using an annual step. This allows for T + 1 final values

of A(t), 2T different paths, and similarly (up to) 2T different terminal values of C(t).

According to Grosen and Jørgensen (2000) the results cannot be so accurate.

Bacinello (2003) analyzes a life insurance product introduced in Italy at the end of

1970’s and takes into account the presence of the surrender option employing a recursive

binomial formula for describing the stochastic evolution of A(t). Each policy year (the

period that goes from a payment to the policy holder to the succeeding one) is divided into

N subperiods of equal length. Let ∆ = 1/N , fix a volatility parameter σ >
√

∆ln (1 + r),

set u = exp
(
σ
√

∆
)

and d = 1/u. Then A(t) can be observed at the discrete times

δ = t + h∆, t = 0, 1, ...T ;h = 0, 1, ..., N − 1 and A(δ + ∆) can take only two possible

values: uA(δ) (“up” value) and dA(δ) (“down” value). Under the risk-neutral measure,

the probability of the event A(δ + ∆) = uA(δ) is given by

q =
(1 + r)∆ − d

u− d
(7)

while

1− q =
u− (1 + r)∆

u− d
(8)

represents the risk-neutral probability of the event A(δ +∆) = dA(δ). The above assump-

tions imply that I(t), i = 1, 2, ..., T takes one of the following N + 1 possible values:

Ij(t) = uN−jdj − 1, j = 0, 1, ..., N (9)
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with risk neutral probability

Qj =

(
N

j

)
qN−j(1− q)j , j = 0, 1, ..., N. (10)

At the same time the annual interest rate given to the policyholder can take n+1 possible

values given by

rCj (t) =
βIj(t)− itec

1 + itec
j = 0, 1, ..., n (11)

with probability Qj and smin with probability 1 −
∑n

j=0 Qj . We define n as the number

of times that the values assumed by (11) are greater than smin.

The European contract value is the expected value at time t of the terminal value and

is defined as EQ(e−rT C(T )). The time in which the policy holder can exercise the option

to surrender is t = 1, 2, ..., T − 1 and the American contract value is computed by means

of a backward recursive procedure operating from time T − 1 to time 1. We observe that

in each node at time T the value F (T ) of the whole contract coincides with C(T ), whereas

at time t < T , in the backward procedure, in each node we compare the continuation

value, that is the value deriving from staying in the contract, with the intrinsic value, that

derives from immediately exercising the contract. The continuation value in each node is

F (t) = max(C(t), EQ
t [e−rF (t + 1)]). (12)

2.2 Least Squares Monte Carlo Approach

We now briefly describe the method suggested in the paper by Longstaff and Schwartz

(2001) in order to price American options by Monte Carlo simulation (LSM: Least Squares

Monte Carlo approach). The mechanism underlying an option with American exercise

features is the following: at any exercise time, the holder of an American option compares

the payoff from immediate exercise, which we refer to as intrinsic value, with the expected

payoff from continuation, and exercises if the immediate payoff is higher. In other words, at

each simulated time instant, the value of the contract is the maximum between the intrinsic

value and the continuation value. Thus, the optimal exercise strategy is determined by the

discounted conditional expectation under the risk-neutral probability measure of the future

cash flows, assuming an optimal exercise policy is adopted in the future. For example,
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in the case of an American put option written on a single non-dividend paying asset, the

value (cashflow) V (t, A(t)) of the option at time t, conditional on the current asset price

A(t), considered step by step, is recursively given by

V (t, A(t)) = max
{
I(t, A(t)), EQ

t

[
e−rV (t + 1, A(t + 1))|A(t)

]}
, (13)

where I(t, A(t)) is the intrinsic value. The difficulty in using Monte Carlo derives from

the fact that we should know the conditional expected value of the future option value,

but this depends on the next exercise decisions.

The approach developed by Longstaff and Schwartz (2001) is that this conditional

expectation can be estimated from the cross-sectional information in the simulation by

using least squares, that is by regressing the discounted realized payoffs from continuation

on functions of the values of the state variables (the current underlying asset price in this

example). For example, the use of a quadratic polynomial would give

EQ
t

[
e−rV (t + 1, A(t + 1))|A(t)

]
≈ a1 + a2A(t) + a3A(t)2. (14)

While the generation of sampled paths goes forward in time, the regressions go back-

wards, starting from time T . At this time, the exercise strategy is trivial: the option is

exercised if and only if it is in-the-money. If the strike is X, the cashflows for each path

j are max{X − Aj(T ), 0}, provided that the option has not been exercised yet. Going

backwards in time to time step T − 1, if on a path the option is in-the-money, one may

consider exercising it. The continuation value is approximated regressing the discounted

cashflows only on the paths where the option is in-the-money. The important point is that

the early exercise decision is based on the regressed polynomial, in which the coefficients

are common on each path, and not on the knowledge of the future price along the same

path.

2.3 Numerical Results

In the section devoted to numerical results, we analyze contracts for which C0 = 100

and T = 4 years reporting the values of the American contract, European contract and

surrender option. In Tables 1-4 we present the results we obtain through LSM, simulating
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400, 000 paths, and the Binomial Tree approach with a step ∆ = 1/50 according to

Bacinello (2003) for different values of interest rate r, volatility σ, participation coefficient

β and minimum guarantee smin. The values of the American contract have been produced

using different combinations of A, C and rC as state variables and using different order for

the polynomial. When we use the two state variables A and C together and the third-order

polynomial, we involve cross-products such as AC,AC2, A2C and we regress according to

EQ
t

[
e−rF (t + 1)

]
≈ a1 + a2A(t) + a3A(t)2 + a4A(t)3 + a5C(t) + a6C(t)2 +

+a7C(t)3 + a8A(t)C(t) + a9A(t)2C(t) + a10A(t)C(t)2. (15)

The reason for using more than one state variable is that, as pointed out by Longstaff

and Schwartz (2001), if the regression involves all paths, more than two or three times

as many basis functions may be needed to obtain the same level of accuracy as obtained

by the estimator based on in-the-money paths. This is our case, since the intrinsic value

is not, for example, the standard payoff of a put, but is given by the surrender value, so

we cannot limit the number of values used in the regression to those where the option is

in-the-money, but we have to consider all of them.

We assume σ=15%, r=5%, smin=0% and β=45% and we vary the values of σ from

5% to 40% keeping constant r, smin and β, and so for r from 0% to 10%, smin from 0%

to 4.5% and β from 40% to 100%. We base our regression using the state variables A, C

and rC and using a third order polynomial.

In general, our results do not produce a significant error, since the difference between

the values of American and European contract obtained with the two approaches is in

mean less than 2%; in addition, the differences are both positive and negative and irrel-

evant in most of the cases. We report the standard error deviation (s.e.) of our results.

These results suggest that the LSM algorithm is able to approximate closely the Binomial

Tree values. However the Binomial Tree values depend on the step adopted, ∆ = 1/50,

and a higher number of steps in each year requires a large amount of CPU time; that is

why we have to fix a low value for T and a high value for ∆.

We now look at the values in the Tables 1-4. As in Grosen and Jørgensen (2000) a

higher participation coefficient, β, reduces the value of surrender option and the value of
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American contract equals the value of European contract. A lower participation coefficient

makes more incentive for the policyholder to give up the contract. This depends signific-

antly on the values assumed by the minimum guarantee smin that is not reduced by β. As

expected, all the results reported in Table 2 are very sensitive with respect to the market

interest rate r. The value of surrender option is increasing when r is increasing, revealing

that the early exercise is never optimal when the market interest rate r is low and near

to the minimum guarantee smin. From Table 3 we observe that the minimum guarantee

smin has a significant influence in determining the value of the American contract and

an increasing minimum guarantee smin reduces the difference between the American and

the European contract value. The volatility parameter σ affects significantly the results

according to Table 4. A decreasing volatility produces an increase in the value of the sur-

render option making more incentive for the policyholder to give up the contract receiving

the surrender value. As expected these results depend on the value of minimum guarantee

smin=0% and level of the market interest rate r=5%.

3 An Application to an Italian Life Policies’ Portfolio

In this section we explain the assumptions and the method we follow to simulate the ref-

erence fund, to derive the fair value of the insurance life policies in terms of a European

contract and to extend the European contract to an American contract pricing the sur-

render option. Finally we proceed to analyze the numerical results obtained at two different

valuation dates.

3.1 Assets: Reference Portfolio

Our approach is to jointly model the term structure of interest rates and the stock in-

dex with stochastic processes governed by stochastic differential equations. Given the

continuous-time perfect-market assumptions we assume that the reference fund evolves

according to the following equation:

L(t) = αA(t) + (1− α)G(t), 0 ≤ α ≤ 1, (16)

where A(t) is a stock index and G(t) is a bond index. De Felice and Moriconi (2001),

11



(2002) and Pacati (2000) model G(t) as the cumulated results of a buy-and-sell strategy,

with a fixed trading horizon δ, of stochastic zero coupon bonds with a fixed duration

D ≥ δ derived according to Cox, Ingersoll and Ross (CIR) model (1985).

We model interest rate uncertainty with the CIR++ model according to Brigo and

Mercurio (2001), an extension of CIR model, yielding a short rate model that allows

us (i) to obtain an exact fit of any observed term structure; (ii) to derive analytical

formulae for bond prices, bond option prices, swaptions and caps prices; (iii) to guarantee

positive rates without worsening the volatility calibration; (iv) to have the distribution of

the instantaneous spot rate with fatter tails than in Gaussian case. The instantaneous

interest rate (spot rate) r(t) is defined as

r(t) = y(t) + ϕ(t). (17)

where y is a process that evolves according to the CIR model

dy(t) = κ(ϑ− y(t))dt + η
√

y(t)dZy(t), y(0) = y0, (18)

where κ is the mean reversion coefficient, ϑ is the long term rate, η is the volatility

parameter and y0 is the initial spot rate. ϕ(t) is a deterministic function, depending on

the set Θ of parameters κ, ϑ, η, y0 and integrable on closed intervals. The function ϕ can

be chosen so as to fit exactly the initial term structure of interest rates: the model fits the

currently observed term structure of discount factors if and only if

exp

[
−
∫ T

t
ϕ(s)ds

]
=

PM (0, T )
Πy(0, T )

Πy(0, t)
PM (0, t)

, (19)

where PM (0, t) denotes the discount factor observed in the market for the maturity t

and Πy(0, t) is the CIR closed-form formula, depending on the set Θ of parameters, for

the price at time 0 of a zero-coupon bond maturing at t and with unit face value.

For the stock index A(t), we use a Black&Sholes model having the following stochastic

equation under the risk neutral probability measure:

dA(t) = r(t)A(t)dt + σA(t)dZQ(t), (20)
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where σ is the volatility parameter. The model incorporates the correlation between

the interest rate and the stock index. This is accomplished by explicitly introducing the

correlation between the diffusion processes:

Corr(dZy(t), dZQ(t)) = ρyQdt. (21)

By the Markov property, the price of a traded security is a function of the state

variables r(t) and A(t) at the time t:

V (t) = V (y(t), A(t), t). (22)

The price V (t) of security is determined by the risk adjusted probability measure where

the drift of r(t) and A(t) are replaced by:

κ(ϑ− y(t)) + πy(t) (23)

r(t)A(t) (24)

respectively and the aggregate parameters for the pricing are ϑ̂ = ϑκ and κ̂ = κ− π and

π is a constant and is associated with the market price of interest rate risk endogenously

specified as the function:

q(y(t), t) =
π
√

y(t)
η

. (25)

The model is computationally tractable in the sense that it can be implemented using

Monte Carlo simulation: we generate a discrete sample path for r(t) and A(t). We calculate

the price of zero coupon bonds with duration D along the sample path of r(t) applying

the short-term roll-over strategy fixing trading horizon δ and we derive the market value

and the path of the reference fund L(t). As we can observe from Figures 1 and 2, when

D is short, the simulation of G(t) generates paths with a high dispersion on the long

period, whereas when D is long, the paths are characterized by a high local dispersion,

but a reduced dispersion on the long period. We will see in the next section how interest

rates and volatility structure, duration, weight and the volatility of equity affect the fair

value of insurance life policies and its components. We will focus on the interest minimum
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guaranteed option and the surrender option.

3.2 Liabilities: European Contract

We consider two types of participating endowment policies, those paid by a single premium

and those paid by constant annual premiums, part of a significant portion of a major

Italian life portfolio. The premiums earned are invested into a reference fund. The benefit

is annually adjusted according to the performance of the fund and a minimum return is

guaranteed to the policyholder.

We define x as the age of the policyholder at the inception of the contract and n as

the time length of the contract. We define a as the number of years between the inception

date of the contract and our valuation date. We assume that a is integer and therefore the

policy starts exactly a years before the valuation date, which we denote by t. m = n− a

is the time to maturity. We suppose that all the contractually relevant future events

(premium payments, death and life at maturity) take place at the integer payment dates

a + 1, . . . , a + m. In particular, benefit payments occur at the end of the year of death,

if the policyholder dies within the remaining m years, or at the end of the m-th year, if

he is alive after m years. Premium payments occur at the beginning of the year. Finally,

we do not consider possible future transformations of the policies, such as reduction and

guaranteed annuity conversion options.

Let C(a) be the sum insured at the inception date t − a. We define C(a + k) and

L(t + k) respectively as the benefit eventually paid at time a + k and the market value

of the reference fund, composed by a stock index and a bond index as specified in the

previous section, at time t + k, k = 1, . . . ,m. As before itec is the technical rate, imin is

the minimum guaranteed and β ∈ (0, 1] is the participation coefficient. We introduce itr, a

minimum rate retained by the company, that reduces the rate credited to the policyholder.

The annual rate of return of the reference fund at time t + k, I(t + k), is defined as:

I(t + k) =
L(t + k)

L(t + k − 1)
− 1, (26)

and the readjustment measure is
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rC(t + k) = max
(

min(βI(t + k), I(t + k)− itr)− itec
1 + itec

, smin

)
(27)

that is different respect to (3) for the factor min(βI(t+k), I(t+k)− itr). For C(a+k),

in the case of single premiums, we can write the following equation

C(a + k) = C(a + k − 1)(1 + rC(t + k)) = C(a)Φ(t, k), (28)

Φ(t, k) =
k∏

h=1

(1 + rC(t + h)), (29)

(full readjustment rule), whereas in the case of constant annual premiums, we have,

according to Pacati (2000),

C(a + k) = C(a + k − 1)(1 + rC(t + k))− m− k

n
C(0)rC(t + k)

= C(a)Φ(t, k)− 1
n

C(0)Ψ(t, m, k), (30)

Ψ(t, m, k) =
k−1∑
h=0

(m− k + h)rC(t + k − h) ·
k∏

l=k−h+1

(1 + rC(t + l)). (31)

We value the European contract on first order bases using conservative probabilities

excluding surrenders and considering net premiums. We denote by P the net constant

premium paid by the policyholder in case of annual premiums; we suppose the valuation

takes place soon after the premium payment. We define kpx+a as the probability that

the policyholder, with age x+a, is alive at time a + k, and k−1|1qx+a as the probability

that the policyholder, alive at time a + k − 1, dies between a + k − 1 and a + k. The

policies paid by constant annual premiums that we consider are also characterized by the

presence of a terminal bonus. We define bD as the bonus paid in case of death and bL as

the bonus paid in case of life at maturity; both expressed as percentages of the benefit.

The quantities C(a+k)bD and C(a+m)bL are also readjusted according to equation (30),
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but are multiplied by corresponding modifying survival probabilities with the persistency

frequencies in the contract. We will denote the modified survival and death probabilities

by kp
∗
x+a and k−1|1q

∗
x+a respectively. The net constant premium P is given by the sum

of two components: P = Ptb + Pm, where Ptb is the component relative to the terminal

bonus and Pm is the residual component of the premium.

According to the assumptions defined by De Felice and Moriconi (2001), (2002), the

European contract value is the difference between the fair market value of the future

benefits payable by the insurance company and the fair market value of the eventual future

premiums payable by the policyholder, both multiplied for the corresponding survival

probabilities:

V E(t) = mpx+aC(a)V (t, Φ(t, m)) +
m∑

k=1

k−1|1qx+aC(a)V (t, Φ(t, k)) (32)

for single premiums and

V E(t) = (mpx+a + mp∗x+abL)(C(a)V (t, Φ(t, m))− C(0)
n

V (t, Ψ(t, m,m)))

+
m∑

k=1

(k−1|1qx+a + k−1|1q
∗
x+abD)(C(a)V (t, Φ(t, k))− C(0)

n
V (t, Ψ(t, m, k)))

−
m−1∑
k=1

(kpx+aPm + kp
∗
x+aPtb)v(t, t + k) (33)

for constant annual premiums. We define V (t,Φ(t, k)) and V (t, Ψ(t, m, k)) as the valuation

factors

V (t, Φ(t, k)) = EQ
t

[
Φ(t, k)e−

∫ t+k

t
r(u)du

]
V (t, Ψ(t, m, k)) = EQ

t

[
Ψ(t, m, k)e−

∫ t+k

t
r(u)du

]
(34)

derived through Monte Carlo approach after simulating the stock index A and the spot

rate r that affect the reference fund L and so rC as explained before. EQ
t is the conditional

expectation under the risk neutral measure Q. We denote v(t, t+k) as the discount factor

between times t and t + k

v(t, t + k) = e−
∫ t+k

t
r(u)du. (35)
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We can apply the survival probabilities after calculating the fair financial values, since we

suppose that actuarial and financial uncertainties are independent.

The fair value of the European contract can be viewed (see De Felice and Moriconi

(2001), (2002) and Pacati (2000)) as a “put decomposition” and a “call decomposition”

from a financial point of view. According to the “put decomposition”, we observe in

fact that the expression for C(a + k), eq(28) and eq(30), can be decomposed into a base

component and a put component. If we assume that it is always min(βI(t + k), I(t + k)−

itr) ≥ imin, we obtain the base component:

B(a + k) = C(a)
k∏

h=1

(
1 +

min(βI(t + h), I(t + h)− itr)− itec
1 + itec

)
(36)

in the case of a single premium payment, and

B(a + k) = C(a)
k∏

h=1

(
1 +

min(βI(t + h), I(t + h)− itr)− itec
1 + itec

)

− C(0)
n

k−1∑
h=0

[
(m− k + h)

min(βI(t + k − h), I(t + k − h)− itr)− itec
1 + itec

·

·
k∏

l=k−l+1

(
1 +

min(βI(t + l), I(t + l)− itr)− itec
1 + itec

)]
(37)

for constant annual premiums. Observing that B(a + k) ≤ C(a + k), we can define the

put component as the difference

P(a + k) = C(a + k)− B(a + k). (38)

Equation (38) is the payoff of an European put option of annual cliquet type, that guaran-

tees a consolidation of the results obtained year by year, with annual strike rate smin, and

where the underlying is the minimum between the return of the reference fund, multiplied

by the participation coefficient, and the minimum retained by the company.

According to the “call decomposition”, C(a + k) can be viewed as the sum of a guar-

anteed component and a call component. Supposing that the sum initially insured grows

at the minimum guaranteed level, we obtain the guaranteed component:

G(a + k) = C(a)(1 + smin)k (39)
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in the case of a single premium payment, and

G(a + k) = C(a)(1 + smin)k − C(0)
n

smin

k−1∑
l=0

l(1 + smin)l (40)

for constant annual premiums. The difference

C(a + k) = C(a + k)− G(a + k) (41)

is the call component: it is the payoff of an European call option of annual cliquet type

and it represents the value of the extra-return of the reference fund with respect to the

minimum guaranteed smin.

The two decompositions also hold for the quantities C(a + k)bD and C(a + m)bL.

3.3 Liabilities: American Contract and an Extension of Least Squares

Monte Carlo Approach

We now describe how we apply LSM approach to our model. In considering actuarial

uncertainty, we follow the approach adopted by Bacinello (2003). From a LSM point of

view, the approach is the following (we recall that n denotes the term of the policy): at

step n− 1 (if the insured is alive) and along path j, the continuation value is given by

Wj(n− 1) = vj(t + n− 1, t + n)Cj(n) (42)

for single premium and

Wj(n− 1) = vj(t + n− 1, t + n)Cj(n)(1 + bL)− P (43)

for constant periodical premiums, since the benefit Cj(n) is due with certainty at time n.

P is the premium due at time n− 1 and vj(t + n− 1, t + n) is the discount factor between

n − 1 and n. The intrinsic value Rj(n − 1) (also referred to as surrender value in this

context) is the benefit due in n − 1 discounted with an annually compounded discount

rate isur (eventually equal to zero) that can be considered as a surrender penalty applied
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to the policyholder benefit:

Rj(n− 1) =
Cj(n− 1)
(1 + isur)

(44)

for a single premium and

Rj(n− 1) =
(

Cj(n− 1)− C(0)
n

)
1

(1 + isur)
(45)

for constant annual premiums. The value of the contract for path j is therefore the

maximum between the continuation value and the surrender value:

Fj(n− 1) = max{Wj(n− 1), Rj(n− 1)}. (46)

Assume now to be at time a + k < n − 1 and along the path j: to continue means

to immediately pay the premium P for constant annual premiums or nothing for single

premium and to receive, at time a + k + 1, the benefit Cj(a + k + 1), if the insured dies

within one year, or to be entitled of a contract whose total random value (including the

option of surrendering it in the future), equals Fj(a + k + 1), if the insured is alive. We

suppose that the benefit received in a+k+1, in case of death between a+k and a+k+1, is

Cj(a+k): we thus have a quantity known in a+k and we can avoid taking the conditional

discounted expectation of Cj(a + k + 1). The continuation value at time a + k is then

given by the following difference:

Wj(a + k) =
{

1|1qx+a+kvj(t + k, t + k + 1)Cj(a + k) + (1− 1|1qx+a+k) ·

· EQ
t+k

[
e
−
∫ t+k+1

t+k
r(u)du

F (a + k + 1)
]}

(47)

for a single premium and

Wj(a + k) =
{

1|1qx+a+kvj(t + k, t + k + 1)Cj(a + k)(1 + bD) + (1− 1|1qx+a+k) ·

· EQ
t+k

[
e
−
∫ t+k+1

t+k
r(u)du

F (a + k + 1)
]
− P

}
. (48)
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for constant annual premiums. We use the regression to estimate the value

EQ
t+k

[
e
−
∫ t+k+1

t+k
r(u)du

F (a + k + 1)
]
. (49)

For the surrender value, we have

Rj(a + k) = Cj(a + k)(1 + isur)(k−m) (50)

in the case of a single premium, and

Rj(a + k) =
(

Cj(a + k)− C(0)
m− k

n

)
(1 + isur)(k−m) (51)

in the case of constant annual premiums. At each step and for each path we compare the

intrinsic value with the continuation value and take the optimal decision. For those paths

where the optimal decision is to surrender, we memorize the time and the corresponding

cashflow. When we arrive at time 1 (or the time the insured can start to surrender

from), we have a vector with the exercise times for each path and a vector with the

cashflows (benefits) corresponding to that time. At this point, taking into account that

the policyholder can survive until the exercise time or die before, for each path we multiply

the benefits due until exercise time by the corresponding survival or death probabilities,

sum them all and finally calculate the average on the number of paths.

3.4 Application and Numerical Results

In Tables 5-18, we present the results we obtain analyzing 944 policies paid by single

premium and 1,000 policies paid by constant annual premiums. The values are expressed

in euro. We make the calculations on every policy without aggregating and we group the

results by age layers. The two types of policies we consider are characterized by: itec=3%,

imin=4%, β=80%. We suppose that the policyholder can surrender after the first year

from the inception of the contract and we assume that itr=1%.

We calibrate the CIR++ model on a cross-section of euro swap interest rates and im-

plied at-the-money Euro cap volatilities for different maturities estimating the parameters

under the risk neutral probability measure with Minimum Lest Squares approach. We
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consider two valuation dates: 31st December 2002 and 30th June 2003 and the estimated

parameters are respectively κ̂ = 0.2823, ϑ̂ = 0.0437, η = 0.0833, y0 = 0.0056 for the first

valuation date and κ̂ = 0.3326, ϑ̂ = 0.04742, η = 0.0981, y0 = 0.0036 for the second valu-

ation date. According to the Figures 3 and 4, the market conditions are quite different:

we observe a significant decrease of interest rates level in particular on the short matur-

ities. The structure of at-the-money Euro cap volatilities shows a decrease shape at 31st

December 2002 but the structure becomes humped and decreasing from the three year

maturity on at 30th June 2003. We detect a significant increase of the implied volatilities

from the one to five year maturities at 30th June 2003.

We simulate 10,000 paths for the reference fund, discretizing the equations for the spot

rate and the stock index under the neutral probability measure according to the stochastic

Euler scheme with a monthly step. We assume ρyQ=-0.1 and δ=3 months and analyze two

different asset compositions obtained through different values of α, σ and D. We define

the first asset composition as “conservative” with α=10%, σ=15%, D=5 and the second

as “aggressive” with α=30%, σ=30%, D=10 years. For single premiums, in Tables 5-8 we

suppose that the surrender penalty, expressed by the annually compound discount rate

isur, is equal to zero. For constant annual premiums, in Tables 9-12 we set bL = 15%,

bD = 10% and isur = 0%. Then we proceed to make different hypothesis for bD, bL and

isur to make a sensitivity analysis to measure how actuarial features of the contracts affect

the fair value of liabilities and the value of the surrender option for the constant annual

premium policies: in Table 13-16 we set isur = 0 and bL = bD = 0; in Table 17 we set

bV = 15%, bM = 10% and isur = 5% if m− k < 5 and isur = 4.5% if m− k ≥ 5 in Table

18 we set bL = 0%, bD = 0% and isur = 5% if m − k < 5 and isur = 4.5% if m − k ≥ 5.

We choose to regress, for the valuation of the continuation value at time t + k, on three

state variables: the value of the reference fund L(t + k), the value of the benefit C(a + k)

and the revaluation mechanism rC(t + k), using a third order polynomial.

Looking at the values of the European contract, we observe that it increases from 31st

December 2002 to 30th June 2003 (Tables 5-18) due to the decreasing of interest rates and

the increasing at-the-money cap implied volatilities (Figures 3 and 4) keeping the asset

composition fixed. The interest rate structure is very close to the minimum guarantee

level: the values of put options increase too, meaning that the weight of the put compon-
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ent becomes greater. We observe that the European contract increases too as α, σ and D

increase, so passing from the “conservative” to the “aggressive” asset composition. Put

option values too, become more valuable with increasing uncertainty, due to increasing

volatility of the underlying portfolio.

The value of the surrender option is relevant and decreases with a more “aggressive”

composition of the reference fund (Tables 5-8) for single premium policies. This is pointed

out also in our results (Table 4) and in Grosen and Jørgensen (2000) and is due to the

fact that a more aggressive policy determines an advantage for the policyholder only, and

so his incentive to prematurely exercise may be partly or fully reduced. Moreover this

effect is reinforced when the minimum guarantee component is relevant. This pattern

is significantly reinforced too by a decrease of interest rate structure and the increasing

at-the-money cap implied volatilities as we observe from Figure 3 and 4.

The value of surrender option of constant annual premiums doesn’t change in a sig-

nificant way respect to the composition of reference fund and the interest rates market

conditions and slightly increases with a more “aggressive” composition of the reference

fund (Table 9-12). The results seems to be contradictive respect to the results obtained

on single premium policies but these can be explained by the characteristics of the life

contracts. The future premiums to be paid, according to eq(48), are constant and could

play a significant role in leading the policyholder’s decision smoothing the value of the

surrender option. At the same time the bonus components embedded in the constant

annual premium policies explain our previous results. When we set bL = bD = 0 (Table

13-16) we obtain lower values for European contracts and put options than in the pres-

ence of positive terminal bonus, and higher values for the surrender option deriving the

same pattern of single premium’s results in terms of reference fund’s composition. This

means that the terminal bonus is a strong incentive for the policyholder not to surrender

and gives evidence how much important are the actuarial features embedded in the life

contract and how much relevant is the value if surrender option if it is not adequately

penalized. We observe, then, that the presence of the terminal bonus reduces significantly

the effect of composition of the reference fund. Therefore the value of the surrender op-

tion significantly decreases also when we increase the surrender penalty from isur = 0 to

isur = 5% if m− k < 5 and isur = 4.5% if m− k ≥ 5 (Table 17-18): this is consistent with
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the fact that a positive value for isur determines a decrease of the surrender value.

4 Conclusions

In this paper we have presented a pricing application analyzing, in a contingent-claims

framework, the two most common types of life policies sold in Italy. These policies, charac-

terized by different premium payment styles (single and constant annual), are endowments

including different types of options as the surrender option. We have proposed to price the

surrender option by Least-Squares Monte Carlo (LSM) approach according to Longstaff

and Schwartz (2001) giving a comparative analysis with the results obtained by a Recurs-

ive Tree Binomial approach. Lattice or finite difference methods are naturally suited to

coping with early exercise features, but there are limits in the number of stochastic factors

they can deal with. On the contrary, one of the major strengths of Monte Carlo simula-

tion is just the ability to price high-dimensional derivatives considering many additional

random variables. Our results are relevant: the differences between the Binomial Tree and

LSM approach showed to be not significant.

We have then proceeded to present the application to a significant portion of a ma-

jor Italian life policies’ portfolio. We have adopted a Black&Scholes-CIR++ economy to

simulate the reference fund and we have estimated the fair value of portfolio’s liabilities,

viewed as American contracts, pricing the single components. We have made our valu-

ation at two different dates characterized by different interest rates and at-the-money cap

implied volatilities.

The surrender option may assume significant value if it is not adequately penalized

and is rationally exercised as we give evidence in this paper. We made evidence that we

are dealing with long term American put options which are intrinsically sensitive to the

interest rate level and the asset allocation decisions achieved by the insurance company’s

management. At the same time the characteristics of the contract from an actuarial point

of view as surrender penalties and bonus components affect significantly the fair value of

the surrender option and have to be adequately valued during the profit testing of the

contract before issue.
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Table 1: σ=15%, r=5%, imin=3%, itec=3%

Binomial Tree Simulation
β American European Surrender American s.e. European s.e. Surrender

0.40 97.041 88.679 8.362 97.066 0.005 88.744 0.010 8.322
0.45 97.430 90.110 7.320 97.455 0.006 90.172 0.012 7.283
0.50 97.819 91.559 6.260 97.849 0.007 91.638 0.013 6.211
0.55 98.209 93.025 5.184 98.248 0.008 93.137 0.015 5.110
0.60 98.598 94.509 4.089 98.650 0.009 94.667 0.017 3.982
0.65 98.987 96.010 2.977 99.054 0.010 96.226 0.019 2.828
0.70 99.401 97.623 1.774 99.460 0.011 97.811 0.021 1.650
0.75 99.797 99.192 0.604 99.869 0.011 99.422 0.023 0.447
0.80 100.816 100.816 0.000 101.059 0.025 101.057 0.025 0.001
0.85 102.484 102.484 0.000 102.718 0.027 102.717 0.027 0.000
0.90 104.172 104.172 0.000 104.401 0.029 104.401 0.029 0.000
0.95 105.880 105.880 0.000 106.109 0.031 106.109 0.031 0.000
1.00 107.610 107.610 0.000 107.840 0.033 107.840 0.033 0.000

Table 2: σ=15%, β=45%, imin=3%, itec=3%

Binomial Tree Simulation
r American European Surrender American s.e. European s.e. Surrender

0.00 106.135 106.135 0.000 106.085 0.011 106.085 0.011 0.000
0.01 102.632 102.632 0.000 102.587 0.011 102.587 0.011 0.000
0.02 99.821 99.285 0.536 99.820 0.006 99.254 0.011 0.566
0.03 99.007 96.088 2.920 99.012 0.006 96.079 0.011 2.934
0.04 98.210 93.032 5.179 98.224 0.006 93.053 0.011 5.170
0.05 97.430 90.110 7.320 97.455 0.006 90.172 0.012 7.283
0.06 96.666 87.316 9.350 96.704 0.007 87.427 0.012 9.278
0.07 95.917 84.643 11.275 95.973 0.007 84.812 0.012 11.161
0.08 95.184 82.084 13.100 95.261 0.007 82.321 0.012 12.939
0.09 94.465 79.633 14.833 94.567 0.007 79.948 0.012 14.618
0.10 93.761 77.283 16.477 93.891 0.007 77.687 0.012 16.204
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Table 3: σ=15%, β=45%, r=5%, itec=0%

Binomial Tree Simulation
imin American European Surrender American s.e. European s.e. Surrender
0.000 98.940 95.826 3.114 98.997 0.008 96.019 0.015 2.979
0.005 99.157 96.669 2.488 99.194 0.008 96.782 0.015 2.411
0.010 99.373 97.517 1.856 99.404 0.007 97.604 0.015 1.799
0.015 99.590 98.371 1.219 99.627 0.007 98.485 0.014 1.142
0.020 99.813 99.252 0.560 99.864 0.007 99.425 0.014 0.439
0.025 100.332 100.332 0.000 100.427 0.013 100.427 0.013 0.000
0.030 101.420 101.420 0.000 101.489 0.013 101.489 0.013 0.000
0.035 102.517 102.517 0.000 102.613 0.013 102.613 0.013 0.000
0.040 103.629 103.629 0.000 103.797 0.012 103.797 0.012 0.000
0.045 104.955 104.955 0.000 105.043 0.012 105.043 0.012 0.000

Table 4: β=45%, r=5%, imin=3%, itec=3%

Binomial Tree Simulation
σ American European Surrender American s.e. European s.e. Surrender

0.050 95.691 83.847 11.844 95.720 0.002 83.940 0.003 11.780
0.100 96.552 86.907 9.646 96.582 0.004 86.994 0.007 9.587
0.150 97.430 90.110 7.320 97.455 0.006 90.172 0.012 7.283
0.200 98.288 93.325 4.963 98.329 0.009 93.441 0.017 4.889
0.250 99.151 96.645 2.505 99.203 0.011 96.794 0.022 2.410
0.300 100.153 100.153 0.000 100.225 0.028 100.227 0.029 -0.003
0.350 103.714 103.714 0.000 103.741 0.035 103.739 0.035 0.001
0.400 107.335 107.335 0.000 107.329 0.043 107.328 0.043 0.001
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Table 5: Single Premium 31 Dec. 2002, α = 10%, σ = 15%, D = 5

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

15-20 4.11 45,207 3,538 48,241 3,034
21-25 5.02 190,660 24,079 228,973 38,313
26-30 5.55 653,932 59,767 726,902 72,970
31-35 5.38 990,696 80,971 1,078,529 87,832
36-40 5.25 772,306 72,413 853,635 81,328
41-45 4.46 1,031,450 81,029 1,110,294 78,843
46-50 3.66 1,321,146 86,669 1,389,242 68,095
51-55 3.37 416,766 26,073 436,038 19,273
56-60 3.34 521,434 29,846 541,140 19,705
61-65 2.75 105,277 4,926 107,376 2,099

Table 6: Single Premium 30 Jun. 2003, α = 10%, σ = 15%, D = 5

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

15-20 4.11 46,128 4,447 48,528 2,400
21-25 5.02 196,735 30,019 230,331 33,596
26-30 5.55 669,199 74,843 731,214 62,015
31-35 5.38 1,011,675 101,619 1,084,927 73,251
36-40 5.25 791,267 91,051 858,699 67,431
41-45 4.46 1,052,570 101,781 1,116,880 64,310
46-50 3.66 1,343,317 108,529 1,397,483 54,166
51-55 3.37 423,438 32,634 438,625 15,187
56-60 3.34 529,017 37,307 544,350 15,333
61-65 2.75 106,486 6,104 108,013 1,527
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Table 7: Single Premium 31 Dec. 2002, α = 30%, σ = 30%, D = 10

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

15-20 4.11 48,940 8,097 49,366 426
21-25 5.02 223,164 62,771 234,257 11,092
26-30 5.55 725,880 146,485 743,651 17,771
31-35 5.38 1,084,042 193,961 1,103,127 19,085
36-40 5.25 856,452 174,242 873,506 17,055
41-45 4.46 1,121,078 189,997 1,135,860 14,782
46-50 3.66 1,410,859 196,538 1,421,050 10,191
51-55 3.37 443,320 58,641 446,014 2,694
56-60 3.34 551,061 66,174 553,432 2,371
61-65 2.75 109,750 10,414 109,823 73

Table 8: Single Premium 30 Jun. 2003, α = 30%, σ = 30%, D = 10

Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

4.11 49,738 8,765 49,895 157
5.02 228,963 67,643 236,804 7,841
5.55 739,774 158,332 751,419 11,646
5.38 1,102,809 209,981 1,114,116 11,306
5.25 873,465 188,560 883,085 9,620
4.46 1,139,653 205,766 1,147,187 7,534
3.66 1,429,770 212,903 1,434,462 4,692
3.37 448,978 63,550 450,143 1,165
3.34 557,344 71,767 558,291 947
2.75 110,678 11,315 110,697 19
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Table 9: Constant Annual Premiums 31 Dec. 2002, α = 10%, σ = 15%, D = 5

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 408,019 41,375 413,116 5,097
21-25 5.95 1,757,021 203,888 1,784,167 27,146
26-30 6.00 2,295,533 261,410 2,330,870 35,337
31-35 5.77 2,717,336 295,450 2,756,106 38,770
36-40 5.28 2,665,631 273,319 2,701,130 35,498
41-45 4.33 2,329,687 199,112 2,354,263 24,576
46-50 3.49 980,596 68,296 988,235 7,639
51-55 3.81 342,582 26,584 345,820 3,238
56-60 2.75 107,609 5,959 108,235 626

Table 10: Constant Annual Premiums 30 Jun. 2003, α = 10%, σ = 15%, D = 5

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 420,539 51,734 424,253 3,713
21-25 5.95 1,822,322 256,488 1,841,953 19,632
26-30 6.00 2,379,400 328,946 2,404,995 25,594
31-35 5.77 2,810,750 371,266 2,838,882 28,132
36-40 5.28 2,751,900 343,953 2,778,030 26,130
41-45 4.33 2,389,131 250,063 2,408,542 19,411
46-50 3.49 1,000,161 85,602 1,006,341 6,180
51-55 3.81 350,325 33,344 352,906 2,581
56-60 2.75 109,241 7,451 109,768 527
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Table 11: Constant Annual Premiums 31 Dec. 2002, α = 30%, σ = 30%, D = 10

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 457,141 100,382 462,601 5,460
21-25 5.95 2,002,762 500,353 2,032,247 29,485
26-30 6.00 2,610,091 641,170 2,648,452 38,361
31-35 5.77 3,070,136 720,998 3,112,075 41,939
36-40 5.28 2,984,700 659,451 3,023,091 38,392
41-45 4.33 2,546,291 462,520 2,572,631 26,340
46-50 3.49 1,051,772 155,197 1,059,904 8,132
51-55 3.81 370,798 60,990 374,246 3,447
56-60 2.75 113,484 13,182 114,145 661

Table 12: Constant Annual Premiums 30 Jun. 2003, α = 30%, σ = 30%, D = 10

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 468,416 109,022 472,474 4,058
21-25 5.95 2,063,766 545,277 2,085,517 21,751
26-30 6.00 2,688,770 698,928 2,717,114 28,345
31-35 5.77 3,157,051 785,389 3,188,100 31,049
36-40 5.28 3,064,342 718,876 3,093,073 28,731
41-45 4.33 2,598,799 503,524 2,619,792 20,992
46-50 3.49 1,068,638 168,533 1,075,260 6,622
51-55 3.81 377,539 66,296 380,307 2,768
56-60 2.75 114,847 14,254 115,406 558
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Table 13: Constant Annual Premiums 31 Dec. 2002, α = 10%, σ = 15%, D = 5,
no bonus

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 348,299 36,149 378,235 29,935
21-25 5.95 1,492,869 178,370 1,651,362 158,493
26-30 6.00 1,951,897 228,798 2,153,346 201,450
31-35 5.77 2,315,740 258,504 2,537,979 222,239
36-40 5.28 2,276,537 239,211 2,474,648 198,111
41-45 4.33 2,000,549 173,830 2,125,849 125,299
46-50 3.49 846,133 59,578 885,385 39,252
51-55 3.81 295,198 23,239 312,535 17,337
56-60 2.75 93,319 5,204 96,717 3,398

Table 14: Constant Annual Premiums 30 Jun. 2003, α = 10%, σ = 15%, D = 5,
no bonus

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 358,667 45,403 380,621 21,954
21-25 5.95 1,546,566 225,387 1,661,560 114,994
26-30 6.00 2,020,922 289,217 2,166,831 145,909
31-35 5.77 2,392,790 326,530 2,553,960 161,170
36-40 5.28 2,347,905 302,506 2,490,128 142,223
41-45 4.33 2,050,155 220,173 2,138,463 88,308
46-50 3.49 862,650 75,201 890,581 27,931
51-55 3.81 301,729 29,349 314,386 12,657
56-60 2.75 94,710 6,558 97,278 2,568
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Table 15: Constant Annual Premiums 31 Dec. 2002, α = 30%, σ = 30%,
D = 10, no bonus

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 390,877 88,356 393,522 2,645
21-25 5.95 1,706,932 440,632 1,723,195 16,263
26-30 6.00 2,226,186 564,967 2,247,137 20,950
31-35 5.77 2,623,146 635,634 2,645,697 22,550
36-40 5.28 2,554,594 581,461 2,575,668 21,074
41-45 4.33 2,188,060 407,856 2,199,978 11,917
46-50 3.49 907,647 136,688 911,705 4,058
51-55 3.81 319,618 53,816 321,841 2,223
56-60 2.75 98,380 11,615 98,893 513

Table 16: Constant Annual Premiums 30 Jun. 2003, α = 30%, σ = 30%,
D = 10, no bonus

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 400,977 95,436 401,680 702
21-25 5.95 1,760,118 477,526 1,763,790 3,671
26-30 6.00 2,294,501 612,153 2,299,373 4,872
31-35 5.77 2,699,310 688,084 2,704,817 5,507
36-40 5.28 2,624,897 630,044 2,630,157 5,260
41-45 4.33 2,236,559 440,869 2,239,016 2,456
46-50 3.49 923,529 147,573 924,472 943
51-55 3.81 325,934 58,082 326,611 676
56-60 2.75 99,710 12,511 99,858 148
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Table 17: Constant Annual Premiums 31 Dec. 2002, α = 10%, σ = 15%, D = 5,
isur = 4.5%− 5%

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 408,302 41,418 413,338 5,036
21-25 5.95 1,758,959 204,178 1,786,038 27,079
26-30 6.00 2,297,992 261,805 2,333,234 35,242
31-35 5.77 2,719,801 295,669 2,758,415 38,614
36-40 5.28 2,667,873 273,611 2,703,308 35,435
41-45 4.33 2,330,647 199,268 2,355,222 24,576
46-50 3.49 980,844 68,308 988,485 7,641
51-55 3.81 342,706 26,611 345,944 3,238
56-60 2.75 107,617 5,968 108,243 626

Table 18: Constant Annual Premiums 31 Dec. 2002, α = 10%, σ = 15%, D = 5,
isur = 4.5%− 5%, no bonus

Age Time to Term European Minimum American Surrender
(Average) Contract Guarantee Contract Option

16-20 5.39 348,126 36,323 349,595 1,470
21-25 5.95 1,492,237 179,109 1,500,451 8,215
26-30 6.00 1,951,109 229,778 1,961,749 10,640
31-35 5.77 2,314,510 259,616 2,326,049 11,540
36-40 5.28 2,275,587 240,243 2,285,857 10,270
41-45 4.33 1,999,281 174,955 2,005,031 5,751
46-50 3.49 845,761 59,946 847,383 1,623
51-55 3.81 295,056 23,388 295,782 726
56-60 2.75 93,282 5,240 93,394 111
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Figure 1: Evolution of the Reference Fund at 30/06/03, α = 10%, σ = 15%, D = .5

Figure 2: Evolution of the Reference Fund at 30/06/03, α = 10%, σ = 15%, D = 10
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Figure 3: Term Structure of Euro Swap Interest Rates at 31/12/02 and 30/06/03

Figure 4: At-the-money Euro Cap Volatility Curve at 31/12/02 and 30/06/03
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