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Abstract 

The development of a simple and effective mechanism to estimate the value of the forward 

curve of power could enable market participants to better price hedging position and provide 

transparency to market outsiders who wish to take a speculative position on the power market. 

This would, in turn, lead to more liquidity in the market for electricity futures and power 

derivatives. In this paper we design a model for two market participants, a buyer and a seller of 

a contract for difference on the future spot price of electricity in southwest Brazil. Those are 

representatives of all market participants that have need or desire to hedge their future 

position. We model each participant utility function using a Generalized Extended CVaR 

Preference and obtain the market equilibrium with the certainty equivalent. The results are 

compared with prediction of the future spot price of power made by market specialists and 

found to yield reasonable results when using out of sample data. 
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Introduction 

The market for futures of electricity in Brazil is small in face of the dimensions of the country. 

Being a continental sized nation, the electricity distribution and generation was until very 

recently state controlled and administered. The liberalization of the power trade started in 1997 

with RE-SEB the government’s Electric Sector Restructure Project, and the creation of the first 

wholesale market of electricity (MAE).  

Most transactions for power delivery and hedge are made between large market players, who 

inherited or acquired portions of the national generation infrastructure and large regional 

distributors. Contracts are signed over-the-counter which results in the price being unavailable 

to other market participants. 

This lack of information creates a difficulty in constructing a forward curve of power prices and 

the ones commercially available comes from research and review of market participants 

opinions and analysis. Those products, while most certainly invaluable for market forecast, are 

made during a span of time and cannot be easily replicated for a specific date or point in time. 

The forward curve for other financial and commodity products can be built using an arbitrage 

free approach: if the expected future price of an asset is higher than the cost of acquiring and 

storing this asset for future consumption then the agents would start storing to sell later, which 

would drive the expected future price lower, and vice-versa. In electricity market the cost of 

storing power for an extended period is prohibitive given the current technology. In some cases, 

the input can be stored as reservoir water in hydropower plants and oil or natural gas in 

thermopower plants, but this comes with its own limitations and risks which result in the 

forward curve of electricity being estimated by market specialists. 



This work intends to provide a simple yet effective model to construct the forward curve using 

data commonly available to all market participants, with clear and transparent process. The 

model, while not tested enough to warrant commercial usage, could serve as a foundation to 

the development of a more robust approach that could lead to the design of a forward curve 

created by market consensus. 

The model developed for this paper is an equilibrium of market participants, inspired by the 

work of Bessembinder and Lemmon (2002). We chose the Generalized Extended CVaR 

Preference (ECP_G) because it has multiple levels of risk aversion which can behave as a more 

versatile utility function while maintaining the same basic parameters during the whole period 

of the forward curve. 

As the market for power transactions is expanding so is the need for reliable forecasting and 

verification tools. The forward curve constructed with this method can be used to set the price 

for hedge contracts with a common source of knowledge, redistributing the market power 

between large and small participants and incentivizing the participation. It could also be used as 

forecast instrument for outside participants that do not possess specific market knowledge but 

wish to speculate on the power market. Another foreseen usage of a forward curve that can be 

calculated on demand is the analysis of irregular market behavior or market manipulation. 

This paper begins with a brief review of the Brazilian electric sector, the financial instruments 

used, and the utility function selected. This section is followed by a description of the model 

designed and its calibration and testing. The results are presented and discussed in the fourth 

section, which is then followed by the conclusion. 

Review of the Brazilian power market 

Brazil has a territory of 8.5 million square kilometers and most of its cities and districts are 

connected to the National Interconnected System (SIN), or national grid. Only 1,7% of the 

country’s power generation is on isolated systems.  Some main powerlines have capacity limits 

that can cause availability of power to differ between regions, which leads to the formation of 

four different markets for power, the South, the Southeast, the North and the Northeast, with 

the Southeast market alone comprising the majority of the national power consumption. 

The main source of electric power is hydropower, with 66.6% of all generation, and plants range 

from large international enterprises such as Itaipu producing up to 14GW, to run of the river 

plants and to small local hydropower facilities. Thermal power plants constitute 25.2% of the 

generation, of which 8.6% comes from natural gas plants, 8.5% from biofuels and agricultural 

sub-products, 3.2% from coal power plants, 2.5% from two nuclear fission plants and 2.4% from 

heavy oil plants. The remaining 8.2% are generated by solar, wind farms and other alternative 

sources (EPE, 2019).  

Because of the predominance of hydropower, the energy market is closely tied to the rain 

patterns and the natural affluence of rivers. This led to a centralized planning for water storage 

and dispatching, which is done by the National System Operator (ONS), based on a model of 

affluence prediction and minimizing of the marginal cost of operation, the Newave-Decomp 

software. The outputs of the model in terms of predicted marginal costs of operation are 

available to market participants and are used are a guideline to calculate the expected future 

price of power in the spot market. Optimization based models, such as are used in the Newave-

Decomp software, do not include risk premium in the calculation of future prices.  They might 



be fit for prediction of future spot price of power but should not be used directly to obtain the 

future price of power derivatives. 

Consumption of power in the Brazilian market was also administered by state agencies until the 

1990s, when a process of decentralization took place to compensate for the lack of investment 

made by the government in the energy sector. In 1998 the restructuring of the sector was 

concluded with guidelines to reduce vertical integration and increase competition. In the first 

years of the 2000s a nationwide contingency of power, brought immediate changes to the 

energy sector, which became law in 2004 and established a new open market for power delivery 

contract trading.  

The power market is divided in two segments: captive consumers, which are protected by the 

regulated market, with the cost of power mandated by law, and free consumers that can 

purchase energy with the free-flowing short term power price, the price for difference 

liquidation (PLD). In the free market large consumers can trade bilateral contracts of power with 

generators. 

Contracts for Difference  

Contracts for difference (CfD) are financial instruments or derivatives in the form of a contract 

between two interested parties, a buyer and a seller, with the objective of settling between the 

participants the differences of two determined values or prices.  

One form of CfD involves setting a specific reference price set for an underlying asset future 

price. At each time interval the parties will transfer among themselves the difference between 

the reference price and the observed price. Because the derivative is focused on the differences 

and there is no deliverable on the end of the contract, no party is obliged to hold the underlying 

asset.  The goal of this operation is to obtain a financial compensation for changes from the price 

of reference and the spot price, acting as a hedge or leverage instrument.  

As a safety measure both parties can set aside a margin account with a monetary amount to 

warrant the payments for price differences at each period. The amount invested in this account 

is lower than what would be required if the contract dealt with a position of the asset, since the 

nominal value of holding the asset is not covered by the contract, only the maximum variation 

of the price inside the time interval. By using this derivative, the investor can have exposure to 

the underlying asset by withholding only a fraction of its value, which is a form of leverage.  

Since the contract can be signed in directly between the participants the costs of intermediaries 

are reduced. The risk, on the other hand, is given by each side ability to pay the difference and 

keep money on the margin account as required. There can be considerable losses even when 

the price is moving favorably, if the counterpart cannot pay the difference. For this very reason 

CfD are usually signed by parties with previous relationships and mutual trust, in order to 

minimize counterpart risk.  A CfD market with management of margin deposits and payments 

can also be created given enough demand. 

In the Brazilian power market CfD are common between generators, big consumers, distributors 

or investors. It can be used as a hedge or to get exposure to future energy prices. Deals can be 

made without an expiration date and can be interrupted by one of the parties, according to the 

terms previously set on the contract.  

Research in the use of CfD in electric power markets if frequent, specially concerning the 

Nordic common market. (Kristiansen, 2004; Marckhoff & Wimschulte, 2009; Kozlov 2014) 



Generalized Extended CVaR Preference 

Utility functions enable the use of analytic tools to situations involving uncertainty. The basis of 

modern finance theory is the Von Neumann and Morgenstern [Von Neumann, 1944] utility 

function, that is a direct function of wealth. In the modern portfolio theory, the utility function 

is quadratic, which provides a risk aversion derived from its convexity. This function provides 

unexpected results when the wealth level increases and the risk aversion also increases, 

providing challenges to its interpretation.  

Another problem with the utilization of the modern portfolio theory is the use of historical 

volatility as a risk measure, and not only downside risk [Markovitz, 1959]. The use of semi-

variance and measures of downside risk led to the development of the VaR (Jorion, 1996) 

measure, and following it, the CVaR (Rockafellar and Uryasev, 2016).  

A combination of the CVaR with the expected financial outcome provides a utility function with 

desirable behavior and was named Extended CVaR Preference functional (ECP) by Street (2010). 

This became the objective function used in the Brazilian centralized hydropower dispatch.  

The ECP uses two parameters to express the risk aversion of the individual, the first the weight 

(λ) and the second the level of CVaR (α). ECP is expressed by the following equation: 

𝐸𝐶𝑃𝛼,𝜆  =  (1 −  𝜆) 𝐸[𝑋] +  𝜆 𝐶𝑉𝑎𝑅𝛼(𝑋) ;  𝜆 ∈ [0,1]    (1) 

The ECP measure combines the simplicity of a linear utility function while at the same time 

avoiding the Allais paradox because of its non-linearity. Because the utility levels for the 

individual may vary increasingly with the losses, the ECP functional was generalized by Luz 

(2016) into having multiple risk aversion coefficients. The ECP_G is described as follows: 

𝐸[𝑈(𝑋)] =  𝜆0 𝐸[𝑋]  +  ∑ 𝜆𝑛 𝐶𝑉𝑎𝑅𝛼𝑛(𝑋)𝑁
𝑛=1   ;   ∑ 𝜆𝑛

𝑁
𝑛=1  =  1   (2) 

Figure 1 shows the expected behavior of the utility function underlying the ECP_G functional for 

two levels of risk aversion. 

 

 

Figure 1 – Utility function underlying the ECP_G functional with N=2. Source: Luz, 2016. 

 



Certainty Equivalent 

In an uncertain scenario the risk premium calculated by a utility function can be expressed as a 

monetary value which would be equivalent to participant as whether to take this value or take 

the risk. This certainty equivalent can be calculated by applying the invert of the utility function 

on the expected outcome of the scenario.  

The certainty equivalent for the ECP can be obtained using the inverse utility function, which 

has been proved to exist by Street (2010). For the ECP_G the certainty equivalent is given by Luz 

(2016) and because of the segmented nature of the underlying utility function of the ECP_G it is 

expressed by the following system of equations: 

𝐸𝑞 =  𝐸[𝑋] +
1

𝜆0 
∑ 𝜆𝑖 (𝐶𝑉𝑎𝑅𝛼𝑖(𝑋) −  𝑉𝑎𝑅𝛼𝑖(𝑋))𝑁

𝑖=1 ;  

for 𝐸[𝑈(𝑋)] ∈   ]𝜆0𝑉𝑎𝑅𝛼1(𝑋) + 𝐿 ,   𝜆0𝑉𝑎𝑅𝛼0(𝑋) + 𝐿 [ 

 𝐸q =  
1

𝑄
 (𝜆0𝐸[𝑋] + ∑ 𝜆𝑖 (𝐶𝑉𝑎𝑅𝛼𝑖(𝑋) −  𝑉𝑎𝑅𝛼𝑖(𝑋))𝑁

𝑖=1 + ∑
𝜆𝑖

(1−𝛼𝑖)
𝑉𝑎𝑅𝛼𝑖(𝑋)𝑛

𝑖=1 ) 

  for 𝐸[𝑈(𝑋)] ∈   ]𝜆0𝑉𝑎𝑅𝛼𝑛+1(𝑋) + 𝐿 ,   𝜆0𝑉𝑎𝑅𝛼𝑛(𝑋) + 𝐿 [  

𝐿 = ∑
𝜆𝑖

(1−𝛼𝑖)
𝑉𝑎𝑅𝛼𝑖(𝑋)𝑁

𝑖=1  ; 𝑄 =  
1

𝜆0+∑
𝜆𝑖

(1−𝛼𝑖)
𝑛
𝑖=1

 ; n ∈ [1,  𝑁] ; ∑ 𝜆𝑛
𝑁
𝑛=1  =  1 

           (3) 

The certainty equivalent can be used as a direct result of the utility function and because it is 

directly expressed in monetary value can be directly compared with results obtained by different 

participants with different risk aversion levels or parameters. 

Methodology and Model 

Data used in this paper consists of 2 sets of 2000 series of estimates of expected future power 

prices all of which were obtained from Newave-Decomp, the software used by ONS to calculate 

the marginal cost of power and the future price in the short term market, on the last week of 

January 2019 and August 2019. In the same dates the forward curve for each concerning year 

was obtained from DCide. 

The model is designed as an equilibrium between market participants that have the intention to 

hedge against future price variations, and every participant will be part of either the buying or 

the selling side. The equilibrium will be obtained when the certainty equivalent is equal for both 

sides. This is similar to the concept drawn by Benth et al. (2008) but using contracts for 

difference and the ECP_G functional. 

The payoff for the CfD uses the following structure: 

 𝜋𝑆 =  (𝑝𝑟 −  𝑝𝑠) ×  𝑄 

 𝜋𝐵 =  (𝑝𝑠 −  𝑝𝑟) ×  𝑄        (4) 

Where πS is the payoff of the seller, πB is the payoff of the buyer, pr the price of reference of the 

CfD contract, ps the observed future spot price and Q the quantity of power delivered (which 

was arbitrated at 100 MWmed). 



The ECP_G functional selected has two levels of risk aversion, which allows for significant 

flexibility while maintaining a straightforward calculation. The equation for the average utility 

used in this paper is the following: 

𝐸[𝑈(𝑋)] =  𝜆0 𝐸[𝑋] + 𝜆1 𝐶𝑉𝑎𝑅𝛼1(𝑋) + 𝜆2 𝐶𝑉𝑎𝑅𝛼2(𝑋)    (5) 

The equilibrium model was calibrated using the dataset for the year 2020, obtained in January 

2019, to arrive at the best fit with the forward curve published in the same date. A discounted 

cashflow was calculated for each of the 2000 scenarios and based on the NPV of each scenario 

the significant measures of risk were obtained. The calculation was done in Excel’s Solver 

optimization package Evolutionary algorithm and the target was the minimization of the 

quadratic difference of the certainty equivalent of the buyer and the seller. The discount rate 

used in the NPV calculation was 5% yearly. 

After the best parameters were selected for λ1, λ2, α1 and α2 for both buyer and seller, allowing 

for different levels of risk aversion for each participant, the model was then tested on the August 

2019 dataset and compared with the DCide forward curve for the same date. 

Results and Discussion 

The optimization converged in a best solution for the model, which was the same regardless of 

the starting values. The results obtained in the calibration step are displayed in tables 1 and 2 

below. 

Table 1 – Results of the model calibration step. NPV and CEq are expressed in R$ millions 

 
NPV ECP_G Certainty Equivalent 

Buyer -87 -110 -98 

Seller 87 -151 -98 

 

Table 2 – Optimized parameters for the ECP_G model 

 
λ0 λ1 λ2 α1 α2 

Buyer 0.47 0.21 0.32 0.40 0.99 

Seller 0.04 0.39 0.57 0.94 0.99 

 

The model equations using the optimal parameters are as follows: 

𝐸𝐶𝑃_𝐺𝐵 = 0.47 𝐸[𝑋] + 0.21 𝐶𝑉𝑎𝑅40(𝑋) + 0.32 𝐶𝑉𝑎𝑅99(𝑋)  

 𝐸𝐶𝑃_𝐺𝑉 = 0.04 𝐸[𝑋] + 0.39 𝐶𝑉𝑎𝑅94(𝑋) + 0.57 𝐶𝑉𝑎𝑅99(𝑋)   (6) 

Those results indicate a greater risk aversion on the seller of the CfD contract, which is expected, 

since the average expected price of power is around 100 R$/MWh and the minimal price is 42.35 

R$/MWh, while the maximum price is 513.89 R$/MWh. The distribution of NPV and the 

associated utility levels for the buyer and seller can be seen in figures 2 and  3 below. 



 

Figure 2 – Utility for the seller (y-axis) and NPV of the CfD (x-axis) 

 

Figure 3 - Utility for the buyer (y-axis) and NPV of the CfD (x-axis) 

The relevant data for Figure 2 is the inclination of the utility curve, which is 0.04 in the risk less 

portion, 57 in the risk most portion and 7 in between and the breakpoints in VaRα1 = -41 million 

Reais and VaRα2 = -153 million Reais. For Figure 2 the inclination of the utility curve in the risk 

less portion is 0.47, 32 in the risk most portion and 0.35 in between and the breakpoints are 

VaRα1 = -102 million Reais and VaRα2 = -134 million Reais. The third segment of the curve is not 

seen in Figure 2 due to an accumulation of the lower price in the same range, and the cut points 

selected by the model. 

It is possible to run the model with several successive reference prices and take note of the NPV 

and certainty equivalent for each participant at each step. This was done for Figure 4, below. 



 

Figure 4 – Step by step analysis of the reference price of the CfD (x-axis) and the impact on both the seller and buyer 
NPV and certainty equivalent (EqC). The vertical line shows the model equilibrium at 199.32 R$/MWh. 

The greater risk aversion of the seller is represented in Figure 4 in the distance between the NPV 

and the certainty equivalent (blue gap) as opposed to the same distance for the buyer (green 

gap). 

The same model was used in the dataset obtained in August 2019 for the year 2020 and 

compared with the forecast made by DCide. The model equilibrium was achieved when the CfD 

price was set in 218.20 R$/MWh, while the forward curve estimation for the same period given 

by market specialists was 192.75 R$/MWh. 

Conclusion 

This work intends to use the commonly available market data and translate it to a reasonable 

forecast of the expected future spot price for the Brazilian power market. This model, if proved 

to be adherent to reality and behave accordingly to market specialists’ estimations, could be 

used in several applications providing transparency and consistency to electricity futures 

markets. 

This has been an explorational first approach and is limited in the data availability which might 

have lent nearsightedness to the model and its results out-of-sample. Nevertheless, we believe 

that the modelling of futures based on available market data could be similar to what analysts 

are doing with their projections, and if enough data is provided a good model might be obtained. 

We will continue to study the model and the findings in this paper and will work on an analytical 

solution to the equilibrium, which is already on the way. This may be the subject of a future 

work. 

Another important factor to consider is the temporality of market power, described by Benth et 

al. (2008) which could lead to changes in the risk aversion parameters in time. This was not 

studied in this paper since allowing for the weights to change with a small amount of data 

available could lead to overfitting the model. 
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