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1) Introduction

Petroleum firms acting in exploration and production (E& P), routinely need to evaluate concessions and
to decide the investment timing for its project portfolio. In some countries, the exploration concession
has features such as the possibility of extension of the exploratory period if the holder of the concession
spend some fee (extratax) to governmenta agency and/or additional exploratory or appraisal
investment. This extendible option feature for petroleum E&P concessions is the case of Brazil', but
also exists in Europe (see Kemna, 1993). The adequate concession timing policy in the exploratory
phase is one polemic point in the industry debate, which this paper intends to contribute with some
quantification of alternative timing policies under conditions of market uncertainty.

This paper is related to the real options theory (or theory of irreversible investment under uncertainty).
As new contribution, we use the framework of options with extendible maturities, known before only
for financial options’, not for real assets. In addition, we use a mix stochastic process (mean-reversion
with jumps) to model the petroleum prices which, despite of its economic logic, has not been used
before in petroleum economic literature.

The model is useful for both, firms facing investment decisions, and government evaluating sectoral
policy (mainly timing policy) considering that firms have rationa expectations and will act optimally.

2) The Concession and the Stochastic Model for Petroleum Prices

Consider an oilfield, discovered in the concession area, which can be totally or partially delineated. The
model presented here identifies the optimal investment rule and the oilfield value.

In the exploratory phase, it is important to consider technical uncertainty (existence, size and quality of
petroleum reserves). The integration of this development decision model (market uncertainty oriented)
with exploratory factors (technical uncertainty) can be performed easily with simple models®, but also
with more complex models®. Development decision models are useful for a good exploratory valuation
model: the evaluation of the development project is a necessary step to evauate the exploratory
prospect itself. In the spirit of dynamic programming, calculations are performed backwards, and for
this purpose we need to know the termina value (option to develop a delineated oilfield) in order to
estimate the initial value (exploratory prospect with some success probability).

Oil price, the main source of market uncertainty, is modeled with a special stochastic process. a
combined jump-diffusion process. This model follows Merton's (1976) concept on asset prices
oscillations. The arrival of normal information over an infinitesmal time interval generates only
marginal adjustment of the prices, which is modeled by a continuous diffusion process, whereas the
arrival of abnormal information (very important news) generates a discrete stochastic shock (jump),
which is modeled as a Poisson process. The model that combines both, the jump-diffusion one is also
known as Poisson-Gaussian mode!.

The adopted diffusion process for petroleum prices is the mean-reversion process because it is
considered the natural choice for commodities’. Norma information means smoothly or margina
interaction between production versus demand (inventory levels is an indicator) and depletion versus
new reserves discoveries (ratio reserves/production as indicator). Basic microeconomics theory tells
that, in the long run, the price of a commodity ought to be tied to its long-run marginal production cost
or, “in case of a cartelized commodity like ail, the long-run profit-maximizing price sought by cartel
managers’ (Laughton & Jacoby, 1995, p.188). In other words, athough the oil prices have sensible



short-term oscillations, it tends to revert back to a “normal” long-term equilibrium level. Production
cost varies largely across the countries, mainly due to the geologic features, and most of the lower cost
countries belong (or are influenced) by the OPEC cartel. Hence, even with a growing non-OPEC
production, the OPEC role remains very important in the production game of the petroleum industry.

Other important mean-reverting evidence comes from futures market, as pointed out by Baker et a
(1998, pp.124-127). First, the term structure of futures prices are decreasing (toward the “normal”
long-run level, in backwardation) if the spot prices are “high”, and are increasing (in contango) if prices
are “low”. Second, if the prices are random walk, the volatility in the futures prices should equal the
volatility of the spot price, but the data show that spot prices are much more volatile than futures price.
In both cases, the mean-reverting model is much more consistent with the futures prices data than
random walk model. In addition, the econometric tests from futures term structure performed by
Bessembinder et al (1995, p.373-374) also reveals strong mean-reversion for oil prices and agricultural
commodities (but weak reversion for precious metals and financial assets).

The Poisson-jump® can be either positive or negative for petroleum prices, depending of the kind of
economic/politic abnormal news. In petroleum history there were abnormal news causing large jJumps in
petroleum prices, along few weeks. For example: jumps in 1973/1974 (lom Kipur war and Arabian oil
embargo), in 1979/1980 (Iran revolution and Iran-lIraq war), in 1986 (Saudi Arabia price war), in 1990
(Kuwait invasion by Irag) and in 1991 (the Iraq defeat). At least three large jump-ups and two jump-
downs for oil prices can be identified in these events. This feature is incorporated into the model, which
allows either direction for the jumps and stochastic size for the jump. We follow Merton (1976), except
that he used log-normal distribution for the jJumps size instead of the two truncated-normal distribution
that we assumed, and he used geometric Brownian (because he models financial assets, not
commodities) instead of mean reversion for the continuous process. The mean-reverting+jump model
was used before to model interest rate process (see Das, 1998, p.4), but despite its economic logic, was
not used before for oil prices.

Let P be the spot price of one oil barrel. Most of times the prices change continuously as a mean-
reverting process and sometimes change discretely by jumps. The oil prices follow the equation:
dP _
-
do= {0, with probability 1— Adt
¢— 1, with probability Adt
k=E(f -1 Eq.(1)

Eq.(1) for the rate of variation of oil prices (dP/P) has three terms in the right side. The first term is the
mean-reverting drift: the petroleum price has a tendency to go back to the long-run equilibrium mean P
with a reversion speed h. The second one presents the continuous time uncertainty represented by
volatility s, where dz is the Wiener increment. The last one is the jump term, with the Poisson arrival
parameter | (there is a probability | .dt to occur a discrete jump). The jump has random size: f has a
special probability distribution with mean k+1, represented by two truncated-normal distributions, one
normal distribution for the jump-up and the other one for the jump-down, (see Fig.1 below). In case of
jump, this abnormal movement has the same chances to be up or down.

[h(P- P)- | k]dt+s dz+dq
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Figure 1 - Random Jumps Distribution

The figure shows that the exact size of each jump is uncertain. The same figure points that, in case of
jump-up, the price is expected to double, whereas in case of jump-down the price is expected to drop to
the half. We assume large expected jumps but with low frequency, of 0.15 per annum.

By taking expectations in Eq.(1), is easy to see that E(dP/P) = h (P- P) dt, that is, the process is
expected to revert, and this tendency is higher as far the current price is from the long run mean. Thisis
like an elastic/spring force. In this process is useful the concept of half-life of the oil price process,
which is a more practical measure for reversion speed (it points the slowness to revert). Haf-life (H) is
the time that is expected the oil price to reach the intermediate value between the current price and the
long-run average price, and is given by the following equation (proof: see Appendix A).

H = N2
hP Eq.(2)

The jump-diffuson model has economic logic appeal and is a good mapping for the probability
distribution along the time for the oil prices. The model presents complex empirical problems due to the
additional parameters estimation, when comparing with a more popular (and simpler) model, the
geometric Brownian motion (GBM). However, GBM models are less rigorous than the jump-diffusion
stochastic process presented above, and this disadvantage can be important to model long-maturities
options like undeveloped reserves. Other important models for oil prices are the two and three factors
models, and models with stochastic long run price, that we discuss briefly.

The two-factor model (Gibson & Schwartz, 1990) generally uses GBM for spot oil prices and a
stochastic mean-reverting convenience yield d. This additional factor corrects the main bias from the
one-factor GBM model, becoming more consistent with the market data from the futures term
structure. The three-factor model is presented in a recent article of Schwartz (1997a, pp.929-931),
allowing the interest rate to be the third stochastic factor, aso modeled as mean-reverting. The three
stochastic processes are correlated, was performed a complex empirical job (using Kaman filter) to
estimate several parameters of these processes. He compares it with the one and two-factor models.

Another important class of models alows the equilibrium long-term price level to be stochastic,
presented in Baker et al (1998, pp.134-135) and in Schwartz & Smith (1997). Both papers argue that
this model is equivalent to the two-factor stochastic convenience yield model. The model has economic
logic because it is likely that the equilibrium level changes with the evolution of variables like the



marginal cost for price takers producers, the correlation of forces between OPEC and non-OPEC, new
environmental regulations, new technologies, etc. The equilibrium price is likely to be postively
correlated with spot prices in that model. In our model this equilibrium price is assumed constant, which
is reasonable in the context because our stochastic process describes the oil prices only until the
exercise of the option, assuming a market value of reserves after the exercise. For models that describe
also the cash flow after the option exercise, this improvement could be more important.

3) The Timing of Investment and the Optimization Problem

Let the instant t = T, be the primary (or the first) expiration of the concession option. At this time the
owner has three dternatives. to develop the field immediately, to pay a fee (and/or additional
exploratory investment) to extend the maturity of the option (looking for better conditions to invest), or
to give up the concession, returning the tract to the agency. So the firm has, in addition to the classic
option model with the decision for the maximum between NPV and zero, the decision to buy another
option paying the fee. Let the instant t = T, be the second and definitive expiration of the concession
option. At this time the firm will choose the maximum between NPV and zero. This second expiration is
like the classic option case. We consider that the operating project value W(P), that is, the project value
after the investment, can be conveniently given by the following equation:

W({P)=B.V(P)=B.qP Eq.(3)

Where B is the quantity of barrels of reserves in the ground (the reserve volume) and V is the market
value of one barrel of reserve. We assume that this value is proportional to oil prices, which has been
used as assumption in rea options models’. Consequently, V follows the same stochastic process of P.
The proportion factor q is, in average, 33% of oil price (“one-third” rule of the thumb), but can be a
different proportion for different cases of reserves. This proportion is named economic quality of a
developed reserve®, because the higher g implies the higher operational profit from this underlying asset.

The value of g is assumed constant and independent of the price, which could be viewed as one critica
assumption for “pure reversion thinking”. But we consider with the observed high positive correlation
between V and P’ and the value of q itself can be estimated using the expected oil prices trend from a
mean-reverting model or using information from futures market (decreasing the bias) as in Schwartz
(199743, €q.18 or eg.30). In addition, due the effect of depletion and discounting, the operating cash
flows from the first 5 years has higher importance in the reserve vaue than distant cash flows.

Schwartz (1997a, p.971) results give us another important argument, using very different stochastic
models that driven heavily on futures markets insights (the two and three-factor models mentioned
before). These models imply an underlying project value that is linear with the spot price (Schwartz,
19974, Fig.13), the inclination of his two or three factor NPV is exactly our economic quality g, and
hence can be reproduced with our Eg.3. This contrasts with the predictability of the “pure reversion
model” that undervalues the project in high spot prices scenario and overvalues the project in the low

price case. In practice, the simplification of g constant corrects some bias from “pure reversion”*°.

If we consider the extension of our stochastic process for the time horizon of the operating cash flows
(that is, after the exercise of the development option), would be necessary to consider additional
features. For a more complete model could be important allow for the operational options (expansion or
speed up, temporary stopping, abandon) and, perhaps more relevant, improving our stochastic process
by alowing the long run equilibrium price to be stochastic instead constant. These upgrade features are
left to a further work, but based in the above reasons, we think that our error is not much important to
justify going deeper by now. For example, in the high price case by taking account the option to speed



up production (with additional wells or early production systems)™*, we get some offsetting effect over
the expected reduction in V due to the expected price reversion. In addition, managers periodically can
revise the value of g to be used in EQ.(3).

We shall currently use values per-barrel (of course is adso possible to work in total values), then
afterwards we will use NPV to express net present value per barrel, so:

NPV = V(P)- D = qP-D Eq.(4)
Where D is the development investment per barrel of reserve.

Even being non-stochastic in our model, the investment value D in the first period (0-T,) can be
different from the second period (T;-T2) if we consider some benefit derived from that extension cost.
For example, suppose that part of the extension fee (K) is an additional exploratory well. If this well
could be used as a development well (as producer or as water injector), the extension investment can be
reduced by a certain quantity due to this well use'. So we use D; for the investment (per barrel) until
the first expiration and D, for the investment in the extension period (D; 3 D). If the additiona
exploratory well is a good investment independently of the extension benefit, is possible to consider the
traditional option model (instead of extendible options) with a single maturity at T, (because the
additional exploratory cost will be done anyway).

It is necessary to derive both the value of the concession (the value of the option to invest) F(P, t), and
the optimal decision rule thresholds. The decisions are to develop, or to wait, or to extend the option,
or even to give up. The solution procedure can be view as a maximization problem under uncertainty.
We use the Bellman-dynamic programming framework (see Dixit & Pindyck, 1994, chapter 4) to solve
the stochastic optimal control problem. We want to maximize the value of the concession option F(P, t)
seeking the instant when the price reach alevel P* (the threshold) in which is optimal one type of action
(investment or pay to extension). The Bellman equations are:

E 0= J[[V(P) ~D, ,E[F,(P+dP,t+dt)e PI) forall t<T, }
Lt L= max
B*(1) —pdt
[V(P) — D, E[F,(P+dP, t +dt)e P —K,0], for t=T, Eq.(5)
BB = we JIV(E) ~Dy BB t+dtye P forall T, <¢<T, Eq.(6)
S X0 [V(P)-D,,0], for t=T,

where r is an exogenous discount rate, that can be a CAPM™ like risk-adjusted discount rate for the
underlying asset if the market is sufficiently complete, or an arbitrary exogenous discount rate in case of
incomplete markets. In the first case is also possible to use “risk-neutral” valuation, by using a risk-free
interest rate instead r, but is necessary to change the drift of the stochastic process™. The risk-neutral
approach relies in the absence of arbitrage opportunities or dynamically complete markets™.

Let us consider amore general assumption in the model: the jump-risk is systematic (correlated with the
market portfolio) so it is not possible to build a riskless portfolio™, the market is not complete for this
model with non-diversified jump risk. Instead using an exogenous discount rate, the aternative for
incomplete markets models is a more restrictive assumption, using single-agent optimality framework
and/or detailed equilibrium description, as performed in Naik & Lee (1990) for jumps in the market
portfolio itself. Bates (1991) uses a risk-neutral approach for jump-diffusion with systematic risk, but
via restrictions on preferences. These more complex approaches need to specify the investor utility. In



petroleum corporations there are hundreds of thousands of stockholders, with different levels of wealth
and so with different utilities. So, a more complex approach trying to specify utility has practical
disadvantage, without to be much more rigorous than the adopted dynamic programming framework as
Dixit & Pindyck (1994), using an exogenous (e.g. corporate discount rate, capital cost) or a “ market-
estimated/proxy” discount rater .

We are interested in find out the optimal path Pi*(t £ T,), P5(T4) and P*(T, < t £T>), as well as the
value of concession F(P,t) in each of these periods. Using the Bellman equation and the I1t&’s Lemma, is
possible to build the following partial differential-difference equation (PDE)"":

Y%s?PPFep+{h(P- P)—1 E[f —1]} PFp+ F +| E[F(Pf,t)—F(P,t)]=r F Eq.(7)

With the following boundary conditions:

FO,t)=0 Eq.(8)
Fi(P, Ty) =max [V(P) - Dy, Fo(P, t) =K, Q] Eq.(9)
Fi (P*,t) = V(P*)-D;, i=1,2 Eq.(10)
F2 (P, T2) = max [V(P) - Dy, O] Eq.(11)
Fe (P*, 1) = Vp(P*) = ¢ Eq.(12)

The Eq.(7) is a PDE of parabalic type and is solved using the numerica method of finite differencesin
the explicit form (see Appendix B). A C++ program with a graphical interface (see Appendix D) was
developed to solve this model and to perform the comparative statics anaysis.

The boundary conditions (Egs. 8 to 12) are typica for an American cal option with extendible
maturities. Egs. 8 and 11 are standard for call options, whereas Eqs.10 and 12 addresses the early
exercise feature of American options. The second condition (Eqg.9) for the first expiration T, is the
extendible feature condition, and means to choose between the alternatives. to develop, to extend and
to give up (respectively in the max. parenthesis). The lowest price at T, that we choose to extend the
option paying K is the extension threshold PF. The last equation (12), known as “smooth pasting
condition” (or "high-contact"), is equivalent to the optimum exercise condition, so alternatively can be
performed the earlier exercise test (the maximum between the lived option and the payoff V —D).

Figure 2 shows the extendible option at the first expiration moment (t =T,) identifying the three
possible range of petroleum prices associated to different decisions (give up, extend or develop now) at
the first expiration. The threshold values are a so displayed in the chart. This graph is close to traditional
option payoff chart, except for the region between 11.9 and 19.7 US$/bbl, where the optimal action is
to extend the option (see the curve with option shape for the interval where is optimal to extend the
option). This graph istypical for the geometric Brownian motion (GBM), and the shape is similar to the
presented in the mentioned paper of Longstaff (1990, Fig.1, p.939). For the jump-diffusion case we will
get asimilar chart, with some difference in the shape of the option curve.
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Figure 2 — Extendible Option at the First Expiration (for Brownian Motion Base Case)




4) Compar ative Statics

4.1) Base Case: The Parameters

The Table 1 (see below) shows the parameters value used for the base case. Some values were
estimated using available data about oil prices and/or using available related literature, such as the
volatility, the long-run average ail price, the reversion speed, the jJump size and jump frequency. Others
were assumed as representative values for Brazilian offshore ailfields, such as the investment at both
expirations, the cost to extend the option and the economic quality of the reserves.

The assumed times to expiration consider an average international practice’. The (per-barrel)
investment cost, the current spot oil prices and the economic quality of the reserves are set so that in
the base case the NPV of the project is zero. The extension cost, of US$ 0.3/bbl means US$ 30 million
for a 100 million barrels of reserve, which is approximately the cost of two deepwater exploratory
wells. A preliminary and smplified empirical job to estimate the parameters for the jJump-reversion
stochastic process using oil prices time series (mainly for the volatility) is shown in the Appendix C, that
used market data from the Brent oil, the main oil reference in Europe. Comparison of this jump-
reversion process base case with the popular geometric Brownian motion is presented in section 4.3.

Table 1 — Parametersfrom the Base Case for Jump+M ean-Reverting M odel

Parameter Notation Base Case Value
Volatility of the Diffusion Process (% p.a) S 22
Exogenous Discount Rate (% p.a.) r 10
Reversion Speed ; [Half-Life (years)] h; [H] 0.03; [1.16]
Annual Frequency of Jumps (per annum) I 0.15
Economic Quality of Developed Reserve q 0.333
Long-Run Average Oil Price (US$/bhl) P 20
Average Jump-Up (%) m, 100
Standard Deviation of the Jump-Up (%) S 30
Average Jump-Down (%) my - 50
Standard Deviation of the Jump-Down (%) S 15
First Expiration (years) T, 5
Second Expiration (years) T, 8
Investment up to T1 (USHbbl) D, 5
Investment after T1 until T2 (US$/bbl) D, 4.85
Cost to Extend the Option (US$/bbl) K 0.3

For the half-life value, athough some values from literature are higher (2+ years) than ours, the values
that Bessembinder et a (1995, pp.373-374) found in futures market (data from March 1983 to
December 1991) are very close to ours. Extrapolating the values from their Table IV, we find an
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implicit half-life of 1.1 years, practicaly the same of our higher estimate (1.16 years, corresponding to h
= 0.03). Bradley (1998, p.59) aso finds a half-life close to our base case (of 1.39 years). Anyway,
several sensibility analyses for the parameters were performed, including the reversion speed case, and
can be supplied by the authors to interested people upon request.

The long run equilibrium price is hard to obtain. One reference is along run OPEC price goal of about
USS$ 21/bbl, but the long run margina cost from non-OPEC countries, under US$ 19/bbl, could be used
as lower bound. The increasng non-OPEC production has been offsetting by the rising costs
experimented by oil companies going to deepwater and ultra-deepwater to find new reserves. Perhaps
the best value is in between the OPEC and the non-OPEC marginal cost™®.

Baker et a (1998, p.129) estimate of the long run oil price was $18.86/bbl (in 1995 dollars) and used
(pp.138-140) $20/bbl asinitial long run level in their model®. In the same article, one graph (p.127) of
term structure of futures prices suggests a long-run price between 18-21 $/bbl. We adopt $20/bbl (in
1998 dollars) for the Brent crude. This value is aso adopted in Bradley (1998, pp.59-61) and shown in

Cortazar & Schwartz (1996, Figure 4). Our P value is constant along the option term.

We assume an exogenous discount rate r of 10% p.a. (which is also the official discount rate to report
the present value of proven reserves to stock market investors) in the base case. In redlity, with our
general assumption of systematic jump risk, is not possible to use the non-arbitrage way to build a
riskless portfolio because market information is not sufficient to spawn all the risk. In this case there is
no theory for setting the “correct” discount rate (CAPM doesn’'t hold), unless we make restrictive
assumptions about investors' utility functions (without guarantee of more reliable results).

One practical “market-way” to estimate r is taking the net convenience yield (d) time series (calculated
by using futures market data from longest maturity contract with liquidity)*, together with spot prices
series, estimating r by using the equation: r = d + h(P— P). Here d in generd is just the difference
between the discount rate (total required return) and the expected capital gain E(dP/P), like a dividend.
The parameter d is endogenous in our model and, from a market point of view, is used in the sense of
Schwartz (1997b, p.2) description: “In practice, the convenience yield is the adjustment needed in the
drift of the spot price process to properly price existing futures prices’. High oil prices P in general
means high convenience yield d (positive correlation)®, and for very low P the net convenience yield
can be even negative. There is an offsetting effect in the equation (even being not perfect), so we claim
as reasonable the approximation of r constant. In compensation, we don't need to assume constant
interest rate (because it doesn't appear in our model) or constant convenience yield (here implicitly
changes with P)?. The series (P, d) permits to estimate an average “market” r (from the r time series
that we will get with this approach) or by looking the intercept from the simple regression P x d. In this
way, the value of r depends heavily of the assumed values for h and P. Thisis only a bound for r in
the general model.

The aternative, using the same market data, is to estimate the return r on this commodity by running a
cointegrating regression of the temporal series (P, d) or by estimating the risk premium running asimple
regression of futures and spot prices, see Pindyck (1993, pp.514-517)%.

Figure 3 shows the option value for the base case at the current data (t = 0, upper/thinner line) and the
payoff line (bottom line) at the first expiration (T,). The option curve shape is different of the Brownian
motion case (Fig.2), here the option graph exhibits a typical shape for mean-reverting process. See the
option curve smooth pasting on the payoff line: the tangency point is the threshold for immediate
investment. The main thresholds of the base case are showed in the chart.
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Figure 3 - Extendible Option at t = 0 and at the First Expiration (Mean-Reverting + Jump)
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Figure 4 shows the options value at the first expiration (payoff, bottom line) and the option curve
(upper line) just after the first expiration, for a case dight different of the base-case (with higher fee to
extension, K= 0.5 $/bbl, in order to highlight the effect). Note that the payoff and the option curve are
parald in the interval that is optimal to extend the option and also that the distance between the parallel
linesisK, the feeto be paid in order to extend the option.

Extendible Option {5 + 3 years) - Jump+Mean-Reverting Process
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Figure4 —The Options Value at the First and Just after the First Expirations (for K = 0.5)

Figure 5 displays the threshold lines for both terms of the option. On or above the threshold lines, is
optimal the immediate investment.
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4.2) Senghility Analysis

Several sensihility analyses were performed for each parameter of this process. Some parameters show
higher impact on both option value and thresholds than other. For example, the economic quality of the
developed reserves () has large impact, mainly in the option value: from q = 0.2 to 0.45, the option
F(P=15) rises from 0.46 to 4.00 $/bbl and the threshold P*(t=0) drops from 30.9 to 24.4 $/bbl.
However, for the standard deviations of the jump size (both up and down) simulations have shown a
minor impact on the results.

One interesting analysis in this transition phase of Brazilian petroleum sector is about time to expiration
policy. The table below shows that an increase in the time to expiration has major impact over the
option value than over the threshold. The table points that rising the total expiration (T1+T,) from 5
years to 8 years, the option value increases near 20%, whereas the threshold value increases less than
4%. So, 8 years instead 5 years attract higher bid bonus (~ proportional to option value) without
delaying (looking the thresholds) too much good investment projects.

In the base case, the option value reach US$ 2.178/bbl, which is significantly higher than NPV value
(NPV is zero for P = 15 $/bbl). For a 100 million barrels oilfield, means an option value of US$ 217.8
million.

Table 2 — Sensibility of the Time to Expiration Value for Option and Threshold

Ti(years) | Ti+To(years) | F(P=15) ($/bbl) | %inF | P*(0) ($/bbl) | %in P*
2 3 1.440 - 24.1 -
3 5 1.828 26.9 25.1 4.1
5 8 (base case) 2.178 19.2 25.9 3.2
6 10 2.314 6.2 26.2 12
8 12 2.417 45 26.4 0.8

Moreover, higher time to expiration presents other benefits (so higher bonus-bid) that were not
considered in this paper. For example: (a) “Bayesian” gain of sequentia exploratory investment (rather
parallel) using information gathered for correlated prospects; (b) low attractiveness for one firm to bid
severa tracts, if the timeis too small to perform optimal sequential investment (according the “auction
theory”, less bidders per tract means lower expected bonus value); (c) an economic/optimal planning of
resources (e.g. deepwater rigs) alocation is impaired if the timing is too short, losing business
opportunities that are available on specific timing like seasonal rates of specia service ships, etc.; and
(d) revelation of exploratory work in the basin (see Dias, 1997, p.143) that reduces technical
uncertainty and points out new geologic plays currently not considered (which leverage the tract value
and so the winner bid, if there is time to wait and to use this information).

Figure 6 shows the thresholds sensibility with the Poisson arrival factor | . For higher jump frequency
the threshold level for the immediate investment is higher, which has economic logic because the
investor is less willing to invest due to the risk of jump-down. However the threshold for the extension
decreases, because jump-up increase the possibility of a not good project to transform into a good one.
Hence, in most cases, firms should pay a small cost to extend the option rights.
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Figure 6 — Thresholds and the Arrival Jump Frequency |

The comparative statics results in genera were: option values increased for higher reversion speed,
lower discount rate”®, higher volatility, higher jump arrival, higher jump-up mean, lower extension cost,
higher long-run mean, higher economic quality of the reserve, and higher expiration time.

4.3) Comparing Geometric Brownian with Jump+Mean-Reversion

Geometric Brownian Motion (GBM) also known as drifted random walk model, is the most popular
stochastic process and is generally a very good stochastic process in financial economics, although far
from perfect, mainly for commodities. The GBM model for the oil pricesis shown below.

dP = aPdt+s Pdz Eq.(13)
where a=r - d and dzisthe Wiener increment.

The parameters for GBM base case arer = d = 5%, s = 23%. The comparison of the GBM with our
more rigorous jump-diffusion model (Eq.1) for oil pricesis summarized in the table below.

Table 3 - Option Valuesat P = US$ 18.3/bbl
Jump + Mean Reversion Process. F(P =183 $/bbl, t =0)

Base | No-Jump | No volatility | s =5% | Noreverson | s =23%,| =0
(I =0 s =0% h=0 andh =0

24768 | 1.8979 2.0225 2.2592 1.8237 1.4162

Geometric Brownian Motion: F(P =18.3 $/bbl, t =0)

Base (r = d = 5%) r=10% and d=5% | r=10% and d=10%
15739 2.0831 14162
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The table was built with a convenience yield d of 5% for both processes. In the case of GBM, dis a
parameter input of the model, and is constant. In the case of Jump+Mean-Reversion, d is not constant,
is not direct parameter input (it is implicit, endogenous of the model) and depends of the price level:
d(P). In order to compare in the same basis, let us choose a petroleum price to compare options so that
dividend yield is 5%. This price is 18.3 US$/bbl because it implies a convenience yield of 5% for our
jump-mean-reverting process, as shown using the equation for d:

d=r - h(P-P)P 0.05=0.1-0.03(20—P) b P=18.3 $/bbl

Comparing jump+mean-reversion and GBM (Table 3), jump+mean-reversion in general presents higher
option values. The GBM has higher option value only for higher interest rate case (r = 10%, the same
value of r in jump-diffusion setting) and when comparing with no jumps (I = 0), no volatility (s = 0) or
no reversion (h = 0) cases. The option value is closer of GBM in case low uncertainty (5%) for the
reversion process. However, the role of interest rate r in the GBM and the r in the jump-diffusion are
very different. The option value increases with r in the GBM and decreases with r in the jump-diffusion
(see last endnote). In the GBM r isindependent of d, so the only effect is to increase the waiting benefit,
but in the jump-diffusion model r is not independent of d. In other words, for the same drift h(P- P) a
change in the value of r, implicitly means change in the value of d. For this reason, if we use a lower
value forr (e.g.r = 5% =r), we get a higher option value (2.5814, not shown in the table), and the
option values from jump-diffusion process become still higher than GBM. For h =0, implyingr =d, we
can compare the case of GBM with r = d and jump-diffusion for no reversion, no jump and with the
same volatility (h = 0, | =0, s = 23%). In this case, as expected, the values are the same, equa to
1.4162 (see Table 3). For a jump-diffusion with r =5%, and also with s = 23%, h = 0,1 = 0 (not
shown in table), the option is again the same of the GBM base case (which hasr = d = 5%), that is,
1.5739.

Figure 7 shows both thresholds, for the jump-diffusion process and for the GBM. The threshold curve
is smoother for GBM than for jump-diffusion process near expirations. The reason is the effect of the
convenience-yield d. In case of GBM, d is constant and positive, whereas for jump-diffusion process, d
is not constant (depends of ail prices P). In jump-diffusion process d is positive for higher oil prices and
negative for lower prices. A well known property from American options is that earlier exercise only
can be optima if d > 0. So, earlier exercise is possible only if P is higher than 16.7 $/bbl (in the base-
case) and this explain the discontinuity of the threshold curve at the expiration®®,
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Figure 7 — Thresholds Comparison:

Jump-Diffusion x Geometric Brownian Motion
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The other important observation is that the threshold to undertake the project in the beginning of the
term is higher for the GBM (athough in general the option values are lower). This is coherent with the
results of Schwartz (19973, p.972)*" when comparing GBM with their two and three-factor models
even being very different from our jump-diffusion model, but that systematically produce results
qualitatively close of our model when he compares these models with the GBM.

Figure 8 presents the thresholds curves for the first period (at t = 0 and t = T,) in function of the
volatility. Higher volatility favors waiting and the extension (higher spread between P* and PF).

Thresholds x Volatility

30
235 24.5 _'Eﬁ'g__'_—_’_f_‘ 276

3 23-7",,__——0—'—'_“k --H 234
2 m------"" L .
& 2 Mo o~ 13 272
] 20.4 20.8
@ —— P7(0)
W0 15 I
o =
= - -H- - P*(T1)
@ 10 — a— PE(T1) | —
o 5.4
= 6O &~_ _ 3.1 4.7
o5 ey ———— 17

[I T T T T T T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Volatility {(%op.a.)
Figure 8 —Effect of the Volatility on the Jump-Reversion Thresholds

5) Conclusions

This paper develops a model for extendible options embedded in the petroleum offshore E& P contracts
that happen in some countries. The model incorporate the possibility of the extension cost (e.g.
exploratory wells) to be used partially as a benefit (to reduce the development cost).

Sensbility analysis of the parameters, suggest a higher option value (and so expected higher bonus bid)
to a higher time to expiration without a significant additional delay of investment in good projects.
Moreover, there are other benefits (so even higher bonus-bid) from higher time to expiration that was
not quantified in this paper, such as revelation and portfolio optimization.

The stochastic model of jump+mean-reversion for the oil prices has more economic logic than previous
models used in real options literature, considering that normal news causes continuous small mean-
reverting adjustment in oil prices, whereas abnormal news causes abnorma movements in these prices
(Jumps). A future improvement is to allow for stochastic long run equilibrium price (mainly for longer
terms), calculating the initial equilibrium price (of the industry players) by the game theory.

The comparison of this more rigorous model with the more popular Geometric Brownian Motion
pointed a higher option value for the jJump-diffusion case. Hence, a higher expected bid in the lease-sale
process is a consequence of using this more rigorous model. Other good models from literature like
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Gibson & Schwartz (1990) and Schwartz (19974) two and three-factor, that rely more heavily on the
futures markets, despite being very different, present results qualitatively very similar with ours.

Severa extensions are possible for our main model. For example: (@) alowing the equilibrium price
level to be stochastic; (b) using a correlated stochastic process for the operational cost, instead the
adopted linear function V(P); (c) incorporating the technical uncertainty and exploratory revelation; (d)
considering other options like sequential development (extendible call on a call) and/or abandon
(extendible call on a put); and (e) portfolio planning, quantifying the expected first hitting time for a
project that currently is optimal to wait, in order to estimate when the investment is expected to start.
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APPENDIXES

APPENDIX A — MEAN REVERSION AND HALF-LIFE

The model of oil prices reversion known as Geometric Ornstein-Uhlenbeck is used in Dixit & Pindyck (1994) and
in Metcalf & Hasset (1995):

gz NP -P)dt+odz

(A1)

Thismodel (A1) has the same forecasting expected value (A3) of our actual jump-diffusion model (A2):
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Q:[q(F—P)—a.k]dHcdudq
P (A2)

%) -n@-p) at
P (A3)

We define half-life (H) of the petroleum prices® as the time for the expected oil prices to reach the middle price
between the current price and the long run mean. This oil price half-life is deducted below:

Fromeq.A3: dP/[P(P- P)]=h dt

Integrating from Py (to) to Py(ty), and letting Dt = t; — tp , we get:

_.§.=-hPDt (Ad)

For Dt = half-life H, by definition we havethat (P,- P)=0.5(P,- P), hence:

_In@)
H =75 (A5)

From A4 we can get the expected ail price at the generic instant t;:

E(P) = P+ (P,- P) e P"™ (A6)

In some papers appeared a dightly different half-life equation: H' = In(2)/k , where k is a reversion speed. This
equation comes from models like in Smith & McCardle (1997). They model the logarithm of the oil prices
(instead the prices itself) as mean-reverting, p = In(P), with the Ornstein-Uhlenbeck process:

dp=k(p- p)dt+sdz

Following the same procedure above, is easy to show that the half-life of this process is H'=1In(2)/k . This
logarithm model has some advantages (for example the long-run mean doesn't appear in the half-life equation),
whereas our model has the practical advantage of the half-life interpretation because we use oil prices half-life
instead half-life of In(P): as reversion parameters the user (manager) enter the long-run average and the number of
years which is expected the oil price to reach the half distance towards the long run mean.

APPENDIX B — EXPLICIT FINITE DIFFERENCE NUMERICAL SOLUTION

To solve the partial differentia equation (PDE) of parabolic type we use the finite difference method (FDM) in
the explicit form. It consists of transforming the continuous domain of P and t state variables by a network or
mesh of discrete points. The PDE is converted into a set of finite difference equations, which can be solved
iteratively using the appropriated boundary conditions (t = T, and t = T,). The solution is reached by proceeding
backwards through small intervals DPs until we find the optimal path P*(t) to every t. The use of finite difference
method for jump-diffusion processes appeared before at least in Bates (1991).

Suppose the following discretization for two variables:
F(P,t)° F(iDP, jDt)° Fi ,whereO£i£m eO0£j £ nyor nywithn,, =T;,/ Dt.

The choice of the discrete steps must be done in away that all the coefficients of the finite difference equation be
always positive to any value inside the grid to ensure the convergence of explicit FDM. So the convergence of the
FDM settles the choice of DP and Dt. The partia derivatives are approximated by the differences:
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Fee» [ Fivj- 2F; + Figj] / (DF’)2 v Fe»[Finj-Fyl/20P ; F»[Fiu-Fj;]/Dt

We use the “central-difference” approximation for the P variable and the “forward-difference” for the t variable.
Applying these approximations to the PDE and its respective boundary conditions we have the following
difference equation:

¢ 0 : SR
R =P R 1 P 1P R 1 1 PiumB 7 1)

.+ D §32i2+i.(hﬁ) i2hoP il kU _ 0. D &1 22 U
= é - - a ; = a—- -1y
Dt.r +1@ 2 2 2 2 b Dt.r +18Dt H
A 2.2 . —= .2 . N
- Dt ©s<i i.(h.P) i“.hDP il.kU Dt ~
= & ; + 0 o= — | k=Ef-1
T +1g 2 2 2 2 4 Pjump =57 [ ]

More about the FDM can be found in Brennan & Schwartz (1978) or Smith (1971).

APPENDIX C — VOLATILITY AND OTHER PARAMETERS ESTIMATIVE

The oil price® time series (see graph below for real prices at 1990 US$) suggests that the price of oil is subject to
permanent and transitory instabilities

Brent Oil Pricesin 1990 US$/bbl

E4.1

TLEE S Y T T T T-r - R TV -

The model instability can be considered on 2 ways. One, simpler, admits that there was a structural change from
a certain moment, say the middle of the 70s, which would recommend discarding the older periods. This view is
particularly arbitrary due to the fact that it depends on the cut point and the assessment that only a model change
occurred. Alternatively the assessment of a structural change can be incorporated into the model explaining the
hypothesis that the parameters follow a random walk.

Even though this last approach is more elegant, it implies in the incorporation of non-linear elements to the model,
and in the use of more complex estimation models. Two models will be considered for (dP/P); = p. Moddl 1 refers
to the geometric Brownian motion and Model 2 to the mean reversion process. In both models the parameters
(d, y) control the adaptability degree of estimations of the pair (a, b), introduce non-linearity and do not allow the
finding of analytical forms for its estimates, requiring the use of numerical methods for it.
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Model 1: Geometric Brownian Motion
p=ate &~N(0, s) (CY
& =a.1t €y e ~ N(O, ds)

Model 2 admits that the change in oil price in relation to alocal average (A) generates tensions in the market that
pressure the price toward the average. Suppose the next equation C2 is a simplified discrete time representation of
the continuous mean-reverting process. Since price level A is unknown, this representation implies in the product
between the speed reversion estimator parameter (b) and the medium price (A;). The mode (C2) can be
parameterized in the form (C3), where the medium price A = ab.

Mode 2 : Mean Reversion Process.

pi=bi(Awi- Pa) +e a~N(@Os) (C2

p=a-bPa+tea a~N(0s) (€3

a=a.+ ey ex~N(O, ds) by =br.1+ ex ex~N(O ys)

The change in the instability standard of the prices aong the sample will be considered using an adaptive model
for estimation of volatility(ies). In this specification, the choice of the parameter (g), which controls the
adaptability degree of volatility, is arbitrary. The variance equation s follows (C4), with (C5) as solution.

S= 051+(1-0)€%a (C4)
s=aiq €. /(1-q) (C5)

The difference equation (C4) can be solved in the form (C5) that shows the effect of errors of the last (i) periods
in the estimation of the (t) period volatility. The value of (i) for (q')=0.5 is denominated half-life of information
(different of ail prices half-life presented before) and can be used to suggest the relevant vaues of (g). The table
below shows the estimated values for the volatility of the model (2) —which shows results smilar to the ones from
model (1) —for many values of (q), together with their corresponding half-life.

Half-Life (years) 1 2 5 10 ¥
q 090 | 095 0.98 0.99 1
Volatility (monthly) | 7.11 | 6.68 6.17 5.75 4.39

The characteristics of prices suggest that the volatility has the same instability behavior since 1979, and because
of that we consider relevant the values with haf-life smaller than 10 years. For these values the volatility isin the
interval [6.17, 7.11], therefore we chose (g = 0.95) to calculate the estimates.

In this calculation we considered as belonging to the sample the numbers (dP/P) that were in the interval [- 0.15,
0.15]. All the others were considered a consequence of the jump, which were removed of the sample. The models
(1) and (2) were estimated using the method MCMC (Markov Chain Monte Carlo) - see West and Harrison
(1997) — and obtained the after the mode and the interval of maximum density a posteriori (IMDP) for 65% level.

Model 1 Model 2
Mode IMDP(65%) Mode IMDP(65%)
d 067 [.022, .136] 031 [0, .047]
y - - .003 [.001, .006]
volaility | 6.684 [5.742, 6.72] 6.286 [4.85, 6.62]

The relevant values for the degree of adaptability of the model are in table above. Each of these corresponds to a
possible description for the medium price and the effect of the deviation with respect to the medium price. Using
the mogt likely value of both models we obtain the results below.



Modd 1 Modd 2
Average | AveragelS. Deviation | Average | Average/S. Deviation
a -.63 52 7.08 1.94
b - - 487 2.56
Medium Price - - 145 -
Volatility 6.684 - 6.286 -

The table below presents a summary of the obtained results from the Model (2) with different combinations of

medium prices and the deviation effect obtained (reversion) for data from 1979 to 1998.

Factor* d, vy Volatility (monthly) by alb
1 0.04, 0.004 6.50 72 16
8 0.005, 0.0005 6.73 13 17.8
40 0.001, 0.0001 6.77 .043 10.7

* Factor 1 indicates the most adaptive model, which gives more weight to the recent observations, and Factor
40 represents the less adaptive one with amost the same weight to al observations.

Every dternative belongs to the interval of maximum density a posteriori (IMDP) to the level of 65%, therefore
your choice can be realized using non-statistical approaches.

APPENDIX D - THE SOFTWARE INTERFACE

The software interface was built using Borland C++ Builder. The main screen is shown in the figure below.

The interface have three stochastic processes available to choose to perform the calculus for the extendible option
problem: (a) mean-reversion+jump, with the random jump using two truncated-normal distribution (2 Normals);
(b) mean-reversion+jump, with the random jump using log-normal distribution (LogNormal); (c) geometric
Brownian motion. The software has two aternatives for the reversion-jump process because our first version of
the model, presented in Stavanger (May 1998), used the log-normal distribution for jumps (like Merton, 1976)
instead the two-truncated normal distribution, so it remained in the software.

The parameters from the base case for the first stochastic process are shown in the figure (including the grid
density parameters for the finite difference method: DP, Dt and P maximum). There are others interactive
windows in the software, integrating the user-friend interface.
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Extendible Options Model for Petroleum Rights
Oil Prices with Mean-Reverting + Jump Process (Z Normals)

v §Mean—Reverting+.]ump (2 Normals) ¢ Mean-Reverting+Jump (LogNormal) ¢ Geometric Brownian Motion

|'Stm:hastic Processes

Investment (D1, US$/bbl) 5 First Expiration (T1, years) J
Tnvestment (D2, US$/bbl) 4.5 Second Expiration (T2, years) &
Petroleum Price (US$/bbl) 15 Crid Parameters AP (L]
Cost to Extend the Option ($/bbl) 2.3 At 00001
Economic Quality of Developed Reserve (.333333 P Maximum (US$/bbl) 435
Long-Run Mean Price (US$/bbl) 20 Anmual Frequency for Jump .15
Half-Life of Oil Price (years) /.1552453  Volatility of Diffusion Process (p.a.) (.22
Average Jump-Up Size (= 0) / Standard Dewiation of the Jump-Up .3
Average Jump-Down Size (<0) -0.5 Standard Dewviation of the Jump-Down (.75

Exogenous Discount Rate (p.a.) 0./

Farameters for Mean-Rewverting + Jump Process (2M)
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NOTES

! The fiscal regime of Brazilian E&P sector is the concession contract (lease), which firms offer bonus to National
Petroleum Agency (ANP) in first-price sealed bidding process. The first version of the concession contract was published
in Feb/98, some new guidelines in Jan/99 by ANP, and still can evolve until the bid. The model presented here is not
Brazilian specific, but the underlying motivation is the Brazilian case.

2 For a discussion on extendible maturities options, see Longstaff (1990) and Briys et al (1998, chapter 16). The payoff of
an extendible option is the maximum of two risky payoffs: the payoff from a standard call option and a compound option
(call on acall) lessthe cost to get it. So, extendible options are more general than compound options.

3 See Dias (1997) for a simple model integrating three kind of uncertainties (technical, economic and strategic) using a
decision-tree plus a game-tree for the exploratory phase, and a continuous-time model for the devel opment phase.

* See Dixit & Pindyck book (1994, section 4, chapter 10) for a continuous time model combining both technical and
market uncertainty. Although the model is drawn to nuclear industry, it can be adapted to the petroleum one.

® See for example the econometric tests of D. Pilipovic (1998, table 4-9, p.78, WTI petroleum). Pindyck & Rubinfeld
(1991, chapter 15) using a Dickey-Fuller unit root test, rejected the random walk hypothesis for a very long time series
(more than 100 years). But they point that the oil price reversion to along-run equilibrium level islikely to be slow.

® In real options literature, most jump processes has been used to model random competitors arrival (see Trigeorgis, 1996,
pp.273, 284-288, 328-329), and in outcomes from R& D projects (see Pennings & Lint, 1997).

" See Paddock, J.L. & D. R. Siegel & J. L. Smith (1988) and Dixit & Pindyck (1994, chapter 12, section 1).
8 Dias presented this concept in the "Workshop on Real Options’, May 1998, Stavanger, Norway.

° The main reference for the market value of reserve, published by the traditional John S. Herold since 1946 (see data and
discussion in Adelman et al., 1989, mainly Table 2), shows alarge positive correlation between P and V, including jumps.
Examples: between 1981-85, V was in the range of 8-10 $/bbl, whereas in 1986 dropped to 5.88 $/bbl; for the 70’s oil
prices shocks, jumpsin V were still more pronounced. The volatility of V has been dlight lower than P.

19 The Schwartz's models assume that the operational costs (OC) are deterministic and independent of the commodity
price P. However, for oilfields, the correlation between OC and P has been very high as shown the data from Adelman et
al. (1989, Table 2). By the other side, our model simplifies assuming perfect correlation. The truth isin between. A more
realistic but more complex model should allow for stochastic costs with a positive correlation with P process.

1 Early Production Systems were exactly what happened to Brazil in the high prices times from early 80's.

12 |n Brazil frequently an exploratory well is used in the development project. Even if the well is not the better location for
the project, the investment reduction due to the already drilled well can be a good compensation. Kemna (1993, based in
her consulting for Shell) presented a model for extendible options, but not allow for any benefit derived from the
fee/additional exploratory extendible cost. She developed a more simplified model, using European style option.

13 Capital Asset Pricing Model, a mean-variance equilibrium model, is used to set discount rates for assets and projects.

4 The equivalent alternative (largely used in derivatives pricing) is a probability transformation, using an artificial
probability (or martingale measure) instead of the real probability process. For the mean-reversion process case, see the
risk-neutral probabilities in Sick (1995, pp.676-677), and the drift changing in Dixit & Pindyck (1994, p.162). In both
cases the main difference (when comparing with GBM) is that the convenience yield d is a function of P instead constant.
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So, risk-neutral probabilities and risk-neutral drift are function of P, and appear a risk adjusted discount rate. For mean-
reversion both the drift and the risk adjusted discount rate r are specified, so is not possible by-pass the estimation of
r even discounting with the risk-free discount rate (risk-neutral world). This rate r appears just due to d. For the GBM
all that mattersisthe differenced =r —a, and with d known and constant, is not necessary to estimater .

3 For a discussion of dynamic programming versus risk neutral/contingent claims approach, see Dixit & Pindyck (1994,
chapter 4). For an extension of risk neutral valuation to nontraded assets, see Trigeorgis (1996, pgs.101-103).

'8 For il prices, is hard to say if jumps are or not really systematic, but theoretically a jump in the oil demand by the
market (mainly in crashes/recessions case) could cause a price jump. Nietert (1997, p.1-4) distinguishes three types of
jumps for stocks: firm-specific, industry-specific (with systematic component) and market jumps.

" For the contingent claims framework, the Eq.(7) is similar: the right term r F is replaced with rF, and the second term
{h (5- P)—1 E[f —1]}PFp isreplaced with{r—r +h (5- P) —1 E[f —1]} P Fp. See also the endnotes 14, 15.

18 The preliminary version of the concession contract in Brazilian pointed out 3 years plus 2 years of extension, but the
new guidelines in January/99 points that the total time can reach 9 years.

19 A suggestion for further research is to set the long-run equilibrium price modeling with the game theory, seeking a
Nash-Cournot equilibrium or even modeling a Stackelberg |eader-follower duopoly: OPEC and eventual allied as follower
maximizing the profit (choosing the production level) given the production of the price takers producers (leader). Pure
statistical approach could be noisy, misleading the evolving forces correlation between the players.

% That paper uses an uncertain long run equilibrium price modeled with geometric Brownian model, with this
equilibrium price growing exponentially.

2! The known formula for a commodity futures prices is F(t) = e~ @' P. This equation is deducted by arbitrage and
assumes that d is deterministic, so it looks contradictory with our assumption of systematic jump and with our model that
impliesthat dis as uncertain as P. But we want an implicit value for d and so for r, to get a market reference (a bound) to
setr. Itisonly apractical “market evaluation” for the discount rate that is assumed constant in our model.

2 Schwartz (19974, p.943, Table 1X) finds strong correlation between the spot price and the convenience yield (+0.915
for 259 samples and + 0.809 for other 163 samples). The correlation between spot price and interest rate (r) were slight
negative (- 0.0293 and —0.0057), whereas between d and r seem to be independent (-0.0039 and +0.0399).

% Much less redlistic is the standard GBM assumption of d constant. Even the superior two-factor model of Gibson &
Schwartz (1990) assumes that both the interest rate and the market price of convenience yield risk (p.967) are constant.

4 The Pindyck (1993) model is based in the “fundamentals’ (present value of d stream), so is aso not strictly coherent
with our model with systematic jumps, but again his suggested market way to estimate r could be a good reference.

% Increasing the discount rate r, decrease both the option and the threshold at t=0 because, given a fixed drift, the

convenience (dividend) yield d has to adjust to the chances in r due to the relation r =h (5 - P) +d. Increasing the
convenience yield, the waiting value decreases and so the threshold and the option value. See Dixit & Pindyck (1994,
chapter 5) for further explanation of mean-reversion process and sensibility analysis for the discount rate.

% At the expiration (“now-or-never”) the option is the maximum between NPV and zero. NPV is zero for P = 14.55 $/bbl
(= threshold at expiration T2). In the threshold curve there is a gap because a minute before the expiration, a necessary
condition to exist an optimal exercise is P > 16.7 (in order to get d > 0) and d is sufficiently positive to optimal earlier
exercise only at around the level of $20/bbl.

% schwartz (1997a, €g.52 and footnote 35) compares thresholds using perpetual options for the GBM and 10 years
maturity for the 2 and 3 factors models. However for the volatility used, the threshold for perpetual and 10 years maturity
are very close (threshold asymptotic property for long term), permitting the comparison.

% The original concept comes from the physics: measuring the rate of decay of a particular substance, half-life is the time
taken by a given amount of the substance to decay to half its mass.

% Light Brent Blend oil (before 1984 were used other similar quality oil from North African, Libya and Qatar). Oil series
source: IMF, International Financial Statistics.



