
Investment and Abandonment Under

Economic and Implementation Uncertainty∗

Andrianos E. Tsekrekos†

March 1, 2002

1 Introduction

Whenever a firm is contemplating a new project, the investment decision

hinges upon a comparison between the outlays required and the future (and

unknown) benefits derived from the project once in place. Thus, the key

uncertainty that managers face in their investment decisions is over the fu-

ture economic value of a project, as this is affected by fluctuations in the

underlying market demand.

The consensus on investment appraisal, as prescribed by business text-

books, dictates replacing the unknown future benefits from the project with

their respective expected values, and comparison of their properly discounted

sum with the investment cost. The dispersion of the actual (but unknown)

benefits around their expected values used in the decision rule, should be

captured by a properly defined (uncertainty–adjusted) discount rate. De-

pending on the result of this comparison, the project is worth undertaking
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or not, and the manager can proceed to the appraisal of the next potential

investment project.

A well–established strand of literature, collectively known as Real Op-

tions1, has stressed that the uncertainty over the economic value of a project

should not only affect the expected value of the opportunity, but also its

timing: a project not worth investing in today might have a positive net

present value in the future, if the uncertainty over its economic value re-

solves favourably. Moreover, since the costs associated with investment are

largely unrecoverable2, commiting to a project today essentially relinguishes

the flexibility inherent in delaying the decision until new information about

the economic value of the project becomes known. Thus, in the face of

economic uncertainty and (any degree of) irreversibility, every investment

project competes with the mutually exclusive alternative of itself delayed in

the future. The difference between alternatives is termed the “option value of

waiting to invest”. This option value is increasing in the magnitude of eco-

nomic uncertainty, implying that more uncertainty discourages investment

spending by firms.

However, apart from the underlying economic value which is uncertain,

there are several other complexities that surround the actual implementation

of a project. For example, in technology intensive industries, there is severe

uncertainty concerning the timing that an innovation will be discovered. This

extra source of uncertainty will have an impact on the project’s economics,

far and beyond that of the uncertainty in the value of the end–process, mar-

ketable product. Large–scale projects (e.g. aircraft, mining industry) have

substantial time lags between the decision to invest and the realisation of

cash returns, and the actual length of time lags might be an additional un-

certainty influencing the desirability of the project. In product markets, the

level of profitability of a new product will depend on distribution channels,

accessibility to selling points and the relative time of adoption of the prod-

1The term is due to Myers [13]. See Dixit and Pindyck [5] and Trigeorgis [16], [15] for
reviews of the literature.

2Most investment expenditures are considered largely as sunk costs because of the
specificity of their nature towards a particular firm or industry. Even expenditures that
are not firm or industry–specific (e.g. computers, automobiles, office equipment, etc.) may
not recover their true economic value due to asymmetric information between sellers and
buyers in second–hand markets (see Akerlof [1]).
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uct by consumers. Once investment is made and funds are committed to the

underlying production process, one or all of these factors could potentially

affect the level and the timing of cash flows realised from product sales. Thus

in most investment decisions, there are several factors, specific to the actual

implementation phase of the project, that cause additional uncertainty in the

relationship between inputs and outputs of the investment process. This un-

certainty drives a wedge between the firm’s decision to finance a project and

the level and timing of the outcome of this project. The major aim of this

paper is to consider the effects of such extra uncertainty on optimal firm

investment behaviour.

We examine optimal entry and exit decisions for a firm facing uncertainty

both in the economic value and in the implementation phase of a project. As

in other real options models, the stochastic nature of product market returns

gives rise to the “option to wait” which must be taken into consideration

when making optimal investment and abandonment decisions. In addition,

resolution of implementation uncertainty is a Poisson arrival. The innovation

is that unlike previous research we allow implementation uncertainty to have

a very general effect both on the timing and the economic value of the project.

Thus, when a firm exercises its option to invest in a project it gains a second

option, that of completing the implementation stage, whose exercise time is

random and its payoff could be favourable or not.

The optimal investment strategy consists of a pair of time independent

trigger points for investment and abandonment. As in Dixit [4], sunk en-

try/exit costs and economic uncertainty cause the investment trigger point

to rise and the abandonment one to fall relative to their Marshallian equiv-

alents, widening the inertia zone of hysteresis. When implementation uncer-

tainty is also present, the firm tends to invest earlier and abandon later when

the implementation stage is expected to be short. However, the effect of this

uncertainty on project value has a role: If completion of the implementation

stage is short and has a positive effect on the value of the completed project,

the firm might actually abandon later than the certainty case. When the

effect of the implementation stage is the most important uncertainty con-

cerning project value (low economic uncertainty) the range of hysteresis is

shown to decrease substantially.

In addition, our treatment of the implementation uncertainty is general
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enough that allows us to encompass four existing real options models, as

well as generating a range of other possible outcomes. As implementation

uncertainty is eliminated from the setting, the model becomes equivalent

to that of Dixit [4], on which our exposition heavily relies on. If the firm

cannot abandon the project and completion of the implementation stage can

occur virtually as soon as the investment cost is sunk, the problem collapses

to the McDonald and Siegel [11] model of a single irreversible investment

opportunity. Special values for the effect of implementation uncertainty on

the economic value of the project yield the results of two less–cited papers.

Real options models take into account the economic uncertainty over the

return of an investment, but usually assume that the complexities over the

implementation stage are either non–existant or deterministic. In a two–

player game Lambrecht [9] models the creation of a patent and its com-

mercialisation as a single deterministic step. Bar-Ilan and Strange [2] and

Grenadier [8] allow an investment project to take time to build, but the

length of the implementation time lag is fixed. Majd and Pindyck [10] also

examine sequential investment when it takes time to implement the project.

In other less related papers, Pindyck [14] and Cortazar et. al. [3] allow for a

second source of uncertainty (technical and geological respectively) between

the decision to invest and the returns from the project, which can be seen

analogous to an implementation stage of uncertain length. However, imple-

mentation uncertainty is resolved only as the firm invests in their model, thus

tending to stimulate rather than repress investment.

The structure of what follows is: Section 2 describes the setting, presents

the model assumptions and solves for the optimal investment and abandon-

ment thresholds under economic and implementation uncertainty. Section

3 shows how four existing real options models can arise as special cases of

our model. Section 4 presents two numerical examples where the uncertainty

over the implementation stage can resolve favourably and unfavourably for

the firm, while section 5 concludes.
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2 The model

A single risk–neutral firm is contemplating investment in a project, facing no

actual or potential competitors in the area. There is both economic and im-

plementation uncertainty: the lentgh of the implementation stage is random,

the value of the completed project follows a stochastic process, and the level

of this value that will actually be realised after implementation is a general

function of the stage length.

The firm can commit to implement the project by sinking a set–up cost

K. Once this decision is made, the firm incurs a flow cost of C per unit of

time unless the project is abandoned. Abandonment requires a fixed cost L

to be incurred, and the set–up cost K has to be sunk again if the project is

to be resumed later.

Completion of the implementation stage is modelled as an independent

Poisson arrival with intensity λ > 0. Thus, the density function for the du-

ration of the implementation stage is λe−λt. At the first occurence of the

Poisson event, the implementation stage is completed and the completed

project has a market value that evolves exogenously according to the follow-

ing geometric Brownian motion with drift

dx = µxdt + σxdz (1)

where µ ∈ [0, r) is the drift rate, r is the risk free rate of return assumed

constant, σ > 0 is the volatility parameter and dz is the increment of a

standard Wiener process.

As a benchmark, consider the optimal strategy of the firm in the absence

of any uncertainty. The Marshallian investment threshold is defined as the

point at which the expected value of the project is equal to the flow cost,

plus interest payment on the initial outlay, i.e.

xm = C + rK (2)

Correspondingly, the Marshallian abandonment point is

xm = C − rL (3)

In the face of uncertainty, the firm’s decision problem has two state vari-

ables, the current market value of the completed project x and a discrete
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variable that indicates whether the firm has commenced the implementation

stage (1) or not (0). Let V0 (x), V1 (x) denote the expected value of the firm

prior to and after investment in the implementation phase respectively. The

thresholds for optimal switching between the states 1 and 0 are derived first,

and are then compared to their certainty equivalents in (2) and (3).

Over the range of market values x where it is optimal for the firm not to

invest, V0 (x) only comprises of the firm’s option to enter the implementation

stage when it decides to do so. Thus, its return comes entirely in the form of

capital gains or losses as the value of x changes. Under risk–neutrality, the

firm’s value equilibrium return condition will be

rV0 (x) dt = E [dV0 (x)]

Expanding dV0 (x) using Itô’s lemma and (1), and taking the expectation

yields

1

2
σ2x2V ′′

0 (x) + µxV ′
0 (x)− rV0 (x) + λE [V0 (x|λ)− V0 (x)] = 0 (4)

This is the second–order ordinary differential equation that the value of

the firm before investment must satisfy. The last term in (4) captures

the effect (if any) of a Poisson occurance on the value of the firm before

the implementation stage is commenced. We make the assumption that in

such an event, our firm loses the opportunity to invest in the project, i.e.

λE [V0 (x|λ)− V0 (x)] = −λV0 (x) and (4) becomes

1

2
σ2x2V ′′

0 (x) + µxV ′
0 (x)− (r + λ) V0 (x) = 0 (5)

We claim that this assumption is crucial in order to avoid introducing an

“asymmetry” that will critically influence the position of the optimal thresh-

olds relative to their Marshallian counterparts. Namely, if the Poisson arrival

has an effect only on the value of a firm in the implementation stage V1 (x),

and not on V0 (x), (i.e. λE [V0 (x|λ)− V0 (x)] = 0 but λE [V1 (x|λ)− V1 (x)] 6=
0) the position of the optimal investment and abandonment thresholds rel-

ative to xm, xm will be determined by this asymmetry. The role of this

assumption will become more apparent in section 3, more specifically in the

discussion preceding Proposition 5 on page 13.

If x ever tends to zero, the possibility of rising to a level high enough

to induce investment is very remote, and therefore the option to commence
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implementation is almost worthless. We can thus impose the following end–

point condition

lim
x→0+

V0 (x) = 0 (6)

Solving (4) subject to (6) gives

V0 (x) = Axα (7)

where A > 0 is a constant whose value is determined as part of the solution,

and α is given by

α =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2 (r + λ)

σ2
> 1 (8)

Correspondingly, over the range of values of x where our firm has invested

K to enter the implementation stage of the project, the differential equation

that V1 (x) must satisfy would be

1

2
σ2x2V ′′

1 (x) + µxV ′
1 (x)− rV1 (x) + λE [V1 (x|λ)− V1 (x)] = 0 (9)

We assume that the successful completion of the implementation stage (the

Poisson event) will affect not only the timing but also the economic value of

the completed project. Specifically, let λE [V1 (x|λ)− V1 (x)] = [ζ (λ) x− C]−
λV1 (x). This says that at the (random) time that the option to complete

implementation is exercised, our firm earns in exchange ζ (λ) x − C. The

function ζ (λ) captures the expected effect of implementation uncertainty on

the economic value of the completed project. The only structure we impose

for the time being is that it is a positive real function of the Poisson intensity,

i.e. ζ (λ) > 0 ∀λ ∈R∗+.

Under this, equation (9) becomes

1

2
σ2x2V ′′

1 (x) + µxV ′
1 (x)− (r + λ) V1 (x) + ζ (λ) x− C = 0 (10)

The above has to be solved subject to the following end–point condition

lim
x→+∞

V1 (x) = E

[∫ +∞

0

e−(r+λ)t [ζ (λ) xt − C] dt

]
(11)
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which merely reflects the fact that if x is very large, the value of the option

to abandon tends to zero and the value of the firm is simply the expected

NPV of the project. This yields

V1 (x) = Bxβ +
ζ (λ) x

r + λ− µ
− C

r + λ
(12)

where B > 0 is an unknown constant and

β =
1

2
− µ

σ2
−

√(
µ

σ2
− 1

2

)2

+
2 (r + λ)

σ2
< 0 (13)

Note that in (12), the first term on the right–hand side represents the option

of a firm that has entered the implementation stage to abandon the project.

The optimal investment strategy is defined as two, time independent, trig-

ger points: an upper x at which the implementation stage is optimally com-

menced, and a lower x at which the project (completed or not) is optimally

abandoned. At these trigger values, the following “boundary” conditions are

satisfied
V0 (x) + K = V1 (x)

V0 (x) = V1 (x) + L

(14)

V ′
0 (x) = V ′

1 (x)

V ′
0 (x) = V ′

1 (x)

(15)

Equation (14), also known as the value–matching condition, states that at

the boundaries, our firm optimally incurs the set–up and abandonment costs

to switch between states. Equation (15), referred to as the high–contact or

smooth pasting condition, states that for the trigger values to be optimal, not

only the value functions in (14), but also their first derivatives must meet at

x, x.3 A graphical demonstration of the value functions V0 (x), V1 (x) and

boundary conditions (14), (15) is provided in figure 1.

Substituting for the value functions (7) and (12) in (14)–(15) yields a

system of four equations which uniquely determines the four unknowns: the

3See Dumas [6] for a rigorous treatment of these conditions and Merton [12, p.171,
n.60] for a discussion in the option pricing problem. Dumas and Luciano [7] also discuss
these in another two sided transaction cost control problem.
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two option constants A, B and the optimal trigger values x, x.

Axα + K = Bxβ +
ζ (λ) x

r + λ− µ
− C

r + λ

Axα = Bxβ +
ζ (λ) x

r + λ− µ
− C

r + λ
+ L

(16)

αAxα−1 = βBxβ−1 +
ζ (λ)

r + λ− µ

αAxα−1 = βBxβ−1 +
ζ (λ)

r + λ− µ

Unfortunately, the system is highly non–linear in trigger values and ana-

lytic solutions can not be found. For any set of parameter values though, a

numerical solution can readily be determined.

To gauge the size of the optimal investment and abandonment thresholds

x, x relative to their Marshallian counterparts xm, xm, define G (x) as the

difference of the two value functions

G (x) = V1 (x)− V0 (x)

= Bxβ − Axα +
ζ (λ) x

r + λ− µ
− C

r + λ

From (5) and (10) the following expression for G (x) can be written

1

2
σ2x2G′′ (x) + µxG′ (x)− (r + λ) G (x) + ζ (λ) x− C = 0 (17)

and conditions (14)–(15) become

G (x) = K

G (x) = −L

(18)

G′ (x) = 0

G′ (x) = 0

(19)
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From the above, the following proposition concerning the optimal thresholds

under uncertainty can be deduced.

Proposition 1 The optimal investment and abandonment trigger points un-

der economic and implementation uncertainty can be expressed as

x = 1
ζ(λ)

[xm + k (λ)]

x = 1
ζ(λ)

[xm − l (λ)]

(20)

where k (λ), l (λ) are positive and increasing functions of the Poisson inten-

sity.

Proof. Consider the investment threshold first and evaluate equation (17)

at x. From (18)–(19) we know that G (x) = K, G′ (x) = 0 and G′′ (x) < 0,

thus

ζ (λ) x = −1

2
σ2x2G′′ (x) + (r + λ) K + C

Substitute the Marshallian trigger from (2) to get the result of the proposition

with k (λ) = λK − 1
2
σ2x2G′′ (x).

Correspondingly for the abandonment threshold, evaluate (17) at x. From

(18)–(19) G (x) = −L, G′ (x) = 0 and G′′ (x) > 0, thus

ζ (λ) x = −1

2
σ2x2G′′ (x)− (r + λ) L + C

Substitute the value of xm from (3) to get the result, with l (λ) = λL +
1
2
σ2x2G′′ (x).

It is obvious from proposition 1 that the location of the optimal thresholds

under uncertainty compared to their Marshallian counterparts is ambiguous.

The functions k (λ), l (λ) tend to increase the range of hysteresis, but the

effect of implementation uncertainty on the value of the completed project,

ζ (λ), plays a crucial role. The net effect will highly depend on the func-

tional form of ζ (λ). In the next section we turn to examine some existing

real options models that arise as nested cases from our model as λ assumes

some extreme values, or some more structure is assumed for the effect of

implementation uncertainty.
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3 Some cases

The structure of the model, especially the way implementation uncertainty

affects investment timing and value, is general enough that four existing

models in the literature can be nested as special cases.

First, consider the case where the only uncertainty concerning the value

of the project comes from equation (1). As implementation uncertainty is

eliminated from the model, two changes essentially take place: (a) our firm

receives the value of a completed project as soon as the investment of the

set–up cost K is made and not after a random–length period of time and (b)

there is no implementation stage and thus the expected project value.should

be independent of the Poisson intensity. In the absence of implementation

uncertainty our model collapses to the Dixit [4] model of a firm’s entry and

exit decision under (only economic) uncertainty.

Proposition 2 The limiting case where there is no uncertainty over the im-

plementation of the project is the Dixit [4] model of a firm’s optimal product

market entry and exit decisions.

Proof. Set ζ (λ) = 1 so that the expected project value is independent of the

implementation hazard rate λ, i.e. limλ→0 E
[∫ +∞

0
e−(r+λ)tζ (λ) xtdt

]
= x

r−µ
.

The result is immediate by taking the limit as λ → 0 of equation (17), which

yields the differential equation (20) in Dixit [4]. Alternatively, as λ → 0, the

roots α and β in (8) and (13) become

a, b =
1

2
− µ

σ2
±

√(
µ

σ2
− 1

2

)2

+
2r

σ2
(21)

as those in Dixit [4, p. 626]. Verify that the option constants can be writ-

ten as A = ζ(λ)
r+λ−µ

A and B = ζ(λ)
r+λ−µ

B and in the limit limλ→0 A = A and

limλ→0 B = B. Thus, as λ → 0, α → a and β → b and the system of

equations (16) becomes equivalent to that in Dixit [4, eq. (12)-(15)].

Abstracting from implementation complexities restores the well docu-

mented result that hysteresis unambiguously increases with economic un-

certainty (σ), as the following demonstrates.
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Corollary 3 In the limiting case where there is no uncertainty over the im-

plementation of the project, the optimal investment and abandonment trigger

points from Proposition 1 become

x = xm − 1
2
σ2x2G′′ (x) > xm

x = xm − 1
2
σ2x2G′′ (x) > xm

Secondly, as implementation uncertainty is again eliminated from the

model, consider the case that C = 0. In the absence of flow costs, our model

collapses to the McDonald and Siegel [11] model of a single, irreversible

investment opportunity.

Proposition 4 If the firm does not incur operating flow costs, the limiting

case where the implementation stage can be completed instantaneously is the

McDonald and Siegel [11] model of an irreversible investment opportunity

with a constant investment cost K.

Proof. Let C = 0 so that the project is never optimally abandoned for

L > 0 (i.e. B = 0).4 As before let ζ (λ) = 1 so that the expected project

value is independent of the implementation hazard rate λ and take the limit

as λ → 0. Then, the system of equations (16) becomes

Axa + K =
x

r − µ

aAxa−1 =
1

r − µ

where a is as in (21). The above conditions uniquely determine the optimal

investment trigger

x =
a

a− 1
(r − µ) K

and the constant option coefficient

A = x1−a

[
x

r − µ
−K

]

4More correctly, even if C > 0, the project will never be abandoned if L > C
r .
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which are identical to the solution in McDonald and Siegel [11] for a constant

investment cost K.

Next turn to general case where implementation uncertainty is present,

and let us assume that ζ (λ) = λ, i.e. the value of the completed project

is linearly increasing, the shorter the expected implementation lag. Weeds

[18], in her Ph.D. thesis, treats a similar case in an R&D context, where

the random implementation stage is interpreted as the random time it takes

for a patentable discovery to be made. Her major conclusion is that the

extra source of uncertainty over the completion of the project unambiguously

increases the investment trigger compared to the Marshallian one, while the

relative position of the abandonment trigger compared to the Marshallian

can not be firmly established. She refers to this possibility, that x > xm

while x > xm as “reverse hysteresis”. In what follows, we first establish the

conditions under which our setting yields the model of Weeds [18] and then

comment on the “reverse hysteresis” phenomenon.

The major difference from our setting is that in her R&D context, the

Poisson arrival, which marks the completion of the discovery process, is as-

sumed not to have any effect whatsoever if it occurs prior to investment in the

research project. In our notation, this means that λE [V0 (x|λ)− V0 (x)] = 0,

i.e. the Poison event is only relevant in the post–investment stage of the

project. Which assumption is more realistic is an open issue and will prob-

ably depend on the nature of the project under review. However we claim

that it is this assumption that causes an “asymmetric” effect on the optimal

thresholds, giving rise to reverse hysteresis.

Proposition 5 If the Poisson arrival is only relevant for firm value post

investment, the limiting case where the value of the completed project is linear

in the hazard rate is the Weeds [18] model of R&D investment.

Proof. With λE [V0 (x|λ)− V0 (x)] = 0 and ζ (λ) = λ, the firm’s option to

enter the implementation stage in (7) becomes

V0 (x) = Åxa

with Å> 0 a different constant to be determined and a as in (21). The value

of a firm active in the implementation stage will be identical to (12) with
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ζ (λ) replaced by λ. Substituting these two value functions in the boundary

conditions (14)–(15) yields the system of simultaneous equations in Weeds

[18, eq. (9)-(12)].

Figure 2 demonstrates graphically the effect of the different assumptions

in our model and in Weeds [18]. The optimal investment threshold in Weeds

is unambiguously above the Marshallian threshold for any set of parameter

values. However, in our model, as Proposition 1 predicts, depending on

parameter values the investment threshold can be above (σ = 0.05, λ =

0.7 for any K) or below (σ = 0.1, λ = 0.9 for low K) the Marshallian

one.5 We can thus conclude that the assumption concerning the effect of

implementation uncertainty on firm value before investment is crucial on the

relative positions of the trigger values vis-à-vis the Marshallian ones.

Finally, concentrating on entry (C = 0), it has be shown in Tsekrekos

[17] that for several alternatives for the function ζ (λ), the optimal entry

threshold can be above or below the certainty case. There, several effects of

implementation uncertainty on project value are treated and the conditions

that determine the direction of hysteresis are demonstrated.

4 Numerical examples

In this section we demonstrate the generality of the model with some nu-

merical examples. We examine two distinct cases for the effect of implemen-

tation uncertainty on project value. These two cases are depicted in figure

3. In the first case (panel (a)), we assume that upon entry (time T ) and

during the implementation stage (τ − T ) the firm earns a constant fraction

γ < 1 of the value of the completed project x. When the implementation

stage is completed at the random time determined by the Poisson arrival

(time τ), the firm receives the whole value of the project. We term this

case, where our firm experiences a gain from resolution of implementation

uncertainty as “favourable” (the “good–news” scenario). In contrast, in the

“unfavourable” case of panel (b), our firm loses a fraction γ < 1 of the project

5Note that in figure 2, ζ (λ) is set equal to λ as in Weeds [18] so that the graph only
demonstrates the effect of the assumption concerning λE [V0 (x|λ)− V0 (x)].
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value once implementation uncertainty is resolved. It is shown in the Ap-

pendix that the two scenarios correspond to setting ζ (λ) in equation (12)

equal to γ + λ (1− γ) and 1 − λγ in the favourable and unfavourable cases

respectively.

In both cases, we use the parameter values of Dixit [4] as a base case,

namely µ = 0, r = 0.05, K = 0.5, L = 0, C = 1 and γ = 0.5. In an effort to

disentangle the effects of economic (σ) and implementation (λ) uncertainty,

figures 4–7 plot the ratios of optimal investment and abandonment thresholds

to their Marshallian counterparts ( x
xm

, x
xm

) as a function of the set–up cost

K, for combinations of high (σ = 0.4, λ = 0.9) and low (σ = 0.1, λ = 0.4)

uncertainty parameter values.

First concentrate in the case where implementation uncertainty is re-

solved favourably (figures 4 and 5). The effect of economic uncertainty is

depicted in figure 4. As predicted by real options models, more uncertainty

in the economic value of the completed project widens the range of hysteresis,

making the firm proner to delaying investment/abandonment decisions. This

value of waiting seems more important when the implementation uncertainty

parameter λ is low (panel (a)).

The effect of implementation uncertainty however is different as figure

5 demonstrates. A shorter implementation stage (higher λ) makes the firm

more eager to commit sooner and abandon later. As λ increases there are es-

sentially two effects in action: Firstly, the implementation stage is completed

sooner and our firm receives the value of the completed project quicker. Sec-

ondly, our firm is willing to enter the implementation stage earlier because

a higher λ means a higher probability of losing the opportunity to invest in

the project if the implementation stage has not commenced.6 When sup-

plemented with high economic uncertainty (σ), the project is actually aban-

doned at a level lower than the Marshallian (panel (b)).

Turning to the unfavourable scenario, the effect of economic uncertainty

in figure 6 is qualitatively identical. A higher σ increases the range of inac-

tion. However, unfavourable resolution of implementation uncertainty does

not necessarily imply earlier or later optimal entry/exit. For low values of λ

(longer expected implementation stage), an unfavourable development dic-

6This essentially highlights the effect of our assumption that λE [V0 (x|λ)− V0 (x)] =
−λV0 (x).
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tates delayed investment and sooner abandonment (compare figures 5 and 7

with λ = 0.4). However, if the implementation stage is expected to be short

(high λ), a firm can commit to investment early even if completion of this

stage has an adverse effect on project value (compare figures 5 and 7 with

λ = 0.9). When set–up costs are sufficiently low, the firm will optimally

invest before the Marshallian level, even under the “bad news” scenario.

This demonstrates the ambiguity of the position of the optimal investment–

abandonment trigger values relative to their Marshallian counterparts, as

Proposition 1 implies.

To summarise, the numerical examples demonstrate that economic and

implementation uncertainty have distinctly different effects on optimal in-

vestment/abandonment decisions. The former increases the range of inaction

as the consensus of the “investment under uncertainty” literature predicts.

However, when implementation uncertainty affects both the timing and the

desirability of the project, the firm might optimally invest and abandon ear-

lier or later compared to the certainty case depending on parameter values.

In all cases, the shorter the implementation stage the sooner our firm wants to

commit to the project. Moreover, when the major project uncertainty comes

from the implementation stage (high λ and low σ) the range of hysteresis is

seen to decrease considerably. Lastly, the direction of uncertainty resolution

plays an important role, however favourable and unfavourable news do not

necessarily imply unambiguous positions for the optimal thresholds relative

to their Marshallian counterparts.

5 Conclusions

The future economic benefits that may arise from new investment (or dis-

investment) are the main uncertainty that managers face in their everyday

decisions. The higher this economic uncertainty, the more reluctant are firms

to commit resources to new projects or terminate operating ones as the real

options literature has stressed. However, business reality is far more com-

plex than that: there is a wide range of economy–wide (e.g. interest rates) or

firm–specific (e.g. investment/abandonment costs) factors which might not

be known with certainty, and which necessarily influence the economic value
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and desirability of any decision.

In this paper we consider optimal investment and abandonment decisions

for a firm that faces both an economy–wide and a project–specific uncer-

tainty. The former arises from the unknown future value of the project

once in place. The latter concerns all factors that might interfere between

the decision to initiate investment and the actual project implementation.

Namely some projects take time to construct, and the actual time lag be-

tween investment and completion might be a key unknown factor. Other

projects depend highly on critical, one–time events like discovery or cus-

tomer acceptance, events that will ultimately determine both the timing and

the economic value of the project.

We allow this implementation uncertainty to be resolved randomly and to

affect both the timing and the value of the completed project. The way im-

plementation uncertainty affects project value is general enough that allows

us to nest four existing real options models as special cases of our setting.

In the general case, it has been shown that the position of the investment

and abandonment thresholds cannot be unambiguously determined relative

to the thresholds of the certainty case. The firm might optimally commit

to investment earlier or abandon later under implementation uncertainty

depending on parameter values. Our main result in Proposition 1 shows

analytically how each source of uncertainty influences the position of the

optimal thresholds.

Numerical simulations of two cases explicitly addressed show that a firm

will abandon a project later than Marshallian theory would predict if the

probability of favourable uncertainty resolution is relatively high. On the

other hand, a firm might commit to implement a project sooner even if bad

news are expected during the implementation stage of the project. In both

cases, when implementation is the major source of project uncertainty, the

range of hysteresis is seen to decrease considerably, in sheer contrast to the

well–documented positive relation of economic uncertainty and inaction.
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A Appendix

In the favourable scenario, over the range of values that it is optimal for the

firm to commit to the project implementation equation (9) becomes

1

2
σ2x2V ′′

1 (x) + µxV ′
1 (x)− rV1 (x) + λE [V1 (x|λ)− V1 (x)] + γx = 0

where the last term represents the constant fraction γ of the completed

project that the firm earns over the implementation stage. At the arrival

of the Poisson event the firm experiences a gain of (1− γ) x with probability

λdt, i.e. λE [V1 (x|λ)− V1 (x)] = λ (1− γ) x − λV1 (x). Substitute this and

collect terms to get equation (10) with ζ (λ) = γ + λ (1− γ).

Correspondingly for the unfavourable scenario

1

2
σ2x2V ′′

1 (x) + µxV ′
1 (x)− rV1 (x) + λE [V1 (x|λ)− V1 (x)] + x = 0

and at the random implementation uncertainty resolution the firm loses γx

with probability λdt, i.e. λE [V1 (x|λ)− V1 (x)] = −λγx − λV1 (x). Thus in

the “bad news” case ζ (λ) = 1− λγ in (10).
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Figure 1: The value of idle and active firm, V0 (x), V1 (x), as a function of

the state variable x. At the investment and abandonment thresholds x, x,

the firm optimally switches between the idle and active states by sinking the

set–up and exit costs, K and L.
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Figure 2: The optimal investment threshold x as a function of the set–

up cost K as predicted by Proposition 1 (thick line)and Weeds [18]. The

optimal trigger can be above or below its certainty equivalent (dashed line)

depending to parameter values, in contrast to Weeds [18] where the threshold

is unambiguously above. The parameters used are µ = 0, r = 0.08, σ = 0.1,

ζ (λ) = λ, L = 0 and C = 1.
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Figure 3: The two cases of implementation uncertainty resolution treated in

the numerical examples. In the “favourable” scenario (panel a) the firm earns

a fraction γ ∈ (0, 1) of the completed project value until the implementation

stage is completed. In the “unfavourable” scenario (panel b) the firm loses a

fraction γ ∈ (0, 1) when implementation uncertainty is resolved.
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Figure 4: The ratios of the optimal investment and abandonment thresholds

to their Marshallian counterparts, x
xm

, x
xm

as a function of the set–up cost

K under the “favourable” scenario for two values of the economic uncer-

tainty parameter σ. In panels (a) and (b) the implementation stage length is

expected to be long and short respectively. The higher the economic uncer-

tainty (thick line), the further apart the threshold ratios are drawn. The firm

might optimally abandon the project later than in the certainty case (dashed

line). The parameters used are µ = 0, r = 0.05, ζ (λ) = γ + λ (1− γ), L = 0

and C = 1.
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Figure 5: The ratios of the optimal investment and abandonment thresholds

to their Marshallian counterparts, x
xm

, x
xm

as a function of the set–up cost K

under the “favourable” scenario for two values of the implementation uncer-

tainty parameter λ. In panels (a) and (b) the economic uncertainty is low

and high respectively. The shorter the expected implementation stage (thick

line), the closer the threshold ratios are drawn. The firm might optimally

abandon the project later than in the certainty case (dashed line). The pa-

rameters used are µ = 0, r = 0.05, ζ (λ) = γ + λ (1− γ), γ = 0.5, L = 0 and

C = 1.
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Figure 6: The ratios of the optimal investment and abandonment thresholds

to their Marshallian counterparts, x
xm

, x
xm

as a function of the set–up cost

K under the “unfavourable” scenario for two values of the economic uncer-

tainty parameter σ. In panels (a) and (b) the implementation stage length

is expected to be long and short respectively. The higher the economic un-

certainty (thick line), the further apart the threshold ratios are drawn. The

firm might optimally invest sooner and abandon earlier than in the certainty

case (dashed line). The parameters used are µ = 0, r = 0.05, ζ (λ) = 1−λγ,

L = 0 and C = 1.
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Figure 7: The ratios of the optimal investment and abandonment thresholds

to their Marshallian counterparts, x
xm

, x
xm

as a function of the set–up cost

K under the “unfavourable” scenario for two values of the implementation

uncertainty parameter λ. In panels (a) and (b) the economic uncertainty is

low and high respectively. The shorter the expected implementation stage

(thick line), the closer the threshold ratios are drawn. The firm might opti-

mally invest sooner and abandon earlier than in the certainty case (dashed

line). The parameters used are µ = 0, r = 0.05, ζ (λ) = 1 − λγ, γ = 0.5,

L = 0 and C = 1.
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