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Strategic Delay in a Real Options Model of R&D Competition

1 Introduction

When a firm has the opportunity to invest under conditions of uncertainty and

irreversibility there is an option value of delay.  By analogy with a financial call option,

it is optimal to delay exercising the option, or proceeding with the investment, even

when it would be profitable to do so in the hope of gaining a higher payoff in the

future.  This insight, first applied to the analysis of natural resource extraction and real

estate markets by Brennan and Schwartz (1985) and Titman (1985) respectively,

improves upon the traditional NPV approach to investment by allowing the value of

delay and the importance of flexibility to be incorporated explicitly into the assessment.

Real world investment opportunities, unlike financial options, are rarely held by a

single firm in isolation.  In many situations an agent’s ability to hold the option is

constrained by the possibility that another agent may exercise it instead.  In a few

instances a legal right such as an oil lease or patent gives a single agent an equivalent

position to the holder of a financial option.  Occasionally a firm has such a strong

market position, such as a natural monopoly, that its investment opportunities are de

facto proprietory.  However, in most industries some degree of competition exists and

the option to invest cannot be held indefinitely.

The existence of competition for the underlying asset tends to weaken option

values, in some cases eliminating them altogether.  When a small number of agents are

in competition with an advantage to the first mover, each agent’s ability to delay is

undermined by the fear of preemption.  Consider the case of an option where two

agents have the power to exercise and the first to do so receives the underlying asset in

full, leaving the second mover empty-handed.  Each firm would like to exercise the

option just before its rival, giving rise to discontinuous Bertrand-style reaction

functions.  With symmetric firms, option values are entirely eliminated and the option

will be exercised as soon at the payoff from doing so becomes marginally positive.

Under such circumstances real options become irrelevant and the traditional NPV rule

resurfaces as the appropriate method of investment appraisal.

In this paper we develop a model of irreversible investment in which two firms

have the opportunity to invest in competing research projects.  Under a winner-takes-

all patent system the first to invent gains monopoly profits in the relevant product

market, while the runner-up receives nothing. There is both technological and

economic uncertainty.  Discovery occurs randomly, while the value of the patent

received by the successful inventor evolves according to a stochastic process.  Thus

the model becomes a stochastic stopping time game, in which a firm’s optimal stopping
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time can be formulated in terms of a critical value or ‘trigger point’ for the underlying

stochastic process such that the firm invests at the first time that this point is reached.

Focusing on Markov perfect equilibria in pure strategies, the outcome falls into one

of two regimes depending upon parameter values.  In one case the outcome is an

asymmetric leader-follower equilibrium in which one firm invests strictly earlier than

the other.  In the second there is a multiplicity of equilibria, including a range of

symmetric equilibria in which both firms invest at the same trigger point.  The Pareto-

dominant equilibrium coincides with the cooperative outcome and entails greater delay

than the single-firm counterpart.  Thus, in contrast to the presumption that strategic

competition undermines option values and reduces delay, a two-firm competitive

equilibrium may involve more delay than the single-firm case.

The intuition behind this result can be explained as follows.  When one firm invests

in research its rival’s option to delay is reduced in value since there is some probability

that the discovery will be made before this firm invests.  In a non-cooperative

framework each firm ignores the destruction of its rival’s option values.  Taken on its

own, this business-stealing effect would induce earlier investment.  However, forward-

looking firms take account of their rivals’ reactions.  Over a range of patent values

investment by one firm induces its rival to invest at once, resulting in a surge of

research activity and a race for the patent.  Anticipating this reaction, a firm may

choose to delay investment to a greater extent than in the absence of competition.  In

effect, an investing firm chooses the time at which the patent race will begin and it is

better for both firms if this is delayed until the jointly optimal investment point is

reached.  A good analogy is the behaviour of contestants in a long-distance race, who

typically remain in a pack proceeding at a moderate pace for most of the distance, until

near the end when someone attempts to break away and the sprint for the finish begins.

The model has the following implications.  The finding that rivalry between two

firms may increase rather than reduce investment delays runs contrary to the usual

presumption that the fear of preemption undermines option values and speeds up

investment.  Thus the existence of strategic competition between firms does not

necessarily undermine the relevance of the real options approach.  The model also

provides an alternative explanation to Choi (1991) for the observation of sudden

waves of research activity ending a period of stagnation: once one firm exercises its

option to invest the value of delay to other firms is reduced, inducing them to follow

suit.  The finding of two distinct, and rather different, types of equilibria suggests that

the pattern of investment in an industry may be extremely sensitive to prevailing

conditions.  Factors that raise the cost of preemption lead to the destruction of option

values, inducing leader-follower behaviour, but greater uncertainty may raise the value

of delay to such an extent that the jointly optimal outcome becomes achievable.

The paper brings together two separate strands of literature.  Real options models

have been used to explain delay and hysteresis arising in a wide range of contexts, but

these have generally been set in a monopolistic or perfectly competitive framework.
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McDonald and Siegel (1986) and Pindyck (1988) consider irreversible investment

opportunities available to a single firm.  Dixit (1989a, 1991) considers product market

entry and exit in monopolistic and perfectly competitive settings respectively.

Applying these principles in an international setting Dixit (1989b) explains hysteresis in

a country’s trade balance.  Bentolila and Bertola (1990) apply similar ideas to labour

hiring and firing, thus explaining hysteresis in unemployment.

The second strand of literature concerns timing games of entry or exit in a

deterministic setting.  Timing games are straightforward examples of stopping time

games where the underlying process is simply time itself.  Papers analysing preemption

games include Fudenberg et al (1983) and Fudenberg and Tirole (1985), while wars of

attrition have been modelled by Fudenberg and Tirole (1986) and Ghemawat and

Nalebuff (1985).

Existing literature combining real options with strategic interactions is relatively

limited.  In a two-player game in which each player’s exercise cost is private

information, Lambrecht and Perraudin (1997) find intermediate outcomes that lie

between the fully-optimising and no-uncertainty cases.  Smets (1991; summarised in

Dixit and Pindyck 1994, pp. 309-314), examines irreversible market entry in a duopoly

facing stochastic demand.  Non-cooperative behaviour results in an asymmetric leader-

follower equilibrium.  When the leadership role is exogenously pre-assigned so that the

follower is unable to invest until after the designated leader has done so, the

cooperative outcome may then be attained.  Grenadier (1996) also considers the

strategic exercise of options, in this case applied to the real estate market.

The paper is structured as follows.  Details of the model are described in section 2.

We start by considering the optimisation problem of a single firm facing no actual or

potential rivalry in section 3, while section 4 describes the optimal joint-investment rule

when two firms coordinate their behaviour.  The non-cooperative equilibrium for the

two-player case is then found by solving the model backwards, starting with the

follower’s optimisation problem in section 5.  After solving for the value of becoming

the leader in section 6, section 7 describes the equilibria of the two-player game.

Numerical examples are presented in section 8.  Section 9 concludes.

2 The model

Two risk-neutral firms, i = 1, 2, have the opportunity to invest in competing research

projects.  Research is directly competitive: the firms compete for the same patent and

successful innovation by one entirely eliminates all potential profits for the other.  The

firms face both technological and economic uncertainty.  Discovery by an active firm is

a Poisson arrival.  Meanwhile, the value of the patent received by the successful
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inventor evolves stochastically over time.1  The decision to invest in a research project

is assumed to be irreversible.

The value of the patent, π, evolves exogenously according to a geometric

Brownian motion (GBM) with drift given by the following expression

   dWdtd ttt σπµππ += (1)

where µ ∈ [0, r) is the drift parameter, measuring the expected growth rate of π,2

σ > 0 is the instantaneous standard deviation or volatility parameter, and dW is the

increment of a standard Wiener process, dW ∼ N(0, dt).

Note that geometric Brownian motion is a Markov process with continuous sample

paths.  The probability distribution for the value of the process at any future date

depends only on its own current value, being unaffected either by past values of the

process or by any other current information.  Thus all that is needed to make a best

estimate of the future value of the process is its own current value, along with the

parameter values µ and σ.

Each firm has the opportunity to invest in its own research project.  When a firm

invests it pays a set-up cost 0>iK  at the start of the project and an on-going flow

cost of 0≥iC  per unit time thereafter.  The flow cost is incurred for as long as

research activity continues, until a breakthrough is achieved by either firm.  Following

investment, discovery takes place randomly according to a Poisson distribution with

parameter (or hazard rate) 0>ih .  Thus when firm i acts alone its conditional

probability of making the breakthrough in a short time interval of length dt, given that

it has not done so before this time, is dthi  and the density function for the duration of

research is th
i

ieh − .  The probabilities of discovery by each of the firms are

stochastically independent.  Thus when both firms engage in research the density

function for discovery by firm i is given by thh

i
jieh )( +−

.

With uncertainty in the research technology the danger of preemption by the rival

is less severe than in the case of deterministic discovery.  In effect, the hazard rate

drives a wedge between the decision to invest in research and the outcome of this

project, allowing option values to be preserved to some extent.  It is implicitly assumed

that a firm can react ‘instantaneously’ to its rival’s action, thus a situation in which one

firm copies its rival at once entails a negligible expected loss to the follower.

However, this concept is not unproblematic in a continuous time setting, since ‘the

time immediately following t’ is then undefined.  Simon and Stinchcombe (1989)

provide a framework for specifying pure strategies in continuous time that conform as

closely as possible to the discrete-time analogue and resolve difficulties such as this.
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The possible states of each firm are denoted { }1 ,0∈iθ  for the idle and active states

respectively.  There is a common risk-free interest rate r.  All parameter values are

common knowledge.  We shall focus on the symmetric case in which hhi = , CCi =

and KKi =  for i = 1, 2; however, in most derivations we continue to use the more

general notation to avoid confusion between a firm’s own and its rival’s parameters.

The following assumptions are made:

Assumption 1.  If ( ) 1=τθ i  then ( ) 1=tiθ  τ≥∀t .

Assumption 2.  ( ) ( ) 0 
 

0 

 <−


 −∫
∞ +− KdtCheE t

thr π .

Assumption 1 formalises the irreversibility of investment: if firm i has invested by

date τ, it then remains active at all dates subsequent to τ.  Assumption 2 states that the

initial value of the patent is sufficiently low that the expected return from immediate

investment is negative, thus ensuring that immediate investment is not worthwhile.

We now consider the actions available to firm i at time t.  If i has not commenced

research at any time τ < t, its action set is ( )tAi  = {invest, don’t invest}.  If, on the

other hand, i has invested at some τ < t, then ( )tAi  is the null action ‘don’t move.’

Thus, the firm faces a control problem in which its only choice is when to choose the

action ‘stop’ – or rather in this case to commence research.  After taking this action

the firm can make no further moves to influence the outcome of the game.

In a duopoly setting the optimal control problem becomes a stopping time game.

These games have been analysed by Dutta and Rustichini (1991).  In a stopping time

game each player has an irreversible action such that, following this action by one or

more players, expected payoffs in the subsequent subgame are fixed.  Dutta and

Rustichini’s formulation allows for the possibility that the stochastic process continues

to evolve after the leader’s action and that the follower still has a move to make, as is

the case in this game.  The stopping time game is described by the stochastic process

(1) and the payoff functions of the leader and follower, which will be derived in

sections 5 and 6 respectively.

At time t ≥ 0, the history of the game has two components: the sample path of the

state variable π and the actions of the two firms. With irreversible investment the

history of play in the game at t is summarised by the fact that the game is still

continuing at t (i.e. 0=iθ  for i = 1, 2).  However, the history of the state variable is

more complex since its current value could have been preceded by any one of a huge

number of possible paths.

Firms are assumed to use stationary Markovian strategies.  A stationary Markovian

strategy consists of actions that depend on only the current state, and where the

strategy formulation itself does not vary with time.  Since π follows a Markov process,

Markovian strategies incorporate all payoff-relevant factors in this game.

Furthermore, if one player uses a Markovian strategy then its rival has a best response
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that is Markovian as well.  Hence, a Markovian equilibrium remains an equilibrium

when history-dependent strategies are also permitted, although other non-Markovian

equilibria may then also exist.  For further explanation see Maskin and Tirole (1988)

and Fudenberg and Tirole (1991, chapter 13).  With the Markovian restriction a

player’s strategy is a stopping rule specifying a critical value or ‘trigger point’ for the

exogenous variable π at which the firm invests, depending on the state of the rival

firm.3

As usual for dynamic games, the game is solved backwards using subgame

perfection.  Combining this with the assumption that players use stationary Markovian

strategies, we seek Markov perfect equilibria (MPE) in pure strategies.4  After one

firm has invested the game is effectively over: the subgame from this point onwards is

a single-agent optimisation problem for the remaining idle firm.  This maximisation

problem can be solved straightforwardly and the solution then used to solve subgames

in which neither firm has yet invested in research.

3 Optimal investment timing for a single firm

As a comparative case, we start by deriving the optimal stopping time for a single firm

which makes its investment decision unilaterally in the absence of competition.  This

can be found by solving the following stochastic optimal stopping problem

        ( ) ( )




 


 −−= ∫

∞ +−− KdtCheeEV
T t

thrrT

T
 max

 

 

 π (2)

where E denotes the expectation, T is the unknown future stopping time at which the

investment is made, tπ  is the value of the prize π at time t and other parameters are as

given above.  Note that the exponential term within the integral takes account of the

active firm’s survival probability hte−  in addition to the discount factor rte− .

Prior to investment the firm holds the opportunity to invest.  It has no cashflows

but may experience a capital gain or loss on the value of its option.  Hence, in the

continuation region (values of π for which it is not yet optimal to invest) the Bellman

equation for the value of the investment opportunity ( )π0V  is given by

        ( )00 dVEdtrV = . (3)

Expanding 0dV  using Itô’s lemma we can write
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( ) ( )( )2
000   

2

1
 ππππ dVdVdV ′′+′= .

Substituting from (1) and noting that E(dW) = 0, we can write

( ) ( ) ( )dtVdtVdVE   
2

1
 0

22
00 ππσπµπ ′′+′= .

Thus the Bellman equation (3) gives rise to the following second-order differential

equation

     ( ) ( ) 0 
2

1
000

22 =−′+′′ rVVV πµπππσ . (4)

From (1) it can be seen that if π ever goes to zero it then stays there forever.

Therefore the option to invest has no value when π = 0 and ( )π0V  must satisfy the

following boundary condition

   ( ) 000 =V . (5)

Solving the differential equation (4) subject to the boundary condition (5) the

following solution for the value of the option to invest in research is obtained

( ) 0
00

βππ BV = (6)

where 0B  ≥ 0 is a constant whose value is yet to be determined,

and 0β  is the positive root of the characteristic equation 0
2

 
2

1
22

2 =−




 −−

σ
ε

σ
µε r

,

β µ
σ

µ
σ σ0 2 2

2

2

1

2
1

2
1

2 8= − + −





+












r
 > 1.

Next we consider the value of the firm in the stopping region (values of π for

which is it optimal to undertake the investment at once).  Since investment is

irreversible the value of the firm in the stopping region ( )π1V  is given by the expected

value alone with no option value terms.  Recalling that discovery is a Poisson arrival

the survival probability at t for a firm that invests at date 0 (i.e. the probability that

discovery has not been achieved by date t) is given by the negative exponential
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distribution hte− .  Thus the expected value of the active project when the current value

of the stochastic process is tπ  is given by

   ( ) ( ) ( ) 


 −= ∫
∞ +− τππ τ

τ dCheEV
t

hr
t  

 

 

 
1 . (7)

Since π is expected to grow at rate µ we can write

( ) ( ) ( ) τππ µττ dCeheV
t

hr  
 

 

 
1 ∫

∞ +− −=

which yields the following expression for the expected value of the project

         ( )
hr

C

hr

h
V

+
−

−+
=

µ
ππ1 . (8)

Note that the hazard rate h enters the denominators of the terms in this expression

in the form of an ‘augmented discount rate,’ hr + .  This result is found in many

models involving Poisson arrival functions; for other examples of this characteristic in

the context of R&D see, inter alia, Loury (1979), Dasgupta and Stiglitz (1980), Lee

and Wilde (1980) and Dixit (1988).

In the continuation region we have the Bellman equation

( ) ( ) 0 
2

1
000

22 =−′+′′ rVVV πµπππσ ;

and an inequality reflecting the fact that the value of waiting exceeds the value

obtained by investing immediately

( ) ( ) KVV −≥ ππ 10 .

In the stopping region we have the inequality

0
2

1
000

22 ≤−′+′′ rVVV µππσ

and an equality known as the ‘value-matching condition’

      ( ) ( ) KVV −= ππ 10 . (9)
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The boundary between the continuation region and the stopping region is given by

a critical value of the stochastic process, or trigger point, π* such that continued delay

is optimal for π < π* and immediate investment is optimal for π ≥ π*.  The optimal

stopping time T* is then defined as the first time that the stochastic process π hits the

interval [π*, ∞).  By arbitrage, the critical value π* must satisfy the value-matching

condition (9).  Optimality requires a second condition, known as ‘smooth-pasting,’ to

be satisfied.  This condition requires the value functions ( )π0V  and ( )π1V  to meet

smoothly at π* with equal first derivatives

      ( ) ( )* * 10 ππ VV ′=′ . (10)

If smooth-pasting were violated and instead a kink arose at π*, a deviation from the

supposedly optimal policy would raise the firm’s expected payoff.  By delaying for a

small interval of time after the stochastic process first reached π*, the next step dπ
could be observed.  If the kink were convex, the firm would obtain a higher expected

payoff by entering if and only if π has moved (strictly) above π*, since an average of

points on either side of the kink give it a higher expected value than the kink itself.  If

the kink were concave, on the other hand, second order conditions would be violated.

Continuation along the initial value function would yield a higher payoff than switching

to the alternative function and switching at π* could not be optimal.  More detailed

explanation of this condition can be found in appendix C of chapter four in Dixit and

Pindyck (1994).

Substituting expressions for the value functions from (6) and (8), the value-

matching and smooth-pasting conditions for the single-firm optimisation problem can

be written as follows

( ) K
hr

C

hr

h
B −

+
−

−+
=

µ
ππ β *

* 0

0 ;

( )
µ

πβ β

−+
=−

hr

h
B 1

00
0* .

The critical value π* and the unknown coefficient 0B  are determined uniquely by these

conditions.  Denoting the unilateral trigger point for a single firm by Uπ  the following

expressions are obtained

    ( )
( )

h

hr
K

hr

C
U

µ
β

β
π −+






 +

+−
=

10

0 ; (11)

and
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  ( ) 0

1

0

0

βµ
π β

−+
=

−

hr

h
B U . (12)

Thus the optimal stopping time at which the single firm invests, UT , can be defined as

follows

{ }UU tT ππ ≥≥= :0 inf . (13)

Considering briefly the properties of this trigger value, we see that as economic

uncertainty is eliminated (i.e. as σ → 0), 0β  approaches r/µ and the optimal stopping

point becomes the NPV breakeven level given by

       ( )
( )

h

hr
K

hr

C

r

r
B

µ
µ

π −+






 +

+−
= . (14)

As economic uncertainty σ is increased, 0β  falls (in the limit as σ → ∞, 0β  → 1)

raising the critical value Uπ  above Bπ  and increasing the optimal stopping time UT .

Thus greater uncertainty over the value of the patent delays investment.  This finding is

similar to results found in the papers by McDonald and Siegel (1986), Pindyck (1988),

Dixit (1989) and others.

Note that

( )KU
h 1

 lim
0

0

−
=

∞→ β
β

π .

This limiting value is the trigger point for an irreversible investment opportunity with

constant investment cost K derived by McDonald and Siegel (1986), as presented in

Dixit and Pindyck (1994, p142).  This result is unsurprising: as h becomes very large,

discovery occurs (almost) immediately following investment and the model collapses

to the case with no technological uncertainty in which the return to investment is

obtained as soon as investment takes place.

4 The optimal joint investment rule

We now consider the value of each firm when both continue to delay and then invest at

the same time.  Then, on the assumption that the firms can commit to a joint

investment time, the optimal stopping rule for the coordinated case is derived.
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We start by considering the case where both firms adopt the same stopping rule,

each investing at some arbitrary trigger point Jπ .  Prior to investment the value of

each firm satisfies the Bellman equation (3), as in the case of a single firm.  Using the

notation ( )πθθ ji
V ,  to denote the value of firm i when its own and its rival’s states are

iθ  and jθ  respectively and the current value of the patent is π, the value of each firm

in the continuation region can be derived as before to yield

( ) 0
0,0

βππ JBV = (15)

where JB  ≥ 0 is a constant whose value is yet to be determined and 0β  is as defined

above.

Following investment by both firms, the value of firm i is the expected value of its

investment project, taking into account the possibility of prior discovery by its rival

( ) ( ) ( ) 


 −= ∫
∞ ++− τππ τ

τ
dCheEV

t ii

hhr ji  
 

 

 
1,1 .

Solving as before we obtain

  ( )
ji

i

ji

i

hhr

C

hhr

h
V

++
−

−++
=

µ
ππ1,1 . (16)

At the (joint) trigger point Jπ  the following value-matching condition must be

satisfied

( ) ( ) iJJ KVV −= ππ 1,10,0 .

Note that in the absence of coordination to achieve the jointly optimal outcome there is

no corresponding smooth-pasting condition.  Solving for the unknown constant JB

and imposing symmetry yields

   





−

+
−

−+
= − K

hr

C

hr

h
B JJ 22

0

µ
ππ β . (17)

Thus the value of the firm prior to investment at any arbitrary joint investment point

Jπ  can be specified.
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  ( ) 0 ; βπππ JJJ BV = . (18)

We now derive the optimal investment rule for the coordinated case in which the

two firms commit to a joint investment time.  The optimal stopping problem in this

case is to find a joint investment time T satisfying

( ) ( ) ( ){ } ( )




 


 +−+−+= ∫

∞ ++−−
jiT jitji

thhrrT

T
KKdtCChheeEV ji   max

 

 

 π . (19)

The optimal joint investment trigger is denoted Cπ .  In this case, unlike that of an

arbitrary trigger Jπ  described above, there is a smooth-pasting condition to ensure

optimality of the derived trigger point Cπ .  The problem can be solved using the

method set out in section 3 to yield (again imposing symmetry)

( )
( )

h

hr
K

hr

C
C

µ
β

β
π −+






 +

+−
= 2

210

0 . (20)

The value of each firm in the continuation region is given by

0βπCC BV = (21)

where ( ) 0

1

2

0

βµ
π β

−+
=

−

hr

h
B C

C .

The optimal investment time in the coordinated case, CT , can thus be defined as

{ }CC tT ππ ≥≥= :0 inf . (22)

Comparing the coordinated trigger point (20) with (11) for the single firm, it can

be seen that UC ππ > .  Given that the initial value 0π  is sufficiently low that neither

firm wishes to invest at once, the ranking of trigger points entails that UC TT > .  Thus

when two identical firms can commit to a joint investment time, investment takes place

strictly later than the case in which a single firm acts alone.
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5 The follower’s optimisation problem

We now move on to solve the non-cooperative two-player game.  As usual in dynamic

games the stopping time game is solved backwards.  Thus we start by considering the

optimisation problem of the follower (here denoted i), who invests strictly later than its

rival (j).  Given that the rival has invested irreversibly the follower faces the conditional

probability dthj  that the leader will make a breakthrough in any time interval dt.  The

probability that the rival has not yet made the discovery by date t is 
thje− ; this

probability is independent of whether the follower itself has or has not invested.  Thus

the follower’s optimal stopping problem is described by

( ) ( ) { }




 


 −−= ∫

∞ ++−+−
iT iti

thhrThr

T
KdtCheeEV jij  max

 

 

  π . (23)

Note that, in effect, the follower acts as a single firm but facing the augmented

discount rate jhr + .

In the continuation region the follower holds the option to invest but also faces the

possibility of innovation by its rival.  Thus in any short time interval dt the follower

experiences a capital gain or loss dV  with probability dthj−1 , while with probability

dthj  the rival innovates and its option expires with no value.  The Bellman equation

for the value of the investment opportunity in the continuation region is therefore given

by

( ) ( )1,01,0 dVEdtVhr j =+ .

Expanding using Itô’s lemma and substituting from (1) as before, the Bellman equation

entails the following ODE

( ) 0 
2

1
1,01,01,0

22 =+−′+′′ VhrVV jµππσ .

As before, the differential equation is solved subject to the boundary condition

( ) 001,0 =V  to derive

( ) 1
1,0

βππ FBV = (24)

where FB  ≥ 0 is a constant whose value is yet to be determined,
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and 1β  is the positive root of the characteristic 
( )

0
2

 
2

1
22

2 =
+

−




 −−

σ
ε

σ
µε jhr

.

Imposing symmetry, 1β  can be written as 
( )











 ++





 −+−=

2

2

221

82
1

2
1

2

1

σσ
µ

σ
µβ hr

.

In the stopping region the value of the project undertaken by the follower is given

by its expected value, taking account of the probability of discovery by the rival firm.

This value was derived in section 4 and is given by expression (16).  As in previous

cases value-matching and smooth-pasting conditions are used to determine the critical

value of π describing the boundary between the continuation and stopping regions,

along with the unknown coefficient FB .  Denoting the follower’s optimal investment

trigger by Fπ  these conditions can be stated as

( ) ( ) iFF KVV −= ππ 1,11,0  (25)

and

     ( ) ( )FF VV ππ 1,11,0 ′=′ . (26)

Solving the simultaneous system and imposing symmetry yields

( )
h

hr
K

hr

C
F

µ
β

βπ −+





 +

+−
= 2

211

1 (27)

and

( ) 1

1

2

1

βµ
π β

−+
=

−

hr

h
B F

F . (28)

Note that the follower’s trigger point is similar to the single-firm trigger Uπ  given

by (11) but with the interest rate r replaced by the augmented discount rate hr +  and

the root 1β  replacing 0β .  Note also that Fπ  is independent of the point at which the

leader invests: given that the firm invests second the precise location of the leader’s

trigger point is irrelevant.

Thus, writing the leader’s investment time as LT  (this being the first time that the

leader’s trigger point Lπ  is reached, to be derived later in section 7), the follower’s

optimal investment time can be written as

{ }FLF TtT ππ ≥≥= : inf . (29)
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6 The leader’s payoff

We now consider the payoff to a firm that becomes the leader, given that neither firm

has invested so far and that the follower will act optimally in the future in accordance

with the stopping rule derived in section 5.  Once the payoffs to becoming the leader,

acting as the follower, or continuing to delay while one’s rival does so too, have been

derived the outcome of the game can then be determined.

After the leader has sunk the investment cost iK  it has no further decision to take

and its payoff is described by the expected value of its research project.  However, this

payoff is affected by the action of the rival firm investing later at FT .  Taking account

of subsequent investment by the follower the leader’s post-investment payoff is given

by

( ) ( ) ( ) ( ) 


 −+−= ∫∫
∞ ++−+− τπτππ τ

τ
τ

τ dChedCheEV
F

jiF
i

T ii

hhrT

t ii
hr

t

 

 

  

 

   )( . (30)

Two separate value functions must therefore be considered depending upon

whether the follower has already invested or is yet to do so.  Subsequent to investment

by the follower, for t ∈ [ FT , ∞), the leader’s (and also the follower’s) value function is

simply the expected value of research taking account of the probability of discovery by

the rival.  This value is ( )π1,1V  given by equation (16) above.

Prior to investment by the follower, for t ∈ [ LT , FT ), the leader’s value function

consists of two components: the expected flow payoff from research and an option-like

term that anticipates investment by the follower at FT .  The Bellman equation for the

leader is given by

( ) ( )0,10,1
 )(

0,1  dVVEedtChV dthr
ii

i ++−= +−π .

Expanding using Itô’s lemma, substituting from (1) and simplifying we obtain

( ) iii ChVVVhr −+′+′′=+ πµππσ 0,10,1
22

0,1 2

1
 .

Solving the differential equation subject to the boundary condition 0)0(0,1 =V  (as the

prize value π tends to zero the project becomes worthless and the follower will never

invest) yields
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    ( ) 1
0,1

βπ
µ

π
π L

i

i

i

i B
hr

C

hr

h
V −

+
−

−+
= (31)

where LB  > 0 is a constant whose value is yet to be determined and 1β  > 1 is as

previously defined.

The value of the unknown constant LB  is found by considering the impact of the

follower’s investment on the payoff to the leader.  When Fπ  is first reached the

follower invests and the leader’s expected flow payoff is reduced, since there is now a

positive probability that its rival will make the discovery instead.  Since value functions

are forward-looking, 0,1V  anticipates the effect of the follower’s action and must

therefore meet 1,1V  at Fπ .  Hence, a value-matching condition holds at this point (for

further explanation see Harrison (1985)).  However, there is no optimality on the part

of the leader; thus there is no corresponding smooth-pasting condition.

      ( ) ( )FF VV ππ 1,10,1 = . (32)

Solving for LB  and imposing symmetry yields

( )12
1 CzzhB FFL −= − ππ β  > 0 (33)

where 
hrhr

z
2

11
1 +

−
+

=  > 0

and 
µµ −+

−
−+

=
hrhr

z
2

11
2  ≥ 1z .

We can now write down an expression for the payoff to investing as the leader

when the patent value is π.  This value, denoted LV , also takes account of the initial

sunk cost incurred when the investment is made.

( )












≥−
+

−
−+

<−−
+

−
−+

=

         .for     
22

for    1

F

FL

L

K
hr

C

hr

h

KB
hr

C

hr

h

V

ππ
µ

π

πππ
µ

π

π

β

(34)
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7 Solving the game

In a multi-agent setting the firm’s investment problem can no longer be solved using

the optimisation techniques typically employed in real options analysis.  Instead the

problem must be solved as a game, taking account of strategic interactions between the

parties.  In particular, without the ability to precommit to trigger points (in contrast to

the precommitment strategies used by, say, Reinganum (1981)) the leader’s stopping

point Lπ  cannot be derived as the solution to a single-agent optimisation problem.

Whether a firm becomes a leader, and if so the trigger point at which it invests, is

determined by the firm’s incentive to pre-empt its rival and the point at which it must

invest to prevent itself being pre-empted.

As in Fudenberg and Tirole (1985) the nature of equilibrium in the game depends

on the relative magnitudes of the leader’s value LV  and the value of delay until the

optimal joint-investment point, CV .  Depending upon whether or not these functions

intersect somewhere in the interval (0, Fπ ), two possible cases arise.  If LV  ever

exceeds CV  preemption incentives are too strong for a joint-investment equilibrium to

be sustained and the outcome is a leader-follower equilibrium in which one firm invests

strictly earlier than its rival, with both investing earlier than the optimal joint-

investment time.  If, on the other hand, LV  never exceeds CV  a joint-investment

outcome may be sustained, although leader-follower equilibria are also possible.

Before formally describing the equilibria we must first define and prove the

existence of what we shall show to be the leader’s trigger point Lπ .  In order to

overcome preemption incentives it must be the case that ( ) ( )LFLL VV ππ = .  Thus it is

necessary to prove the existence of a point, other than and strictly below Fπ , at which

this equality holds.

Lemma 1. There exists a unique point Lπ  ∈ (0, Fπ ) such that

( ) ( )ππ FL VV   <  for π < Lπ
( ) ( )ππ FL VV   =  for π = Lπ
( ) ( )ππ FL VV   >  for π ∈ ( Lπ , Fπ )

( ) ( )ππ FL VV   =  for π ≥ Fπ .

Proof. See appendix.

Thus, the stopping time of the leader can be written as

         [ ]{ } ,:0 inf FLL tT πππ ∈≥= . (35)
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Proposition 1. (Case 1.) If ∃π ∈ (0, Fπ ) such that ( )πLV  > ( )πCV , there exist two

asymmetric leader-follower equilibria, differing only in the identities of the two firms.

In one equilibrium firm 1 (the leader) invests at LT  with firm 2 (the follower) investing

strictly later at FT ; in the other equilibrium the firms’ identities are reversed.5

Proof. The proof is illustrated with reference to figure 1.  As π rises from its low initial

value, we know from the premise that a point (labelled A) will eventually be reached

where LV  first exceeds CV .  At this point each firm has a unilateral incentive to deviate

from the continuation strategy to become the leader.  However, if one firm were to

succeed in pre-empting its rival at A the payoff to the leader would be strictly greater

than that of the follower, since LV  > FV  at this point.  From Lemma 1 we know that

the leader’s payoff is strictly greater than that of the follower over the interval (Lπ ,

Fπ ).  Thus preemption incentives rule out any putative trigger point in this range.  We

know also that LV  < FV  for all π below Lπ ; thus prior to Lπ each firm prefers to let its

rival take the lead.  From Lemma 1 we know that Lπ  is unique.  Once the leader has

invested the follower faces a single-agent optimisation problem, the solution to which

was derived in section 5.  Thus, there exists a unique equilibrium configuration in

which one firm (the leader) invests when Lπ  is first reached and the other (the

follower) invests strictly later at Fπ .  Since the firms’ identities are interchangeable

there are two equilibria of this type.  Q.E.D.

Note that at the leader’s investment point Lπ  the expected payoffs of the two firms

are equal.  Indeed, if this were not the case one firm would have an incentive to deviate

and the proposed outcome could not be an equilibrium.  By investing earlier than its

rival the leader has a greater likelihood of making the discovery.  However the value of

the prize it stands to win is likely to be lower.  Hence, when viewed from the start of

the game there is a trade-off between investing pre-emptively to increase one’s

likelihood of making the discovery first and the probable value of the prize that is

gained in that case.  At Lπ  the two effects are in balance and the expected payoffs to

the firms are equal.  Thus in contrast with several other games where asymmetric

equilibria arise, such as Reinganum (1981), the agents in this model are indifferent

between the two roles.

Before describing the set of joint-investment equilibria we first define Sπ , the

lowest joint-investment trigger such that there is no unilateral incentive to deviate.  At

Cπ  it is a dominant strategy to invest even though, with Cπ  > Fπ , the rival will

follow at once.  Thus there can be no joint-investment equilibrium above Cπ .  Note
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that, depending upon the relative positions of the value functions, the critical value Sπ

does not necessarily exist.

( ] ( ) ( ) ( ]{ } ,0  ;:,0 inf JLJJCJS VV ππππππππ ∈∀≥∈= (36)

where ( )JJV ππ ;  is as defined by (18) above.

Proposition 2. (Case 2). If ( )πCV  ≥ ( )πLV  ∀π ∈ (0, Fπ ), two types of equilibria

exist.  The first is the leader-follower equilibrium described in Proposition 1; two

equilibria of this type exist as before.  The second is a joint-investment equilibrium in

which both firms invest at some trigger point π ∈ [ Sπ , Cπ ]; there is a continuum of

such equilibrium trigger points over this interval.

Proof. The proof is illustrated with reference to figure 2.  As before, fear of

preemption by one’s rival in the interval (Lπ , Fπ ) over which FL VV >  entails that the

asymmetric leader-follower outcome is also an equilibrium configuration in this case.

From the premise, however, there is no unilateral incentive to deviate from the

continuation strategy anywhere in the interval (0, Cπ ).  For π ≥ Cπ  it is a dominant

strategy to invest, despite the knowledge that the rival will follow at once.  Thus, the

joint-investment outcome in which both firms invest at Cπ  is also an equilibrium.

From the definition of Sπ  any joint-investment point π ∈ [ Sπ , Cπ ] has the property

that no unilateral deviation is profitable, thus satisfying the criterion for being an

equilibrium.  Q.E.D.

We now compare payoffs to the firms under the alternative equilibria described in

Proposition 2.  Fudenberg and Tirole (1985) argue that if one equilibrium Pareto-

dominates all others it is the most reasonable outcome to expect.  Thus, using the

Pareto criterion it is possible to reduce the multiplicity of equilibria described in

Proposition 2 to a unique outcome.

Proposition 3. All joint-investment equilibria, if these exist, Pareto-dominate the

asymmetric leader-follower equilibria.

Proof. From the definition of Sπ  any joint-investment point Jπ  ∈ [ Sπ , Cπ ] has the

property that no unilateral deviation is profitable; thus ( )πJV  ≥ ( )πLV  ∀π ∈ (0, Jπ ].

The value of continuation is at least as great as the amount the leader could expect to

gain from preemption at any π value, and the values of both firms in the pre-emptive

leader-follower equilibrium are strictly lower than this amount.  Q.E.D.
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Essentially, the asymmetric equilibria arising in case 2 are situations in which each

firm invests purely as a result of the fear that its rival will do so first.  Such instances of

‘attack as a means of defence’ are somewhat irrational, as both firms achieve higher

payoffs by coordinating on any one of the symmetric equilibria.

Proposition 4. The joint-investment equilibria are Pareto-ranked by their respective

trigger points, with investment at Cπ  being Pareto optimal and trigger points closer to

this level Pareto-dominating all lower ones.

Proof.  For any symmetric equilibrium the payoffs of the firms are equal.  Therefore

maximising the payoff of an individual firm is equivalent to maximising their joint

payoff, which is achieved by joint investment at Cπ .  The loss from joint investment at

an arbitrary trigger Jπ  < Cπ  compared with continuation until Cπ  is given by

( ) 0

2
βπ

µ
π

π JC
J

J BK
hr

C

hr

h
Q −−

+
−

−+
= .

From the derivation of Cπ  we know that ( )CQ π  = 0.  Differentiating the function

twice yields

( ) ( ) 2
00J

01 −−−=′′ βπββπ JCBQ  < 0.

The function is strictly concave, reaching its minimum at Cπ .  Thus it is strictly

monotonic for values of π up to Cπ , with trigger points further below Cπ  entailing

greater losses relative to the optimum.  The outcomes can be Pareto-ranked

accordingly.  Q.E.D.

Note that the set of symmetric equilibria can also be reduced to the unique Pareto-

optimal outcome by considering the robustness of the proposed equilibria to trembling-

hand perfection (though this refinement cannot on its own eliminate the pre-emptive

leader-follower equilibria).  Consider any equilibrium joint-investment point Jπ  ∈

[ Sπ , Cπ ).  Suppose a firm fears that its rival may ‘tremble,’ deviating from the

equilibrium strategy, and compare its payoff from the equilibrium strategy with the

alternative ‘wait-and-see’ strategy in which it instead delays its investment, going

ahead if and only if its rival does so.  Any equilibrium joint-investment point must be in

stopping region of the follower, otherwise a profitable deviation would be available.  In

this region the expected payoff of the ‘follower’ equals that of the ‘leader,’ the two

roles being somewhat notional in this case.  If the rival invests just before Jπ  is
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reached, the firm’s best response is to invest at once and its payoff is no lower than if

both firms simply adopted the earlier joint-investment point.  If the rival instead delays

its investment beyond Jπ  the conditional strategy strictly dominates.  Only at Cπ  itself

does it become optimal to invest unconditionally, hence this equilibrium alone survives

trembling-hand perfection.

Proposition 5 summarises these arguments and specifies the unique outcome of the

game in case 2.

Proposition 5. Using the Pareto criterion the multiplicity of equilibria in case 2 can be

reduced to a unique outcome.  This is the Pareto-optimal joint-investment equilibrium

where both firms invest at CT .  This outcome entails the result that investment is more

delayed than in the single-firm analogue.

Whether the outcome of the game is an asymmetric leader-follower equilibrium (as

in case 1) or a symmetric joint-investment equilibrium (as in case 2) depends on the

parameter values.  The boundary between the two regimes is found by determining

whether or not the leader’s value function LV  intersects CV  in the interval (0, Fπ ).

This can be achieved numerically as follows.  Defining the difference between the two

value functions, ( ) ( ) ( )πππ CL VVD −= , the maximum of this concave function is found

at the point where ( ) 0=′ πD .  Denoting this point Mπ , we need to determine the sign

of ( )MD π .  If this is positive the equilibrium of the game is the Pareto-optimal

outcome involving joint investment at CT .  If it is strictly negative there is a pre-

emptive leader-follower equilibrium.  Due to the non-linearity of ( )πD  the boundary

between the two regimes cannot be expressed in an explicit analytical form.  However,

it can be found numerically for any given set of parameter values; conditions which

tend towards each type of equilibrium are analysed numerically in section 8.

So far we have considered only initial values of the stochastic process, 0π , that are

sufficiently low for immediate investment to be unprofitable.  This is the most plausible

starting-point since commencing the game at a higher level begs the question as to why

the investment opportunity has only just become available at this point.  We now

consider briefly the outcome of the game with alternative starting points.  One possible

justification for a higher initial value could be that a prior innovation by another

researcher has created a new investment opportunity in the area.  In case 2, the

outcome of the game (as specified in Proposition 5) is not sensitive to its starting-

point.  In this case the stopping region for both firms is [Cπ , ∞) and their stopping

time is CT .  Note that for a sufficiently high initial value, 0π  ≥ Cπ , investment will

take place immediately.
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In case 1, by contrast, the outcome of the game is sensitive to the initial value of π
and, in some cases, its future path.  For sufficiently high initial values a joint-

investment equilibrium results and the Pareto-optimal outcome may even be

achievable.  The outcomes in the two alternative cases, in which 0π  lies in the interval

( Lπ , Fπ ) and [ Fπ , ∞) respectively, are as follows.

For 0π  ∈ ( Lπ , Fπ ) there are two asymmetric equilibria differing only in the

identities of the leader and follower.  The leader invests immediately and the follower

invests strictly later at FT .  In this case, unlike that in which 0π  ≤ Lπ , the payoffs of

the two firms are different.  Since there is a (strict) gain to preemption over the interval

( Lπ , Fπ ), the leader’s payoff strictly exceeds that of the follower and the firms are not

indifferent between the roles.

For 0π  ∈ [ Fπ , ∞) the unique outcome is a symmetric equilibrium in which the

stopping time of both firms is given by T = min ( FT , CT ).  As in other symmetric

equilibria, the expected payoffs of the firms are equal.  In this case the actual outcome

is sensitive to the particular path taken by π as it evolves over time.  If π rises

significantly without falling to Fπ  in the meantime, the jointly-optimal investment

threshold Cπ  may be achieved.  However, if π happens to fall significantly after the

start of the game, so that Fπ  is reached before Cπ , the firms invest at a lower

threshold.  The fear of preemption prevents them from delaying until the Pareto-

optimal trigger point is reached.

8 Numerical examples

In this section the two cases specified in section 7 are illustrated using numerical

examples.  For any specified set of parameter values the outcome falls into one of the

two cases.  We therefore consider two sets of parameter values, differing only in the

degree of uncertainty, σ.  In both examples the drift parameter µ of the geometric

Brownian motion is zero.  The risk-free interest rate r is 5%.  The research technology

involves a hazard rate h = 0.2, flow cost C = 0.4 and set-up cost K = 1 for each firm.

In the first example the volatility parameter σ = 0.15; in the second it is twice this

level, at σ = 0.3.

Case 1: Asymmetric equilibrium

In this example, illustrated in figure 1, LV  exceeds CV  between points A and B, and no

symmetric equilibrium can be sustained.  The leader’s trigger point is Lπ = 3.48 while

that of the follower is Fπ  = 5.25.  For comparison, the trigger point of the single firm
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is Uπ  = 5.20 and the optimal joint-investment point is Cπ  = 6.80.  Hence in this case it

is clear that the pre-emptive effect undermines option values to a significant degree,

causing investment to take place sooner than in either the single-firm or the

coordinated case.

Case 2: Symmetric equilibrium

In this example, illustrated in figure 2, LV  does not exceed CV  and symmetric joint-

investment equilibria can be sustained.  The Pareto optimal equilibrium is the one in

which both firms invest at Cπ  = 10.6.  For completeness the full set of possible

equilibria are as follows: there are two leader-follower equilibria in which the leader

and follower invest at Lπ = 4.11 and Fπ  = 6.48 respectively, and a continuum of

symmetric equilibria with trigger points lying in the interval [6.95, 10.6].  For

comparison, the trigger point of the single firm is Uπ  = 8.12.  Thus, given the higher

trigger point, the Pareto-dominant non-cooperative equilibrium involves greater delay

than the single firm optimum.

The boundary between the two regimes

The type of equilibrium that emerges in any particular case depends on the balance

between two opposing forces: the option value of delay and the leader’s expected gain

from pre-emptive investment.  Numerical analysis indicates that the joint-investment

equilibrium becomes more likely as, ceteris paribus, the volatility parameter σ rises,

the hazard rate h falls (adjusting C and K so that the project’s expected value remains

constant) or r rises (adjusting µ in line so that the opportunity cost of delay µδ −= r

remains constant).  Greater uncertainty raises option values while leaving preemption

incentives unchanged, thus shifting the balance of incentives towards the joint-

investment outcome.  A pure increase in hazard rate strengthens the link between pre-

emptive investment and earlier discovery, thus pushing the equilibrium towards the

pre-emptive one.  As with financial options, an increase in pure discounting reduces

the current value of the investment cost (or strike price) paid at some date in the

future, raising option values.  This effect appears to outweigh the possible impact of

the discount rate on each firm’s incentive to pre-empt, which would be expected to go

in the opposite direction.
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9 Conclusions

In this paper we have shown that, contrary to initial expectations, rivalry between firms

does not necessarily undermine option values.  Instead the fear of sparking a patent

race may internalise the competitive effect, further raising the value of delay compared

with the single-firm case.  Thus in situations where both option values and strategic

interactions arise, it is necessary to study the circumstances carefully before forming a

view on whether the incentive to pre-empt or the option value of delay will dominate.

In competitive situations investment behaviour is very sensitive to specific industry

factors, such as the degree of uncertainty or likely speed of discovery, and very

different outcomes may emerge.  Given the stark differences in firm behaviour between

the two types of equilibria the distinction is an important one.  Small differences in

parameter values can result in very different patterns of investment.  In some cases

there is also path-dependence so that the timing of investment depends also on the

exact evolution of the uncertain variable.  Thus simple predictions are difficult to draw.

The model could be extended in a number of ways.  This paper has focused on the

symmetric two-firm case.  If firms’ research technologies are instead allowed to differ,

the identities of the leader and follower may be defined uniquely and more precise

predictions of firm behaviour given.  If the number of potential researchers is increased

the distinction between the two types of equilibria is likely to become more extreme,

with little or no delay beyond the breakeven point occurring in the pre-emptive case.

A cascade of activity may ensue as investment by one firm induces the next to invest in

turn, resulting in a wave of research activity.
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Appendix: Proof of Lemma 1

Proposition 1. There exists a unique point Lπ  ∈ (0, Fπ ) such that

( ) ( )ππ FL VV <  for π < Lπ
( ) ( )ππ FL VV =  for π = Lπ
( ) ( )ππ FL VV >  for π ∈ ( Lπ , Fπ )

( ) ( )ππ FL VV =  for π ≥ Fπ .

Proof. We start by defining the function ( ) ( ) ( )πππ FL VVP −= , describing the gain to
pre-empting one’s opponent as opposed to being pre-empted.  From equations (24)
and (34) we can write
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 for π ∈ (0, Fπ ).

The following steps are sufficient to demonstrate the existence of a root somewhere in
the interval (0, Fπ ).

(i) Evaluating ( )πP  at π = 0 yields ( ) 
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(ii) Evaluating ( )πP  at π = Fπ yields ( ) 0=FP π .

(iii) Evaluating the derivative ( )πP′  at Fπ  it can be shown that
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Thus, ( )πP  must have at least one root in the interval (0, Fπ ).

Uniqueness of the root Lπ  and the validity of the two inequalities can be proven by

demonstrating strict concavity of ( )πP  over (0, Fπ ).  By differentiation we can derive
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Thus the root is unique, with ( ) 0<πP for π ∈ (0, Lπ ) and ( ) 0>πP  for π ∈
( Lπ , Fπ ).

The final equality is demonstrated by considering the follower’s optimal behaviour
over the range [Fπ , ∞).  This interval is the follower’s stopping region, over which its
best response to investment by the leader is to invest at once.  Thus, the values of the
leader and follower are equal over this range.  Q.E.D.
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Figure 1: Asymmetric equilibrium
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Figure 2: Symmetric equilibrium
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1 This value could be interpreted as the expected NPV of profits in the relevant product market

or, if further sunk costs are required, might itself be the value of the option to invest in this
market, making investment in the research stage a compound option.

2 The restriction that µ < r, commonly found in real options models, is necessary to ensure that
there is a positive opportunity cost to holding the option, so that it will not be held
indefinitely.  A large negative drift term would, ceteris paribus, encourage earlier investment
to raise the probability of winning the prize before its value declines significantly,
counteracting the option effects in the model.  To avoid such an outcome we make the
assumption that µ is non-negative.  Since the model is concerned with the effects of
uncertainty, not expected trends, the conclusions from the analysis are unaffected by this
assumption.

3 To be precise, the statement that a firm invests at a trigger point π* means that the firm
invests at the time when the stochastic process π first hits the value π*, approaching this point
from below.

4 Although mixed strategy equilibria may also exist, these are ignored.  In a general timing
game in continuous time, a mixed strategy is a cumulative probability distribution Gi(t) on [0,
∞), specifying the probability that player i stops at or before time t.  For more details see
Fudenberg and Tirole (1991, chapter 4.5).

5 Note that if a symmetric equilibrium is desired, the roles of leader and follower could be
allocated between the two firms at LT  according to a 50:50 probability, as is the case in the

diffusion equilibrium specified by Fudenberg and Tirole (1985).


