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Abstract: Several entry-exit models under price uncertainty are discussed by a new markup approach to investment, 

starting with the classical model by Dixit (1989). The markup approach, introduced by Dixit et al. (1999), enables us 

to state the expected value of the firm in the entry-exit model as a function of a chosen pair of entry and exit trigger 

prices. The optimal policy appears by maximizing the value function with respect to the trigger prices. Extensions 

being discussed include endogenous production costs, diminishing production capacity over time, limits to the 

number of available switches, and various models with scrapping decisions and investment lags. The main new 

extension allows for an investment lag in the entry-exit-scrapping model by Dixit (1988). Implications of the 

investment lag are investigated by use of experimental data and empirical data from shipping. We also correct some 

results on investment lags from Bar-Ilan and Strange (1996). 
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1. Introduction 
Models of entry and exit decisions under price uncertainty, pioneered by Mossin (1968) and 

generalized by Brennan and Schwarz (1985) and Dixit (1989), are main tools in real options 

theory. The last of these references, focused in this paper, solves the following problem: A firm 

can choose between using and mothballing a certain production capacity. The cost of producing is 

fixed, while the product price follows a geometric Brownian motion. When is it optimal to 
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produce, considering that switching is costly? The answer is familiar: the optimal policy for the 

idle firm is not to follow the Marshallian rule of starting production as soon as the expected net 

present revenue exceeds the costs of entry and production through infinity. One should wait for a 

fixed higher trigger price due to an option argument. Likewise, the active firm should wait for a 

fixed trigger price lower than the Marshallian one before leaving. 

Dixit's model has been extended in several directions. Dixit (1988) includes (initial) construction 

costs and (final) scrapping costs. Brekke and Øksendal (1994) allow for diminishing production 

capacity over time. Ekern (1993) restricts the number of available switches, and Bar-Ilan and 

Strange (1996) include investment lags. Leahy (1993) showed more generally that the myopic 

behavior of the firm in these references is usually also optimal in partial equilibrium with a large 

number of firms acting independently. 

The first objective of this paper is to show that a new approach to irreversible investment can be 

used to model all of the investment problems just mentioned. The basic idea of the approach 

stems from Dixit et al. (1999), which focuses on the analogy between the markup pricing rule of a 

static monopolist and the optimal timing decision for a firm with the option to invest. We find it 

natural to use the term “markup approach” for the new method as compared with the smooth 

pasting approach dominating the literature.1 In this paper we expand the markup approach 

significantly. Our ambition is to show that the new approach simplifies both the analytical 

treatment and the numerical analysis of several entry-exit problems.2 

The second objective of the paper is to use the markup approach to develop new extensions to the 

entry-exit model. More generally, however, we intend to show that the markup approach is suited 

for a wide spectrum of applications, so the list of extensions could easily be made longer. Section 

8 contains the most thorough extension, including investment lags in the entry-exit-scrapping 

                                                 

1 See Dixit and Pindyck (1994) for an introduction to real options theory based on smooth pasting. Sødal (1998) 

contains a brief discussion of the relationship between the markup approach and the smooth pasting approch. 

2 This does not remove the need for advanced stochastic analysis if one were to prove rigorously that the suggested 

solutions are indeed optimal. See Brekke and Øksendal (1994) for a discussion and a set of sufficiency conditions. 
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model by Dixit (1988). At that point the new approach has been developed so far that the model 

can be spelled out over a few paragraphs. A larger system of equations and tedious analysis seem 

to be necessary with the smooth pasting approach. 

In the standard entry-exit setting, the core of the markup approach consists of stating the expected 

net present value of the firm as a function of an arbitrary pair of trigger prices, using a general, 

continuous and autonomous Ito price process. Thus we work with a broad class of stochastic 

processes, although the geometric Brownian motion is used for numerical examples. The optimal 

policy is found by maximizing the value function with respect to the trigger prices. Two trigger 

prices leave us with two first-order conditions that must be solved for simultaneously. The 

solution by smooth pasting is given by a system of four equations, but the two solutions coincide 

when two option coefficients are eliminated from the latter system. 

Several models will be discussed, and it is not necessary to go into the details for all of them. We 

pay most attention to models with investment lags, for which the markup approach seems to be 

especially convenient. As part of our discussion on investment lags, we point at an error that 

infected all numerical results in Bar-Ilan and Strange (1996). We argue that some of their 

conclusions must be modified because of the error.3 

The rest of the paper is structured as follows: Section 2 develops the basic entry-exit model of 

Dixit (1989), using the new approach and illustrating it with numerical examples. Section 3 

contains a new extension, endogenizing the production cost. Section 4 restricts the number of 

switches as in Ekern (1993). Section 5 discusses diminishing production capacity as in Brekke 

and Øksendal (1994). Section 6 allows for investment lags as in Bar-Ilan and Strange (1996). 

Section 7 expands to construction and scrapping as in Dixit (1988), and section 8 includes 

investment lags in the latter model. This also allows for a study of investment lags in practice, 

based on empirical shipping data. Section 9 discusses equilibrium and section 10 sums up. 

                                                 

3 The authors knew about the error when I contacted them; they had also suggested an erratum some time ago. 
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2. The entry-exit model 
As in Dixit (1989), we consider a firm with the option to switch between using and mothballing 

its production capacity. The potential revenue from being an active producer is stochastic. The 

expected and discounted revenue from continuous production into infinity, starting now and 

discounting at a constant rate ρ>0, follows an autonomous and continuous Ito process 

(1) dzPgdtPfdP )()( += . 

Here dz is the Wiener increment, dt is the time increment, and f(P) and g(P) are continuous and 

differentiable functions representing drift and volatility of the total potential revenue process. The 

firm is not producing initially, and the process starts from a low initial value, P0.4 

The process (1) usually originates from a more basic price process. For example, if the firm 

produces continuously at rate unity, and the current price of the good, p, is geometric Brownian 

with drift µ (<ρ) and volatility σ, then P=p/(ρ−µ). Thus P is geometric Brownian with the same 

drift and volatility as the underlying process. For notational convenience we state all variables in 

expected net present terms right from the beginning. Having just noted that P is really an expected 

net present price, we mainly refer to it as a price. When presenting numerical results, this and 

other net present values are transformed back to more common flow variables. 

The firm can start (or restart) production by the investment A, and stop production (temporarily or 

permanent) by the investment B. Both of these switching costs are constant, and they are referred 

to as the entry cost and the exit cost, respectively. The annual cost of production is a constant c, 

so the net present cost of producing forever is c/ρ≡C. Below we call C a production cost even if it 

is also a net present value like the price P. Costs and revenue from production only apply when 

the firm is active, so the objective of making entry is to gain from production when prices exceed 

marginal costs; the objective of exit is to avoid production when they do not. 

The firm has two options: either to remain in the current state (idle or active) or to switch. Since 

investments are irreversible and the only dynamic component of the model is the price P, a given 

                                                 

4 Alternatively, we could start with a high initial value and an active firm. That leads to the same optimal policy. 
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combination of state and price leads to the same decision at all points in time. Moreover, the 

perpetual character of the model ensures that the value of the firm coincides in such cases. 

As argued intuitively by Dixit (1989) and proven rigorously by Brekke and Øksendal (1994), the 

optimal policy for the idle firm is to enter when a certain price is reached from below, and for the 

active firm to exit when a certain lower price is reached from above. The firm remains in the 

current state whenever the price is between these two trigger prices. Suppose therefore that the 

firm enters when the arbitrary price R is reached from below, and exits when the arbitrary price L 

(<R) is reached from above. For the moment we set P0=L; i.e., we assume that the initial price 

coincides with the exit trigger price. Remember, however, that the firm is idle at first, waiting for 

R to be reached. The expected net present value of the firm, WL(L,R), can be written as 

(2) ( )( )),(),(),(),( RLWLBCLRQCARRLQRLW LL +−−+−−= , 

where Q(P1,P2)≡E[e−ρT] is the expected discount factor when P is to move from the current price 

P1 to another price P2 for the first time, and T is the first hitting time from P1 to P2.5  Eq. (2) can 

be explained as follows: No revenue or cost applies until the entry trigger price R is reached, and 

all gains from then on must be discounted. In this case the start price is L and the end price is R, 

so the discount factor is Q(L,R). The net present revenue from remaining active through infinity is 

R, the firm has to invest A to become active, and the production cost is C. This explains the first 

part of the parenthesis, R−A−C. However, the firm does not have to remain active forever. Gains 

arising from the exit option are discounted further by Q(R,L), since the price at time of entry is R, 

and the firm will exit when the price gets down to L. At time of exit, the production cost C is 

saved if the firm should remain idle forever. The exit cost B must be paid, and the net present loss 

                                                 

5 See Dixit et al. (1999) for a discussion, including several examples, of the discount factor function Q(P1,P2). This 

function, which depends on the parameters of the price process (1), has the following general properties: It obviously 

satisfies 0≤Q(P1,P2)≤1 for all P1 and P2. The maximum value, Q(P1,P2)=1, is reached when P1=P2 as there will be no 

discounting when the start point equals the end point. Moreover, ∂Q/∂P1>0 and ∂Q/∂P2<0 when P1<P2, since the 

distance to move (and the time needed, since the process is continuous) is decreasing in the first case and increasing 

in the other. For similar reasons, ∂Q/∂P1<0 and ∂Q/∂P2>0 when P1>P2. Finally, Q(P1,P2)→0 as P1 and P2 get far apart, 

since that implies a long way to move, and thus heavy discounting. 
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of revenue from production is L. This explains the first part of the inner parenthesis, C−B−L. 

Right after exit, the initial combination of price and state has been reached again. As discussed 

above, the value of the firm coincides in these situations. Therefore we add the recursive element 

WL(L,R) to find the expected net present value of the firm over infinite time. 

By re-arranging Eq. (2), WL(L,R) can be written as a function of the two trigger prices and 

exogenous parameters of the model. Recall, however, that the true initial price is not L, but a 

fixed lower price, P0. Therefore the true value function, or profit function, is not WL(L,R), but 

Q(P0,L)WL(L,R)≡W0(L,R). Using that Q(P0,L)Q(L,R)=Q(P0,R), this translates to: 

(3) 
( )( )
),(),(1

),(),(),( 0
0 LRQRLQ

LBCLRQCARRPQRLW
−

−−+−−= . 

Eq. (3) is the key of the model, showing the expected net present value of the firm at the initial 

point, P0, as a function of the chosen trigger prices. The numerator contains the expected value of 

the first production period. The denominator, which is close to zero if the production cycle is 

short when measured by expected discounting, accounts for the infinite time horizon. The optimal 

policy is found by maximizing W0 with respect to L and R. Before showing the result of this 

exercise, we note some  general properties of the model. 

The optimal policy does not depend on the initial price, P0. To see this, write the profit function 

as W0(L,R)=Q(P0,R)F(R,L), where the definition of F(R,L) follows from Eq. (3). As long as W0 is 

smooth, the optimal solution requires ∂W0/∂L=0 and ∂W0/∂R=0. Since Q(P0,R) does not depend 

on L, the first of these first-order conditions does not depend on P0. The other one becomes 

F∂Q/∂R+Q∂F/∂R=0. Defining ε=−(∂Q/∂R)/(Q/R) and γ=(∂F/∂R)/(F/R), this simplifies to ε=γ. As 

shown by Dixit et al. (1999), ε is independent of P0. Nor can γ depend on P0, so the second first-

order condition is also independent of P0. 

For the model to make sense, we must have A+B≥0. In the opposite case the firm could make 

infinite profit by switching back and forth continuously. To see this formally, rewrite W0 as 

(3') ( ) ( )( ) ( )
),(),(1

),(1),(),( 00 LRQRLQ
BALBCLRQLRRPQRLW

−
+−−−−−−= . 
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The properties of the discount factor function imply that the denominator in Eq. (3') decreases 

strictly in L, approaching zero as L→R. The first parts of the numerator also approach zero as 

L→R, so unless A+B≥0, profits could be increased to infinity by letting L→R. 

The two first-order conditions for a maximum of W0, determining the optimal trigger prices, can 

be written as follows (see Appendix A): 

(4a) ��
�

�
��
�

�
�
�

�
�
�

� −−−=−−
R

LBCLRQ
R

CAR n
Ru ε

ε
),(11  

(4b) ��
�

�
��
�

�
�
�

�
�
�

� −−−=−−
L

CARRLQ
L

LBC n
Ld ε

ε
),(11  

where  )//()/( RQRQ uuu ∂∂−=ε ,    )),(),(1/(),( LRQRLQRLQQu −= ,  

  )//()/( LQLQ ddd ∂∂=ε ,  )),(),(1/(),( LRQRLQLRQQd −= , 

  )//()/( RQRQ nnn
R ∂∂−=ε ,  )),(),(1/(),(),( LRQRLQLRQRLQQn −= , 

  )//()/( LQLQ nnn
L ∂∂=ε . 

Here Qu, Qd and Qn are aggregate discount factors applicable to certain initial situations and 

future decisions. Qu applies to all future entry decisions, starting with a firm at time of exit. 

Likewise, Qd applies to future exit decisions, starting with a firm at entry. Qn applies to future 

entry decisions for a firm right after entry, as well as to exit decisions for a firm right after exit. 

Eq. (4a) resembles the investment rule of Dixit et al. (1999). That paper discusses the standard 

problem of when to invest a constant C to obtain a stochastic benefit V. The optimal decision is to 

invest when a certain markup (V−C)/V=1/ε is reached, where ε=−(∂D/∂V)/(D/V), and 

D=D(V0,V) is the expected discount factor when the benefit is to move from V0 to a fixed V≥V0.  

Returning to our model, and disregarding the large parenthesis on the right-hand side, Eq. (4a) 

shows how much the trigger price R should exceed A+C, the total net present cost if entry was 

not affected by exit. While Dixit et al. (1999) consider a single investment and use the elasticity ε 

of the ordinary discount factor, we need the elasticity εu of an aggregate discount factor to account 

for the infinite time horizon. The parenthesis is caused by the exit option, and reduces the 
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markup. The adjustment is small if L is far away at time of entry − i.e., if Q(R,L) is close to zero. 

The adjustment also depends on the aggregate elasticity εR
n and the relative size of the exit 

markup. The gain from the exit option vanishes if the firm could behave optimally at entry but for 

some reason must follow a Marshallian exit rule, leaving when L=C−B. Then Eq. (4a) simplifies 

to a perpetual version of the investment rule in Dixit et al. (1999). 

The interpretation of Eq. (4b) is similar: the firm does not exit when L=C−B, but waits for a 

lower price according to a markup rule. Here the parenthesis vanishes if the firm could behave 

optimally at exit but had to follow a Marshallian entry rule, investing when R=A+C. 

The model we have developed applies to a broad class of Ito processes, not only the geometric 

Brownian motion. We just need to find the discount factors and elasticities associated with the 

chosen stochastic process, and then solve Eq. (4a,b). Nonetheless, the geometric Brownian 

motion is of special interest due to tractability and widespread use. A geometric Brownian price 

with drift µ (<ρ) and volatility σ implies the following discount factor function:6 

(5) 
��

�
�
�

≥

≤
=

2112

2121
21 ,)/(

,)/(
),(

PPPP
PPPP

PPQ
α

β

. 

Here β (>1) is the positive root and α (>0) is the magnitude of the negative root of the equation 

(6) 0)( 2
2
122

2
1 =−−+ ρσµσ xx . 

We will use several discount factors based on Eq. (5), but in this section the only interesting ones 

are Q(L,R)=(L/R)β and Q(R,L)=(L/R)α. By inserting these formulas into Eq. (4a,b) we get two 

equations that can also be derived from Dixit (1989, eqs. 12-15). The aggregate elasticities εu, εd, 

                                                 

6 As shown by Dixit et al. (1999), the expected discount factor going from P1 to P2≥P1 can be found by solving the 

differential equation ½g2(P1)Q''(P1,P2)+f(P1)Q'(P1,P2)−ρQ(P1,P2)=0, where derivatives are with respect to the first 

argument. Two boundary conditions apply. First, Q(P2,P2)=1, and, second, Q(P1,P2)→0 when P2−P1 becomes large. 

Setting f(P1)=µP1 and g(P1)=σP1, the upper part of Eq. (5) follows easily. By replacing P2−P1 with P1−P2 in the 

second boundary condition, the lower part follows similarly. 
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εR
n and εL

n are stated in Appendix A, which also shows that the optimal R is lower than the 

corresponding markup price of the standard investment model studied by Dixit et al. (1999). 

It is well known how L and R depend on exogenous variables, so that issue does not have to be 

pursued here. We shall rather demonstrate the sensitivity of the decision policy, an issue the 

smooth pasting approach is not as well suited to address. W0 is the expected profit arising from 

any feasible pair of trigger prices, so it also shows the implications of missing the right ones (− a 

likely outcome in practice!). Fig. 1 plots W0 as a function of L and R, suppressing regions where 

W0<0 or L>R. The numbers are taken from Dixit (1988), which again draws on Mossin (1968). 

Fig. 1.  The profit function W0 with low volatility (ρ=0.05, µ=0, σ=0.05, A=144, B=144, c=20). 

In this case W0 is very sensitive to the entry trigger price. The exit trigger price does not matter 

much as long as it is fairly low. The reason is that exit rarely applies with such low uncertainty 

and high switching costs. Reducing the exit trigger price below the optimal level is therefore not 

very harmful. (W0 is proportional to P0
β, so the initial price determines the vertical scale. The 

closer P0 is to R, the higher is the value of the firm; i.e., the maximum of W0.) 

The importance of finding the correct trigger prices changes by increasing the volatility to σ=0.2 

as in Fig. 2. Now the expected profit is less sensitive to deviations from the optimal R and L. This 

is reasonable, since the cost of missing optimum is essentially a time cost. When the volatility is 

high and the firm picks its trigger prices fairly well, it usually does not take long to reach the 

L=218.71, R=636.96
(pL=10.94, pR=31.85)

L
(0-500)

R
(0-1500)
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optimal prices anyway. Then the cost of failing cannot be high. (The vertical scale is different in 

Fig. 1 and Fig. 2. The value of the firm is much higher in Fig. 2, where the volatility is higher.) 

Fig. 2. The profit function W0 with high volatility (ρ=0.05, µ=0, σ=0.20, A=144, B=144, c=20). 

Thinking of many practical cases, the switching costs are high in Fig. 1 and Fig. 2, and switching 

does not occur frequently. In Fig. 3, both switching costs have been reduced from 144 to 1. That 

brings L and R closer, and W0 becomes more sensitive to changes in both trigger prices close to 

optimum. Loosely speaking, however, the entry trigger price still appears to be more important. 

Fig. 3. The profit function W0 with low switching costs (ρ=0.05, µ=0, σ=0.05, A=1, B=1, c=20). 

L=149.27, R=976.43
(pL=7.46, pR=48.82)

L
(0-500)

R
(0-1500)

L=377.55, R=424.20
(pL=18.88, pR=21.21)

L
(0-500)

R
(0-1500)
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The three figures above illustrate that W0 is well defined and yields a unique maximum. This 

could also be shown by a formal analysis, which we omit. Note also that the profit function is 

typically quite smooth, and it may often be easier to solve models of this kind numerically by 

maximizing W0 directly instead of going via first-order conditions like Eq. (4a,b). For most of the 

models below we do not discuss the first-order conditions. They are usually lengthy, and not 

needed for the numerical analysis. Instead we focus on deriving the profit functions. 

3. Endogenous production costs 
One common trade-off in economic decision-making is the one between fixed and marginal costs. 

By long-term capital investments, labor costs and other short-term variable costs can be reduced. 

Suppose that our firm is faced with such a trade-off. If the entry cost A is increased, the 

production cost C will decrease. When implementing this assumption, we must decide whether 

the effect of increasing the entry cost lasts for more than one production period. This could be the 

case, but we do not consider it here. Instead we assume that the firm each time entry takes place 

must decide the size of the entry cost, regardless of previous investments. Then the only candidate 

for an optimal decision is the usual one: the firm will enter and exit at two certain trigger prices. 

Hence, the firm will have to optimize L, R and A. 

To formalize the model, we assume C=C(A), where dC/dA<0 and d2C/dA2>0. Furthermore, set 

W0=W0(L,R,A) in Eq. (3), and maximize W0 with respect to L, R and A. The two first-order 

conditions in Eq. (4a,b) apply once again, except that C is now a function of A. The third 

condition, ∂W0/∂A=0, implies 

(7) 
),(1

1/
LRQ

dAdC
−

−= . 

As long as 0<Q(R,L)<1, we have dC/dA<−1. Thus the first investment should not be pushed so 

far that the last dollar saves one dollar of production costs over infinite time. The reason is that 

exit may be optimal some day in the future, and then the gain from the investment will be lost.  

Other aspects of this model can be addressed by studying how R and L are influenced by C(A) in 

specific cases. Table 1 shows one set of results based on the cost function C(A)=(1+h/A)/ρ, where 
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h>0. The price is assumed to be geometric Brownian with 20 percent volatility and no drift, the 

discount rate is 5 percent, and there is no exit cost. 

h pL pR A c A/A0 
    0.00 1.000 1.000   0.000 1.000 (0.000)
    0.01 0.859 1.283   0.273 1.037 0.610 
    0.10 0.836 1.548   1.010 1.099 0.714 
    1.00 0.884 2.194   3.609 1.277 0.807 
    2.00 0.930 2.552   5.251 1.381 0.830 
    5.00 1.033 3.238   8.565 1.584 0.857 
  10.00 1.157 3.996 12.345 1.810 0.873 
  20.00 1.337 5.054 17.728 2.128 0.886 
  50.00 1.701 7.136 28.461 2.757 0.900 
100.00 2.116 9.471 40.591 3.464 0.908 

Table 1. Optimal investment with endogenous costs (ρ=0.05, µ=0, σ=0.2, B=0, c=1+h/A). 

The limiting case h=0 implies c=1 and A=0. Then no investment is needed, and pL=pR=1. The 

larger h is, the more investment is needed to reduce the production cost. This makes the entry 

trigger price increasing in h. The exit trigger price decreases in h when h is low, because the 

irreversibility effect of increased entry costs dominates the marginal effect of increased 

production costs. This is reversed when h is sufficiently high, but the amount of hysteresis, 

measured by the ratio pR/pL, increases in h all the way. The Marshallian investment A0 is given by 

dC/dA=−1, so the last column shows how much the optimal investment decreases due to the exit 

option. The lower h is, the closer are the trigger prices, and the more switching there is. That 

makes the error from not considering the exit option decreasing in h. 

4. Restricted switching 
The standard entry-exit model allows for an infinite number of switches. This may be unrealistic, 

at least without increasing the switching costs. For example, frequent switching could harm to the 

equipment in use. Ekern (1993) therefore restricts to a fixed maximum number of switches. Let us 

show briefly how this modification can be handled by the markup approach. 

The stationary character of the model disappears by restricting the switching options, so now R 

and L will depend on the number of switches still available. If entry and exit can take place N 

times each, we get a 2N-dimensional profit function 
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(8) ( ) ( ){ }�
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The aggregate discount factors entry
kQ  and exit

kQ , k=1,…,N, are products of ordinary discount 

factors up until the decision to enter or exit for the k'th time. The argument for this description of 

W0 follows from section 2. The optimal trigger prices are given by 2N first-order conditions. 

They are usually complicated, but recursive formulas can be worked out. In the geometric 

Brownian case, Ekern (1993) finds that the entry trigger price decreases and the exit trigger price 

increases as functions of the number of switching options still available. This is in line with our 

markup discussion in section 2. 

5. Diminishing production capacity 
Brekke and Øksendal (1994) assume that the production capacity is decreasing in the accumulated 

time of production. As an example, the resource stock of a mine is limited, and the revenue from 

exploiting the mine typically decreases over time. Then the flow of revenue from production is 

qp≡p', where q is the current capacity and p is the current price. The price is assumed to geometric 

Brownian. Since the capacity is fixed when the firm is not producing, the initial revenue from 

starting production will be geometric Brownian with the same drift (µ) and volatility (σ) as the 

price process. The price process also applies during production, but now the capacity shrinks. 

Assuming a constant rate of capacity reduction, λ>0, we have dq=−λdt. From Ito's lemma the 

actual revenue flow during production is then still geometric Brownian with volatility σ, but the 

drift is µ−λ≡µ', which is lower than during lay-up. Since all income shows up in the flow of 

revenue, it follows that the income of the firm depends on two state-dependent geometric 

Brownian motions. During lay-up, the drift of the potential revenue process is µ, while the drift of 

the actual revenue process during production is µ'. Moreover, the future of the firm in a given 
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state looks the same for any fixed p'. Thus the optimal policy will be to enter when p' hits a 

certain value from below, and to exit when a certain lower value is hit from above. 

To describe this model by the markup approach we must first adjust the net present price for 

diminishing production capacity. This yields p'/(ρ−µ') for any net present price p/(ρ−µ) in the 

standard model. Hence, pL/(ρ−µ) and pR/(ρ−µ) are replaced by p'L/(ρ−µ')≡L' and p'R/(ρ−µ')≡R', 

where p'L and p'R are investment triggers in terms of p'. The discount factor that applies during 

production must also account for capacity reductions. This yields Q(R',L')=(L'/R')α', where α' is 

the magnitude of the negative root of Eq. (6) after replacing µ with µ' in that equation. The 

potential revenue process during lay-up coincides with the one in section 2, so in the idle state the 

usual discount factor applies, Q(L,R)=Q(L',R')=(L'/R')β. 

With the revised interpretations, Eq. (3) still contains the expected value of the firm, and by 

replacing α, L and R with α', L' and R' in the geometric Brownian version of Eq. (4a,b), we end 

up with the solution in Brekke and Øksendal (1994, p. 1032). 

6. Investment lags 
Investment has taken place instantaneously in all models up until now. The real world is different. 

Bar-Ilan and Strange (1996) include a deterministic lag between the decision to enter is made and 

revenues and costs from production start to flow. The entry decision is irreversible, but to avoid 

the investment lag from affecting net present costs when studying its implications, one can 

assume the entry cost to be incurred at the end of the lag. 

Since no revenue or cost applies during the investment lag, there is no cost of postponing exit 

decisions until the end of the lag even if the price gets very low. However, there is a gain from 

waiting to see whether the price rises again. This implies that exit during the lag cannot be 

optimal. If the firm decides to exit later on, and enters once again, a new investment lag applies. 

The investment lag complicates the expected profit function of the markup approach slightly, but 

it complicates the smooth pasting approach much more. Bar-Ilan and Strange need an intricate 

procedure, and must even solve a partial differential equation to derive their model. We can set up 

the expected profit function of the firm directly, accounting for the delay of revenues and costs, 
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and the decision at the end of the investment lag. Having chosen L and R in advance, the decision 

of the firm will be to continue production if the price at the end of the investment lag exceeds L, 

and otherwise to exit immediately. 

As in section 2, suppose for a moment that the current price is L, and that the firm is idle. The 

profit function, explained below, becomes: 

(9) ×= −ρτeRLQRLWL ),(),(  

           ( )LL WLRQLRLBCLRpWLBCLRQCAR ),(),())(,())(,( −−−+ +−−++−−+−−τ  

where 

 �
∞

+ Ω=
L

xdLxQLRQ )(),(),( ,    [ ]RPPER ==  0ττ ,     )(),( 0 RPLPpLRp =<=−
τ ,

 �
∞−

− Ω=
L

xdLxQLRQ )(),(),( ,    �
∞−

− Ω=
L

xxdLRL )(),( . 

The firm will not enter before the trigger price R is reached, so all future benefits and costs are 

discounted by the factor Q(L,R). Then the decision is made, but no revenue or cost shows up until 

τ years later. The deterministic discount factor e-ρτ takes care of the delay. The expected net 

present revenue from infinite production from then on is Rτ, and the entry cost A and the 

production cost C apply as usual. This explains the terms Rτ−A−C. The rest of the parenthesis 

contains the expected value of future decisions. The decisions will depend on the price 

movements during the investment lag. If the price at the end of the lag exceeds L, the firm will 

remain active and wait for L to be reached from above before exit takes place. When the latter 

event occurs, the net gain is C−B−L+WL as in section 2. However, the (downward) discount 

factor must be modified, since the price could start from any level exceeding L. The adjusted 

discount factor, Q+(R,L), is found by integrating over the range of possible start values, using the 

distribution function Ω associated with the diffusion process. Thus, Ω is the distribution of the 

price at time τ given that the price at time zero is R. 

The firm exits immediately if the price at the end of the investment lag is below L. That occurs 

with probability p−(R,L), and in such cases the firm saves the production cost C but has to pay the 



 

 
16

exit cost B. This explains the term p−(R,L)(C−B). The expected loss of revenue, L−(R,L), is found 

by integrating over all prices lower than L, using the same distribution as above. Since the price at 

time of exit is some uncertain value lower than L, the recursive element WL must also be 

discounted. To account for the motion up to L we use the discount factor Q−(R,L), which appears 

by integrating the (upward) discount factor Q(x,L) over applicable prices at the end of the lag. 

After re-arranging Eq. (9) and setting Q(P0,L)WL(L,R)≡W0(L,R), the value of the firm becomes: 

(10) 
( ) ( )( )

( )),(),(),(1
),(),(),(),(),( 0

0 LRQLRQeRLQ
LRLBCLRpLBCLRQCAReRPQRLW −+−

−−+−

+−
−−+−−+−−= ρτ

τ
ρτ

 

This function is more complicated than the one in Eq. (3), but the models merge as τ→0, since 

then we have e−ρτ→1, Rτ→R, Q+(R,L)→Q(R,L), p−(R,L)→0, L−(R,L)→0 and Q−(R,L)→0. 

W0 as given by Eq. (10) can be maximized with respect to L and R for a number of price 

processes, but closed-form solutions can only be obtained in simple cases. If the price is 

geometric Brownian, the following components can be derived (see Appendix B): 

(11) [ ])(1)/(),( τ
ρτα ασ+Φ−=+ ueRLLRQ , µτ

τ eRR = ,  )(),( uLRp Φ=− , 

)()/(),( τ
ρτβ βσ−Φ=− ueLRLRQ ,  )(),( τ

µτ σ−Φ=− ueRLRL ,  

where  
τσ

τσµ )()/ln( 2
2
1−−

=
RL

u   and  τσστ = . 

Φ(⋅) is the cumulative distribution function of the standard normal distribution. Its derivative is 

the standard normal density function, so the partial derivatives of W0 are well defined, and 

closed-form first-order conditions like Eq. (4a,b) can be worked out. 

As argued by Bar-Ilan and Strange (1996, 1998), investment lags can lead to preemptive 

investment. Early investment acts like an insurance against a profit loss that could otherwise arise 

while the firm is waiting for the investment to be completed. In this model the investment lag can 

have great implications, sometimes implying that uncertainty hastens investment. Bar-Ilan and 

Strange claim that this unconventional result can occur even for moderate levels of uncertainty. 

Unfortunately, a technical error infects all of their numerical results, and although their qualitative 
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reasoning is correct, the numerical results are misleading.7 Table 2 gives correct results under the 

same assumptions as in Bar-Ilan and Strange (1996, p. 616, Table 2). 

 τ = 0 τ = 6 
σ2 PL PR PL PR 

0.00 1.000 1.025 1.000 1.025 
0.01 0.834 1.243 0.793 1.146 
0.02 0.795 1.312 0.736 1.151 
0.03 0.770 1.362 0.697 1.149 
0.04 0.751 1.405 0.666 1.145 
0.05 0.735 1.442 0.640 1.140 
0.10 0.682 1.586 0.551 1.112 
0.20 0.623 1.791 0.450 1.072 
0.30 0.587 1.953 0.388 1.048 
0.40 0.560 2.094 0.342 1.036 
0.50 0.539 2.221 0.308 1.031 
0.60 0.522 2.338 0.280 1.033 
0.80 0.495 2.554 0.237 1.049 
1.00 0.474 2.753 0.206 1.078 

Table 2. Trigger prices with investment lags (ρ=0.025, µ=0, A=1, B=0, c=1). 

When τ=6, the entry trigger price as a function of σ first increases and then decreases, before 

eventually increasing steadily. Bar-Ilan and Strange found a similar pattern, but their minimum 

trigger price (0.960) was far below the Marshallian trigger price (1.025), and it occurred for a 

moderate level of uncertainty (σ2=0.016). Table 2 shows that much more uncertainty, σ2=0.5, is 

needed to reach the corresponding minimum (1.031). Moreover, the correct minimum is local, 

above the deterministic trigger price. Thus any stochastic model based on these data yields a 

higher entry trigger price than the deterministic model. Other experiments show that the 

investment lag must be more than 12 years to yield a lower entry trigger price than the 

Marshallian one for σ2=0.016. The entry cost is already low, equal to the annual production cost, 

and investment lags exceeding 12 years are not likely in such cases. The lag would have to be 

                                                 

7 The authors mix up the volatility of the geometric Brownian motion (σ) with the standard deviation of the price after 

the lag (στ). The error can be observed by comparing arguments of Φ(⋅) in Eq. (11) with similar arguments in Bar-Ilan 

and Strange (1996, p. 614, eqs. 22-25). 
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increased even more to obtain similar results with a higher entry cost. Nor does reasonable 

changes in other variables seem to help much. For example, a positive exit cost would also 

increase the entry trigger price. 

To conclude, increased uncertainty may hasten investment when there is a lag. A lower entry 

trigger price under uncertainty than under certainty is also possible, but combinations of 

parameters implying such outcomes are less realistic than argued by Bar-Ilan and Strange (1996). 

7. Construction and scrapping 
Dixit (1988) incorporates the entry-exit model in a larger model where mothballing is preceded 

by construction and succeeded by scrapping. Dixit and Pindyck (1994, pp. 229-241) present the 

same model and apply it to shipping. In section 8 we allow for investment lags in this so-called 

entry-exit-scrapping model. To avoid too many new issues at the same time, we show here how 

the markup approach can be used to derive the model without lags. 

The model yields four trigger prices (in descending order): H (construction), R (entry), L 

(mothballing) and S (scrapping). There is no reason to build before the price is high enough for 

immediate entry, so the first entry will occur right after construction at price H, while the next 

ones occur at price R. The exit policy is more complicated as mothballing may be irrelevant. For 

scrapping to be of interest, we now need a positive mothballing cost, m>0. The cost of 

mothballing into infinity becomes m/ρ≡M, and M<C is required for mothballing to be of interest. 

However, mothballing may be too costly even if M<C because of the switching costs. If that is the 

case, the model simplifies to the standard model in section 2; the sum of the construction cost and 

the entry cost will make up the entry cost of the standard model, and the scrapping cost will make 

up the exit cost. We return to such outcomes in section 8, but in this section we proceed under the 

assumption that mothballing does apply. In that case we have S<L. 

The value of the firm can be expressed by the following sequence of functions: 

(12a) SWSPQW ),( 00 =  

(12b) ( )HS WCAIHHSQW +−−−= ),(  
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(12c) ( )LH WMLBCLHQW +−−−= ),(  

(12d) ( ) ( )ScRcL WKMRSLQWMCARSRLQW +−+++−−= ),,(),,(  

(12e) ( )LR WMLBCLRQW +−−−= ),(  

The cost components and discount factors in Eq. (12a-e) are illustrated in Fig 4. 

 

Fig. 4. The entry-exit-scrapping model. 

Eq. (12a) says that the initial value of the firm, W0, equals the discounted value of the firm after 

the scrapping trigger price S has been reached, using the expected discount factor going from P0 

to S. This is true as no investment occurs between P0 and S. 

Actually, no investment occurs construction is triggered at price H. Therefore WS in Eq. (12b) 

follows from discounting further benefits and costs by Q(S,H). At that time the expected revenue 

from production through infinity is H, and three costs apply: the construction cost I, the entry cost 

A, and the production cost C. The value of future switching options, WH, must also be included.8 

                                                 

8 This setup deviates slightly from Dixit (1988), where the construction cost includes the cost of first entry. We define 

the construction cost differently to make the model consistent with the one in section 8. 

Decision
Price movements and 

discount factorsInvestmentPrice

Scrapping              S                  K              WS

Exit                        L                  B              WL

Entry                     R                  A              WR

Construction         H                   I               WH    

Q(P0,S)

Value

Initial situation        P0                 -               W0

Q(S,H) Qc(L,S,R)

Q(H,L)

Qc(L,R,S) Q(R,L)



 

 
20

Exit at price L is the next event to take place, so the value of the firm after construction and first 

entry, WH in Eq. (12c), is found by discounting future benefits and costs by the factor Q(H,L). 

When exit occurs, the production cost C is saved, the exit cost B is incurred, and the revenue L 

would also be lost if mothballing should go on forever. In addition, we must subtract the 

mothballing cost M, and include the value of further options, WL. 

Like the previous value functions, WL in Eq. (12d) is determined by future expected events. The 

firm will re-enter if the entry trigger price R is reached before the scrapping trigger price S. 

Scrapping takes place in the opposite case. If the entry trigger price is hit first, the revenue R and 

the costs A and C apply as usual. The mothballing cost M is saved, and the term WR account for 

the value of remaining options. The net gain, R−A−C+M+WR, is multiplied by the conditional 

discount factor Qc(L,R,S), which applies to cases where the price moves from L to R without 

hitting S. In the opposite case, when S is hit first, the mothballing cost M is saved, the scrapping 

cost K is incurred, and the value of the firm right afterwards is WS. The net gain, M−K+WS, is 

multiplied by the conditional discount factor going from L to S without hitting R; i.e., Qc(L,S,R). 

WR as given by Eq. (12e) equals the value of the firm right after entry in the section 2 model, 

except for the mothballing cost that needs to be subtracted. 

By re-arranging Eq. (12a-e), also using that Q(P0,S)Q(S,H)=Q(P0,H), we find: 
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The optimal policy is found by maximizing W0 with respect to S, L, R and H. In the geometric 

Brownian case, the conditional discount factor function included in W0 becomes:9 

                                                 

9 The conditional discount factor function is found by the same differential equation as the ordinary discount factor 

discussed earlier. Two boundary conditions apply: Qc(P1,P1,P2)=1 and Q(P2,P1,P2)=0. The solution in the geometric 

Brownian case, given by Eq. (14), follows easily. 
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The upper part of Eq. (14) implies Qc(L,R,S)=[(L/R)β−(S/L)α(S/R)β]/[1−(S/R)(α+β)]. The lower 

part implies Qc(L,S,R)=[(S/L)α−(S/R)α(L/R)β]/[1−(S/R)(α+β)]. Inserting this into Eq. (13) and 

maximizing, it can be shown that the optimal policy coincides with the solution in Dixit (1988) or 

Dixit and Pindyck (1994, pp. 230-235). As shown in the latter references, the optimal entry and 

exit trigger prices, R and L, can be found from the model in section 2. We just have to replace the 

production cost C of that model with C−M; i.e., the difference between the production cost and 

the mothballing cost. Thus L and R do not depend on construction and scrapping costs. This 

simplifies the numerical analysis. 

8. Construction, scrapping and investment lags 
Dixit (1988) motivates the entry-exit-scrapping model with shipping. In that industry the most 

significant investment lags are related to newbuilding whereas operating ships can be mothballed 

quickly. The objective of this section is to model and discuss such investment lags. 

We make the same assumptions about the investment lags as in section 6, except that the lags 

apply to construction instead of entry. Thus construction is irreversible and takes a fixed amount 

of time, τ. If scrapping occurs, and a decision to build again is made some time later, a new 

investment lag is required. The development of the price during construction will decide whether 

the new ship − or whatever production facility the model represents − should go into production, 

be laid-up or scrapped immediately. This means that the dynamics could differ highly from Dixit's 

model, where construction is always succeeded by immediate entry. As in the previous section, 

we find the expected value of the firm from a sequence of functions: 

(15a) SWSPQW ),( 00 =  

(15b) HS WHSQW ),(=  
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(15c) ×= −ρτeWH  
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(15d) ( ) ( )ScRcL WKMRSLQWMCARSRLQW +−+++−−= ),,(),,(  

(15e) ( )LR WMLBCLRQW +−−−= ),(  
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The only part of Eq. (15a-e) that needs to be explained is (15c). The decision to build is made at 

price H, and all future costs and benefits are discounted further by e−ρτ due to the investment lag. 

Then the construction cost I is incurred. We assume that the ship continues in a laid-up position 

unless another decision is made, so the mothballing cost M is also subtracted. The rest of the first 

line in parenthesis captures cases for which the price after the investment lag ends up above R, 

leading to immediate entry. The expected net present revenue related to this event, R+(R,H), is 

found by integrating the price after the lag over the applicable range, R to ∞. In such cases the 

mothballing cost M is saved, and the entry cost A and the production cost C are incurred. All this 

happens with probability p+(R,H), so the expected cost gain is p+(R,H)(M−A−C). The firm 

continues production until the price gets down to L. Then the production cost C is saved, while 

the exit cost B, the mothballing cost M, and the loss of revenue L are incurred. The remaining 

option value WL is added for the usual reasons. All this yields the net benefit C−B−L−M+WL. 

The adjusted discount factor, Q+(H,R,L), is found by integrating the (downward) discount factor 

Q(x,L) over the same interval as above. 
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Mothballing continues if the price at the end of the lag is between S and R. Then entry occurs if R 

is hit before S, whereas scrapping occurs if S is hit first. The net benefit in the former case is 

R−A−C+M+WR, similar to that of section 7. The discount factor, Qc
+(H,R,S), is found by 

integrating the (upward) conditional discount factor Qc(x,R,S) over the interval of start prices; 

i.e., from S to R. Likewise, the discount factor Qc
−(H,S,R) applying to cases for which S is hit 

first, is found by integrating the (downward) conditional discount factor Qc(x,S,R). The 

interpretation of the net benefit in the latter case, M−K+WS, is familiar by now. 

The remaining terms cover immediate scrapping, which occurs with probability p−(S,H). In such 

cases the mothballing cost M is saved and the scrapping cost K is paid, so the expected cost gain 

is p−(S,H)(M−K). The factor Q−(H,S) measures expected discounting up to price S and option 

value WS. This is similar to the factor in the end of Eq. (9), and needs no further explanation. 

Eq. (15a-e) determines W0, WS, WL, WR and WH as functions of S, L, R, H. The formula for W0 

is lengthy and yields no further insight, so we omit it. More importantly, its components in the 

geometric Brownian version used below are as follows (see Appendix B): 
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We start the numerical analysis by discussing the timing of decisions to build. As in section 6 we 

set τ=6 when there is a lag. Table 3 contains results with and without the investment lag for 

several construction costs. The mothballing cost is 10 percent of the production cost, and there is 

no scrapping cost. Other numbers are inspired by section 2. The results show that construction 

should start earlier when there is a lag. For the lowest construction cost, I=1, the construction 

trigger price with the lag (1.259) is more than 20 percent lower than the trigger price without it 

(1.598). The construction trigger price is also lower than the entry trigger price (1.302) even 

though the total cost of construction and entry (I+A=2) is twice as high as the entry cost (A=1). 

This implies that initial mothballing will often occur, but preemptive investment is still optimal 

due to the insurance aspect. 

 τ = 0 τ = 6 
I pS pH pS pH 

  1 0.714 1.598 0.633 1.259 
  2 0.688 1.742 0.579 1.484 
  3 0.661 1.873 0.548 1.659 
  4 0.621 1.996 0.526 1.811 
  5 0.592 2.112 0.510 1.950 
10 0.513 2.655 0.465 2.552 
15 0.477 3.166 0.443 3.090 
20 0.456 3.662 0.430 3.601 

Table 3. Trigger prices with various construction costs (ρ=0.05, µ=0, σ=0.2, A=1, B=0, K=0, 
c=1, m=0.1, pL=0.675, pR=1.302). 

For higher construction costs it is optimal to wait longer before a decision to build, and the lag 

does not affect the decision very much. When I=20, the construction trigger price with the lag 

(3.601) is less than 2 percent lower than the trigger price without the lag (3.662).  

Observe also from Table 3 that the investment lag makes mothballing more interesting. When 

excluding the investment lag, mothballing does not apply for I=1 and I=2. When including the 

lag, mothballing applies with a good margin for I=2, and with a smaller margin for I=1. 
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The length of the investment lag affects the timing decision significantly. This is shown in Table 

4, reporting results with similar assumptions as in Table 3 for various lags. The longer the lag is, 

the earlier a decision to build should be made. The reason is the same as discussed by Bar-Ilan 

and Strange (1996): the exit option makes the upper part of the future price distribution more 

important when there is a lag. Since this effect arises because early construction acts like 

insurance, it tends to be suppressed by increasing the construction cost. As in Table 3, a longer 

investment lag therefore has more implications for the timing of investment with low construction 

costs (I=2) than with high construction costs (I=20). Note also that investment lags of more than 

one year are needed for mothballing to apply when I=2. 

 I=2 I=20 
τ pS pH pS pH 

  0 0.688 1.742 0.456 3.662 
  1 0.677 1.719 0.451 3.654 
  2 0.667 1.688 0.446 3.645 
  3 0.630 1.617 0.441 3.635 
  4 0.610 1.571 0.437 3.625 
  5 0.593 1.526 0.434 3.614 
  6 0.579 1.484 0.430 3.601 
  7 0.566 1.444 0.427 3.588 
  8 0.554 1.406 0.424 3.574 
  9 0.544 1.371 0.421 3.559 
10 0.534 1.337 0.419 3.544 

Table 4. Trigger prices with various investment lags (ρ=0.05, µ=0, σ=0.2, A=1, B=0, K=0, c=1, 
m=0.1, pL=0.675, pR=1.302). 

We conclude this section with an empirical example. Dixit and Pindyck (1994, pp. 237-241) 

apply the entry-exit-scrapping model without lags to shipping, focusing on a medium-sized oil 

tanker. Mothballing has been used several times in this industry, especially during the oil crisis in 

the 1970s, and the analysis confirms that this can be optimal. However, it also shows that 

mothballing would not be viable if the mothballing cost were 40 percent higher than estimated. 

Capital costs are high in shipping. The price of the oil tanker studied by Dixit and Pindyck is 9 

times as high as the annual operating cost, which again is almost 9 times as high as the 

mothballing cost. Referring to the results above, one should not expect realistic investment lags to 

have much impact on decisions to build in such cases even if the estimated price volatility is quite 
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high (σ=0.15). Based on Dixit and Pindyck's data, we find that a realistic lag, τ=3, decreases the 

entry trigger price with 1.2 percent. The scrapping trigger price decreases with 2.8 percent, while 

the critical cost where mothballing becomes irrelevant increases significantly. With the 

investment lag, the mothballing cost can be 50 percent higher than estimated before mothballing 

becomes irrelevant. Hence, mothballing oil tankers can indeed be optimal in times of crisis. 

9. Equilibrium 
This paper focuses on the firm level, and a formal analysis of equilibrium is beyond its scope. 

Nevertheless, it is appropriate to comment on how the models fit into a broader perspective. More 

generally, Leahy (1993) found that myopic behavior as in the entry-exit model is also optimal for 

a firm in an industry exposed to aggregate uncertainty. In other words, the optimal trigger prices 

coincide in partial equilibrium and monopoly. In equilibrium, the trigger prices represent lower 

and upper barriers for the price process. When R is reached, a sufficiently high rate of entry will 

prevent the price from rising further. Similarly, exit will prevent the price from decreasing below 

L. Construction and scrapping make this picture more complicated, but we do not pursue such 

issues. Instead we comment on another type of equilibrium of interest. 

For all models it has been assumed that the price starts from a low fixed level, P0. We have not 

considered how this situation arose; i.e., how the firm received the initial option to invest. A setup 

cost or patent cost is usually needed to establish the option. Dixit and Pindyck (1994, pp. 267-

277) discuss such option investments in partial equilibrium with two-step investment − patenting 

and production − and a set of firm-specific demand processes. Sødal (2001) contains a related 

one-sector general equilibrium model based on the markup approach. Both models assume 

homogenous goods, but with each firm facing an independent demand process that takes off as 

soon as the firm has acquired its patent. The number of active firms is assumed to be so large that 

the law of large numbers applies. Then the equilibrium setting does not affect the optimal 

behavior of individual firms, but the price level will settle where the expected profit from 

acquiring a patent is zero. Steady state is characterized by a constant flow of new firms acquiring 

patents. A finite equilibrium number of active firms can be imposed by some death mechanism. 
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It seems easy to expand the models of this paper into equilibrium models of the kind just 

described. The expected profit function ahead of the patent investment, conditional on the initial 

price P0, could be written as 

(17) 0WGW +−= , 

where G is a fixed patent cost, and W0 is given by Eq. (3) or one of its extensions. The patent 

investment is irreversible and does not affect subsequent decisions. If immediate activation of the 

patent can be ruled out, the trigger prices can therefore be found as in previous sections.10 The 

value of a patent is increasing in P0, and as long as new firms are established when there is net 

profit from acquiring a patent, the rate of newcomers will move P0 to a level where W=0. 

As an example, the car industry is highly competitive even if various cars are facing specific 

demand curves. The Dixit-Stiglitz (1977) model of monopolistic competition, based on the 

combination of static preferences for variation and scale economies, is often applied to such 

industries. However, different cars could also be perfect substitutes but exposed to firm-specific 

demand shocks. In the real world it can be hard to say from where a markup originates; it could 

be from static preferences for variation, but it could also be from dynamic demand uncertainty 

leading to value from waiting. Assuming the latter for now, the firm needs to undertake research 

to develop a new car (patenting). A production facility must be set up at the optimal time 

(construction), and initiating production requires additional efforts (entry). Such investments take 

time, so investment lags may apply. Production costs are necessary to keep the production line 

open, and in times of low demand it may be necessary to mothball or switch to alternative uses 

(exit), until demand one day gets so low that the production line is abolished (scrapping). 

Fluctuating demand is usually not entirely specific to the firm, but arises from combined 

aggregate and firm-specific shocks. Thus aggregate uncertainty and other important issues related 

to inventories etc., should be included to bring more realism to all this. Nevertheless, the 

                                                 

10 Typically, it will not be optimal to activate patents right away in equilibrium if the patent cost is low, and the initial 

price is fixed as assumed here and in Sødal (2001). More realistically, the initial price could be uncertain as in Dixit 

and Pindyck (1994). In the latter case, immediate patent activation cannot be ruled out quite as easily. 
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framework we have described seems to capture many important aspects of investment both at the 

firm level and the industry level. 

10. Final remarks 
We have shown how to develop the standard entry-exit model and a number of extensions of this 

model, using a new markup approach to investment. The significance of investment lags in 

practice has also been discussed. Most extensions to the entry-exit model were treated separately, 

but many of them can be combined. Several other extensions could have been added. For 

example, more costs could be made endogenous by the same approach as in section 3. The price 

process could be made endogenous as in Dixit et al. (1999), and new types of state-dependent 

price processes could be included in the entry-exit-scrapping model based on ideas from section 

5.  

It remains to be seen how far the markup approach can be developed. All of our models share 

some basic properties: the life cycle of the firm can be described by a sequence of possible events 

and associated discount factors, and investment is to take place as soon as some trigger prices are 

hit within the various states. These properties apply in several contexts including phenomena like 

multiple investment lags, flexible scale of production and, more generally, settings with more 

compound options than the ones studied here. 
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Appendix A. The first-order conditions in the entry-exit model 
Since Q(P0,R)=Q(P0,L)Q(L,R), we can write W0 in Eq. (3) as 

(A.1) ( ))()(),( 00 LBCQCARQLPQW nu −−+−−= , 

where Qu and Qn are defined in Eq. (4a,b). The first-order condition ∂W0/∂R=0 implies 

(A.2) ( ) ( ) 0=−−
∂

∂++−−
∂

∂ LBC
R

QQCAR
R

Q n
u

u

. 

Eq. (4a) is obtained by re-arranging Eq. (A.2), using that Qn=Q(R,L)Qu, and inserting for εu and 

εR
n. 
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From definitions we have 1/(1−Q(L,R)Q(R,L))=Qn+1, so W0 can also be written as 

(A.3) ( ))())(1(),( 00 LBCQCARQRPQW dn −−+−−+= . 

The first-order condition ∂W0/∂L=0 implies 

(A.4) ( ) ( ) 0=−−−
∂

∂+−−
∂

∂ d
dn

QLBC
L

QCAR
L

Q . 

Eq. (4b) is obtained by re-arranging Eq. (A.4), using that Qn=Q(L,R)Qd, and inserting for εd and 

εL
n. 

The geometric Brownian case yields the following elasticities: 

(A.5) βαβα
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After inserting this into Eq. (4a,b), it can be shown by some algebra that the optimal trigger prices 

coincide with those obtained by smooth pasting as in Dixit (1989, eqs. 12-15). Note also that 

εu>β, while the corresponding elasticity ε of the ordinary discount factor Q(L,R) equals β. Thus 

the optimal R is lower than the corresponding markup price of the standard investment model 

studied by Dixit et al. (1999). 

Appendix B. Components of W0 in models with investment lags 
Below we determine the profit function in the section 6 model when the price is geometric 

Brownian; i.e., we find the components of W0 in Eq. (11). We also comment on the components 

of W0 in the section 8 model as given by Eq. (16); they can be determined in similar ways. 

In section 6, the decision to enter is made when the price equals R. From the properties of the 

geometric Brownian motion it follows that the price after the investment lag, x, is distributed 

lognormally Λ(x µτ,στ
2), where µτ=lnR+(µ−1/2σ2)τ and στ

2=σ2τ. Thus the logarithm of the price 

is distributed normally N(lnx µτ,στ
2). For the lognormal distribution the following relations hold 

for any ξ>0 and j (see Aitchison and Brown, 1957): 
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Eq. (B.2) determines the first adjusted discount factor, Q+(R,L): 
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Here it has been used that ρασµασ =−− )( 2
2
122

2
1 . Then Q+(R,L) in Eq. (11) follows from 

standard properties of the normal distribution. The relation Rτ=Reµτ is trivial from the properties 

of the geometric Brownian motion, and the probability p−(R,L) follows from Eq. (B.1). The next 

adjusted discount factor, Q−(R,L), is found as follows: 
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Here we have used that ρβσµβσ =−+ )( 2
2
122

2
1 . Then the standard relationship between N(⋅) 

and Φ(⋅) brings about Q−(R,L) in Eq. (11). Finally, we derive L−(R,L): 
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In section 8, the price after investment lag is lognormal Λ(x µτ,στ
2), where µτ=lnH+(µ−1/2σ2)τ 

and στ
2=σ2τ. Using the appropriate discount factors and intervals of integration, the components 

of the profit function in Eq. (16) follow as above. The integrand of Q+(H,R,L) is (L/x)α, and the 

integrand of Q−(H,S) is (x/S)β. The similar integrands of Qc
+(H,R,S) and Qc

−(H,S,R) are 

[(x/R)β−(S/R)α(S/x)β]/[1−(S/R)(α+β)] and [(S/x)α−(S/R)α(x/R)β]/[1−(S/R)(α+β)]. After completing 

all of these calculations, it is not hard to determine p+(R,H), p−(S,H) and R+(R,H). 
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