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Abstract 

What is the optimal capacity and investment timing when there is a ceiling (cap) on capacity due 

to physical or economic constraints?  What is the impact of the production cap on the capacity 

choice?  We show the optimal timing with an inverse demand function with production cap model 

under unbreached, and breached conditions. There are novel results, with negative sensitivity to 

increases in demand uncertainty, and others that are not always intuitive. 

mailto:r.adkins@bradford.ac.uk
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Optimal Capacity with a Production Cap under Uncertain Demand 

Introduction 

There are many infrastructure choices with a limited physical or economic capacity, where the 

timing of the infrastructure investment is optional. Bridges, pipelines, buildings, farmlands, media 

and sporting facilities may be constrained because of available space or technical reasons, even if 

potential demand is (potentially almost) unlimited.  What is the optimal capacity and investment 

timing when there is a ceiling (cap) on capacity due to physical or economic constraints?  What is 

the impact of the production cap on the capacity choice?  Eventually unsatisfied demand may lead 

to congestion, crowding and constraints on economic growth within certain spaces, or local 

economies.  

 

In a world of demand uncertainty, a monopoly intends to establish a facility having an optimally 

selected capacity to produce a product, or accommodate a demand such as tolled traffic, where the 

rates are priced according to a downward inverse demand function. An investment commitment is 

made when the market demand attains an optimal threshold. This project opportunity is subject to 

a single source of uncertainty due to demand volume variability. The productive capacity of the 

plant and the resulting investment cost incurred by installing such a capacity are positively related, 

so it is more expensive to develop a plant having a greater capacity, even assuming the marginal 

investment cost decreases with increasing capacity. Also, at the time of (instantaneous) 

installation, the firm selects the demand threshold aware of the bounds of productive capacity that 

optimises the rendered value. The model does not rule out the possibility of unmet demand arising 

when market demand exceeds the capacity as well as the latent cost incurred from having a cap on 

the output level. Besides the upfront investment cost, the firm faces a periodic cost structure in the 

form of both a variable and fixed cost of production. The periodic fixed cost of production depends 

positively on the installed capacity size, so greater capacity levels are not only more expensive to 

install but are also more expensive to operate. After the plant is established, there are no options 

to abandon and temporary suspend operations, or make any changes in capacity.  

 

Many authors have considered the real option aspects of capacity choice. Dangl (1999) considers 

choosing both the timing and upper boundary for capacity with uncertain demand, with an 
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investment cost function similar to (3).  Huiman and Kort (2015) extend the Dangl approach using 

an inverse demand function for a duopoly.  Huberts et al. (2015) summarize some capacity model 

developments, allowing for production suspension, and also for bounded capacity.  Hagspiel et al. 

(2016) consider holding costs per unit of capacity, and also a linear demand structure, but 

apparently do not look at breaches in capacity.  De Giovanni and Massabò (2018) focus on volume 

flexibility, but follow the Dangl approach with utilization considerations.  Balter et al. (2019) 

extend Huisman and Kort (2015) to finite project life, with different terminations for the follower 

and leader, and possible deferral/accommodation for the follower. Wen et al. (2019) look at a 

dedicated leader, and a possibly flexible follower, who could be useful for the leader. Paxson et 

al. (2020) consider the effect of a price collar on optimal capacity. 

 

Our model is for a monopoly, and so ignores some of the advances in the literature, in order to 

focus on upper capacity, and the possibly that it is breached by eventual demand. While we 

examine the effect of this possibility on optimal capacity and timing from the viewpoint of an 

investing firm, unsatisfied demand may lead to congestion, and other social problems, with 

significant public policy issues. 

 

We offer novel solutions for optimal timing of capacity choices, considering both unbreached and 

breached circumstances. The next section outlines the basic economic model. Section 3 provides 

numerical illustrations, including a separate analysis of without-breach and with breached 

capacity, contrasted with more complex joint solutions for these considerations.  Section 4 offers 

some practical examples of such infrastructure choices where these models might be usefully 

applied. The last section concludes with interpretation of the unique contributions and also 

limitations of this study, suggesting further research. 

2 The Basic Model 

 

A monopoly considers a project opportunity that is subject to a single source of uncertainty due to 

market demand variations which is described by the geometric Brownian motion process: 

 d d dq q t q W = + , (1) 
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where q  denotes the periodic demand volume,   the expected drift,   the volatility, and dW  an 

increment of the standard Wiener process. Demand is fulfilled provided the installed capacity 

denoted by Uq  is not exceeded, so the project Oq  is given by  min ,O Uq q q= . The market price 

commanded by this output is obtained from the inverse demand function taking the form: 

 
Op q = +   (2) 

where , 0    and 0   since it is downward sloping. Clearly p   and   is interpreted as the 

resulting price for an infinite demand. The price elasticity of demand is ( )( ) 0p p −  . 

Because of (2), revenue can be formulated as a function of output. The unit variable cost is denoted 

by c  and the unit contribution by ( )p c− . The positive relationship between investment cost 

denoted by K  and capacity Uq  adopts the form, Luss (1982), Dangl (1999): 

 ( )U UK K q a q = = , (3) 

where 0a   denotes the unit capacity multiplier and  1   its power parameter. (3) implies that 

the marginal investment cost is decreasing with increasing capacity. The periodic operating cost 

f  depends on the installed capacity ( )Uf f q=  and is set to be proportional so , 0Uf b q b=  . 

The plant capacity is instrumental to determining the overall cost structure through the investment 

cost and the periodic operating cost. At full utilization of capacity, the active plant is expected to 

be viable so ( ) 0p c b− −  , suggesting possibly that ( ) 0c b − −  . 

  

Because of the capacity constraint, there are three possible distinct states. During the idle pre-

investment state-0, the firm is waiting for more propitious information to emerge before 

committing to the investment. An investment commitment results in the post-investment active 

state-1, when the firm is actively producing output if there is no breach of capacity, ,Uq q  but in 

active state-11 when the capacity is breached, .Uq q This notation is adopted elsewhere. The 

plant value, denoted generically by ( )V q , is denoted by ( )0 ,V q  ( )1 ,V q  ( )11V q  for state-0, -1, -

11,  respectively. Similarly, we denote the optimal market volume threshold for installing the 

project by 01
ˆ

Uq q  if the cap is not exceeded, and by 011
ˆ

Uq q  if otherwise. 
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In real-option models, the investment threshold for an uncertain factor is determined by 

maximising the net value created from transiting from the pre- to a post-investment state and 

setting the net created value to zero. In a similar way, for the current problem we can obtain the 

optimal demand threshold signalling when to make an investment commitment. However, since 

the productive capacity is treated as being optimally selected by management, we need a single 

rule for identifying the optimal capacity. There are two alternatives. Dangl (1999) develops a 

method for identifying the optimal productive capacity based on maximising the net-present-value 

(NPV), a method also adopted by Chronopoulos et al. (2017) amongst others, see also Shimko 

(1992). As soon as the capacity is identified by the optimal NPV method, then its value is used for 

obtaining the optimal investment threshold. This procedure incurs the possible shortcoming that 

two distinct rules are adopted to obtain the solution and the real-option approach eschews the NPV 

method.  

 

The alternative proposed by Dixit (1993) and Kort et al. (2010) claims that the optimal choice 

decision amongst alternative investment strategies should be based on the magnitude of the 

investment option value. Dixit (1993) identifies the optimal capacity choice as the capacity 

maximising the investment option coefficient. This involves evaluating the optimal investment 

thresholds and the corresponding option values for a plausible set of productive capacity levels, 

then identifying the capacity level that maximises the investment option coefficient. This has the 

merit of being based on a single method, although criticized by Décamps et al. (2006) and others. 

Our analysis focuses on evaluating the two alternatives for obtaining the optimal threshold and the 

optimal capacity. It demonstrates that since the two alternatives yield identical solutions, they are 

equivalent whether the productive cap is without-breach when the optimal threshold is no more 

than the optimal capacity, or is with-breach when otherwise. 

2.1 Pre-Investment Value 

Following Dixit and Pindyck (1994), then from (1) the value of the project opportunity 0V  as a 

function of demand volume q  is described by: 

 ( )
2

2 2 0 01
02 2

0
V V

q r q rV
q q

 
 

+ − − =
 

  (4) 
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where r   denotes the risk-free rate and r = −  the rate of return shortfall. The generic 

solution to (4) is: 

 ( ) 1 2

0 01 02V q A q A q
 

= + , (5) 

where 01 02, 0A A   are to-be-determined coefficients and 1 2,   are the respective positive and 

negative roots of the characteristic equation: 

 ( ) ( )21
2

1 0r r    − + − − = , (6) 

with solution values: 

 

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

− −   
= −  − +   
   

, (7) 

where 1 2 1 21, 0, 0.     −   Since ( )0V q  represents the option to invest in the project, then 

( )0 0 0V =  so 02 0A = . If the capacity is not breached and the investment threshold is no more than 

the capacity, then that investment option is given by: 

 ( ) 1

0 01V q A q


= . (8) 

If the capacity is breached and the investment threshold is greater than the capacity, then the 

investment option is given by: 

 ( ) 1

0 011V q A q


= . (9) 

where 01 011, 0A A   are to-be-determined coefficients. 

2.2 Post-Investment Value 

If the productive capacity is not breached by market demand, then similarly from (1) the value 

( )1V q  for the active project in state-1 is described by: 

 ( ) ( )
2

2 2 1 11
12 2

0
V V

q r q p c q f rV
q q

 
 

+ − + − − − =
 

. (10) 

Replacing p  by (2), the generic solution for (10) is: 

 ( )
( )

1 2

1

1 11 12

c qq f
V q A q A q

r


 

 

+ −
= + − + + , (11) 

where 11 12,A A  are to-be-determined coefficients and 
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 ( )2 2 21 1
2 2

r      = − − + − . 

  

In (11), 1 2

11 12,A q A q   respectively represent the American perpetuity call, Samuelson (1965), and 

put options, Merton (1973). Generally, options may be held or written identified by the sign of the 

respective coefficient. A positive coefficient indicates an option that is held and a negative 

coefficient an option that is written. Held options are value-creating and economically 

advantageous, while written options are value-destroying and economically disadvantageous. 

Typically, held call options represent investment (expansion) opportunities and held put options 

divestment (contraction) opportunities, neither of which by assumption are available herein. In 

contrast, written options arise when the firm’s output volume attains the productive limit, either 

from below or from above. If the volume attains the limit from below, then the consequential loss 

in value is due to a breached capacity limiting productive output. The written call value 1

11A q  

increases in magnitude as the volume approaches the cap from below. If, in contrast, the volume 

attains the limit from above, then the loss in value is due to market demand falling short of the cap. 

The written put value 2

12A q  increases in magnitude as the volume approaches the cap from above. 

 

In the current formulation, 1 2

11 12,A q A q   represent written call and put options, respectively. Since 

an upper limit is present for state-1 but no lower limit exists, then 11 0A   and 12 0A = . From (11) 

the without-breach project value becomes: 

 ( )
( )

1

1

1 11

c qq f
V q A q

r




 

+ −
= + − + . (12) 

   

If the productive capacity is breached by market demand, then from (1) the value ( )11V q  for the 

active project in state-11 is similarly described by: 

 ( ) ( )
2

2 2 11 111
112 2

0U

V V
q r q p c q f rV

q q
 

 
+ − + − − − =

 
. (13) 

Replacing p  by (2), the generic solution for (13) is: 

 ( )
( )

1 2

1

11 111 112

UU
c qq f

V q A q A q
r r r


  + −

= + − + + . (14) 
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As before, 1 2

111 112,A q A q   in (14) represent written call and put options, respectively. Since a lower 

limit is present for state-11 but no upper limit exists, then 111 0A =  and 112 0A  . From (14) the 

with-breach project value becomes: 

 ( )
( )

2

1

11 112

UU
c qq f

V q A q
r r r


 + −

= + − + . (15) 

 

The values 11 112,A A  are obtained from the value-matching and smooth-pasting conditions ruling 

at the juncture between state-1 and -11. The derivation, relegated to Appendix A, yields, (A4):   

 
( )
( )

( )
( )

1 21 1

11 11 112 112

11 112

1 2 1 2

, ,
U U U Uq q q q

A A
r r

  

     

− − +  +
= − = −

− −
  (15 a,b) 

where 

 ( )( )( ) ( )( )11 2 2 11 2 21 , 1 ,r c r        = − − −  = − + −   (15 c,d) 

 ( )( )( ) ( )( )112 1 1 112 1 11 , 1 .r c r        = − − −  = − + −   (15 e,f) 

 

The net-present-values for the without-breach and with-breach projects, ( )1 1NPV V q K= −  and 

( )11 11NPV V q K= − , respectively, are: 

 ( )
( ) ( )

( )

1

1

11
11 11

1

1 2

, ,
U UU

U U

q qc q bqq
NPV q q q a q

r r

 
 

    

−+  +−
= + − − −

−
  (16) 

 ( )
( ) ( )

( )

2

2

11
112 112

11

1 2

, .
U UUU U

U U

q qc qq bq
NPV q q q a q

r r r r

 
 

  

−+  +−
= + − − −

−
  (17) 

2.3 Without-Breach Solution 

Assuming that the productive capacity is not breached, the optimal capacity ˆ
Uq  and the optimal 

investment threshold 01q̂  can be found jointly from maximising the net-present-value (16) and the 

optimality conditions identifying the threshold. From (A6), the optimal capacity defined by 

( ) 1
ˆ arg max ,

U

U U
q

q NPV q q= , which when evaluated at the optimal investment threshold 01q̂   can 

be expressed as: 
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( ) ( )
( ) ( )

1 1

1

1 2

01

11 1 11 1

ˆ
ˆ ˆ

ˆ1 1

U

U

U

b ra q
q q

q



 



   

  

−− +
=

 − + − −
. (18) 

From (A10), the optimal investment threshold 01q̂ , which is obtained from the value-matching 

relationship and smooth-pasting condition, is given by: 

 ( )
( )

( )1 11 1
01 01

11
ˆ ˆ ˆ ˆ0 U Uc q q bq ra q

r

    


 

+
− −−

= − + − + . (19) 

By using appropriate numerical methods, values for 01q̂  and ˆ
Uq  can be determined from solving 

(18) and (19) simultaneously.  

 

Alternatively, the solution for ˆ
Uq  is obtainable from maximising the option coefficient 01A . The 

first order condition is given by (A15): 

 ( ) ( ) ( )( )( )1 1 11

11 1 01 11 1 01 1 2
ˆ ˆ ˆ ˆ ˆ ˆ0 1 1U U U U Uq q q q bq raq q         +=  − + − − − − + .  (20) 

Since (18) and (21) are equivalent, identical solutions for 01q̂  and ˆ
Uq  are obtained whether the 

solution procedure applies the optimal NPV method or the optimal option method.  

 

From (A13), any increase in the optimal capacity is associated with a corresponding increase in 

the investment threshold, since 

 
( )

( )( ) ( )( )

1

101

1 1 01

ˆˆ
0

ˆ ˆ1 1 1

U

U

b ra qq

q r c r q





  

      

−+
= 

 − − + + − −
  (21) 

assuming that 1 1 −   and 1  − . This demonstrates that a capacity increase, which has an 

accompanying increase in the investment cost and periodic fixed cost, engenders a rise in the 

investment threshold to compensate the consequential greater cost structure. 

 

2.4 With-Breach Solution 

Assuming that the productive capacity is breached, the optimal capacity ˆ
Uq  and the optimal 

investment threshold 011q̂  can be found jointly from maximising the net-present-value (17) and the 

optimality conditions identifying the threshold. From (A17), the optimal capacity defined by 



10 

 

( ) 11
ˆ arg max ,

U

U U
q

q NPV q q= , which when evaluated at the optimal investment threshold 011q̂   can 

be expressed as: 

 
( ) ( ) ( )( )

( ) ( )
2 2

1

1 2 1

011

112 2 112 2

ˆ ˆ ˆ1
ˆ ˆ

ˆ1 1

U U U

U

U

c b q q ra q
q q

q

 

 



      

  

+

−
− − − + + −

=
 − + − +

. (22) 

From (A22), the optimal investment threshold 011q̂ , which is obtained from the value-matching  

and smooth-pasting conditions, is given by: 

 
( )( )

2 2

1

1 1

011

112 112

ˆ ˆ ˆ
ˆ ˆ

ˆ

U U U

U

U

c b q ra q q
q q

q

 

 



    +

+
− − − +

=
 +

. (23) 

By using appropriate numerical methods, values for 011q̂  and ˆ
Uq  can be determined from solving 

(22) and (23) simultaneously. 

 

Alternatively, the solution for ˆ
Uq  is obtainable from maximising the option coefficient 011A . The 

first order condition is given by (A26): 

 
( ) ( )( )

( ) ( ) ( )( )

2

2

1

112 2 112 2 011

1

1 2

1 1

1 .

U U

U U U U

q q q

q c b q raq q



 

  

      

+

+

 − + − −

= − − − + + −
  (24) 

Since (22) and (23) are equivalent, identical solutions for 011q̂  and ˆ
Uq  are obtained whether the 

solution procedure applies the optimal NPV method or the optimal option method. 

 

 

From (A13), any increase in the optimal capacity is associated with a corresponding increase in 

the investment threshold, since 

 

( ) ( )

( )

 ( ) ( )

( )

2 21 1

1 011011

1 2

2 112 112

1

011 112 2 112 2

1 2

2 112 112

ˆ ˆ ˆ ˆ ˆ1ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ1 1
0.

U U U U

U U U U

U U

U U U

q q c b q ra q qq

q q q q

q q q

q q q

   







     



  



− +

+

+

+

 − − − + +  =
  +

 − + − +
− 

 +

  (25) 

 

2.5 Testing for a Breach 
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A breach occurs whenever the investment threshold exceeds the optimal capacity. It is feasible to 

test for the presence or otherwise of a breach prior to any without- and with-breached capacity 

evaluations by recognising from (22) that for 
011

ˆ ˆ
Uq q  then: 

 
( ) ( ) ( )( )( )

( ) ( )( )

1

1 2 1 2 2

1 2 2

ˆ 1

ˆ1 0.

U

U

b ra q r r c

r r q





        

     

−− − + − − − + − −

+ − − − − + 
  (26) 

2.6 Method Equivalence 

In determining the optimal capacity, we now demonstrate under geometric Brownian motion that 

the optimal NPV method and the optimal option method are equivalent and yield identical 

solutions. If q  and Uq  denote the market demand and productive capacity, respectively, and the 

opportunity value of investing in a project with net-present-value ( ), UNPV q q  is specified by 

1

0A q , then the value-matching relationship is given by ( ) 1

00 , UNPV q q A q


= −  so: 

 ( )1

0 , UA q NPV q q
−

= . (27) 

The associated smooth-pasting condition is: 

 
( ) ( )

( )1 1 1

1 0 1

, ,
0 ,

U U

U

NPV q q NPV q q
A q q NPV q q

q q

 − −
 

= − = −
 

.  (28) 

From (27), the option coefficient 0A  and the option is maximised for variations in capacity when 

0

ˆ ˆ,

d
0

dq
U U

U q q q q

A

= =

= , where ˆ ˆ,Uq q  denote the optimal capacity and threshold, respectively, or for: 

 ( )
( ) ( )

1 1 11

1

ˆ ˆ,

, ,
, 0

U U

U U

U

U U U q q q q

NPV q q NPV q qq q
q NPV q q q q

q q q q

   − − − −

= =

  
− + + =

   
. (29) 

Combining (28) and (29) yields: 

 
( )

1

ˆ ˆ,

,
0

U U

U

U q q q q

NPV q q
q

q

−

= =


=


.  (30) 

Identifying the optimal capacity from the total differentiation of the investment option coefficient 

yields the identical solution as the partial differentiation of the net-present-value. The optimal NPV 

and the optimal option methods for determining the optimal capacity are equivalent. 
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3 Numerical Illustration 

We obtain further insights on model behaviour through several numerical illustrations. Initially, 

we separate the without-breach capacity solution from the with-breach capacity solution to 

investigate the extent of their differences in behaviour. Then we proceed to examine the without- 

and with-breach capacity solutions jointly particularly with reference to volatility variations. While 

the net-present values are reported, all the evaluations reported below are performed from using 

the optimal option solution method, since the two solution methods are shown to be equivalent.  

3.1 Parameter Values 

The assumed parameters values are given in Table 1, along with the formulae defined price, 

investment and fixed operating costs, and power parameters. 

Table 1 Base Case Parameter Values 

  

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

A B C D

Capacity Size 15 Jan 2020
INPUT  Eqs

r 0.04

 0.015

 0.15

q 0.1   

c 5

b 2

 0.7

a 50

u 2

 -0.7

 7

p 17.0237 2 B11*(B15^B12)+B13

q0 0.1000 MIN(B6,B26)

 0.0349  B4-B12*(B3-B4+0.5*(B5^2))-0.5*(B12^2)*(B5^2)

f 0.3884  B8*B26

K 15.8750 3 B10*(B26^B9)

t q1 0.01375 B3-B4-0.5*(B5^2)

t q2 0.01375 B3-B4-0.5*(B5^2)

OUTPUT unbreached

1 1.3711 7 (-B20+SQRT(B20^2+2*B3*(B5^2)))/(B5^2)

2 -2.5933 7 (-B20-SQRT(B20^2+2*B3*(B5^2)))/(B5^2)
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Table 2  Derived Optimal Thresholds for the Unbreached Case 

 

 

Given the Table 1 base case parameter values, the optimal capacity is .1942, and the threshold that 

justifies immediate investment in that capacity is .0954, B25:B26, obtained by solving 

simultaneously (18) and (19).  The pre-investment value is from (8), which satisfies the ODE (4) 

with the calculated delta and gamma B42:B43. The post-investment value is from (12), which 

satisfies the ODE (10).  If the productive capacity is breached by market demand, the breached 

value is from (15a), which satisfies the ODE (13). 

 

The optimal capacity and threshold are highly sensitive to changes in some of the parameter values, 

three (quantity volatility, operating cost, investment cost) which are illustrated below. Figure 1 

shows the thresholds and ROV= 1( )V q , with 01
ˆ ˆ

Uq q q  , so that this is the post-investment value, 

unbreached capacity. Note that  01q̂  increases with q volatility, while ˆ
Uq  decreases, as does the 

ROV. 

 

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

A B C D

q^01 0.0954 Solution to B36

q^U 0.1942 Solution to B36

A01 1398.3503  B37*B26^(1-B23)+((B14-B7)/(B23*B4))*B25^(1-B23)

A11 -593.4242 15a (-(B26^(1-B23))*(B39+B37*(B26^B12)))/(B3*(B23-B24)*B4*B17)

A112 0.2727 15b (-(B26^(1-B24))*(B40+B38*(B26^B12)))/(B3*(B23-B24)*B4*B17)

    

   

   

q^ 0.0236 18 B39*(B23-1)+B37*(B26^B12)*(B23-1-B12)

q^ 0.0000 18 (B26^B23)*(B23-B24)*B4*B17*(B8+B9*B3*B10*(B26^(B9-1)))/B33-B25^B23

q^ 0.0000 19 ((B23-1)/B4)*(B13-B7)*B25+((B11*(B23-1-B12)/B17))*(B25^(B12+1))-(B23/B3)*(B8*B26+B3*B10*(B26^B9))

Solver 0.0000 Solver:B36=0,  changing B25:B26.

D11 0.0062 15d (B3*(1-B24+B12)-B17*B24)*B4*B11

D112 -0.0027 15f (B3*(1-B23+B12)-B17*B23)*B4*B11

11 0.0073 15c (B3*(B24-1)-B4*B24)*(B7-B13)*B17

112 0.0004 15e (B3*(B23-1)-B4*B23)*(B7-B13)*B17

V0(q) 59.5050 8 B27*(B15^B23)

V'(q) 815.8507 B27*B23*(B15^(B23-1))

V''(q) 3027.3164 B27*B23*(B23-1)*(B15^(B23-2))

ODE 0.0000 4 0.5*(B5^2)*(B15^2)*B43+(B3-B4)*B15*B42-B3*B41

V(q) 1 7.1241 12 (B11*(B15^(B12+1)))/B17+(B13-B7)*B15/B4-B18/B3+B28*(B15^B23)

V'(q) 1 -126.6363 ((B11*(B12+1)*(B15^(B12)))/B17)+(B13-B7)/B4+B28*B23*(B15^(B23-1))

V''(q) 1 -1888.5127 ((B11*(B12+1)*(B12)*(B15^(B12-1)))/B17)+B28*B23*(B23-1)*(B15^(B23-2))

ODE V1 0.0000 10 0.5*(B5^2)*(B15^2)*B47+(B3-B4)*B15*B46+(B14-B7)*B15-B18-B3*B45

V(q) 11 155.5426 15a B14*B26/B3-B7*B26/B3-B18/B3+B29*(B15^B24)

V'(q) 11 -2771.7589 B29*B24*(B15^(B24-1))

V''(q) 11 99597.1916 B29*B24*(B24-1)*(B15^(B24-2))

ODE V11 0.0000 13 0.5*(B5^2)*(B15^2)*B51+(B3-B4)*B15*B50+(B14-B7)*B26-B18-B3*B49

ROV 7.1241  IF(B15<B25,B41,IF(AND(B15>B25,B15<B26),B45,B49))
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    Figure 1    Base Case Parameter Values 

  Sensitivity of Optimal Capacity, Thresholds and ROV to Changes in Demand Volatility 
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In Figure 2, with 2% lower operating costs, the ROV naturally increase at all levels 

of quantity volatility, as do the thresholds. The opposite happens for 2% higher operating 

costs as shown in Figure 3.  The spread 01
ˆ ˆ

Uq q−  increases with higher variable costs. 

 

Figure 2 Thresholds and ROV at Lower Operating Costs 
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Figure 3  Higher Variable Operating Costs 
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Figure 4  Lower Unit Capacity Multiplier (K) 
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Figure 5  Higher Unit Capacity Multiplier (K) 
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Figure 4 shows that the thresholds and ROV increase as the K investment multiplier decreases 1%, 

thus increasing K per unit capacity, while the thresholds and ROV increase, which is not intuitive. 

Figure 5 shows the opposite happens when the K multiplier increases 1%. 

 

Suppose a government seeks to motivate early investment in an infrastructure project undertaken 

by such a monopoly through lowering the threshold  01q̂ but at the same time aims for high 

capacity ˆ
Uq  to avoid future congestion.  First of all, from Figures 1-5 it is apparent that the 

sensitivity is not constant as volatility increases.  But at the base case volatility, the threshold 

decreases with an operating cost c increase and an investment multiplier a increase, so this unusual 

government could motivate early investment by taxing both types of costs, surprisingly. The 

monopoly hoping for a high ROV, while waiting to invest, would be disappointed by such actions. 

Reducing demand volatility by quantity guarantees (or minimum revenue subsidies) could achieve 

all three objectives, reducing the investment threshold, increasing the optimal capacity, and the 

ROV, perhaps a “goldilocks” effect.  

Table 3 

 

 

Breached Case illustration incomplete 

4 Conclusion 

The optimal capacity and investment timing when there is a ceiling (cap) on capacity due to 

physical or economic constraints is such in the base case that in the unbreached situation a 

monopoly would invest when the quantity is around half of the optimal capacity, creating lots of 

spare capacity initially. We show the optimal timing with an inverse demand function with 

production cap model under unbreached, and breached conditions. There are novel results, with 

negative sensitivity to increases in demand uncertainty, and others that are not always intuitive. 

  

Summary Sensitivity of Base Case to Parameter Value Changes

c decrease c increase a decrease a increase

q^01 1.89% -1.99% 1.78% -1.78%

q^U 1.80% -1.75% 1.65% -1.60%

ROV 7.61% -7.63% 2.80% -2.90%
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5 Appendix A 

Derivation of  A11, A112 

The values of the coefficients 11 112,A A  are obtained from the value-matching relationship and 

smooth-pasting condition ruling at the boundary between state-1 and -11: 

 ( ) ( )
( ) ( )1 11

1 11 ,
U U

U U

q q q q

q q q q

V q V q
V q V q

q q= =

= =

 
= =

 
  (A1) 

or respectively as: 

 
( ) ( )

1 2

1 1

11 112

U UU U
U U

c q c qq q
A q A q

r r

 
   

 

+ +− −
+ + = + + , (A2) 

 
( ) ( )

1 21 1

1 11 2 112

1U

U U

c q
A q A q



   
 

 

− −− +
+ + = . (A3) 

Substituting ( ) ( )( ) ( )2 11

112 1 11 21U U U UA q q q c A q
        − += + + − +  from (A3) into (A2), 

and simplifying yields: 

 
( )
( )

( )
( )

1 21 1

11 11 112 112

11 112

1 2 1 2

, ,
U U U Uq q q q

A A
r r

  

     

− − +  +
= − = −

− −
  (A4) 

where: 

 ( )( )( ) ( )( )11 2 2 11 2 21 , 1 ,r c r        = − − −  = − + −   

 ( )( )( ) ( )( )112 1 1 112 1 11 , 1 .r c r        = − − −  = − + −   

 

Without-Breach Optimal NPV Method 

The optimal capacity is found from maximising the net-present-value. Differentiating (15) with 

respect to the capacity yields:  

 
( ) ( )

( )

1 1

11 11 1 11 11

1 2

1 1U U

U

U

q qNPV b
q a q

q r r

  

   


  

− −

−
−  + − − 

= − + −
 −

. (A5) 

From (A5), the first order condition evaluated at the optimal capacity ˆ
Uq  and investment threshold 

01q̂  can be expressed as: 

 
( ) ( )
( ) ( )

1 1

1

1 2

01

11 1 11 1

ˆ
ˆ ˆ

ˆ1 1

U

U

U

b ra q
q q

q



 



   

  

−− +
=

 − + − −
. (A6) 
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Without-Breach Optimal Threshold 

For the optimal capacity level ˆ
Uq , the optimal threshold 01q̂  is obtained from the value-matching 

relationship and smooth-pasting condition assuming the capacity is not breached: 

 ( ) ( )
( ) ( )

01

01

1 0

1 0 ˆ ˆ,

ˆ ˆ,

0 ,0 ,
U U

U U

q q q q

q q q q

V q V q
V q V q K

q q= =

= =

 
= − − = −

 
  (A7) 

or respectively as: 

 
( )

1 1

1
0101

11 01 01 01

ˆˆ
ˆ ˆ0

c qq f
A q A q K

r


 

 

+ −
= + − + − − , (A8) 

 
( ) ( )

1 101 1 1

1 11 01 1 01 01

ˆ1
ˆ ˆ0

q c
A q A q



   
 

 

− −+ −
= + + − . (A9) 

Substituting ( ) ( )( )1 1

01 01 01 01 1 11
ˆ ˆ ˆ1A q q c q A

      − += + + − +  from (A9) into (A8) and 

simplifying yields: 

 ( )
( )

( )1 11 1
01 01

11
ˆ ˆ ˆ ˆ0 U Uc q q bq ra q

r

    


 

+
− −−

= − + − + , (A10) 

 
( ) ( )( )

( )
1 1

1

01 01 111 11
01 01

1 1 2

ˆ ˆ1 ˆ
ˆ ˆU

U

q c q q
A q q

r

 
 

   

    

+

− −
+ + −  +

= −
−

.  (A11) 

The solutions for 01q̂  and ˆ
Uq  are obtained simultaneously from (A6) and (A10) using an 

appropriate numerical method. 

 

Without-Breach Optimal Option Method 

The optimal capacity is found from maximising the option coefficient 01A . Differentiating (A11) 

with respect to the capacity has to attend to the relationship between 01q̂  and ˆ
Uq as specified by 

(A10). We define: 

 ( ) ( )
( )

( )1 11 1
1 01 01 01

11
, U U UH q q c q q bq ra q

r

    


 

+
− −−

= − + − + . (A12) 

From (A12): 

 ( )
( )( )11 1

01

01

1 11
,

H
c q

q

   


 

+ − − −
= − +


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 ( )11 1
U

U

H
b ra q

q r


 −

= − +


, 

and since 01 1 1

01UU

q H H

q qq

  
= −

 
, then 

 
( )

( )( ) ( )( )

1

101

1 1 011 1 1

U

U

b ra qq

q r c r q





  

      

−+
=

 − − + + − −
. (A13) 

  

Also, we define from (A11): 

 ( )
( ) ( )( )

( )
1 1

1

01 01 111 11
01 01 01

1 1 2

1
, U

U U

q c q q
A q q q q

r

 
 

   
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+

− −
+ + −  +

= −
−

. (A14) 

Then: 

 ( )( ) ( )( )( )
1

101 01
1 01 1

01 1

1 1 1
A q

q c
q


      

 

−
+

= − + − − + − −


, 
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( ) ( )( )
1

01
11 1 11 1

1 2

1 1U
U

U

A q
q

q r


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  

−
=  − + − −

 −
.  

Differentiating ( )01 01, UA q q  with respect to Uq  yields 01 01 01 01

01

d

d U U U

A A q A

q q q q

  
= +
  

, The first order 

condition, 

01 01

01

ˆ ˆ,

d
0

d
U U

U q q q q

A

q
= =

= , can be expressed as 

01 01

01 011 1

01 01 ˆ ˆ,

0

U U
U U q q q q

A AH H

q q q q
= =

  
= − +
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 to yield 

after substituting from above and simplifying: 
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1 1 1
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  (A15) 



23 

 

The solutions for 01q̂  and ˆ
Uq  are obtained simultaneously from (A10) and (A15) using an 

appropriate numerical method. Also, (A15) establishes that identical optimal capacity solutions 

are obtained whether the optimal NPV or optimal option method is applied.  

 

With-Breach Optimal NPV Method 

The optimal capacity is found from maximising the net-present-value. Differentiating (16) with 

respect to the capacity yields: 

 

( ) ( )

( ) ( )

( )
2 2

111

112 2 112 2

1 2

1

1 1
.

U

U

U

U

U

c b qNPV
a q

q r r

q
q q

r







 

  


  

  

−

−

− − +
= − + +


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−
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From (A16), the first order condition evaluated at the optimal capacity ˆ
Uq  and investment 

threshold 01q̂  can be expressed as: 
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With-Breach Optimal Threshold 

For the optimal capacity level ˆ
Uq , the optimal threshold 011q̂  is obtained from the value-matching 

relationship and smooth-pasting condition assuming the capacity is not breached: 
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or respectively as: 
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 from (A21) into (A19) and simplifying yields: 
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The solutions for 01q̂  and ˆ
Uq  are obtained simultaneously from (A17) and (A22) using an 

appropriate numerical method. 

 

With-Breach Optimal Option Method 

The optimal capacity is found from maximising the option coefficient 011A . Differentiating (A21) 

with respect to the capacity has to attend to the relationship between 01q̂  and ˆ
Uq as specified by 

(A22). We substitute (A21) in (A19) and define: 
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From (A23): 
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Also, we define from (A21): 
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so: 
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Then, as before: 
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  (A26) 

The solutions for 011q̂  and ˆ
Uq  are obtained simultaneously from (A22) and (A26) using an 

appropriate numerical method. Also, (A26) establishes that identical optimal capacity solutions 

are obtained whether the optimal NPV or optimal option method is applied. 
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