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ABSTRACT

This paper analyses the decision to invest to reduce the emissions of a stock pollutant
under environmental uncertainty.  It shows that this decision depends on the type and level of
uncertainty.  When uncertainty is small, there is no simple irreversibility effect because of the
tension between environmental irreversibility (the stock of pollutant causes costly long-term
social damages), and investment irreversibility (pollution abatement investments are sunk).
When uncertainty is large enough, however, pollutant emissions should be curbed
immediately.  A continuous time formulation based on real options illustrates the link between
flexibility and option value.  These results have implications for global warming.
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I. INTRODUCTION

The “irreversibility effect” was originally introduced to the environmental literature

by Arrow and Fisher (1974) and Henry (1974).  Analyzing the development, with uncertain

costs and benefits, of a natural area, these authors defined the irreversibility effect as the bias

against conservation in a standard cost-benefit calculation that ignores the irreversible

character of development.  Building on Weisbrod’s concept of option value (1964), Arrow

and Fisher proposed to take into account the corresponding loss of flexibility by introducing

an extra term in a cost-benefit analysis, which they called “quasi-option value.”  They

showed that quasi-option value exists independently of risk-aversion.

Subsequent work has shown, however, that the “irreversibility effect” may not hold

when some assumptions of the Arrow-Fisher model are relaxed (e.g. Epstein (1980) or

Freixas and Laffont (1984)).  This is the case, for example, when there is information to be

gained by some level of development, which Fisher and Hanemann (1987) call “dependent

learning” (Arrow and Fisher considered only full development or no development).  Most of

these results, however, were obtained with two or three periods discrete-time models, which

do not allow for a full treatment of the dynamics of the problem.

The irreversibility effect has since been generalized.  It is now usually perceived as

the need to scale down or delay a project that is harmful to the environment or to adopt

earlier an investment beneficial to the environment when an environmental irreversibility is

involved.  A decision is irreversible when it is very costly to reverse, for example because it

limits the future choices of a decision-maker (Henry (1974)).  A frequently used example of a

development project with irreversible consequences is the construction of a dam in a scenic

canyon, or the accumulation of long-lived greenhouse gases in the atmosphere.
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At the end of their 1974 paper, Arrow and Fisher indicated how to extend their

analysis to long-lived stock pollutants, such as DDT, and to cumulative “macro”

environmental effects, such as the accumulation of greenhouse gases in the atmosphere.

There is, however, one essential difference between the development of a natural area and the

management of a stock pollutant.  Indeed, whereas in the former type of problem the only

irreversibility may be the loss of a natural area, two types of irreversibility are present in the

decision to invest to reduce the emissions of a stock pollutant (Kolstad (1996)).  The first

irreversibility is environmental because society has to live for a long time with the flow of

social damage caused by the stock of a slowly decaying pollutant.  In the case of greenhouse

gases, for example, it is estimated that the mean lifetime of CO2 in the atmosphere is 500

years (IPCC (1992)).  The second irreversibility, which could be termed investment

irreversibility, comes from the fact that pollution control capital is often (at least partially)

sunk.  An example is the massive investments needed to switch from coal burning to natural

gas burning power plants in order to reduce CO2 emissions.

The optimal management of stock pollutants under uncertainty was recently analyzed

again by Pindyck (in Dixit and Pindyck (1994)), Kolstad (1996), and Ulph and Ulph (1997).

They used different approaches.  Pindyck formulated the decision to invest to reduce the

emissions of a stock pollutant as an optimal investment problem in continuous time.  He

considered uncertainty in the valuation of pollution damage and showed that an increase in

the uncertainty of the future social costs of pollution leads to delay the decision to invest in

emissions reduction.  In this case, neglecting uncertainty would thus introduce a bias in favor

of the environment.  Kolstad, and Ulph and Ulph, on the other hand, used two-period,

discrete time models, which do not allow for a full treatment of the dynamics of the problem.
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They showed that the presence of an irreversibility effect is dependent on technical

hypotheses on the social planner’s utility function and on the resolution of uncertainty over

time through learning.  Kolstad seems to have used a strict definition of irreversibility,

however, while Ulph and Ulph did not consider investment irreversibility.  Despite the recent

attention it has received, the joint impact of irreversibility and uncertainty on the

management of stock pollutants does not seem to be fully understood.

This paper extends the literature on uncertainty and the irreversibility effect for the

management of stock pollutants.  We focus on uncertainty in the stock of pollutant

(environmental uncertainty).  To be in a framework favorable to the “irreversibility effect”,

we assume that information about the evolution of the stock of pollutant arrives in time

independently of the decision to invest (independent learning).  Like Pindyck, we use

concepts from the theory of real options and a continuous-time formulation, which allows for

a full treatment of the dynamics of the problem.1  We show that there is no simple

irreversibility effect for the management of stock pollutants because there is a tension

between environmental and investment irreversibility.  Moreover, the optimal decision to

reduce emissions depends on both the level and the nature of uncertainty.  Hence, when

environmental uncertainty is “large enough,” we find that the emissions of pollutant should

be reduced immediately.

A by-product of this paper is a clarification of the concept of option value close in

spirit, we believe, to Weisbrod’s intuition.  In the Arrow-Fisher framework, Conrad (1980)

and Hanemann (1989) linked quasi-option value to the value of perfect information on the

impact of development, conditional on preservation.  As shown by Hanemann  (1989), this

interpretation cannot be generalized so, we rely on the theory of real options and we use the
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same formulation for the deterministic and stochastic cases.  This gives us a deterministic

option term, which we interpret as the value of the flexibility to modify an irreversible

decision.  Option value thus exists independently of the arrival of information over time.

This paper is organized as follows.  In Section II, we introduce a simple continuous-

time model, which features a single stock externality.  We formulate our pollution control

problem as an optimal stopping problem in which a risk-averse social planner has to choose

when and how much to invest in a one-time reduction in pollutant emissions.  In Section III,

we solve the corresponding deterministic problem to get a benchmark for the impact of

environmental uncertainty.  In Section IV, we analyze two classes of stochastic models to

explore the impact of the specification of uncertainty.  One class gives finite expected social

damage for all values of pollutant stock volatility, and the other one does not.  A numerical

illustration is provided in Section V.  The last section summarizes our conclusions.

II. A MODEL OF POLLUTANT STOCK UNCERTAINTY

We consider a stylized model with one stock pollutant, which decays at rate α > 0.

We denote by X the stock of this pollutant and E1 its rate of emission.  To focus solely on the

variability of X, we assume that E1 is constant.  Problems with more than one stochastic

variable are notoriously difficult to solve analytically.  Because of the randomness of

physical and chemical processes that contribute to the decay of the pollutant, we suppose that

X follows a diffusion process, which belongs to one of two classes of stochastic processes:

(1) 1,2=  dz,vXdt)X
E

(dX 1 ρ+−
α

α= ρ

The quantity vXρ ≥ 0 is the infinitesimal variance of the stock pollutant process and dz is an

increment of a standard Wiener process (for an introduction to stochastic calculus for
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economists, see Dixit, 1993).  The parameter v characterizes the volatility of the stock of

pollutant.  When ρ = 1 (Model 1), the infinitesimal variance of the process followed by X

increases linearly with X, whereas when ρ = 2 (Model 2), it increases with the square of X,

as for the geometric Brownian motion.2  From Equation (1), we see that X remains non-

negative and tends to revert to 
α

1E
; thus, the decay rate, α, also characterizes the speed of

reversion.  We denote by X(0) the initial stock of pollutant.

We further assume that the flow of social costs resulting from pollution damage,

noted C(X), is given by:

(2) λφ−= X)X(C

where λ ≥ 1.  In the following, we normalize the valuation parameter φ to 1.  This

formulation is appropriate for stock externalities, i.e. situations where social damages result

not from the emissions of a compound, but rather from its accumulation.  The suspected

impact on the climate of the accumulation of greenhouse gases provides a good example.

We assume that pollutant emissions can be decreased from E1 to a constant E2, at a

cost K, which may depend on E1 and on E1 - E2, but not on X.  We suppose that K is sunk,

which is often reasonable for pollution control measures (e.g., the installation of scrubbers by

electric utilities).  After emissions have been reduced, X follows the process:

(3) 1,2=  dz,vXdt)X
E

(dX 2 ρ+−
α

α= ρ

We consider a risk-averse social planner with a temporally additive and separable

utility function noted U(•) for the flow of social damage from pollution.  To simplify our

calculations, we assume further that the planner’s utility is linear in K, and that U( -y ) = -yδ,

where y ≥ 0 measures the flow of social damage from pollution, and where δ is such that λδ
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≡ m is an integer strictly greater than 1.  In this formulation, increasing constant risk aversion

and increasing physical damage have the same qualitative impact, although this is clearly not

the case in general.  As for quasi-options, option value exists independently of risk aversion.

The objective of the social planner is to find the values of E2 and T that maximize the

present value function:

(4) )EE,K(EedteX- =)EJ(T, 212
rT

0

rtm
02 −− −

∞
−∫ε

subject to Equation (1) for 0 ≤ t ≤ T and to Equation (3) for t > T, with X(0) given.  E2 ( 0 ≤

E2 ≤ E1 ) is the rate to which pollutant emission should be reduced; T is the socially optimal

time at which to cut emissions to E2; ε0 is the expectation operator for information available

at time t = 0; and r is the social discount rate.  In this model, we thus have a continuum of

possibilities to reduce pollutant emissions with independent learning.  Indeed, information

arrives over time in the form of a realization of the diffusion process followed by the stock of

pollutant, independently of the decision to invest in the reduction of emissions.

This optimization problem can be solved in two steps.  First, for an arbitrary value of

E2, such that 0 ≤ E2 < E1, we calculate the critical stock of pollutant, denoted x*, at which the

rate of pollutant emission should be reduced from E1 to E2 for an arbitrary function K(E1, E1-

E2).  The values of X less than x* define the so-called “continuation region,” or region 1,

where the optimal decision is to wait.  As soon as X ≥ x*, which defines the so-called

“stopping region,” or region 2, the rate of pollutant emissions should be reduced to E2.

For the second step, it is first necessary to calculate ε0T(x*;E2), the expected time at

which the stock of pollutant reaches x* for the first time, given an initial stock of pollutant

denoted X(0).  We could then substitute these results back into the objective function and
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minimize it with respect to E2.  Since we are interested in how x* could vary with v, we

focus only on the first step of the solution procedure and we take E2 as given.  The optimal

value of E2 would depend on the function K(E1, E1-E2).  To simplify our notation, we omit E2

as an argument of both the option term and expected social damages.

This is a standard optimal stopping problem, which bears similarities with an optimal

investment problem.  To solve it, we use stochastic dynamic programming and concepts from

the theory of real options.  Let Vi(x;v) denote the value function in region “i”.  The

Hamilton-Jacobi-Bellman (HJB) equation is:

(5) 1,2=i ,
dx

)v;x(Vd

2

vx

dx

)v;x(dV
x)-E(x)v;x(rV

2
i

2
i

i
m

i

ρ
+α+−=

The left side of Equation (5) can be interpreted as a return; the first term on the right side is

the flow of social pollution costs; and the last terms represent the capital gains.

Equation (5) is a second-order linear differential equation.  Its solution is the sum of a

particular solution, noted Pi(x;v), plus the general solution of the associated homogeneous

equation, noted ϕ(x;v).  We select Pi(x;v) so that it represents the expected social costs from

emitting  pollution at rate Ei forever, given x, the current stock of pollutant.  ϕ(x;v) is the

value of the option to reduce emissions.  Since it represents the value of the possibility of

doing something, it is by definition non-negative.  In this context, waiting decreases the

present value of the cost of reducing pollutant emissions while cutting down on emissions

earlier reduces the present value of pollution damages.

When we consider a one-time reduction in pollutant emissions, there is no option

term after pollutant emissions have been reduced to E2.  Thus, the solutions of Equation (5)

in regions 1 and 2 are respectively:
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(6) v)(x;Pv)(x;V  v),(x;P+v)(x;v)(x;V 2211 =ϕ=

To find x*, we need two additional conditions (see Brekke and Oksendal, 1991.)

First, at x*, the value of the option to reduce the rate of pollutant emissions plus the social

cost of polluting forever at rate E1 should equal the social cost of polluting forever at rate E2

plus the cost of reducing emissions from E1 to E2.  This is the continuity condition:

(7) K-v);(xPv);(xP+v);x( *
2

*
1

* =ϕ

The second condition, called “smooth-pasting,” says that, when it is optimal to exercise the

option to reduce pollutant emissions, the marginal change in the value of the option equals

the marginal change in the difference of expected social pollution costs:

(8)
dx

v);(xdP

dx

v);(xdP
=

dx

v);x(d *
1

*
2

*

−ϕ

By combining these two conditions, we obtain a “stopping rule” of the form:

(9)

dx

)v;x(dP

dx

)v;x(dP

K)v;x(P)v;x(P

dx

)v;x(d

)v;x(
*

1
*

2

*
1

*
2

*

*

−

−−
=

ϕ
ϕ

Equation (9) equates the instantaneous rate of return of the option to reduce pollutant

emissions with that of the corresponding net reduction in the expected social costs of

pollution.  They are written in reverse form to avoid possible division by 0 (see the

expressions of Pi below).  The smallest non-negative root of this equation (denoted x*), if it

exists, defines the critical stock of pollutant at which pollutant emissions should be reduced

from E1 to E2.  Moreover, we will see that if Equation (9) has only negative solutions

pollutant emissions should be cut immediately.
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III. SOLUTION OF THE DETERMINISTIC MODEL

In this section, we derive a deterministic benchmark for the stochastic models of

Section IV.  Using the same formulation for the deterministic and stochastic cases also

allows us to illustrate the concept of option value in a real options framework.  As shown

below, we can define an option term under certainty.  Following the investment literature on

real options, we interpret this term as the value of the flexibility to modify an action with

irreversible consequences (e.g., see Trigeorgis (1995)).

Until the end of this section, we thus assume that v = 0 so both stochastic models

reduce to the same deterministic form. Equations (1), (3), and (5) simplify to first order linear

differential equations.  Integrating Equations (1) and (3), we obtain:

(10)










>
α

−+
α

≤≤
α

−+
α=

−α−

α−

T t,e)
E

)T(X(
E

Tt0 ,e)
E

)0(X(
E

)t(X
)Tt(22

t11

Thus, when Ei is held constant, X converges monotically towards 
α

iE
 and it never crosses

this value.  We can now calculate the present value of social pollution costs.

Lemma 1: If the rate of pollutant emissions is fixed at Ei and the initial stock of

pollutant is x, the present value of social pollution costs is:3

(11) 1,2=i ,

)jr(

E

!k

!m
x)0;x(P

m

0k
m

kj

km
ik

i ∑
∏=

=

−

α+
−=

Moreover, the option term is ) 0 (X),~ Max(=(X;0) ϕϕ , with:

(12)   EXA=(X)~
r

10 α
−

−αϕ
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A0 is a constant to be determined jointly with the critical stock of pollutant at which it is

optimal to reduce pollutant emission from E1 to E2.

Proof.  We can find the present value of social pollution costs by calculating

∫
+∞

−−
0

rtm dteX , with X(0) given, subject to 
α

+
α

−= α− iti E
e)

E
)0(X()t(X .  The option term is

the solution of the homogeneous equation associated with Equation (5) with v = 0. ||

We can now derive the deterministic stopping rule.

Proposition 1. The following equation has at most one non-negative root, denoted

y*:

(13)

dx

)0;x(dP

dx

)0;x(dP
K)0;x(P)0;x(P

r

xE

12

121

−

−−
=

α−

If 
α

<≤ 1* E
y0 , y* is the value of the stock of pollutant, denoted x0

* , at which it is optimal to

reduce pollutant emission from E1 to E2 .
4  If Equation (13) has only negative roots, the

emissions of pollutant should be reduced immediately.  Finally, if 
α

≥ 1* E
y , it is optimal to

invest now in pollution reduction provided 0K)0;x(P)0;x(P 12 >−− , and never otherwise.

Proof.  To derive Equation (13), introduce Equations (11) and (12) into Equation (9).

Reorganizing the terms of Equation (13) leads to 0)K,r,;x(f =α , where

K
dx

)0;x(dP

dx

)0;x(dP

r

Ex
)0;x(P)0;x(P)K,r,;x(f 121

12 −




 −

−α
+−≡α .  Introducing

Equation (11) into the expression of f(x;α,r,K) and simplifying gives:
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K

)jr(r

E)EE(

!k

!m
x)K,r,;x(f

m

1kj

1km
221

1m

0k

k −
α+

−
=α

∏
∑

+=

−−−

=
.  f(x;α,r,K) is thus continuous and strictly

increasing in x, so Equation (13) has exactly one solution if f(0;α,r,K) ≤ 0.  Equation (13) is

the deterministic counterpart of the stochastic stopping rule for this problem (Equation (9)).

On the other hand, if f(0;α,r,K) > 0, Equation (13) has no solution.  This is possible

only because K is so small or α and r are so large that it is inexpensive (and optimal) to cut

emissions right away compared to the expected reduction in social damages from pollution.

For the case where 
α

> 1*
0

E
x , let us show that the smooth-pasting condition forces the

option term to be zero.  Indeed, from Equation (11), the right hand-side of the smooth-pasting

condition, given by 
dx

)0;x(dP
-

dx

)0;x(dP 12 , is strictly positive for all x ≥ 0.  However, the left-

hand side of the smooth pasting condition is 
xE

)x(~r

dx

)x(~d

1 α−
ϕ=ϕ

, which is negative when

α
> 1E

x , unless the constant A0 in )x(~ϕ  is negative.  This forces the option term, ϕ(x), to be

zero.  Investing to reduce pollutant emissions when pollution is decreasing is thus a “now or

never” proposition.  If 0K)0;x(P)0;x(P)E,(J)E,0(J 1222 >−−=+∞− , we should invest

now to reduce pollution and never otherwise.5  ||

Proposition 1 simply says that there are two cases where the possibility to delay an

investment for cutting pollutant emissions has no value.  In the first case, the stock of

pollutant is increasing over time and reducing pollutant emissions is relatively inexpensive so

it should be done immediately.  In the second case, the stock of pollutant and associated

social damages decrease over time.  Since waiting decreases the benefits of reducing
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emissions without affecting its costs, it has no value.  The decision to invest can thus be

based on a conventional cost-benefit analysis.  Fisher, Krutilla, and Cicchetti (1972) found a

similar result in their analysis of the development of a scenic canyon on the Snake River.

They showed that when the benefits of preservation are increasing over time relative to the

net benefits from development, it is optimal to develop either now or never.

These results also show that 
α

1E
 is a barrier that separates the range of values of X in

two subsets: 
α

< 1E
X , where waiting is valuable if K is neither too cheap nor too expensive

compared to a reduction in social damages from pollution, and 
α

≥ 1E
X , where there is no

option value.  We will see below that the singularity at 
α

1E
 for the deterministic case has

implications for the stochastic models.

IV. ANALYSIS OF THE STOCHASTIC MODELS

We now assume that v > 0.  For both models, we start by calculating the expected

social costs, denoted by Pi, and the option terms, denoted by ϕ~ .  The superscripts “I” and

“II” refer to Model 1 and 2 respectively (see Equation (1)).

Lemma 2. For Models I and II, the expected social costs from continuing to pollute

forever at rate Ei, given an initial stock of pollutant x, are respectively:

(14) 1,2=i ,

)jr(

)2/jvE(

!k

!m
x)v;x(P

m

0k
m

kj

1m

kj
i

kI
i ∑

∏

∏

=

=

−

=

α+

+

−=
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(15) 1,2=i ,

)2v)1j(jjr(

E 

!k

!m
x)v;x(P

m

0k
m

kj

k-m
ikII

i ∑
∏=

=
−−α+

−=

For )v;x(PII
i  to be finite, we must have: 

)1m(m

mr
2v0

−
α+<≤ .

The corresponding option terms are given by ) 0 (X),~ Max(=(X;0) ϕϕ , with:

(16) 




 α

α
Φ=ϕ x

v

2
;

v

E2
,

r
Av)(x;~ 1

0
I

(17) 




 ζβΨ





=ϕ

β

vx

E2
;,

x

E
B(x)~ 11

0
II

A0 and B0 are constants to be determined jointly with x*. Φ(a,b;y) and Ψ(a,b;y) are

respectively the confluent hypergeometric functions of the first and second kinds with

argument y and parameters a and b. 6  β and ξ  are functions of r, v, and α  defined by:

(18)
v

2
+2+2= ,

v

rv2
2

v

2

v
2

αβξ
+





 α++





 α+−

=β

Proof.  For both models, we derive expected social costs from the moment generating

function of the stochastic process X, noted M(θ,t), and from the relationship:

(19) )X()1(
)t,0(M n

t
n

n

n

ε−=
∂θ

∂
.

Details of the calculations of M(θ,t) are presented in Appendix A1.

To find the option terms, we look for a solution to the homogeneous equation

associated with Equation (5).  This solution should be well defined at X = 0 and increasing in

X because the larger is X, the larger are expected social damages, and so the more valuable is
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the possibility of reducing pollutant emissions.  Details of the derivations are presented in

Appendix A2.  ||

Note that, for both models, the magnitude of expected social costs is increasing in v,

but )v;x(PII
i  is much more responsive to changes in v than )v;x(PI

i .  This feature seems

reasonable for a number of stock pollutant problems.  Indeed, for global climate change, an

increase in the atmospheric concentration of greenhouse gases could cause increases not only

in mean temperatures but also in temperature and rainfall volatilities, with potentially

dramatic impacts on agriculture, for example.

We can now derive the stopping rules for both models.  We find:

Lemma 3.  The critical stock of pollutant, denoted x*, is the smallest non-negative

real which verifies the equations:

(20)

dx

)v;x(dP

dx

)v;x(dP

K)v;x(P)v;x(P

x
v

2
;1

v

E2
,1

r

E

r

x
v

2
;

v

E2
,

r

*I
1

*I
2

*I
1

*I
2

*1

1

*1

−

−−
=






 α++

α
Φ






 α

α
Φ

(21)

dx

)v;x(dP

dx

)v;x(dP

K)v;x(P)v;x(P

vx

E2
;,

vx

E2
;1,1

vx

E2
vx

E2
;,

x

*II
1

*II
2

*II
1

*II
2

*
1

*
1

*
1

*
1

*

−

−−
=






 ξβΨ−





 +ξ+βΨ






 ξβΨ

β

Proof.  Introduce the results from Lemma 2 into the continuity and smooth-pasting

conditions and rearrange to get rid of the unknown constants A0 and B0.  ||

One important difference with the deterministic case is that 
α

1E
 is no longer a barrier

for X (see Equation (1)).   Thus, there can be a positive option value even if 
α

> 1E
X ,

although it may be small as we will see in the numerical illustration.  Equations (20) and (21)
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define implicitly x* as a function of v.  Unfortunately, it is not possible to find an explicit

expression for x* nor to analyze how x* changes with v because of the complexity of the

hypergeometric functions and their derivatives with respect to their second parameter.  We

thus examine how x* changes for  “small” and “large” values of v.  Considering first “small”

values of v, we have:

Proposition 2. The limit when v goes to zero of the stochastic critical value of the

stock of pollutant, denoted *0x~ , equals the deterministic critical value, denoted *
0x .  Thus, if

α
< 1*

0
E

 x , *
0x~  is the non-negative root of Equation (13) if it exists, and zero otherwise.  If,

however, 
α

> 1*
0

E
x , *

0x~  is the non-negative root of: [ ] 0K)0;x(P)0;x(P 12 =−− .

In addition, for small values of v, x*(v) may be larger or smaller than ~*x0 , depending

on the cost of cutting emissions relative to the benefits of reducing expected social damages

from pollution.

Proof.  To prove this proposition, we derive first-order expansions in v of each side

the stopping rules, which we denote by LHS(x*;v) and RHS(x*;v) for left hand-side and

right hand-side respectively.  Details of the derivations can be found in Appendix B.

Equating the constant terms in LHS(x*;v) and RHS(x*;v) proves the first part of this

proposition.  It is clear from the expressions of the expected social damages for both models

that taking their limit when v goes to zero gives the expression of social damages in the

deterministic case.  Using results from Appendix B, it could also be shown that the limits of

the stochastic option terms, when v goes to zero, gives the deterministic option term.
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Equating the first order terms in v of LHS(x*;v) and RHS(x*;v) gives )0(
dv

dx*

 for

each model, but its sign is ambiguous (see Equation (A29)).  Considering specific values for

~*x0 in the expression of )0(
dv

dx*

, we find:

(22)

[ ]














α
>>

α−+α
α−−

ε
α

ε±
=>

εα

≈<
−

−
α+
−−

≈

−−

−

1*
0

1*
0

1

*
01m

2
1m

1

21
2m

1

I*

E
 x~ when ,

)2m(r2

)1m(r

small  with ,
E

x~ when ,0
2

E

0x~ when ,0
)EE(

)EE(E

)r(4

)1m(m

)0(
dv

dx

(23)



















α
>>

α−+α+α
α−−α+

ε
α

ε±
=>

εα

≈<
−+−α+

α+
−−−

≈

−−−
=

− ∑

1*
0

22*
0

1*
02

2
1

*
02m

221
1m

2
1m

1

m

1j
21

1m
2

II*

E
 x~ when ,

))1m(r)(mr(

)2m(mrr

2

x~

small  with ,
E

x~ when ,0
2

E

0x~ when ,0
)E)EE(EE)(r(

jr

)1j(j
)EE(E

)0(
dv

dx

Both models give qualitatively similar results.  When 0x~*
0 ≈ , we see from Equations

(22) and (23) that 0)0(
dv

dx*

< .  This case occurs when K, r, and α combine to make reducing

emissions attractive, so environmental irreversibility drives the solution.  Then, as K

increases or as r and α decrease, *
0x~  increases and investing to reduce emissions becomes

less attractive.  Investment irreversibility becomes more important compared to

environmental irreversibility.  When 
α

≈ 1*
0

E
x~ , we reach the singularity for the deterministic
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case, which is a barrier for the existence of the deterministic option term.  This causes

)0(
dv

dx*

 to tend towards +∞ for both models, but faster for Model 2 than for Model 1.  Away

from this singularity, for 
α

>> 1*
0

E
x~ ,  0)0(

dv

dx*

<  if 
α
r

 is smaller than an increasing function

of m, where m increases with the severity of social damages and with the social planner’s

risk aversion, and 0)0(
dv

dx*

≥  otherwise.  Specifically, 0)0(
dv

dx*

<  if 1m
r −<
α

 for Model

1, and if 
2

1m8m41r 2 +−+−<
α

 for Model 2.  ||

Thus, when the volatility of the stock of pollutant is small, we do not know a-priori

how we bias our decision to invest to reduce pollutant emissions if we rely only on the

deterministic model, which is the common approach in a standard cost-benefit analysis.

Depending on the model parameters, either environmental or investment irreversibility could

dominate, so there is no simple irreversibility effect.

Let us now investigate how x* changes when v is “larger.”  We have:

Proposition 3.  Unless reducing emissions is inexpensive compared to the resulting

savings in expected social damages from pollution, there exists a unique permissible v such

that x*(v) = 0.

Proof.  To prove this result, we set x* to zero in the stopping rules and look for a

permissible v, i.e. v0 ≤  for Model 1 and 
)1m(m

mr
2v0

−
α+<≤  for Model 2.

Let us start with Model 1.  Setting x* to zero in Equation (20) and rearranging terms

gives 0K
jr

jv5.0E

E

EE

mr

!m
)K,r,;v(f

1m

0j

2

2

21I =−





α+

+−
α+

≡α ∏
−

=
.  The function )K,r,;v(f I α
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is clearly continuous in its arguments, decreasing in K, r and α, increasing in v, and positive

for large enough values of v.  If 0)K,r,;v(f I ≤α , there exists a unique v such that x*(v) = 0.

Otherwise, 0)K,r,;v(f I >α  implies that K, r, or α are too low for 0)K,r,;v(f I =α  to admit

a positive solution in v.  This means that reducing pollutant emissions is relatively

inexpensive, so it should be done immediately.

For Model 2, we proceed the same way.  We set x* to zero in Equation (21) and

simplify, using ))
z

1
(o

z

)1(
1(z)z,,(U +γ−α+α−=γα α−  when z→+∞, (see (9.12.3) p.270 in

Lebedev) and the identity r2)1(v =ξ−β+β− .  This leads to 0)K,r,;v(f II =α , where

K

))1j(vj5.0jr(r

)EE(E !m
)K,r,;v(f

m

1j

21
1m

2II −
−−α+

−
≡α

∏
=

−
.  The rest of the proof is identical.  ||

The intuition here is the same as in Proposition 1.  If the cost of reducing pollutant

emissions relative to the corresponding reduction in expected social damages is small enough

under certainty, then we should invest right away to cut down pollutant emissions.

Otherwise, there exists a permissible value of v such that it is optimal to invest right away to

reduce pollutant emissions.   The key here is to notice that, as the volatility of the stock of

pollutants, v, increases, the expected social damages from pollution go to infinity for both

models (see Equations (14) and (15)), while K remains unchanged.

V. A NUMERICAL ILLUSTRATION

A numerical illustration is presented in Tables I and II and in Figure I.  Table I shows

how the critical stock of pollutant at which pollutant emissions should be reduced, x*(v),
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varies with v when v ≈ 0+, for a range of parameter values.  Although the primary purpose of

this table is to illustrate the main result of Proposition 2 (x*(v) may increase or decrease as v

increases from 0), it also helps us confirm our intuition on a number of points.

First, as expected, we observe that, the larger is α or r, the larger is x*(v): indeed, if

the pollutant decays faster or if the social discount rate is higher, expected future damages

decrease.  Moreover, all else being equal, the faster expected social damages increase with

the stock of pollutant (i.e. the higher is m) the earlier pollutant emissions should be reduced.

Since x*(v) is very sensitive to m, we have to use much higher values of K for m = 3 than for

m = 2 to obtain values of x* comprised between 0 and 
α

1E
.  Moreover, variations of x*(v)

and ϕ*/K, the option value at the critical stock of pollutant normalized by the sunk cost of

reducing pollutant emissions, are much steeper for Model 2 than for Model 1.  Note that the

option value can be as large as K or larger (e.g., see the case α = 0.03, r = 0.02).  This

suggests that ignoring the option value, as is often done in conventional cost-benefit analysis,

can lead to very sub-optimal decisions.  Finally, note that the option value goes to zero as v

goes to zero when 
α

> 1*
0

E
x , because the option term is continuous in v.

Table II shows values of the volatility parameter v for which x*(v) goes to zero.

Again, the larger is α and r, the larger is the corresponding value of v.  Likewise, the larger is

m, i.e. the higher is social damage associated with the level of stock pollutant, the smaller is

v.  It is also of interest to focus on the results for Model 2 in Table II, because very small

values of v require investing right away in pollution reduction (e.g., consider r = 0.02).  This

illustrates the danger of using a certainty equivalent in stochastic models that are sensitive to

a volatility parameter, even when volatility is “small” since “smallness” is context dependent.
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Finally, Figure I illustrates the variations of x*(v) with v for Model 1 when m = 2.

Qualitatively similar results were obtained for other values of m and for Model 2.

VI. CONCLUSIONS

We have analyzed the tension between environmental irreversibility and

irreversibility in pollution control capital investment under environmental uncertainty using a

real options approach in continuous-time.  This formulation allows for a full treatment of the

dynamics of the problem and illustrates the link between option value and flexibility.  When

uncertainty is low, we have found that we cannot a-priori know the bias introduced by

neglecting uncertainty, an approach that would probably be followed in a conventional cost-

benefit analysis.  When uncertainty is “high enough,” however, we have shown that it

becomes optimal to invest right away to reduce pollutant emissions because expected social

damages increase with the level of uncertainty.  Thus, there is no simple “irreversibility

effect” when more than one type of irreversibility is present.  Moreover, to properly account

for the impact of uncertainty, we have to consider not only the level and the nature, but also

the specification of uncertainty.  This is illustrated by a comparison between our two

stochastic models, and by a comparison between our results and Pindyck’s (1994).

Our model is obviously too simple to capture the salient features of the global

warming problem.  For example, it considers only fixed emission levels, and it ignores

technological change as well as uncertainty in the valuation of damages from global

warming.  It does nonetheless indicate that global warming scientists should concentrate on

modeling uncertainty accurately, and that high levels of environmental uncertainty probably

warrant early action to reduce the build-up of greenhouse gases.
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APPENDIX A

In Appendix A1, we derive the moment generating functions of the processes

considered and in Appendix A2, we show how to derive the option terms for both models.

A.1 Expected social damages.

We first summarize the method used, and then provide the main intermediate results.

For more details, see Cox and Miller (1965).  Let X(t) be a diffusion process which verifies:

(A1) dz)t,X(bdt)t,X(adX +=

where dz is an increment of a standard Wiener process.  The moment generating function of

X(t), noted M(θ,t), is defined by:

(A2) ∫
+∞

∞−

θ−θ− φ==θ ε dxe)t,x;t,x()e()t,(M x
00

x

)t,x;t,x( 00φ  is the probability density function for x at t, given x(t0) = x0.  Then:

(A3) ∫
+∞

∞−

θ−

∂
∂φ

=
∂
θ∂

dxe
t

)t,x;t,x(

t

)t,(M x00

To derive M(θ,t), we insert the left-hand side of the Kolmogorov forward equation:

(A4) )t,x;t,x(
t

))t,x;t,x()t,x(a(
x

))t,x;t,x()t,x(b(
x2

1
000000

2
2

2

φ
∂
∂=φ

∂
∂−φ

∂
∂

into (A3), integrate by parts, and solve the resulting partial differential subject to the

boundary conditions:

(A5) 2
02

2

0 x
(0,0)M

  ,x
M(0,0)

  ,1)t,0(M =
∂θ

∂−=
∂θ

∂=

• Model 1: dzvXdt)XE(dX +α−=

For this process, the Kolmogorov forward equation is:
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(A6) αφ+
∂
∂φ−α++

∂
φ∂=

∂
∂φ

x
)Exv(

x2

vx

t 2

2

After substituting (A6) into (A3), we integrate to obtain:

(A7) ME
M

)
2

v
(

t

M θ−
∂θ
∂θ+αθ−=

∂
∂

Solving this partial differential equation subject to the boundary conditions (A5), we find:

(A8)

















θ+α

θ+
θ+α

θ+






α
θ+=θ

α−α−
− 2t

2

t

1

v

E2

v2

e2
C

v2

e2
C1

2

v
1)t,(M

with C E x E x
v v

E
v

1 0 0

21

2 2 2 2
= − = − +





− +















α α,   C2

• Model 2: dzvXdt)XE(dX 2+α−=

For this process, the Kolmogorov forward equation is:

(A9) φα++
∂
∂φ−α++

∂
φ∂=

∂
∂φ

)v(
x

)Exvx2(
x2

vx

t 2
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After substituting (A9) into (A3), we integrate to obtain:

(A10)
∂
∂

θ
∂
∂θ

θα
∂
∂θ

θ
M

t

v M M
E M= − −

2
2

2

2

The solution to this partial differential equation with boundary conditions (A5) is:

(A11) ∑∑∑
∞+

=

+

α−
∞+

=

+

α−
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= 

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Let us now look at the restrictions on v for )v;x(PII
m,i  to be finite.  From Equation

(15), it is infinite if 
)1k(k

kr
2v

−
α+= , 2 ≤ k ≤ m.  Since these ratios are decreasing in k, v has to

be smaller than 
)1m(m

mr
2

−
α+

.  Thus, the larger is m (the larger are pollution damages or the

social planner’s risk aversion), the smaller is the range of v for which the expected social

damages from pollution are finite.

A.2 Option terms.

• Model 1.  The change of variables 
v

X 2
Y

α=  and W(Y) = V(X), leads to:

(A12) 0=W
r

dY

dW
Y)

v

E2
(

dY

Wd
Y 1

2

2

α
−−+

This is Kummer’s Equation (Lebedev (1972)).  A general solution to this second order

ordinary differential equation can be written:

(A13) Y);
v

E2
2,

v

E2r
1(YB+Y);

v

E2
,

r
(AW(Y) 11v

E2
1

0
1

0

1

−−
α

+Φ
α

Φ=
−

If B0 were non-zero, the second term on the right-hand side of Equation (A13) would cause

x

)v;0(~

∂
ϕ∂

 to be infinite.  We thus set B0 to 0 and obtain Equation (16).

• Model 2.  The change of variables 
vX

E2
Y 1=  and )X(V

vX

E2
W

X

E 11 =










 β

 leads again to

Kummer’s equation, but this time we write its solution as follows:

(A14) )
vX

2E
;,(

X

E
B+)

vX

2E
;,(

X

E
Av)V(X; 11

0
11

0 ξβΨ




ξβΦ





=

ββ
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The option term should also be well defined at X = 0, and increasing in X.  Since

)]X(o1[e
)(

)(
)

vX

E2
,,(X

)X(Ln
vX

E2
1

1

+
βΓ
ξΓ=ξβΦ

ξ−β− , the first term on the right-hand side of

Equation (A14) grows unbounded when X → 0+.  From (9.12.1) in Lebedev (1972),

Ψ(a,b,z)≈z-a when z → +∞, so when X → 0+ the second term on the right-hand side is

equivalent to 
β−








v

2
B0 .  The value of the second term on the right-hand side can thus be

defined by continuity at X = 0.  Setting A0 to zero yields Equation (17).

APPENDIX B

In B1 and B2 below, we respectively outline the derivation of approximate

expressions for the left and right hand-sides of the stopping rules given by Equations (20)

and (21) when v increases from 0+.  We combine these results in B3 to obtain a first-order

expansion of x*(v) when v ≈ 0+.

B.1 First-order expansion in v of the left hand-side (LHS) of the stopping rule.

In the following, we show that:

(A15)
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)Ex~(2
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E
x~  if ),v(ov

dv

)0(dx

r)x~E(

x~

r2

r

r

x~E

)v;x(LHS

where ρ = 1 for Model 1, and ρ = 2 for Model 2.

• Model 1.  When v → 0, we have the formal convergence, for a non-negative integer k:
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(A16) ∑
∞+
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From Lebedev (p. 275), the last series on the right side of Equation (A16) converges towards

k
r

1

*
0

E

x~
1

−
α

−










 α
− provided 
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α 1*
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1

*
0 E

<x~  i.e.  1
E

x~
, where )v(*xlimx~

0v

*
0 →

= .  When this

condition does not hold, +∞=)x~(S *
0 .  We thus need to distinguish between two cases.

When 
α

< 1*
0

E
x~ , we use the recurrence relations on page 262 of Lebedev to derive:

 (A17)
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We substitute 
1

1

E

x
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v

2E
b ,

r
a

α==
α

=  in the above and simplify to find the first part of

Equation (A15).

When 
α

> 1*
0

E
x~ , we extend (9.12.8) in Lebedev to derive, for k non-negative integer:
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Using this result for k = 0 and 1 gives the second part of Equation (A15).

• Model 2.  It is convenient to proceed slightly differently.  First, we consider a sequence

(vn)n≥1, defined by: n1 nn −=ξ−β+ , so that:

(A19)
)1n(n

nr
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We add the subscript “n” to indicate that we consider this sequence in the definition of

various parameters.  From (9.12.3) p. 270 in Lebedev, this sequence greatly simplifies the

calculation of )z,,( nnn ξβΨ , where 
n

1
n xv

E2
z = , since:

(A20) ∑
=

−β− −β
−=ξβΨ

n
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nnnn z

!k

)n()(
)1(z)z,,( n

We use this relationship for our calculations in the numerical illustration.  Then, using

recurrence relations (9.10.13) and (9.10.14) on p. 266 in Lebedev, we find:

(A21)
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= .  As n → +∞, nn R
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R ≈ , so

Equation (A21) allows us to calculate n
n

RlimR
+∞→

≡ .  Since Rn is non-negative, either 0 ≤ R <

+∞ or R = +∞.  First, if  0 ≤ R < +∞, taking limits in Equation (A21) gives:
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Since R is non-negative, we cannot obtain this result if 
α

< 1E
x .  Next, if R = +∞, we rewrite

Equation (A21) as 
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Since R is non-negative, the above result is impossible if 
α

> 1E
x .  Hence, if 

α
< 1E

x

Equation (A23) holds, whereas if 
α

> 1E
x , Equation (A22) holds.  These results give us a

first approximation of the left hand-side of the stopping rule for this case.  When 
α

< 1E
x ,

this is just a constant, however, and we want the term of order v.  We thus use recurrence

relationships (9.10.15) and (9.10.16) p. 266 in Lebedev to derive:

(A24)
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We iterate this relationship once, substitute β for a, ξ for b, and 
vx

E2 1  for y, and simplify. We

introduce the result in the left-hand side of Equation (21) and use:
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to get Equation (A15) for the case 
α

< 1E
x .

B.2 First-order expansion in v of the right hand-side (RHS) of the stopping rules.

This simply requires a fair amount of tedious algebra.  The important relationship for

Models 1 and 2 are respectively:
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We find:
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where P
~

 is an abbreviation for K)0;x~(P)0;x~(P)0;x~(P *
01

*
02

*
0 −−≡ .  It represents the net

benefit of reducing emissions at ~*x0 under certainty; and xvxxvx P
~
 and P

~
 ,P

~
 , P

~
 are respectively

the first derivatives with respect to x and v, and the second derivatives with respect to x twice

and x and v, of P(x;v) evaluated at (~*x0,0).  Pi is given by Equation (14) for Model 1 and by

Equation (15) for Model 2.  The superscripts “I” and “II” are omitted to lighten our notation.

B.3 Expressions of *
0x~  and 

dv

*dx
 when v ≈ 0+.

First, we derive the equation verified by *0x~  by equating the terms of order 0 in

Equations (A15) and (A28).  Hence, if 
α

< 1*
0

E
x~ , it verifies 

x

*
01
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r
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Equation (13).  On the other hand, if 
α

> 1*
0

E
x~ , then *

0x~  verifies 0P
~ = .  P(x;0) is increasing

in x so it has at most one root.  This proves the first part of Proposition 2.

For 
dv

*dx
, we combine Equations (A15) and (A28) to find:
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where ρ = 1 for Model 1 and ρ = 2 for Model 2.  The notation is defined in B.2.
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TABLE I: x*(v) and corresponding option value for "small" v.

α=0.02 α=0.03 α=0.04

v x* ϕ*/K x* ϕ*/K x* ϕ*/K

m=2, K=7500, E2=0.7; Model 1

r=0.02 0.0000 -2.50 - - 6.00 82.0% 13.33 31.1%

0.0025 - - - - 5.98 82.1% 13.35 31.2%

0.0050 - - - - 5.97 82.2% 13.36 31.3%

r=0.04 0.0000 28.33 18.1% 45.00 0.0% 77.50 0.0%

0.0025 28.39 18.2% 45.13 0.2% 77.52 0.0%

0.0050 28.45 18.4% 45.25 0.4% 77.53 0.0%

m=2, K=7500, E2=0.7; Model 2

r=0.02 0.0000 -2.50 - - 6.00 82.0% 13.33 31.1%

0.0025 - - - - 5.43 86.6% 13.10 34.2%

0.0050 - - - - 4.86 91.3% 12.73 37.4%

r=0.04 0.0000 28.33 18.1% 45.00 0.0% 77.50 0.0%

0.0025 28.77 22.6% 47.61 5.7% 78.30 2.8%

0.0050 28.62 26.0% 48.44 9.5% 78.66 5.3%

m=3, K=175000, E2=0.7; Model 1

r=0.02 0.0000 -5.43 - - 7.35 188.4% 13.739 69.6%

0.0025 - - - - 7.31 189.0% 13.739 70.1%

0.0050 - - - - 7.27 189.6% 13.738 70.5%

r=0.04 0.0000 16.75 96.4% 23.33 28.3% 31.82 0.0%

0.0025 16.74 96.8% 23.40 28.8% 31.90 0.4%

0.0050 16.73 97.2% 23.45 29.3% 31.97 0.8%

m=3, K=175000, E2=0.7; Model 2

r=0.02 0.0000 -5.43 - - 7.35 188.4% 13.74 69.6%

0.0025 - - - - 6.12 212.4% 13.19 82.2%

0.0050 - - - - 4.80 238.9% 12.40 96.2%

r=0.04 0.0000 16.75 96.4% 23.33 28.3% 31.82 0.0%

0.0025 15.69 111.9% 23.60 40.8% 32.89 10.4%

0.0050 14.47 127.2% 23.10 51.9% 32.88 18.5%
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TABLE II: Value of v such that x*=0

α Model 1 Model 2

m=2 m=3 m=2 m=3

r=0.02 0.02 - - - - - - - -

0.03 0.600 0.304 0.024 0.012

0.04 1.600 0.791 0.053 0.027

r=0.03 0.02 1.225 0.350 0.033 0.011

0.03 2.650 0.925 0.059 0.026

0.04 4.375 1.569 0.083 0.039

r=0.04 0.02 3.400 0.914 0.057 0.021

0.03 5.600 1.633 0.080 0.034

0.04 8.200 2.424 0.102 0.046

Note: K = 7500 for m = 2, and K =175 000 for m = 3.  For both values of m, E2=0.7.

FIGURE I: x* vs. v for Model I with E 1=1, E2=0.7, K=6000, and α=0.03
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1 See Dixit and Pindyck (1994) for an introduction to the theory of real options, and

Trigeorgis (1995) for examples of applications.

2 Model I is the square root process used by Cox, Ingersoll, and Ross (1985).

3 We include 0 in the arguments of Pi for uniformity of notation with the stochastic models.

See Section IV.

4 When m = 2, we find that 
r

E

)E2(E

r)K2(r
x 2

21

*
0 +α

−
−
+α=  when 

α
< 1*

0
E

x .  Thus, *
0x  increases

when r, α, or K increase, but the variations of *0x  with E1 or E2 depend on K.  In general,

however, it is not possible to find closed-form expressions for *
0x .

5 We can also find this result by solving the maximization problem directly.  Hence, for m =

2, the second derivative with respect to T of the objective function at *
0x  is

))0(XE(e
r2

)EE(2
1

T)r(21 α−
+α
− α+− .  This expression is non-negative only when 

α
≤ 1E

)0(X .

From Equation (10), if 
α

> 1E
)0(X , X(t) remains above 

α
1E

 for all t, which shows the result.

6 They are defined by: ∑
∞

Φ
+

0=k

k

k

k

k!

z

(b)

(a)
=z)b;(a, , where (a)0=1, (a)k=a⋅(a+1)⋅⋅⋅(a+k-1), and

z)b;-b,2a1(z
(a)

1)-(b
+z)b;(a,

b)-a+(1

b)-(1
=z)b;(a, b-1 −+Φ

Γ
ΓΦ

Γ
ΓΨ .  Ψ(a,b;z) is well defined

for all values of a and b, including negative integer values of b, and it is bounded with respect

to z (Lebedev (1972)).  0 Re(x)if ,dtte)x(
0

1xt >≡Γ ∫
+∞

−−  is the gamma function.


