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Abstract: This paper provides an investment decision-
making criterion under uncertainty using real options 
methodology to evaluate if an investment should be made 
immediately, cautiously, deferred (wait-and-watch), or 
foregone.  We develop a decision-making index d, which is 
equal to the expectation of net present value (NPV) 
normalized by its standard deviation.  Under a lognormal 
assumption of the distribution of NPV discounted by risk-
free rate, we find the “break-even point” at which the 
NPV equals the real option value (ROV):  d = D* = 0.276.  
Using the absolute value of D*, one can make 
sophisticated decisions considering opportunity losses and 
costs of uncertainty.  This new decision index, d, provides 
a criterion to make investment decisions under uncertainty.   
When making a decision, a manager only has to observe 
three parameters: expectation of future cash flow, its 
uncertainty as measured by its standard deviation, and the 
magnitude of investment.  We discuss examples using this 
criterion and show its value.  The criterion is particularly 
useful when NPV lies near zero or uncertainty is large.   
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1. OPTION PRICE1 
 

A financial option is the right to buy (a call) or sell (a 
put) a stock, but not the obligation, at a given price within 
a specific period of time.  Option pricing theory 
determines the theoretical value of an option.  There are 
several approaches to this problem, based on different 
assumptions concerning the market, the dynamics of stock 
price behavior, and individual preferences.  The most 
important theories are based on the no arbitrage principle, 
which can be applied when the dynamics of the underlying 
stock take certain forms.  The simplest of these theories is 
based on the multiplicative, binomial model of stock price 
fluctuations, which is often used for modeling stock 
behavior. 
 

1.1  The Binomial Model2 

Assume a stock trades at a  price S.  Within one period, 
the price will be either uS or dS.  Further assume we have 
a risk-free bond with return R = 1+rf  per period.  To avoid 
arbitrage opportunities, we must have 

  dRu >>   (1.1) 
                                                            
1 This section can be skipped by people who are familiar with 
option pricing theory.  
2 This interpretation is from [1] 

If we have a stock option that allows us to buy the stock at 
the price K, called the exercise price or strike price one 
period later, the payoffs of the option are shown in 
equation (1.2) and Figure 1-1.  
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Figure 1.1  Three related lattices
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To duplicate these two payoffs, we purchase x dollars 
worth of stocks and b dollars worth of the bond.  One 
period later, this portfolio will be worth either ux + Rb or 
dx + Rb, depending on the path.  To match the option 
outcomes we therefore require 
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Solving this equation, we have 
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Combining these we find that the value of the portfolio is 
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Now we know that the value x + b must be the value of the 
call option C because the payoffs of this portfolio are 
exactly the same as that of the stock option. (The one price 
principle)  The portfolio made up of the stock and the 
bond that duplicates the payoff of the option is often 
referred to as a replicating portfolio. 
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  There is a simplified way to view equation (1.4).  
Defining the quantity 
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and from the relation u > R > d assumed earlier, it follows 
that 0 < q < 1. Hence q can be viewed as a probability.  
This q is referred to as  the risk-neutral probability.  
Rewriting  (1.4) yields (1.6):  

Option pricing formula 1 The value of a one-period call 
option on a stock governed by a binomial lattice process is 

  ( )du CqqC
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Another way to obtain this risk-neutral probability is 
found by solving the equation, 
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As a suggestive notation, we write (1.6) as 

  )]([ˆ1)1( TCE
R
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Here C(T) and C(T-1) are the option values at T and T-1, 
respectively, and Ê  denotes expectation with respect to 
the risk-neutral probabilities. 

   We can extend this solution method to multi-period (T) 
options  using the formula:  
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R

C
T
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where 
TR  is the risk-free return to the time to expiration. 

   The option price is calculated using payoffs for all cases, 
using the risk-neutral probability in the expectation 
function and discounting with the risk-free rate. 

1.2  The Continuous Additive Model 

Next, we set up the one period continuous additive model,  

  RuRSS += 01   (1.9) 

where tS  :stock price at time t  
u  : Normal distribution with mean 0, variance 2σ  
R  : Return of risk-free asset 

This model always satisfies risk-neutral because   
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If we have a call option on this stock with exercise price = 
RK at time 1, payoff of option C(1) is: 
  )]0,[max()1( 1 RKSC −=  

i.e. 0)1( =C    if RKS <1  
RKSC −= 1)1(   if RKS >1    (1.11) 

We calculate this option price using the general option 
pricing formula (1.8). 
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where )( 1Sf  is probability density function of S1, 
normally distributed. 
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substituting RuRSS += 01 , )()/1()( 1 ufRSf = , RdudS =1 , 

     ∫
+∞

−




 −+=

0

)(1)(1
0

SK

Rduuf
R

RKRuRS
R

 

     [ ]∫
+∞

−

−+=
0

)()( 0
SK

duufKuS  (1.12) 

If we introduce uSV += 0 , which is normally distributed 
with mean 0S , variance 2σ , (1.12) can be  rewritten as a 
general option pricing formula for continuous outcome 
model. 

Option pricing formula 2 The value of a one-period call 
option on a stock governed by a continuous additive model 
is 
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where V: the present value of the future random value 
discounted by risk-free rate 

K is the present value of exercise price, 
discounted by the risk-free rate 

We will use this option formula in section 3. 



 

Figure 1.2  Payoff and Option Price
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Note that when V takes a lognormal distribution, this 
formula is equivalent to Black-Scholes Call Option 
formula [2]. 

   Following the discussion of the previous section,  we  
extend this model to multi-period (T) options using  the  
model: 

  t
t
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where iu  is the random variable normally distributed with 

mean 0, variance 2σ  
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We can confirm risk neutral because: 
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We can write this as: 

  
T
Tσσ =    (1.17) 

Then we can calculate one-term standard deviation from 
multi-term one.  The standard deviation of the yearly 

return is called volatility.3  When the return is defined as 
]/[ 0SSPV T , its volatility is given by ( 0/ Sσ ). 

   Although the option pricing theory has been developed 
in order to value financial options, it can be applied to the 
real asset or firm’s project.  The methodology is called 
“real options”.  In the next section, we show how it is 
applied. 

 

2. Real Options 

Real Options methodology is an approach used to evaluate 
alternative management strategies using traditional option-
pricing theory applied to the real assets or projects.  For 
example, when managers decide to assess a new project, 
they face several choices beyond simply accepting or 
rejecting the investment.  Other choices include delaying 
the decision until the market is favorable, or deciding to 
start small and expanding later if the result seems to be 
superior.  The traditional valuation method, DCF analysis, 
fails to account for these other choices.   The list  of these 
real options is  shown in Table 2.1 [3].4 

Table 2.1 : Description of Options
Option Description

Defer To wait to determine if a "good" state-of-nature obtains
Abandon To obtain salvage value or opportunity cost of the asset
Shutdown & restart To wait for a "good" state-of-nature and re-enter
Time-to-build To delay or default on project - a compound option
Contract To reduce operations if state-of-nature is worse than expected
Switch To use alternative technologies depending on input prices
Expand To expand if state-of-nature is better than expected
Growth To take advantage of future, interrelated opportunities

 

Example: Value of the Option to Defer 

The simplest real option alternative is the deferral 
option which is based on the concept of the call option, as  
shown in Figure 2.1 [8].   

 

 

Suppose you have a mining project, which is  not 
profitable currently. A deferral option gives you the option 
to defer starting this project for one year to see  if the price 
of gold rises high enough to make the investment 
worthwhile. We can interpret this right as a call option.  
The numerical example illustrates its value. 

Table 2.2 displays the project’s present value of 
future cash flow. V is assumed to be normally distributed 
with mean $100 million (= S) and standard deviation $30 
million (= σ).  The risk-free rate is 6% (R=1.06); the 

                                                            
3 A precise definition of volatility is “the standard deviation of 
the return provided by the asset in one year when the return is 
expressed using continuous compounding.” [13]. 
4 Methods to valuate each kind of option are described in several 
books [4],[5],[6] and [7]. 



 

exercise price one year later is $110 million.  With these 
assumptions, the project’s  present value is  $103.8 or 
$110/1.06.  

Table 2.2  A mining project
Defer Option Variable

Present value of operating future cash flow S $100 million
Investment in equipment K $103.8 million
Length of time the decision may be deferred T 1 year
Risk-free rate rf 1.06
Riskiness σ $30 million

 

Conventional NPV is given by S-K = 100 – 103.8 = -3.8 
million. This project would have been rejected under NPV 
criterion.  However, applying call option formula in the 
pricing equation (1.13), the value of deferring the project 
one year is calculated as the defer ROV (Real Option 
Value): 
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 2.10=     (2.1) 

The flexibility that allows us to defer this project is valued 
at 10.2 million.   

Adding NPV and ROV gives positive value 6.4 or 
 –3.8 + 10.2.  This is called Expanded NPV or ExNPV.  
ExNPV represents the value of this project including future 
flexibility [4].  Consequently, your optimum decision now 
is “defer”, i.e. “wait and watch the gold market!” 

Fig. 2.2  ExNPV (Expanded NPV)
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3. THE NEW DECISION MAKING CRITERION 
 

Decision under conditions of uncertainty should be 
made on the basis of the current state of information 
available to decision makers.  If the expectation of the 
NPV were negative for the investment, the conventional 
approach would be to reject the investment.  However, if 
one has the ability to delay this investment decision and 
wait for additional information, the option to invest later 
has value.  This implies that the investment should not be 
undertaken at the present time.  It leaves open the 
possibility of investing in future periods. 

For the purpose of analyzing the relationship between 
NPV and the option value associated with the single 
investment, we assume that the random variable of interest 
is the present value of future cash flow V, which is 
assumed to be normally distributed V ~ )','( σmN .  The 
investment cost I is assumed to be a constant. 

In the conventional method, NPV is expressed as: 

     NPV = E [V - I] 

            = E[V] -I 

            = m' - I          (3.1)  

We examine the two cases: Aaa ∈),( 21  are defined as Act 
1: )( 1a  do not invest now when NPV < 0, and Act 2: 

)( 2a invest now when NPV > 0. 

 

3.1 Case 1:  Act 1 = do not invest as NPV < 0 

Here, following Herath & Park [2], we introduce a 
loss function.  When we do not invest, the cash flow is 
equal to 0.  But imagine the situation that V > I, where the 
opportunity loss is recognized as V-I.  Therefore the loss 
function of Act 1 is: 

    ),( 1 VaL  = 0 if V < I  

                      = V - I  if V > I  (3.2) 

Present value of a project’s  
future cash flow 

Investment to 
acquire the project assets 

Length of time the decision  
may be deferred 

Time-value-of-money 

Riskiness of the project assets 

Stock price 

Exercise price 

Time to expiration 

Risk-free rate of return 

Variance of returns
on stock 

Defer Option Call Option
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The expected opportunity loss can be calculated as: 
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This function is the payoff of a call option, (1.11) using 
the pricing formula of a call option discussed in the 
previous section, (1.13). 

Assuming we can defer this investment to obtain new 
information, we know this value is the same as the defer 
option for the investment.  Moreover, the value is also 
equal to the expected value of perfect information (EVPI) 
for this investment opportunity [2]. 

    ROV (Real Option Value) = ∫
+∞

−
I
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We can see the similar relationship in Figure 3.1 as we 
saw before in Figure 1.2. 

Figure 3.1   Opportunity Loss function and ROV 
(NPV<0) 
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When the terminal distribution of V is normal, the real 
option value can be calculated using the unit normal linear 
loss integral: 

     ∫
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where )(Vf N  is the standard normal density function 

      ROV = )(' DLNσ   (3.6)5 

      where 
'

|'|
σ
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=  

When the manager makes the decision to invest, her 
optimal decision is not to invest if NPV = m'-I < 0.  Then 
she may compare the NPV and the defer option value. If 
she finds that the option value is larger than the absolute 
value of NPV (= | m'-I |), she has the option to defer and 
watch for positive changes in the investment opportunity. 
If the option value is too small to compensate the NPV (< 
0), she will abandon this investment proposal. 

                                                            
5 This expression is only for the case NPV < 0 though general 
expression is possible. 

 

Decision Criterion 1: (Case of NPV < 0) 

ROV > |NPV|  →  Wait and watch the opportunity carefully 

ROV < |NPV|  →  Do not invest 

We can solve the equation,  

      ROV = |NPV|                (3.7) 

for 
'
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= .  

From (3.1) and (3.6), (3.7) is expressed in 
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Divided by 'σ , we have: (because of 'σ > 0) 
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∴  *D  = 0.276           (3.10) 

And also the left hand side of equation (3.9) is decreasing 
as D increases because: 

0))(( <− DDL
dD
d

N
      for all D > 0 (3.11) 

From (3.10) and (3.11), we can confirm that former 
Decision Criterion 1 can be written in; 

Decision Criterion 1': (Case of NPV <0) 

*DD <   →   Wait and watch the opportunity carefully 

*DD >   →   Do not invest 

 

3.2 Case 2:  Act 2 = invest as NPV > 0 

  Similarly, in the opposite case we can discuss loss 
function as [2]: 

   VIVaL −=),( 2   if V < I            (3.12) 

             = 0     if V > I 



 

The expectation of loss is given by: 
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These equations are similar to the payoff and price of the 
put option (Figure 3.2).  Assuming we can defer this 
investment, the option value is the same as the expectation 
of the loss. 
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 By symmetry, (3.14) can be written as: 

    ROV = )(' DLNσ    (3.15) 
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Figure 3.2 Loss Function and ROV 
(NPV>0) 
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In this case, optimal decision is invest as NPV = m'-I > 0.  
Comparing  the NPV with the value of this option, which 
is same as the cost of uncertainty, we arrive at a  similar 
criterion: 

Decision Criterion 2:  (Case of NPV > 0) 

ROV > |NPV|  →  Invest carefully 

ROV < |NPV|  →  Invest 

Rewriting this as: 

Decision Criterion 2': (Case of NPV > 0) 

*DD <   →   Invest carefully 

*DD >   →  Invest 

Here we introduce decision-making index ')'( σImd −≡ , 
which is given from eliminating the absolute value sign 
from D.  We can combine the two decision criteria as: 

 

Combined Decision Criterion 

     Invest                   if   dD <*  

     Invest carefully       if    *0 Dd <<  

     Wait and watch       if 0* <<− dD  

      Do not invest             if       *Dd −<    

       where 
'

'
σ

Imd −
= ,         *D = 0.276 

   Consequently, we know that only observing three 
parameters, ',' σm  and I gives us sufficient information to 
make more sophisticated decisions under uncertainty, 
expressing them in form of the new decision-making index, 
d. 

3.3 What d and D* mean? 

What do d and D* mean?  First, d can be seen as NPV 
divided by its standard deviation. In other words, d is the 
ratio of NPV to its uncertainty.  Because d does not 
depend on the size of the project, it can be called 
“uncertainty-adjusted NPV” or “risk-normalized NPV.”  
We can easily compare several risky projects of which the 
sizes are different.  Next, when d = - D*, option value to 
defer is equal to expected loss of 

Figure 3.3   Summary of the Criterion
NPV
ROV |NPV| > ROV |NPV| < ROV

d d  < -D* -D* < d < 0
Decision not Invest wait and watch

NPV
ROV |NPV| < ROV |NPV| > ROV

d 0 < d  < D* D* < d 
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NPV < 0

NPV > 0

V
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NPV, namely, D* is the break-even point of expectation of 
NPV and its option value, or the point where ExNPV = 0. 



 

Let’s calculate the probability that the payoff of this 
defer option is positive if d = -D* at time 0.  The 
probability is calculated as follows, 
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 where N is standard normal distribution. 
Because V is normally distributed with mean m’ and 
standard deviation σ ′ , (V-m’)/σ ′  is normally distributed 
mean 0, standard deviation 1.   

Therefore, the probability that the payoff of the defer 
option is positive is 39%.  Does it seem to be a high 
probability to abandon this option?  Yes, it does!  The 
criterion d < -D* means, “Do not invest now” but does not 
mean “Abandon the defer option.”  The defer option itself 
has value though the expectation of NPV is deeply 
negative.  If holding the option does not require any cost, 
we do not have to throw it away!  Just wait and watch 
what happens in the next period. 

On the other hand, if d = D*, the probability that the 
project will be out of the money is also 39%, by symmetry.  
When the manager makes her decision to invest as d = D*, 
there is still 39% probability of losing money.  If the 
manager wanted a positive NPV with probability 90%, d 
should be higher than 1.28.   It might be the case that the 
manager could set a higher d for the decision criterion if 
she would not care about opportunity losses. The tradeoffs 
between opportunity loss and cost of uncertainty are 
shown in Figure 3.4 

In the next section, we will show an example of this 
criterion. 

Figure 3.4 Tradeoffs of Losses
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4. SAMPLE CASE 
 

Six Independent Projects 

If we have projects shown in Table 4.1, how can we 
make decision using our new criterion?  We have assets 
that have current value S, time to expiration T, exercise 
price K at time T, volatility σ , and risk-free rate rf.  To 

calculate d, we have to solve m’, I and σ ’.  Assuming the 
value of S at time T is normally distributed with mean 
S(1+ rf)T, m’ = S because m’ is expressed in present value.  
After setting I = PV(K) = K/(1+ rf)T, TSσ=′σ , we can 
calculate '/)'( σImd −= .  Therefore, we find d for each 
project and make decision to invest as shown in Table 4.1.   

Luehrman [8], [9] defined “option space” having two 
axes value-to-cost ( )(/ KPVS ) and volatility ( Tσ ) and 
showed that decision criterion depends on the region in the 
option space.  Using his example, we find similar results 
with our criterion.  Our new decision criterion can is an 
integrated, simplified version of Luhrman’s method.   

Furthermore, project “E” in Table 4.1 is what we 
illustrated before in section 2, the Mining Project, and the 
new criterion gives the same decision, “wait and watch”! 

Variable A B C D E F
S $100.00 $100.00 $100.00 $100.00 $100.00 $100.00
KT $90.00 $90.00 $110.00 $110.00 $110.00 $110.00
T 0.0 2.0 0.0 0.5 1.0 2.0
σ 30% 30% 30% 20% 30% 40%
rf 6% 6% 6% 6% 6% 6%

$0.00 $42.43 $0.00 $14.14 $30.00 $56.57
S-PV(K) $10.00 $19.90 -$10.00 -$6.84 -$3.77 $2.10

d +infinite 0.469 -infinite -0.484 -0.126 0.037

Exercise 
decision invest invest do not 

invest
do not 
invest

wait and 
watch

invest 
carefully

S Current asset value
KT Exercise Price (at time = T)
T Time to expiration (year)
σ Standard deviation of return (per year)
rf Risk-free rate of return (% per year)

σ t.5 Standard deviation of V
S-PV(K) Conventional NPV (=m'-I)

d uncertainty adjusted NPV

 
 
 
 
5. CONCLUSION 
 

Applying real option valuation methodology, we have 
shown that the new decision index d – the uncertainty 
adjusted NPV – and D* = 0.276 – the break-even point of 



 

NPV and ROV (real option value) –  gives a clear solution 
to make a decision under uncertainty.   When making 
decision, managers have to observe only three parameters: 
expectation of future cash flow, its uncertainty, and the 
amount of investment to acquire the project.  And also we 
have discussed some examples using our new criterion and 
shown its usefulness.  
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