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Abstract

This paper considers an abandonment problem in which the underlying uncer-

tainty is modelled as a spectrally negative Lévy jump diffusion. We show that the

solution to the corresponding optimal stopping problem may not be a threshold

policy. We derive the conditions under the solution is a threshold policy and show

these may fail when the jumps are large. In the latter case we show that the op-

timal abandonment strategy consists of randomizing over thresholds. As a result,

abandonment may be optimal sooner than the classical solution implies.

We illustrate these results by applying them to a model of investment in carbon-

capture and storage by an electricity producer faced with a stochastically evolving

carbon price. In the presence of random jumps in the carbon price, e.g., due to

supply restrictions of carbon permits, in addition to (Brownian) trading noise, the

firm may be pushed into randomization over investment times and, consequently,

invest in carbon abatement technology sooner. This suggests that policy uncer-

tainty may speed up decarbonization.
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1 Introduction

2 Problem Set Up

Consider a risk neutral decision maker (DM) who has the option to abandon the produc-

tion of some product if, for some reason, its demand deteriorates significantly. Future

demand for the product is uncertain and the uncertainty is modelled on a probability

space (Ω,F , P ) equipped with the standard filtration (Ft)t≥0 of a Lévy process (Lt)t≥0.

The evolution of the revenues, (Xt)t≥0, is assumed to follow a spectrally negative

geometric jump process defined on the state space X = (0,∞) and represented by the

stochastic differential equation

dXt

Xt−
= µdt+ σdWt −

∫
R
zÑ(dt, dz); X0 = x,

where (Wt)t≥0 is a standard Wiener process and Ñ(dt, dz) a compensated Poisson random

measure with Lévy measure λm(dz). The evolution of information is modeled by the

natural filtration F = (Ft)t≥0. The set of F-stopping times is denoted by T . We assume

that

lim
t→∞

Ex

[∫ t

0

e−rs|Xs|ds
]

= 0.

If the decision maker abandons production at time τ ∈ T , then the NPV is given by

F (x) = Ex

[∫ τ

0

e−rt(Xt − c)dt− e−rτK
]

(1)

where r > µ is the discount rate, c > 0 the per period production cost and K > 0 the

cost of abandonment. We assume that if he abandons, he does not have the option to

restart production.

We need to determine a value function and an optimal stopping time τ ∗ < ∞ such

that

F ∗(x) : = sup
τ∈T

Ex

[∫ τ

0

e−rt(Xt − c)dt− e−rτK
]

= L(x)− c

r
− sup

τ∈T
Ex

[
e−rτ

(
K − c

r
+ L(Xτ )

)]
,

(2)

where L(x) := Ex
(∫∞

0
e−rtXtdt

)
and, by assumption, c > rK so that the solution to the

optimal stopping problem is well defined.

The Bellman equation to solve is

0 = max{−K − F (x),LxF + (x− c)− rF (x)}. (3)
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Applying the standard optimal stopping approach to solve for such a problem as

outlined in, for example, Øksendal and Sulem [2] (Chapter 2), we obtain the following

solution to (2):

x∗ =
β2

β2 − 1
(r − µ)

(c
r
−K

)
(4)

and

F ∗(x)

{
1

1−β2

(
c
r
−K

) (
x
x∗

)β2 + x
r−µ −

c
r

for x > x∗

−K for x ≤ x∗
, (5)

such that β2 < 0 is the smaller root of the equation

Q(β) =
1

2
σ2β(β − 1) + (µ+ λE[z]) β − (r + λ) + λE[(1− z)β] = 0 (6)

and x∗ = X(τ ∗) where τ ∗ := inf{t > 0|x ≤ x∗}.
However, in the case of an abandonment problem with a spectrally negative process, a

concern is that the process may jump below x∗ at some time τ̃ < τ ∗. If this occurs, then

τ ∗ 6= inf{x > 0|x ≤ x∗} and, as such, the DM should abandon earlier than the solution

suggests; i.e., at τ̃ . In this case, the solution to the optimal stopping problem is not a

threshold policy.

Proposition 1. The solution to the optimal stopping problem (2) is a threshold policy

if, and only if,

(1− β2)σ2 − 2(x∗)2
∫
R

(
1

β2
(1− z)β2 + z − 1

β2

)
m(dz) > 0, (7)

i.e. if, and only if, the expected jump size is small enough.

Proof. See Appendix A.

For the following parameter values, K = 95 and c = 5, in addition to those in Alvarez

and Rakkolainen [1], r = 4.5%, µ = 3%, λ = 0.1, σ = 0.1 and a = 1, we plot the condition

(7) against E[z] = a/(a+ b) in Fig. 1 below. It is clear from the plot that the condition

holds (i.e., it is positive) for smaller jumps, but does not hold for larger jumps, which

supports Proposition 1.

This result implies that one must exercise caution in applying the classical approach

to determine the optimal time to abandon production when the underlying process is

governed by a spectrally negative Lévy jump diffusion because, if the jumps are large,

abandonment may be optimal earlier than the classical solution suggests.
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Figure 1: The effect of the expected jump size on the threshold condition.
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3 Randomised Stopping Times

The significance of Proposition 1 is that if (7) is violated, there is the risk that a jump

will occur for which the value to the DM instantly “plunges” into the stopping region

before x∗ is hit. Therefore, we assert that the DM should be alert to this risk and consider

abandoning when the jumps are large once some boundary on x is reached. As such, we

solve the stopping problem subject to a set of randomized threshold strategies in which

the DM abandons at some hazard rate h(t) := dG(t)
1−G(t)

, where G(t) is the distribution

function in the t ∈ [0, τ ∗] interval; i.e., for x ≥ x∗.

As well as the stopping rate, we also need to characterise a boundary, denoted hereafter

as xB, below which the DM will adopt the randomised threshold strategy. We know that

when (7) is satisfied, the solution to the optimal stopping problem is a pure threshold

policy so that xB = x∗. Thus, when the condition is violated, it will be the case that

xB > x∗.

Moreover, we know from the proof of Proposition 1 (cf. Appendix A) that it is the

negativity of the generator LxF (x) that can lead to a solution to the optimal stopping

problem that is not a pure threshold policy. As such, we characterise the boundary as

follows:

xB := inf{x > x∗ : LxF (x) < 0)}. (8)

Proposition 2. The DM’s strategy at t ∈ [0, τ ∗], where τ ∗ is such that F (Xτ∗) = −K,

is to abandon at a rate

h(t) =
dG(t)

1−G(t)
= 1x≤xB

[ δ̂
(
x
x∗

)β2 [(r − µx)L(x∗)− c+ rK]

δ̂
(

1−
(
x
x∗

)β2) (K − c
r

)
+ x−

(
x
x∗

)β2 x∗
]
dt (9)

where

δ̂ := r − µ− λE[z]− λ
(

1− E
[

1

1− z

])
and

L(x) :=

∫ ∞
0

e−rtE[Xt]dt =
x

δ̂
.

The resulting expected payoff from randomly stopping at t is given by

V̂t(x) = F ∗(x) = sup
τ∈T

Ex

[∫ τ

0

e−rt(Xt − c)dt− e−rτK
]
.

Proof. See Appendix B.

An important finding, stated in the proposition, is that the value function from ran-

domly stopping at t ∈ [0, τ ∗], according to the hazard rate defined, coincides with the

threshold policy value function F ∗(x) given by (5). Therefore, when the classical optimal

stopping approach to solving an abandonment problem is not appropriate, i.e., when the

5



underlying process follows a spectrally negative process with large jumps, our approach

of defining an interval and a hazard rate at which the DM abandons production yields

the same payoff in equilibrium as that which is attained from solving using classical

techniques.

However, if the jump sizes and intensity are small, LxF (x) will be positive so that

xB = 0, by its definition given by Eq. (8). As such, according to (9), h(x) = 0, which

also coincides with the threshold policy approach.

Finally, according to the following corollary, stopping will be certain if and only

if x ≤ x∗. Indeed, this too coincides with the optimal strategy implied by threshold

approach.

Corollary 1. The cumulative probability of abandonment before x∗ is reached is not equal

to one.

Proof. See Appendix B.1.

This result is depicted in Fig. 2 where G(t) = 1 for x = x∗, but for all x > x∗, it is

less than one. It is driven by the fact that x can hover round, or indeed cross, the xB

boundary many times before x∗ is hit; in other words, if x ∈ (x∗, xB], the outlook may

improve at any stage, causing the process to drift out of the region and back above xB.

The further away is x from xB, the less likely it is to cross the boundary and the greater

is the cumulative probability. However, since there is always a chance of improvement

while in this region, abandonment will never be certain until x∗ is reached.

The overall significance of Proposition 2 and the subsequent inferences is stated in

the following proposition. This is the main result of the paper.

Proposition 3. It is sufficient to resort to the randomised threshold rule and avoid

using classical techniques in solving an optimal stopping abandonment problem, such as

that given by Eq. (2), when the underlying stochastic process is spectrally negative.

Given this, it is important to understand how the underlying process impacts on the

shape and size of this interval [x∗, xB), as well as on the hazard rate defined by Eq. (9).

Fig. 3 below helps us to infer how the state space will appear for different jump

sizes and intensities by examining their effect on the boundary xB. The upper plots

show that xB increases in both the expected jump size E[z] and the jump intensity λ.

The driving force underpinning these effects is the impact of the parameters on β2. We

show in Appendix A that β2 increases in E[z] and, indeed, we can infer in a similar way

that β2 also increases in λ. As such, x∗ decreases in both. Furthermore, by standard

calculus techniques, we can establish that the discount factor (x/x∗)β2 increases in E[z]

and λ when the jumps are large and/or intense. However, as shown in Proposition 1, it

is not appropriate to use the classical approach to solve the optimal stopping problem
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Figure 2: The cumulative probability of abandonment before x∗ is reached.
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when the jumps are large. Therefore, we can assert that (x/x∗)β2 increases in E[z] and

λ unconditionally for the analysis hereafter. This implies that the larger is E[z] and/or

λ, the shorter will be the time until x∗ is reached for any x > x∗, which is intuitive.

Therefore, to compensate for the risk of x jumping below the threshold too quickly, the

DM will start to abandon sooner at a rate dG(t)/(1−G(t)) > 0; i.e., xB is higher.

The lower plots show that the difference between xB and x∗ is increasing in E[z]

and in λ since x∗ decreases and xB increases in both. However, xB − x∗ increases at

an increasing rate in E[z] implying they keep diverging, but the rate of increase in the

difference slows for larger values of λ implying the divergence between xB and x∗ flattens

out for high values. This is not so apparent from the plots, but for E[z1], E[z2] and E[z3],

the respective xBi
− x∗i are 0.04, 0.5 and 1.01. However, for λi, the respective differences

are 0.46, 2.13 and 2.46.

From this, we acquire an understanding of how the state space will appear as E[z]

and λ change, and provide a sketch of it in terms of both parameters in Fig. 4 below for

xB > x∗. For smaller jump sizes and intensities, where condition (7) is satisfied (i.e., the

standard case), the state space will be divided into two regions separated by x∗ and the

randomisation region will be eliminated entirely.

Proposition 4. The rate of abandonment before x∗ is reached decreases in the expected

jump size and intensity.

The intuition here is that the DM will abandon with with positive probability ear-

lier for larger values of E[z] and/or λ owing to the higher discount factor, as discussed

above. However, earlier abandonment implies abandoning at higher values of x and since

limx→∞ h(t) = 0, where h(t) := dG(t)/(1 − G(t)), we can assert that the rate of aban-

donment is low for larger values of E[z] and/or λ.

This proposition is supported from examining Fig. 5 below, in which we can infer

that h(t) does indeed decrease in E[z] (left hand plot) and in λ (right hand plot) by

considering its effect on x.
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4 Conclusion

Appendix

A Proof of Proposition 1

1. Say stopping is optimal. Then, according to Eq. (3), LxF + (x− c)− rF (x) < 0 and

F (x) = −K. From Thijssen [3], the generator is given by

LxF =
1

2
σ2x2Fxx + µxFx +

∫
R

[F (x− xz)− F (x) + zxFx(x)]m(dz) (A.1)

so that

x− c < −rK

must hold in the stopping region for x ≤ x∗.

2. If continuation is optimal, then according to (3), F (x) > −K must be satisfied for

x∗ < x with F (x) the solution to LxF + (x − c) − rF (x) = 0 subject to the condition

that the value of the option to abandon is low for high values of x.

To determine if the solution to Eq. (2) is a threshold policy, consider x close to x∗,

but x > x∗. If the DM is acting optimally, his value function is given by

F (x) = (x− c)dt+ (1− rdt) [Ex (F (x) + dF )] .

By the usual manipulation, this reduces to

rF (x) =(x− c) + LxF (x)
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and, since F > −K in the continuation region, we have that

−rK < (x− c) + LxF (x). (A.2)

But, in the stopping region, the condition is that x− c < −rK, so that (x− c)→ −rK
as (x − c) decreases in the continuation region. Therefore, to ensure the DM is acting

optimally in the continuation region so that (A.2) is satisfied, we must have that

LxF (x) > 0

for all x > x∗ if the solution is a threshold policy.

To check the conditions under which the solution is a threshold policy, we check the

conditions under which LxF (x) > 0 for x > x∗ where x∗ is given by Eq. (4) and F (x) by

Eq. (5). Note, however, that if the solution is a threshold policy, the condition will hold

for x very close to x∗. Thus, for ease of analysis, it is sufficient to check the condition for

x ≈ x∗ and, as such, for Fx(x) ≈ 0. Thus, the solution will be a threshold policy iff

1

2
σ2(x∗)2Fxx(x

∗) +

∫
R

[F ((1− z)x∗)− F (x∗)]m(dz) > 0

⇐⇒(1− β2)σ2 > 2(x∗)2
∫
R

(
1

β2
(1− z)β2 + z − 1

β2

)
m(dz).

(A.3)

Let z = 0. It is easily verified from (6) that β2 will still be negative. Therefore, the

condition (A.3) is satisfied for z = 0; i.e., for small jumps.

We can also verify that β2 increases in z:

∂β2
∂z

= − ∂Q(β2)/∂z

∂Q(β2)/∂β2
> 0⇐⇒ ∂Q(β2)

∂z
> 0

since Q(β) is an upward sloping parabola with β2 being the smaller root. Now since

z ≤ 1 and β2 < 0, we can indeed verify that ∂Q(β2)
∂z

> 0.

This implies that for larger jumps, the left hand side of the inequality is low. It is

not possible to determine if the right had side of the inequality unambiguously increases

in z, but if we let z = 1, we do indeed see that the RHS is positive. Since it is zero for

z = 0, it is plausible to infer, therefore, that the RHS increases in z.

Given this conclusion, if jumps are large, it is possible that (A.3) may not hold and,

if this is so, the solution to the optimal stopping problem is not a threshold policy.

B Proof of Proposition 2

Let V̂t(x) denote the expected value to the DM from randomising over stopping times

in the t ∈ [0, τ ∗] interval. He will either abandon at or before some t is reached with
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probability G(t) and get −K or he will not abandon by t; i.e., he will wait until τ ∗, where

his expected present value of abandoning at τ ∗ is given by F ∗(x), defined by Eq. (2).

Therefore, V̂t(x) is given by

V̂t(x) = E

[
−
∫ t

0

KdG(s) + (1−G(t))F ∗(x)

]
. (B.1)

Now, by the general theory of optimal stopping, F ∗(x) is the smallest continuous super-

martingale dominating the payoff process in the [0, τ ∗] interval and G(t) is continuous for

all t ∈ [0, τ ∗]. As such, V̂t(x) satisfies

E[dV̂t(x)] =E [− (K + F ∗(x)) dG(t) + (1−G(t))dF ∗(x)]

=LV̂t(x).
(B.2)

Now, to ensure the DM is indifferent over payoffs, V̂t(x) should be a martingale. It

will be a martingale iff E[dV̂t(x)] = 0; i.e., iff

dG(t)

1−G(t)
=

E[dF ∗(x)]

K + F ∗(x)
.

Applying Ito’s Lemma to F ∗(x) gives

E[dF ∗(x)] =

[
−re−rτ∗

[
K − c

r
+ L(x∗)

]
+ µxF ∗x (x) +

∫
R

[F ∗(x− xz)− F ∗(x) + zxF ∗x (x)]m(dz)

]
dt

=
( x
x∗

)β2
[(r − µx)L(x∗)− c+ rK] dt

(B.3)

where E(e−rτ
∗
) =

(
x
x∗

)β2 and L(x) :=
∫∞
0
e−rtE[Xt]dt, as previously defined. However,

from Alvarez and Rakkolainen [1],

E(Xt) = x exp

(
µ+ λE[z]− λ

(
1− E

[
1

1− z

]))
and r > µ + λm̄ + λ

(
1− E

[
1

1−z

])
. Hence L(x) = x

δ̂
with δ̂ := r − µ − λE[z] −

λ
(
1− E

[
1

1−z

])
.

Therefore, V̂t(x) is a martingale for the hazard rate dG(t)/(1 − G(t)) given by Eq.

(9).
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Now, by integrating across Eq. (B.2), we obtain

E
[
V̂t(x)

]
=V̂0(x) + E

[∫ t

0

LV̂s(x)ds

]
=F ∗(x)

= sup
τ∈T

E

[∫ τ

0

e−rt(Xt − c)dt− e−rτK
]
,

(B.4)

since V̂0(x) = F ∗(x) by Eq. (B.1) and LV̂t(x) is zero for the hazard rate given by (9).

B.1 Proof of Corollary 1

Since G(τ ∗) = 1,

E[V̂τ∗(x)] = E

[
−
∫ τ∗

0

KdG(s)

]
= F ∗(x).

Thus,
∫ τ∗
0
dG(s) = 1 if and only if F ∗(x) = −K. This is true iff t ≥ τ ∗. Hence, the

cumulative probability that the DM will abandon before τ ∗ is not one.
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