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ABSTRACT

The decreasing average size of new discoveries in mature production areas makes the base of oil field invest-

ment decisions more uncertain than ever before. Fewer appraisal wells, which allow to decrease the amount of

subsurface uncertainty, are typically drilled before the development of a small field compared to large fields.

Therefore, new solutions are required to make small discoveries commercial given both technical and market

uncertainties. In such conditions, accounting for managerial flexibilities that enable to change the course of the

project due to new information, becomes even more important for investment valuation.

Combining the real options approach and decision analysis, we present a novel model that allows to identify

additional value created by a sequential drilling strategy for field development under oil price and resource

uncertainty. We capture the sequence of key investment and operating decisions of a marginal field develop-

ment in cooperation with an oil industry partner, building a synthetic (yet realistic) project case. Addressing

the flexibility to divide production wells drilling into two stages, we evaluate the option to wait to expand the

production by drilling additional wells using the least-squares Monte Carlo algorithm.

We identify the conditions under which the staged (phased) development is preferred compared to standard

development. Furthermore, we propose a decision rule determining the optimal expansion timing based on

new information on the reservoir and the oil price uncertainty. Our results suggest that staged development

carries large upside potential for marginal field development under extensive reservoir uncertainty. We also

illustrate that partial hedging against the downside risks within a staged development can improve project’s

economy significant enough to justify investment.
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1 INTRODUCTION

The decreasing average size of new oil discoveries (Norwegian Petroleum Directorate 2019) is one of the most

crucial issues that oil and gas exploration and production (E&P) companies are currently facing in mature pro-

duction areas such as the Norwegian Continental Shelf (NCS). Exploration and development of smaller reser-

voirs, located in more challenging formations, demands costly technology and advanced engineering solutions

to access it (Lund 1999). Furthermore, fewer appraisal wells are typically drilled before the development of

a small field than in case of larger discoveries. This makes the investment and development decision base

relatively more uncertain. Together with the adverse price environment, it led industry’s majors to explore

less actively or even withdraw from such areas in recent years1. Nevertheless, smaller reservoirs could still

represent substantial value and might be attractive investment opportunities if the decision making process

addresses field development risks and upside potentials adequately. Better informed decisions that exploit

the data generated during the course of a project become highly important to produce hydrocarbons in an

efficient and cost effective way when prominent downside risks are present. In their Resource report 2019, the

Norwegian Petroleum Directorate emphasizes “the importance of continuing to find good solutions in order

to make small discoveries commercial”. This puts particular focus on flexible instruments, that allow to react

on the outcome of uncertain parameters by changing the course of the project.

In this study, we analyse one of the possible solutions - an opportunity to invest in field development se-

quentially within a staged drilling strategy. This allows to collect additional information between the stages

and tune the development plan at the subsequent stages of the project. In order to address this flexibility within

the economic valuation of a project, we propose a novel methodology built to provide a decision support tool

for oil companies. We put a particular focus on the relevance of this methodology for small field development

cases. The key contributions of this paper are: (1) propose the staged drilling as a strategy for the field develop-

ment under prominent reservoir uncertainty (2) present a methodology to optimize the production expansion

decision during the production phase based on new information on two types of uncertainty - the estimated

production rate and the oil price (3) account for the whole range of probable outcomes of technical uncertainty

within the optimization and valuation procedure.

In order to evaluate the investment under uncertainty with implied flexibility, we apply the real option

approach (ROA) combined with decision analysis (DA). Combining these tools enables the decision maker

to accommodate both technical and market uncertainties in the economic model representing a complex E&P

project (Jafarizadeh et al. 2009). A static Discounted Cash Flow (DCF) approach, traditionally used in the

industry, fails to capture multiple uncertainties and inherent flexibilities within the investment valuation. We

show how the decision maker can optimize the drilling strategy based on the ROA by choosing for staged

development amid substantial reservoir uncertainty. To the best of our knowledge, such models do not exist

neither for small nor for large field development.

We then analyse the value of flexibility created by a staged oil field development strategy and compare it

to what we refer to as standard development. In standard development a predefined set of production and

injection wells are planned to be drilled and completed prior to production start of a field. All necessary

facilities required to produce the field over the expected lifetime are put in place before production start. This

implies that measures to increase hydrocarbon recovery during the operation of the field, such as drilling

additional wells or improved oil recovery (IOR), may be identified, but are not included in the economic

analysis at the time of the investment decision. Compared to that, the basis for staged development is a first

1ExxonMobil, for example, sold their Norwegian assets to Vår for $4.5bn in 2019 (see https://www.ft.com/content/

f03fec96-e085-11e9-b112-9624ec9edc59)
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development phase (Stage 1) which contains a number of predefined wells, that is lower than in case of the

standard development, and facilities that shall be in place at production start-up. In addition, the operator

has the opportunity to expand the development by drilling additional production wells after some time of

operation during Stage 1. This time is needed to gather and process additional information on the reservoir,

which might improve the field development decision making at the second stage of the project. Such a strategy

is highly relevant when subsurface uncertainty is prominent. If the information generated during the initial

stage indicates that the reservoir properties are poor, the decision maker is able to avoid drilling superfluous

wells. This flexibility provides a partial hedge against reservoir risk and can be addressed within the valuation

procedure already at the stage of the investment decision. The methodology we present in this paper allows

the decision maker to exploit the benefits of the staged development approach and identify the potential to

create additional value for both large and small fields. A special focus, however, is made on small discoveries

due to their sensitivity to the downside risks, as in case of an unfavorable outcome of uncertain conditions,

project’s economy might be disrupted.

Our methodology is built upon several blocks. We first build the field production forecast, accounting for the

uncertainty in initial production rates. This allows us to realistically reflect the decision maker’s knowledge

on the reservoir characteristics and account for a possibility of facing a ”low reservoir performance” case that

might lead to a negative overall project value. With the field design basis, drainage strategy and production

forecast given, we estimate capital and operational expenses throughout the whole lifetime of the field. We

then proceed with building future oil price curves, based on the two-factor stochastic price model (Schwartz

& Smith 2000), calibrated using the Kalman filter and historical market data. We assume that the production

at Stage 1 generates perfect information on the technical uncertainty. Based on this data and the conditions

of the oil market, we consider that the operator can make a decision to expand the production by drilling

additional wells within a predetermined period of time. Combining the simulations of the production rate,

cost profiles and oil prices, we, furthermore, construct several sets of the expected yearly project cash flows

associated with the respective expansion decisions. The waiting option to expand is then formulated using the

least-squares Monte Carlo (LSM) framework (Longstaff & Schwartz (2001)). In order to optimize the expansion

decision within the LSM algorithm for American options by comparing the immediate exercise value with the

estimated value from continuation at each decision point, a regression function accommodating both the oil

price and production rate parameters is used. We then identify the optimal expansion timing (drilling for Stage

2) for each simulated case and construct a threshold boundary representing combinations of the production

rate and the oil price which are considered to trigger the expansion decision. Finally, we calculate the values of

the project under standard and staged development strategies and identify under which conditions the staged

development is the preferred choice.

In Fedorov et al. (2020) we analysed the potential of the staged development on a benchmark reservoir

model, Olympus (Fonseca et al. 2018), where well control optimization based on several realizations of the

reservoir model was used. With this paper we aim to propose a methodology to evaluate the staged develop-

ment strategy, rather than study a specific case, where project parameters and detailed reservoir characteriza-

tion might raise barriers in the understanding of how to benefit from the flexibility. The value of the staged

development depends strongly on the problem at hand. In order to find out whether this strategy can create

additional value, any decision maker can use their project-specific input such as development plan, expected

production profiles, costs, etc. Overall, our results lead to recommendations that can both facilitate and im-

prove the field development decision making process. The modelling approach, therefore, is expected to be of

both academic and industry value.
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1.1 Literature review

With this paper we aim to contribute to three different strands of literature. The first strand is represented

by literature focusing on specifics of economic assessment of small oil projects and decision making under

high amount of subsurface uncertainty. Among the few contributions in this field are Laine et al. (1997), who

use an example of two Norwegian fields in order to model deferral, expansion and abandonment options

and demonstrate that option valuation techniques can add substantial value to marginal discoveries. Lund

(1999) analyzes an investment in a small oil field on the Norwegian continental shelf and emphasizes the

importance of the operator’s flexibility to change the course of the project during the operating phase, for

overall project value, especially ”when the uncertainty surrounding the reservoir is high”. Galli et al. (2001)

study a small satellite gas field in the North Sea using a real option framework to evaluate the impact of

drilling decisions on the project value. Armstrong et al. (2004) use information from production logging and

a copula-based Bayesian updating scheme for real options valuation of small oil projects. Dias (2004) briefly

discusses the possibility of phasing the investment in several stages accounting for an option to expand the

production by drilling additional wells. He proposes this strategy as a method to deal with high amount

of subsurface uncertainty, which is a typical problem for small field development. Dias (2004) discusses a

hypothetical method to analyze this flexibility as a sequence of actions that a decision maker should make

to apply the ROA to this problem. Jafarizadeh & Bratvold (2015) demonstrate the differences in economic

analysis of small and large discoveries by evaluating a waiting-to-invest option in two hypothetical exploration

opportunities (a large and a small prospect). Jafarizadeh & Bratvold (2015) show that projects with smaller

recoverable volumes, shorter lead times for development, and a steeper production decline are more sensitive

to the variability of oil prices and discount rate.

However, none of the existing literature, including Dias (2004), has studied the effect of the staged approach

on the value of a E&P project and showed how to optimize the decision to drill optional wells under technical

and market uncertainties neither for large nor for small oil fields. We, in our turn, contribute to this strand

literature by building a formal model to quantify the value of this strategy, which is based on real options

analysis and a production expansion optimization algorithm, and provide numerical results for a case study.

The discussion in Dias (2004), in fact, underpins the value of our work and its contribution both to industry

and to academia.

Second, this work aims to contribute to the strand of literature that combines the real options approach and

decision analysis within a single valuation procedure. The classic real options literature applies methods that

are based on the possibility to find a market-traded portfolio that could replicate a real-world investment in

order to perform a real option valuation. Introducing technical uncertainty to these methodologies is challeng-

ing and can lead to inaccurate valuation results (Jafarizadeh et al. 2009). In the decision analysis approach, in

turn, the decision maker’s beliefs about the project are captured by assessing subjective probabilities for the

uncertainties. The valuation of a risky project is typically done using a decision tree or a dynamic program,

neglecting market opportunities for hedging price risks. Smith & Nau (1995) is a pioneering contribution to

propose an integrated approach combining option pricing methods and decision analysis to accommodate

market uncertainty that can be hedged and technical uncertainty that can not be hedged. Copeland & An-

tikarov (2001) and Brandão et al. (2005) both use traditional decision analysis tools - binomial decision trees

and binomial lattices - for solving real-options problems. They use a mix of discounted cash flow and risk-

neutral methods, which is criticized by Smith (2005), who suggests to use a fully risk-neutral approach leading

to a single coherent valuation model that can be used to value projects with and without options. Comparing

the competing methodologies, Smith (2005) analyses an investment opportunity in an oil production project
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and concludes that ”there is much to be gained from integrating the real options and decision analysis ap-

proaches to project evaluation”.

By applying the simulation-based risk-neutral valuation approach, we adopt the method presented by Smith

& Nau (1995) and Smith (2005) and contribute to the literature on the integrated ROA and DA by accounting

for the whole range of possible outcomes of the technical uncertainty in accordance with the decision maker’s

arbitrary probabilities within the valuation procedure. Unlike Dias (2002) and Santos et al. (2017b), we there-

with capture not only a discretized representation of the technical uncertainty, as typically used for a decision

tree and lattice model approach. Using a simulation approach instead, allows us to construct a better repre-

sentation of how the reservoir risk affects the decision making process within a field development case, which

would give us more accurate valuation results.

Another important aim of our analysis is to study the effect of new information on decision making. The

data generated during the initial stage of the project is used to update the decision maker’s knowledge on

the reservoir in order to optimize the further development strategy. This might create additional value, which

can be identified already at the investment decision phase. Therefore, the third strand of literature that we

aim to contribute to are publications focusing on the value of information for natural resource projects taking

an ROA approach. Among contributions that optimize timely decisions using new information are Chorn

et al. (1997), who study the application of option pricing techniques to value information on offshore gas field

reserve volume and selection of production strategy. Gallant et al. (1999) use “learning models”2 to capture

changing expectations as new information is gained over an E&P project’s life. Dias et al. (1997) and Dias

(2002) study the effect of timing and “drilling games” with strategic interaction in E&P projects explicitly

modelling the value of learning. Cunningham & Begg (2008) analyze various scenarios of a sequential drilling

program using new information. Therewith, they provide an example of how the value of information can be

used proactively in the construction of drilling strategies. This allows to avoid the overspending on costly tests,

which cannot change initial beliefs on the project and contribute to better decision making. Santos et al. (2017a)

introduce an uncertainty management method complementing techniques of acquiring new information and

adding flexibility to the production system in order to reduce the downside risk within a robust production

strategy. Kullawan et al. (2018) develop a discretized stochastic dynamic programming approach for sequen-

tial decisions in geosteering operations based on real-time information. Accounting for this information allows

to optimize well trajectory and increase economic value. Hanea et al. (2019) assess the value of learning cre-

ated by the data that is generated within a sequential drilling strategy. Using a synthetic reservoir case they

demonstrate how history matching and updating the development strategy more frequently can improve the

field development.

Although we assume that the decision maker is able to acquire perfect technical information, we contribute

with this paper to above-mentioned selection of literature by demonstrating how the information generated

at the initial production phase can be used to optimize the drilling strategy and therewith, to increase the eco-

nomic value. This is achieved by including the reservoir uncertainty parameter into the LSM regression. By

introducing a threshold boundary representing combinations of the production rate and the oil price which

are considered to trigger the expansion decision, we directly show how the updated knowledge on the reser-

voir uncertainty influences the decision-making. We also demonstrate that the additional information that

can be potentially acquired with the future production experience, should not be ignored when making the

investment decision. For a small field development this information is, in fact, crucial when dealing with the

2A “learning model” is defined by Gallant et al. (1999) as a depiction of how new information allows a decision maker to revise their

initial belief on an uncertain event. Gallant et al. (1999) argue that the ”learning model helps us take advantage of new information in the

evaluation of a project’s potential, not just in its execution”.
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subsurface uncertainty. In our further research, we plan to extend the proposed methodology by incorporat-

ing a reservoir model, which will allow to realistically account for the impact of imperfect information using

history-matching and Bayesian updating.

The remainder of this paper is organized as follows. Section 2 introduces key features of the staged devel-

opment and explains the limitations of the classic approach to evaluation of an investment with flexibilities. In

Section 3 we formulate and develop the modelling approach for the project valuation of a staged development

with an option to expand. In Section 4, we present a case study to apply our modelling approach on a realistic

problem. Section 5 presents results including a sensitivity analysis and robustness check. Section 6 concludes

the paper.

2 BACKGROUND

In this section we provide the motivation behind adopting the staged drilling strategy (see Section 2.1) in-

cluding both the risks and benefits associated with deferring of the second stage of an oil field development

project. Table 1 summarizes the main features of the staged development strategy compared to the standard

one. Furthermore, we explain the operator’s decision making process for the optimization of the production

expansion once the technical uncertainty is revealed. In Section 2.2 we discuss the essence of using a more ad-

vanced economic analysis compared to a static discounted cash flow approach in order to evaluate investment

with embedded options. We motivate the need for using a combination of real option approach and decision

analysis, for cases when managerial flexibility is of high importance for the project value.

2.1 Staged development with an option to expand

Decisions related to petroleum exploration and production are very complex because of the large number of

aspects involved in the process (Suslick et al. 2009). During the design phase, the project team has – amongst

many other things - to decide on the optimal number of development wells (both producers and injectors)

and their placement. This decision is particularly challenging in the face of both technical and market un-

certainties. Moreover, the investment in wells is considered to be irreversible as an operator cannot recover

drilling expenditures once they are made. Consequently, the team has to make a fundamental decision that

cannot be changed in the course of the project, by finding a trade-off between the expected value creation by

an additional well being drilled and the associated costs within prevailing uncertainties.

Table 1: Key features of the staged development strategy compared to the standard one

Risk Staged development

Low reservoir/oil price scenario Ability to mitigate downside risks by not drilling uneconomic wells

Timing
Loss of value due to waiting (time value of money) and probable oil loss

due to migration during Stage 1

Well placement
Improved well placement at the Stage 2 based on production experi-

ence and acquired data leading to increase of expected recovery

Capital expenditure (CAPEX) Possibility to defer a significant amount of CAPEX until Stage 2

A standard way to decrease reservoir uncertainty in order to improve the quality of well placement and

field design, is drilling appraisal wells. In some projects, however, this might not be advisable as the invest-

ment in the extensive appraisal program is considered to be inadequately costly compared to the potential of
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information revelation (Dias 2004). This is especially true in the case of small field development with marginal

economy.

Figure 1: Decision gates of a general project under the staged development strategy

Under such conditions, a better strategy to cope with the reservoir uncertainty might be to start drilling pro-

duction wells based on the available information without an additional appraisal program. However, instead

of drilling all potential production wells, some of which are likely to fail in ensuring an economical produc-

tion rate, the operator can prioritize wells and drill them sequentially, i.e. developing an oil field in several

stages. Under a staged development strategy, the decision maker first drills several wells in those locations

that are less exposed to reservoir risk. This is done to start the production at the initial stage of the field life,

that may last from some months to several years. During the Stage 1 the operator gathers data and performs

specific tests that they use to optimize the Stage 2 drilling decision. Figure 1 provides a sketch of the timeline

and production profile for such a staged development strategy. After the final investment decision (FID) and

authority approval of the Plan for development and operation (PDO), the project enters the engineering and

construction phase. Drilling of production wells typically commences 1-2 years prior to production start. After

a certain period, experiences from drilling and production of these wells can be evaluated and used to update

the underlying reservoir models. Based on the updated knowledge on the reservoir, managers can make the

decision to drill additional production wells to increase the field production potential. New information also

allows to optimize the number, placement and choose the best time to drill optional wells. Alternatively, the

decision maker might refrain from drilling optional wells and keep producing with the same number of wells

in order to avoid investing in wells that could potentially prove to be uneconomic. In that case, the process

of considering optional wells can be repeated after additional data has been collected. The staged approach

allows to mitigate downside risk, which could reduce the economic value of the project if the company com-

mits to drill all the wells before actually starting to produce the field (Willigers et al. 2017). This feature is

particularly relevant for marginal fields, where drilling costs may represent a large part of capital expenditure

and highly influence the overall value of the project.

Once the data is gathered and analysed, managers are able to take advantage of the flexibility to expand the

production by drilling optional wells only in favorable scenarios. The management may also decide to wait

with the Stage 2 drilling in case if market conditions are not good enough. For large field development, whose

lifetime might be more than 30 years, holding this option for a long time could be reasonable. But in the case

of small fields, holding the expansion option for more than a couple of years may not make much sense due to

the relatively short lifetime of the project. Moreover, the longer the optional wells remain undrilled, the higher

is the potential loss of value through hydrocarbon migration away from the location of these optional wells

and towards the location of existing producers. The effect of this phenomenon is described by (Dias 2004) ”as
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a dividend lost by the option holder”, giving them ”a higher incentive to drill the optional well earlier”.

In addition, by drilling not all the possible wells immediately, the operator might loose some portion of

value due to the depreciation effect of delayed production. This is especially true if the reservoir performance

is better than expected. In reality, an E&P company has also to account for additional investment costs that the

expansion might require. The amount is mainly dictated by the state of the production system at the moment

when the decision to expand is made. The least costly way is to fill spare capacity of the facilities as soon as the

field enters the production decline. Other strategies imply that the field operator designs the field development

process by leaving some extra capacity idle at Stage 1 to be able to increase the production rate while the end

of plateau during Stage 1 is not reached yet.

Within a staged development strategy, field engineers and economists perform joint assessment to identify

production wells (and their location) to be drilled for the first stage of the project. Typically, these will be wells

that are expected to generate a large amount of production and/or are less exposed to the reservoir uncertainty

and thus ensure more economical production not only at the initial stage, but throughout the whole lifetime

of the project. Potential candidates for Stage 2 are, therefore, the locations with the highest risk of losing value

due to technical uncertainty.

However, the field development is exposed not only to technical uncertainty, but to market conditions as

well. The decision to expand the production during a drastic oil price downturn could disrupt the revenue,

particularly of a small field, whose production lifetime might be limited to 5-8 years (Rasmussen 2015) com-

pared to a 30+ years lifespan of large discoveries. Contrarily, the decision to expand could be still beneficial

amid a price surge, despite the fact that the cumulative production during Stage 1 could indicate that reservoir

performance was quite poor. Therefore, the optimal expansion policy must be based not only on the reservoir

information revelation, but on market development as well. The moment when managers can exercise the op-

tion is not limited to the point in time right after the information revelation. Price uncertainty might motivate

to postpone the decision to exercise the option. Assuming that the expansion decision can be made once a

year, Figure 1 shows that the operator can shift the last year of Stage 1, i.e. Year K-1, when the optional wells

are drilled, and postpone Stage 2.

2.2 Limitations of the DCF approach for investment evaluation

As we stated in the introduction, E&P companies typically apply a Discounted Cash Flow (DCF) approach

to evaluate investment opportunities. In the classical DCF approach, investment decisions are based on the

net present value (NPV) that is calculated by discounting the cash flows using a risk-adjusted discount rate as

given by

NPV =
T

∑
t=t0

E
[
CFt)]

(1 + Ra)t , (1)

where E(t)
[
CFt] is the expected cash flow of the period t, T is the number of periods and Ra is the risk-

adjusted discount rate. The risk-adjusted discount rate reflects both the time value of money and risk. It is

a compensation demanded by investors for the risks that are associated with holding an asset (Brealey et al.

2012). Most companies use a rate equal to their weighted average cost of capital (WACC), arguing that the

investment should cover both costs of debt and capital (Jafarizadeh & Bratvold 2019). In fact companies often

apply a single discount rate to all their project when evaluating investment decisions or communicating with

the authorities3, ignoring specific features of each individual project. This might result in incorrect valuation

3Oil companies acting on the NCS have to submit a plan for development and operation of a petroleum deposit to the The Ministry

of Petroleum and Energy of Norway before they start the oil field development. The official guidelines recommend using a standard rate
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leading to poor decision making, especially in case when investment opportunities are exposed to various

uncertainties.

The two main types of uncertainties that we aim to account for in the current study, reservoir and oil price

uncertainty, are of completely different risk nature. Using a risk-neutral pricing approach that is an integral

part of our method, proved to be a correct way to perform the valuation from a methodological point of view

(Smith & Nau (1995), Smith & McCardle (1999)). It distinguishes between market risks, hedgeable by trading

securities, and private risks, which are project-specific and cannot be hedged with any market instrument. In

risk-neutral approach, instead of risk-adjusting the whole cash flow, the decision maker treats uncertainties

separately. In our case this means that we use the risk adjusted stochastic process for market risks (oil price)

and true probabilities for private risks (reservoir uncertainty in order to calculate the expected value of in-

vestment. The resulting cash flows are then discounted at the risk-free rate (Jafarizadeh et al. 2012), as given

by

NPV =
T

∑
t=t0

E
[
CFt)]

(1 + R f )t (2)

where R f is the risk-free discount rate.

We illustrate this technique by building the production profiles in Section 3.1 based on the decision maker’s

beliefs on the probabilities associated with the technical uncertainty, and construct the risk-neutral process for

the future oil prices in Section 3.3. The risk-neutral valuation procedure is then implemented in Section 3.4.

However, the difference between the traditional DCF and the method that we use in this work is not only

in how we treat risk in the project cash flow. The DCF approach does not allow to accurately capture the

managerial ability to change the course of the project. It also ignores values of embedded options, as it is

based on a “static” view, in which future decisions are assumed to depend only on information available now,

while additional information that would be available at later stages is ignored. The real option approach, in

turn, is a tool that allows to account for this flexibility and evaluate the additional value associated with it

(Jafarizadeh et al. 2012). Different approaches can be used to apply the real options analysis for the project

valuation. These might be decision tree models, binomial lattices or simulation-based approaches. In this

paper, we apply a simulation-based approach - the least-squares Monte Carlo (LSM) algorithm, which allows

us to represent the influence of project parameters, uncertainties and the flexibility on the project performance

using the simulation. In Section 3.4 we demonstrate how the risk-neutral procedure can be implemented using

the LSM algorithm to evaluate the project with an option to expand.

3 METHODOLOGY

We now introduce the key components of the proposed procedure allowing to evaluate staged investment

in a small offshore field with an option to expand under the presence of technical and market uncertainty.

Figure 2 represents the main building blocks and information flow of a modern development project, that

we propose in this study. First, based on available data, a subsurface assessment is carried out in order to

generate reservoir model(s) that allow to simulate the outcome of alternative drainage strategies in terms of

production. At the same time, a design basis for the field development and a proposed drainage strategy

are matured. Based on these, both a production forecast (see Section 3.1) and cost estimates (see Section 3.2)

for the envisioned development are established, including uncertainty estimates. This data can be combined

of 7% to justify profitability of the project. - The Norwegian Petroleum Directorate PDO Guidelines https://www.npd.no/globalassets/

1-npd/regelverk/forskrifter/en/pdo-and-pio.pdf
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with economic assumptions regarding oil prices (see Section 3.3), exchange rates and similar to model the

cash flows of the project. Together, this serves as an input to a real option valuation of alternative drainage

strategies. This is done using the LSM algorithm (see Section 3.4), which allows to optimize the decision to

expand the production by accounting for both technical and price uncertainty. As our main goal is to compare

the staged development strategy with the standard one, we perform a symmetric analysis of the two strategies

based on the same price and production assumptions, for a fair comparison.

Figure 2: Valuation procedure

In this paper, we focus on the introduction and implementation of this methodology to evaluate the oppor-

tunity to phase a field development into two stages with an option to expand. The case study that is presented

to illustrate the application of this method is a synthetic data set, described in detail in Section 4. We do not

include any underlying reservoir model nor a specific design basis of the field development, allowing the

methodology be easily adopted for other industry cases. In Fedorov et al. (2020) we used the well control

optimization based on several realizations of the benchmark reservoir model, Olympus (Fonseca et al. 2018)

to verify whether the staged development can create additional value. Using an analytical approach to model

the reservoir uncertainty brings both benefits and limitations for the valuation procedure.

3.1 Production profiles

We start our modelling procedure with the estimation of the yearly production rate for each well for both stan-

dard (non-staged) and staged development strategies. It is vital to realistically assess the amount of underlying

reservoir uncertainty that the operator is expected to deal with, before committing to develop the field. The

field development decision making process must aim to capture all probable outcomes of the uncertain pa-

rameters and exploit the available flexibility to react on these outcomes.

We use the probability density functions of each well’s initial production rate (in the first year of produc-

tion) as input data to estimate the field production potential. Such probability density functions are typically

generated by the reservoir and production engineers and are a representation of the technical uncertainty that

affects the production rates. Figure 3 illustrates potential probability distribution functions of the initial pro-

duction rates for wells within the standard development strategy. Let S denote the number of wells drilled for

Stage 1 and N the total number of wells. Then N − S is the number of wells considered for Stage 2. In case of

the standard development strategy, all wells i = 1...N are drilled before the production start-up, while in case

of the staged development, wells i = 1...S are drilled at Stage 1 and wells i = S + 1..N are candidates (with

possibly adjusted positions) for Stage 2.
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Figure 3: Illustration of potential probability density functions of the initial production rates per well (standard

development case)

When studying an opportunity to phase the drilling strategy into two stages, the decision maker has to iden-

tify which wells should be drilled at the first stage and which should be kept for later, i.e. Stage 2. Following

the approach by Dias (2004), we assume that the locations with the lowest risk and highest expected recovery

are selected for Stage 1, while the ones which tend to be more exposed to risk and uncertainty are chosen as

candidates for Stage 2. In our case, the well reservoir risk and prioritization are given by the distributions of

the initial production rate.

We start the procedure with well i = 1. We use Monte Carlo simulation to generate its initial production

rate samples in the whole range of the distribution that is provided by the field engineers as the input data.

Accounting for geological dependencies between the wells, we then proceed with sampling simulation cases

for each subsequent well. For the standard development, where all the wells i = 1..N are drilled immediately,

sampling of wells i = 2..N is explicitly dependent on the generated initial rate of the well i− 1 as given by

q0i = q0i−1 ki, (3)

where q0i is the initial production rate of well i = 2..N, q0i−1 is the initial production rate of well i-1 and ki

is the factor that defines the extent of geological dependency between wells i and i − 1, which is randomly

generated from a given distribution, 0 < ki < 1. This describes the expected decrease/growth of the initial

rate q0i−1 compared to q0i .
4

For the purpose of comparison, we assume that the wells i = 1..S, drilled at Stage 1 within the staged

development, have the same properties as the respective wells under the standard development and that the

wells i = 2..S are dependent on the generated initial rate of well i − 1 in the same manner as given by Eq.3.

However, due to the data generated during Stage 1, the decision maker is able to update the reservoir model

and therewith, the probability density functions for the initial rates, and reassess the initial positions of the

optional wells. Therefore, the uncertainty about their initial production rates is expected to decrease, but is not

fully eliminated.

4As illustrated in Figure 3, for our case the expected value of ki for each specific well is below 1, resulting in the fact that the expected

value of q0i is less than q0i−1 .
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Here we assume that there are two potential scenarios for the update of expected initial rates of the Stage

2 wells, referred as low- and high- case. In the low-case scenario, the data generated during Stage 1 reveals

that the optional wells have lower production potential than expected. We denote the probability of the low

case by x. In the high-case scenario, with assigned probability is 1− x, the new information and re-positioning

of the optional wells allows to increase the expected initial rate of the optional wells against the standard

development case. These probabilities depend on the operator’s beliefs on their ability to alter the drilling

program by improving Stage 2 wells locations based on the data gathered during Stage 1. The higher is the

probability of the high case, the more the operator can benefit from decreased subsurface uncertainty and

increased expected initial production rate associated with the locations of Stage 2 wells.

The initial rate of well i = S + 1 is calculated as follows

q0i=S+1 =

S
∑

i=1
q0i

S
k∗i , (4)

where q0i=S+1 is the initial production rate of the well i = S+1, S is the number of wells drilled for Stage 1, k∗i
is the factor that describes the expected decrease of the initial rate q0i=S+1 compared to the average initial rate

of the Stage 1 wells (i = 1..S) of a specific sample case within the Monte Carlo simulation. k∗i is also sampled

from a distribution and has a respective probability of x and 1− x to have a low or high mean, defining the

low/high scenario for the update.

Figure 4: Example of probability density functions of the initial production rates for well S+1 (standard develop-

ment vs. staged development)

Figure 4 illustrates the possible results of updating the distribution of the initial rates for well i = S + 1.

The initial rates of the remaining Stage 2 wells i = S + 2..N are then calculated using the relationship

presented in Eq.3, with initial rates dependent on q0i=S+1 .

When estimating the production rates for the Stage 2 wells we also have to take into account that their

production potential is decreasing while we are waiting to drill them due to the loss of some portion of oil that

might have migrated towards the Stage 1 production areas. We account for this by assuming that q0i=S+1 is

reduced by n% with each consecutive year of waiting for Stage 2.
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Once we simulated all samples for the initial production rates per well under staged and standard develop-

ment respectively, we proceed with the production estimation for the whole lifetime of the field. The produc-

tion rate is assumed to follow the general exponential equation (Fetkovich 1980),

qit = qit−1 e−a, (5)

where qit is the production rate in year t and a denotes the nominal decline rate.

The exponential decline a special case of a hyperbolic decline curve introduced by (Arps et al. 1945), and

is widely used both by academic literature and industry professianals owing to its simplicity and ease of use.

It is based on the assumptions of constant bottom-hole pressure production and boundary-dominated flow

(Fetkovich 1980) and is often used as a first-order approximation to a production forecast, especially in a situ-

ation where little or no observed production data is available. The decline rate in Eq.5 is individual for each

field design and may vary significantly from one case to another depending mainly on the reservoir depletion.

The exponential form of the decline is only one of several options of mathematical approximation of future

production rate behaviour. Our method is flexible enough to handle any other production rate estimation ap-

proach. In Section 5.3.2 we test alternative ways to model the production decline, also adding the uncertainty

to the decline rate.

The yearly total production of the field Qt is then equal to the sum of yearly production rates per well as

given by

Qt =
N

∑
i=1

qit . (6)

For simplicity, we assume that the production facilities are large enough to handle even the high reservoir

case without putting any limit on the production rate, which is typical for small fields. This allows us to avoid

the technical complications that stem from adjusting production profiles to a plateau rate.

The total recoverable reserves per well denoted by Resi are equal to the sum of yearly production of the well

as given by

Resi =
t

∑
t=1

qit . (7)

The total reserves of the field denoted by Res are then equal to the sum of the reserves of each well, i.e.

Res =
N

∑
i=1

Resi. (8)

The fairly simple, but realistic enough representation of technical uncertainty used in this paper can be easily

applied for other case studies and is considered to deliver a sufficient input for the main part of the methodol-

ogy - the economic modelling. In order to parameterize the apriori distributions of the initial recovery (q0 and

ki in Eq. 3) and sample production rates we only need input from engineers, which is typically provided before

making the final investment decision. This analytical approach to modelling the production uncertainty is in

line with Dias (2004), Armstrong et al. (2004) and Guedes & Santos (2016) who also use Monte Carlo simula-

tion and binomial trees based an input distribution to represent the reservoir uncertainty. Despite presenting

a simplified way of modelling production uncertainty, we account for the geological dependencies between

wells by reproducing the declining marginal productivity of new wells being drilled in the same reservoir. ki

in Eq. 3 is assumed to be less than 1, which makes the expected initial rate q0 of well i + 1 less than q0 of well

i. It means that the more wells we drill in the same reservoir, the less is the initial rate of a new well.
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We, however, disregard possible interference between wells that might reduce the production rate of already

existing wells. The expected production rate of well i in our model is not affected by additional wells i + ...

being drilled. The way that the well interference works in practice would be very much dependent on the

problem at hand and might affect the value of the staged development significantly. In this paper, we address

this issue in a relatively limited fashion, while in Fedorov et al. (2020) we used a benchmark reservoir model

simulation, where the interference is accounted for. Staged development in fact presents us with a strategy

that can help to avoid drilling wells that would interfere with each other. The reason for that is that the

data generated by Stage 1 production allows the operator to optimize positions of new wells, which is likely to

further increase the value of the project under the staged development. This is an iterative approach, where the

decision maker learns about the remaining uncertainty to update the drilling strategy. We have not accounted

for this learning effect in Fedorov et al. (2020), while in this paper we assume to acquire perfect information

that might either be a realization of ”high or ”low” case. In reality the reservoir properties and potentials for

learning during the course of the project can be even more complex, but our economic valuation procedure

allows to account for that.

The advantage of the proposed approach is that we are able to capture the whole range of probable pro-

duction rates per well, and not only discretized values representing ”high”, ”medium” and ”low” cases, as

typically done in decision analysis problems using decision trees. With that we facilitate the process of replac-

ing the scenario based thinking with a probabilistic approach. This allows us to make better use of a seismic

data and assess the influence of the reservoir uncertainty on the optimization of the decision to expand the pro-

duction by drilling optional wells. Using the Monte Carlo simulation of the expected production rates based

on the input distributions and running the whole valuation procedure described in Sections 3.1-3.4 takes a

few seconds. The Monte Carlo simulation approach allows us to build several thousand production scenar-

ios, while in Fedorov et al. (2020) using the reservoir simulation we were limited only to 5 realizations of the

reservoir uncertainty because of high computational demand of the production optimization.

3.2 Costs

The next step in the procedure is the cost estimation based on the technical features of the production sys-

tem and production rates. An appropriate estimate of cost parameters and underlying uncertainties is very

important for investment valuation. Underestimating costs may lead to difficulties associated with cost over-

runs, and ultimately, lower profitability than stakeholders had expected. On the other hand, exaggerating cost

estimates can lead the management to unnecessarily renounce a project.

For yearly capital investment (CAPEXt) estimation we assume it consists of drilling costs (DRILLEXt), cost

of the platform(PLt), which has to be constructed and installed, and other associated costs (FCt) as given by

CAPEXt = DRILLEXt + PLt + FCt. (9)

While overall drilling costs depend on the number of wells drilled, the platform cost component is deter-

mined by the chosen capacity size.

Yearly operating costs (OPEXt) are related mainly to the maintenance of platforms and wells and the costs

of day-to-day operation of the facilities (labour costs and maintenance). OPEX are assumed to consist of a fixed

(FO) and a variable parameters, the latter of which depends on the yearly production rate of the field (Qt) and

a coefficient b, representing the relationship between the production rate and OPEX, and is given by

OPEXt = FOt + bQt. (10)
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We use basic cost estimates for our synthetic case with associated uncertainty estimation of individual cost

elements based on both contractors’ data and the operator’s own assessment, which will be presented in Sec-

tion 4.3.

Another important cost component that offshore operators incur are the decommissioning costs, which gen-

erate ”unavoidable negative cash flow” (Parente et al. 2006). Companies have to cease their offshore opera-

tions, and depending on regulators’ requirements have to ensure that offshore production will not generate

environmental damage after that. The abandonment expenditure is expected to be fixed and consist of three

cost elements: decommissioning planning, removal of facility and plug and abandonment of well.

However, as a new platform is built for our field case, the operator could benefit from reselling it (or using

it on other fields) once the field is decommissioned. This could generate an overall positive cash flow at the

abandonment. Our methodology is, however, flexible enough to account for additional cost components that

might be important for other case studies.

3.3 Oil price modelling

We now proceed with parametrizing the underlying market uncertainty, which in our case is represented by

oil price risk. Oil price is one of the main factors that drive uncertainty in economic value assessment of oil

field development. As we apply the real options approach, we use a stochastic price model, that replicates the

characteristics of real market uncertainty. There exists a rich literature on oil and gas price modeling. Much

of it has been motivated by the desire to improve the quality of investment valuation under price uncertainty.

Early literature mostly used the geometric Brownian motion (GBM) approach to stochastic oil-price modeling,

which is based on an analogy in behavior of oil prices and stocks in the capital markets (see, e.g. Cox et al.

(1985), Smith & McCardle (1999)). Later on, the literature has noted a mean-reverting characteristic inherent

to oil prices due to ability of producers to react on the market conditions (see, e.g. Lund (1999)). Modelling

the future oil price as a mean-reverting stochastic process allows short-term disequilibrium from a constant

long-term equilibrium. Trying to better mimic the nature of oil markets, further research was extending this

approach by adding more levels of uncertainty leading to two-, three- and more factors in the model.

In this study, we assume that future oil prices follow the two-factor stochastic price process proposed by

Schwartz & Smith (2000). The two-factor price process allows to account for the mean reversion in short-

term prices and uncertainty in the long-term equilibrium level to which prices revert. The equilibrium prices

are modeled as a Brownian motion, reflecting expectations of the exhaustion of existing supply, improved

exploration and production technology, inflation, and political and regulatory effects. The advantage of this

two-factor process is that it is relatively easy to calibrate, while it is at the same time based on realistic as-

sumptions. It has clear advantages over one-factor models due to uncertainty in both the short- and long-term

factors, and other multi-factor models, which are harder to calibrate and are less intuitive to be communicated

with industry representatives. The Schwartz & Smith (2000)’s process mimics not only features of the phys-

ical commodity market with a mean-reverting nature, but the derivative market, where the volatility of the

near-maturity futures contracts is significantly higher than the volatility of far-maturity futures contracts.

We denote Pt as the commodity price at time t, where

ln(Pt) = ξt + χt. (11)

ξt denotes the long-term equilibrium price level and χt represents the short-term deviation from equilibrium

prices. The long-term factor ξt is modeled as a Brownian motion with drift rate µξ and volatility σξ . Its

dynamics are given by
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dξt = µξ dt + σξdzξ . (12)

The short-term deviations from the equilibrium prices reflect events in the market, that affect the price in the

short-term, but are smoothed in the long-term by the ability of market participants to adjust the production

and inventory levels in response to market conditions. These short-term disequilibriums are expected to fade

away in time. χt is therefore, modeled as an Ornstein-Uhlenbeck process, given by

dχt = −κχtdt + σχdzχ, (13)

where κ is the mean-reversion coefficient, σχ is the volatility of the short-term factor and dzξ and dzχ are

correlated increments of standard Brownian motion processes with dzξ dzχ = ρξχdt.

As we mentioned in Section 2.2, we choose to use a risk-neutral valuation technique (Cox et al. 1985) to

value an investment under multiple sources of uncertainty instead of using a risk-adjusted discount rate. We,

therefore, risk adjust individual uncertainties in the model. The short-term and long-term factors in the risk-

neutral version of the two-factor price process can be described by the following equations:

dξ∗t = (µξ − λξ)dt + σξ dz∗ξ , (14)

dχ∗t = (−κχt − λχ)dt + σχdz∗χ, (15)

where, as before, dz∗ξ and dz∗χ are correlated increments of standard Brownian motions such that dz∗ξ dz∗χ =

ρξχdt and λχ and λξ are risk premiums that are being subtracted from the drifts of each process.

This means that the risk-neutral short-term factor is now reverting to −λχ/κ. The drift of the long-term

factor in the risk-neutral model is equal to µ∗ξ = (µξ − λξ).

As we use Monte Carlo simulation to generate prices and cash flows, we next need to discretize the price

process. The discretization for the long-term component in Eq.14 is given by

ξ∗t = ξ∗t−1 + µ∗ξ ∆t + σξ εξ

√
∆t. (16)

The discretized version for the risk-neutral short-term component process is given by

χ∗t = χ∗t−1e−κ∆t − (1− e−κ∆t)
λχ

κ
+ σχεχ

√
(1− e−2κ∆t)

2κ
, (17)

where εξ and εχ in Eqs.16 and 17 are standard normal random variables and are correlated in each time

period with the correlation coefficient ρξχ.

The oil price model has a total of seven parameters (κ, σξ , σχ, µξ , λχ, ρξχ, and λξ), along with two initial

values ξ0 and χ0 that need to be estimated. As model parameters are not directly observable in the commodity

markets, we need a tool to calibrate them. Here we adopt the approach by Goodwin (2013)5, using Kalman

filter and maximum likelihood estimation. The Kalman filter recursively computes estimates for unknown

parameters in the form of a posteriori conditional distribution on a given dataset of spot and/or futures prices

and measurement covariance matrix. The calibration that we performed using the Kalman filter for a mar-

ket data set is presented in Section 4.2. In Section 5.3.3 we also perform a robustness check in order to test

alternative price models and to see how they affect our results.

5Goodwin (2013) uses a MATLAB function to estimate the parameters of the two-factor process. It is computationally efficient and

allows to calibrate the process using a large data set of historical prices, which is required as an input.
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3.4 Option to expand at Stage 2 and LSM algorithm implementation

In the current study, we focus on the valuation of the flexibility to drill additional wells during the production

phase. We assume that the field operator holds an option to expand the production from the moment of

the reservoir information revelation, which happens as soon as necessary production data is collected and

processed. This point in time serves as the option holder’s lower time constraint. The production experience

at Stage 1 is assumed to generate perfect information about the remaining reserves. Knowing the initial rates

per each well, the decision maker is able to estimate the future field production profile using the exponential

decline curve. After the reservoir information revelation the operator has a certain number of years to exercise

the option. Drilling activities are assumed to be done by the end of the year when the decision to expand

was made. If the optional wells are drilled, the field production potential increases from the following year

on (see Figure 1 for an example of how the decision to drill optional wells can affect the production profile).

Managers are assumed to able to reevaluate this decision once a year after the information revelation. This is

considered to be a realistic assumption for oil field development in terms of time needed to process data for

decision support. The upper time constraint of the option, i.e. the moment when drilling optional wells is

considered to be no longer reasonable, is defined by the operator based on the development strategy. In the

case of small field development, it might be limited to a few years after the decision to expand can be made

for the first time due the reservoir depletion. This means that we evaluate an American call option, that can be

exercised at the predetermined discrete points of time.6

Based on the information on the initial production rates per well and then-current state of the oil market,

the operator optimizes the expansion decision by choosing whether to exercise the expansion option at a given

point in time. The valuation procedure of problems as ours, with midway decisions that change the course

of a project, is typically performed in a backward fashion (Jafarizadeh et al. 2009). This means that one first

determines the optimal exercise strategy at the last decision point in time. Proceeding backwards in time,

an optimization algorithm determines the optimal strategy for precedent choices. To do so, we choose to

apply a LSM simulation approach, ”a state-of-the-art approximate dynamic programming approach used in

financial engineering and real options analysis to value and manage options with early or multiple exercise

opportunities” (Nadarajah et al. 2017). It is considered to be well suited for investment valuation problems,

when the investment decision depends on multiple sources of uncertainties and involves multiple decision

points. This is due to the fact that LSM approach does not suffer from the curse of dimensionality (Longstaff &

Schwartz (2001), Willigers et al. (2009)). Real option valuation methods based on the LSM approach have been

compared and verified by (Nadarajah et al. 2017) and used in several oil and gas applications (Jafarizadeh et al.

2009), Willigers et al. (2009), Hong et al. (2018).

In our model, we first determine the expected yearly cash flows by combining simulated production and

cost profiles as well as the trajectories for oil prices based on the risk-neutral process. We, therewith, generate

several sets of cash flows, where each set represents the simulated cash flows associated with the respective

time when the decision to expand is made (i.e. project cash flow given that the optional wells are drilled in

Year K, Year K-1, etc.). These cash flows serve as the main input for the LSM algorithm. At each decision point

tn the algorithm compares the immediate exercise value denoted by Π(tn, Ptn , Q0)), which is known, with the

estimated discounted value from continuation denoted by Φ(tn, Ptn , Q0). Φ is not known and is equal to the

expected conditional value of future cash flows E∗tn

[
F(tn+1, Ptn+1 , Q0)

]
. Both parameters are dependent on the

the oil price Ptn at time tn and sum of initial production rates per well Q0. Remember that the option can only be

exercised at discrete time steps, in the interval between year K− 1 - when the reservoir information is gathered

6This type of an option is also called Bermuda option.
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and processed, and year K + n - when the decision to expand can be last made (see Figure 1). Therefore, the

optimal value function F(tn, Ptn , Restn) at time step tn can be obtained using the following Bellman equation

(Rodrigues & Rocha Armada 2006):

F(tn, Ptn , Q0) = max
{

Π(tn, Ptn , Q0)), Φ(tn, Ptn , Q0)
}

, (18)

where

Φ(tn, Ptn , Q0) = e(−r(tn+1−tn))E∗tn

[
F(tn+1, Ptn+1 , Q0)

]
, (19)

where r is the risk-free rate.

The algorithm starts with the last decision point and maximizes the expected project value along each sim-

ulated path. At the maturity date K + n, i.e. the last year when the decision to expand can be made, the

continuation value equals zero. The algorithm, therefore, determines the optimal decision by comparing ex-

pected project values associated with the decision to drill optional wells now and the decision to keep the

option unexercised by producing only with the wells drilled at Stage 1 until the field shut-down. We then

consider these decision policies in the precedent years and find the optimal expansion time (if undertaking

the expansion is optimal) for each path of the simulation. At time steps K− 1 < tn < K + n, the holder of the

option must compare the payoff from immediate exercise, Π(tn, Ptn , Q0) (drill optional wells now), with the

continuation value (wait until the next year to reevaluate the drilling decision).

The main challenge in this process is to determine the continuation value. Here we follow Longstaff &

Schwartz (2001), who suggest to use linear regression that relates the continuation value to the underlying

uncertainties. The LSM algorithm uses the regression as the estimator of the expected value of future cash

flows conditional on the current information on the state variables (i.e. in our case, the simulated oil prices

and the sum of initial production rates per well), as given by

E∗tn

[
F(tn+1, Ptn+1 , Q0)

]
= α1Ptn + α2Q0 + α3Pt

2
n + α4Q2

0 + α5PtnQ0, (20)

where α1...5 are the regression coefficients.

As suggested by Longstaff & Schwartz (2001), we use only in-the-money paths for the estimation of regres-

sion parameters, ”since it allows us to better estimate the conditional expectation function in the region where

exercise is relevant”. It means that in the year K + n− 1 we consider only project values of those simulated

samples, in which the optimal decision was to expand in year K + n, and regress them on the current oil price

and sum of initial production rates per well.

In order to calculate the regression coefficients αi in Eq.20 based on the in-the-money paths at each time step,

we have used the MATLAB ”backslash” solver7, following the approach by Jafarizadeh & Bratvold (2015). The

fitted values from this regression are used as an estimate for the expected continuation function. The continu-

ation value is then discounted with the risk-free rate and compared with the value created by the decision to

drill the optional wells now. If the immediate exercise value is higher than the estimated continuation value,

the optimal decision is to exercise the option. Otherwise, holding the option is optimal.

Moving backwards in time, we calculate the maximum value at each time step. In our case the algorithm

stops after evaluating the decision in Year K− 1, in which the data on the reservoir is gathered and the decision

whether to exercise the option can be made for the first time. The cash flows for the years when the decision

maker does not have any flexibility, in our case before Year K − 1, are evaluated based on a simple DCF

7The backslash solver gives m unknowns for n system of equations when n = m. If n > m this function uses the linear least-squares

regression to estimate m (Jafarizadeh & Bratvold 2015).
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procedure. For the consistency of the results, the DCF evaluation is based on the same simulated oil price

paths as the real options procedure. We then calculate the overall project value by summing the cash flows

that the project generates before Year K− 1 and the values resulting from the LSM algorithm from Year K− 1,

all discounted with the risk-free rate.

Using the traditional DCF approach to evaluate the project with flexibility would have not allowed to capture

the value of waiting to expand. This additional value stems from the fact that the operator can optimize

the decision to drill optional wells based on the new knowledge. To the best of our knowledge, models to

evaluate the staged development with an option to drill additional wells do not exist in the literature. Previous

contributions have been looking at the value of the option to expand production by (1) connecting a tie-in field

(Fleten et al. 2011) (2) initiate IOR solution (Hong et al. 2018). The focus of these contributions is, however, on

the upside potential that can be exploited by production increase, while the main focus of our paper is to show

how the staged development strategy allows to mitigate the prominent downside risk, especially in case of a

marginal project.

The LSM algorithm is considered to be computationally efficient, flexible and transparent due to the fact that

it is based on a simple least squares regression. If there are additional risk factors that will affect the expected

continuation values, they can be easily added to the regression model (Willigers et al. 2009).

In the next section we proceed with the implementation of the proposed methodology to a synthetic case

study.

4 CASE STUDY

We now illustrate how the proposed method is applied to the evaluation of an investment in a small oil field

based on a synthetic, yet realistic industry case. The relevant technical inputs for the model were chosen

such as to build a realistic case taking into account the main features of an offshore field development project,

while disregarding components that are considered to be of secondary importance and are likely to make the

illustration of the procedure less intuitive and transparent. The goal of the case study is not to analyse a specific

project investment, but rather to illustrate the valuation algorithm based on the synthetic case, and show that

the workflow is flexible enough to be easily implemented for other project cases.

Figure 5: Decision gates of the project under the staged development strategy

Following the proposed modelling procedure, we first build 30,000 simulation samples8 of production pro-

files per well for each of the expansion scenarios (in total 5 sets of 30,000 paths), which serves as an input for the

830,000 iterations proved to be computationally reasonable and produce a consistent and stable result, that deviates insignificantly

throughout several simulations
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cost profiles estimation. We then construct the project’s cash flows based on the simulated production profiles

and oil price paths to run the LMS algorithm in order to find an optimal strategy for the staged development.

Figure 5 illustrates the flexibility that an operator has in our project case. Year 7 is the year when the data on

the reservoir is gathered and the decision to expand can be made for the first time. The operator is assumed to

hold the expansion option for a timespan of 3 years, reevaluating the decision once a year within this period

of time. Such a restriction for the number of decision points is consistent with the project’s expected lifespan

and other features such as loss of migrating oil and time value of money that were already discussed. This

means that the LSM algorithm is applied from Year 9 (when the optional wells can be drilled last) working

backwards to Year 7. Shortening the time needed for the initial stage of the project to make a decision upon

Stage 2 drilling would clearly increase the value of the staged development. We, however, remain conservative,

giving an operator more than enough time to gather and process the Stage 1 production data.

4.1 Production profiles

The case study mimics the production and cost profiles for a standalone development of an offshore oil dis-

covery with relatively low reservoir properties, allowing only an ultimate recovery factor of order 20%. The

main components of the field design consist of a single platform and subsea templates. The oil is offloaded

to tanker and transported to the mainland. A part of the gas production is used for power generation on the

platform, while the rest is re-injected into the reservoir.

In total, 6 oil production, 3 water injection and 1 water production wells are planned for the standard (non-

staged) development, while for the staged development 4 oil production, 2 water injection and 1 water pro-

duction wells are drilled at Stage 1, with an option to drill the remaining 2 oil production and 1 water injection

wells at Stage 2.

Table 2: Input parameters for the Monte Carlo simulation

Distribution Mean Unit Std. dev.

Initial production rate, Well 1 Normal 4.0 million bbl/year 0.9

ki Normal 0.667 - 0.12

k∗i high case Normal 0.45 - 0.015

k∗i low case Normal 0.26 - 0.07

We estimate the initial production rates per well, accounting for geological dependencies using the Monte

Carlo simulation as described in Section 3.1. The procedure starts with assigning the initial rate for Well 1 and

then proceeds with the remaining wells applying Eq.3 for Wells i = 2..6 in the standard development case and

for Wells i = 2..4 in the staged development case. The input parameters that were used for the Monte Carlo

simulation based on the input from field engineers are presented in Table 2.

In general, the expected initial rate of Wells i = 2..6 is decreasing due to the factor ki in Eq.3, which is less

than 1. In our case, the expected value of the initial rate of Well 2 is 33.3% lower than the initial rate q0 of Well

1. Given the simulation inputs, however, there is some probability that Well 2 will have a greater initial rate

than Well 1. Figure 6 shows the probability distributions for initial rates of wells i = 2..6 with a given initial

rate of Well 1 for two example cases within the standard development. For case A we assume that q0 of Well 1

equals 5.2 mmbbl/year. For case B we assume a lower q0 that equals 2.8 mmbbl/year. If the initial rate of the

Well 1 is relatively high (as for case A in Figure 6), there is a higher chance that wells i = 2..6 will produce at

a higher than average rate as well, due to geological dependencies between the wells. The opposite holds for
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Figure 6: Probability density functions of initial production rates per well with a fixed initial rate of Well 1 (cases A

and B) for the standard development case

case B.

In order to account for a learning effect during Stage 1 within staged development, we generate samples of

the initial rates of the first optional well, i.e. Well 5, using the dependency presented in Eq.4. As discussed in

Section 3.1, the information revealed during Stage 1, might lead to either increase or decrease of the expected

initial production rate for optional wells compared to the respective apriori initial rates. We assign the proba-

bilities for the high and low case to be equal to 60% and 40%, respectively. Given these probabilities, the factor

k∗i in Eq.4 is then sampled from a normal distribution with mean 0.45 and standard deviation 0.015 in 60% of

simulated cases, while in 40% of cases the distribution with mean 0.26 and standard deviation 0.07 is used (see

Table 2). The initial rate for Well 6 within the staged development is then sampled using Eq.3 based on the

generated values for Well 5.

Although the low case has a relatively high assigned probability for our case, the expected overall recovery

from Wells 5 and 6 under the staged development is expected to slightly increase. However, this does not

necessarily mean that in all the cases the staged development (given that Wells 5 and 6 are always drilled)

increases the recoverable volume compared to the standard development. Our simulation results show that in

34.2% of the cases, the total reserves under the standard development strategy are larger than under the staged

development.

Additionally, we consider that the production potential of the Stage 2 wells decreases by 1% yearly from

Year 7 (when the expansion decision is made for the first time) due to the loss of migrated oil. This assumption

accounts for the fact that while Stage 2 wells remain undrilled, the oil from these locations migrates towards

the areas which are already under development at Stage 1. Some portion of this oil is then trapped in the rock

and cannot be recovered at Stage 2. The decision maker, therefore, additional to the time value of money and

depreciation effects, has another incentive to drill Stage 2 wells earlier.

Based on the assumptions that the production rate follows an exponential decline function and that the rate

is not limited by the capacity constraint, we then simulate the production profiles. Given the initial production

rate distributions by each well, we estimate 30,000 possible production profiles realizations for each of the
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Figure 7: Confidence bands of the expected production profile under the staged development (expansion in Year

7)

expansion scenarios using Eq.5 with a nominal decline rate of 22.5%. We perform a sensitivity analysis in

Section 5.2 in order to see how different decline rate assumptions affect our results. The minimal production

rate per well is set to be equal to 0.05 million bbl per year. Once this threshold is reached, a well is assumed

to stop production. Figure 7 illustrates the confidence bands of the field production profiles for the case of the

staged development, given that in each case the expansion takes place in Year 7.

Summing the production profiles of all wells, we then obtain the total recoverable reserves for all simulation

samples. Those are shown in Figure 8 for all production wells, with the confidence bands resulting from the

Monte Carlo simulation. The results show that the additional expected recovery is decreasing with more wells

being drilled, meaning that the P50 value is continuously decreasing from Well 1 to Well 6 in the standard

development case. In case of the staged development strategy (the right side of Figure 8), we can note that

the expected recoverable volume for the optional wells that are drilled at Stage 2 increases compared to the

respective values under the standard development.

Figure 8: Total recoverable reserves per well under the standard development (left graph) and staged development

(right graph) strategies
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Table 3 states the total recoverable reserves of the field under the standard development and staged devel-

opment strategies, respectively. For the staged development, we show the results for three different cases.

The confidence bands stated in the first row result from the expansion optimization, discussed further in Sec-

tion 5. The LSM algorithm indicates that in 24.7% of the simulated cases, the decision maker should not drill

additional wells and should produce only with the Stage 1 wells. Therewith, the recoverable reserves under

two strategies are at the same level (the staged development’s mean is even slightly lower), which allows us

to make a fair comparison of their economic value. Values in the last two rows are limited to extreme points

when optional wells are drilled in all and none of the simulated cases, respectively. If optional wells are always

drilled, the field production potential increases, but production of these reserves might be uneconomical.

Table 3: Confidence bands of the recoverable reserves, mmbbl

P10 P50 Mean P90

Optimized staged (optional wells are drilled when it is optimal) 33.8 52.0 52.8 72.4

Standard 35.2 52.0 53.0 72.2

Staged (optional wells are drilled in all the 30,000 cases) 36.4 53.2 53.9 72.5

Staged (optional wells are drilled in none of the 30,000 cases) 31.8 46.4 46.9 62.6

4.2 Oil price simulation

As mentioned in Section 3.3, we calibrate the oil price process parameters based on historical market data

using the Kalman filter. We use Thomson Reuters weekly (averaged daily) data on ICE Brent historical futures

contracts from March 2006 (the first available forward curve with 81 months maturity) to November 2019,

along with Dated Brent FOB North Sea spot price for the same period of time. We average monthly maturity

contracts with mid- and long- range maturities to construct forward curve vectors with respective maturities

of 1,2,3...12,14...18,21,25,28,34,40,46,55,66,78 months to decrease the computational effort for the Kalman filter

algorithm. The overall data set for the model calibration forms a 715x24 matrix. The resulting oil price process

parameters are reported in Table 4. Figure 9 illustrates the confidence bands and the expected value for the risk-

neutral price process based on 30,000 simulated paths. The thin colored lines represent examples of simulated

price paths that were used for our valuation procedure. The resulting expected (mean) price increases from 56

USD/bbl in 2021 (Year 2 in our procedure) to 65 USD/bbl in 2040 (Year 21).

Table 4: Calibrated parameter values used for the Schwartz-Smith two-factor price process simulation

ξ0 4.0 χ0 0.1

σξ 13% σχ 58%

µ∗ξ -0.4% ρξχ 0.07

κ 0.52 λχ 9.82%

4.3 Costs and abandonment

As mentioned in Section 3.2, the main components of the CAPEX are the facility cost and the cost of production

drilling. The former is assumed to consist of a fixed parameter and a variable component that depends on the

chosen capacity of the platform. For our specific case, the facility cost is payable over several years as shown in

Table 5 and Figure 10. The cost of drilling and including one oil production well into the production system is
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Figure 9: Historical Brent crude oil prices, confidence bands and simulation examples for the risk-neutral price

process

equal to 48 MM USD. The CAPEX is assumed to have a random component that can increase/decrease the cost

estimate withing a range of 15% for a specific simulated cost profile. The resulting confidence intervals for the

CAPEX estimates are presented in Table 5. Staged development implies that Wells 5 and 6 remain undrilled in

Year 4. The decision maker can consider whether to drill those wells in Year 7, 8 or 9 or not to drill them at all.

Table 5: P10-P50-P90 CAPEX estimation under the staged development vs. standard one, MM USD

Year 2 Year 3 Year 4 Year 7, 8 or 9

Staged (optional wells are drilled) 85-96-108 32-36-40 602-683-765 127-145-162

Standard 85-96-108 32-36-40 729-828-927 0-0-0

Staged (optional wells are not drilled) 85-96-108 32-36-40 602-683-765 0-0-0

The main cost elements of OPEX are storage vessel leasing, facility manning and operations, and fuel costs.

The fixed component in Eq.10 equals 84 MM USD, while the b-coefficient is set to 0.6.

We also need to consider the end of the field lifetime as it bears some important features for the field man-

agement strategy and project cash flow. We first introduce a decision rule to cease the production and abandon

the field. Once the project cash flow reaches negative values due to the reservoir depletion, the only reason

that can drag the revenue from the negative to the positive values is an oil price upturn. By performing simu-

lations we empirically determine a threshold which is considered to be a ”point of no return” for the project’s

development. The production is assumed to be ceased as soon as the cash flow falls below 0.93 MM USD. For

the calibrated parameters for the oil price process, the probability to reach a positive cash flow after reaching

this threshold is reasonably low (less than 0.5%). One year after the production is halted, the company incurs

some losses due to decommissioning. However, it has an opportunity to resell the production platform, which

is expected to generate an overall revenue of 100 MM USD in the last year of the project life. Figure 10 illus-

trates confidence bands for project’s expected yearly cash flows. Unfavourable price and production scenarios

that represent the P10 case, force the oil company to shut-down the field and resell the platform early.
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Figure 10: Project cash flows under the staged development strategy (optional wells are drilled in Year 7)

5 RESULTS

The main issue that the decision maker faces in our case is whether to commit to investment in drilling all

the wells before the oil production start-up or to choose for the staged development strategy. Our goal is to

evaluate whether the staged development with the option to drill additional wells creates value and to analyze

under which conditions the staged development is the preferred strategy.

We first study the staged development case with the option to expand. Based on the input from the technical

part of the workflow we use the LSM algorithm to optimize the expansion decision. The simulation with

30,000 trials for each of the development strategy (expand in Year 7/ expand in Year 8/ expand in Year 9/ do

not expand/ choose standard development) generates 5 sets of 30,000 production and cost profiles as well as

risk-adjusted paths for oil prices. The value of the investment at a respective decision node is calculated by

determining the expected project value discounted at the risk-free rate of 2.5%.

Figure 11: Optimal expansion timing as percentage of total number of simulated paths
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As mentioned in Section 3.4, the LSM algorithm works in a backward manner starting from Year 9, and then

moves to precedent time steps, i.e. Year 8 and Year 7 optimizing the expansion policy for each simulation case.

Figure 11 illustrates the results related to the optimal timing of exercising the option to expand that are

produced by the LSM algorithm. It shows that in 68.5% of all simulated cases it is optimal to drill optional

wells as soon as the reservoir information is gathered, i.e. in Year 7. The field production potential and

oil prices in these cases favour the early expansion. However, the decision maker is recommended to defer

drilling of optional production wells until Year 8 and Year 9 in 4.0% and 2.8% of cases, respectively. Finally,

in 24.7% of cases the optimal decision is to leave the option to expand unexercised and avoid drilling optional

wells. These cases represent realizations of unfavourable production and/or price scenarios.

Knowing the optimal expansion decision for each of the simulated case, we sum the value that project

generates before the optional wells are drilled (if the expansion is optimal) and the value that project generates

over Stage 2. As mentioned in Section 3.4 the former is evaluated using a simple DCF approach, while the

latter is the result of risk-neutral real option valuation procedure.

We then derive the value of the project when using the standard development strategy, which will serve

as a reference point. As the standard development considers an irreversible commitment at Year 4 to drill all

production and injection wells, it can be evaluated using a simple DCF approach. We do so using the same

data set (Monte Carlo simulation for production rates for wells 1..4, cost profiles and oil price paths).

Table 6 shows the results of the project valuation for the staged and standard development case respectively.

Due to flexibility to optimize the expansion decision, the staged development allows to increase values of all

the confidence bands and, most importantly, the expected value of the project. In Section 5.3.1 we discuss the

potential to increase the value of flexible project even more by accounting for additional flexibility to choose

the number of optional wells.

Table 6: Confidence bands of the pre-tax values of the flexible and inflexible projects, MM USD

P10 P50 Expected value (mean) P90

Optimized Staged -164 675 885 2186

Standard -188 655 851 2127

The choice between staged and standard development is affected by several factors. One important factor

here is the amount of the additional oil production that is generated at Stage 2. As we stated above, the

decision maker is able to improve the drainage strategy by adjusting locations and design of the Stage 2 wells,

due to the information gathered during Stage 1. This increases the expected recovery for Well 5 and 6 for the

high case in comparison with the standard development. However, for the low case, the optional wells could

have lower recovery than expected. The assigned probabilities to the high and low cases prove to be a key

element in the choice between the staged and standard development. In order to isolate the value of flexibility,

we chose the parameters for updating the Stage 2 wells recoverable volumes (60% high case) so that the P50

recoverable reserves of the flexible project (under the optimized staged development strategy) are equal to the

P50 recoverable reserves under the standard development. This allows us to make a fair comparison between

the staged and standard development as we can identify how much value is created solely by the flexibility to

optimize the expansion decision, not accounting for the ability to significantly increase the recoverable volume

with the staged development.

Figure 12 shows how the values of the two strategies evolve as a function of the probability of the high case

for updating the Stage 2 wells initial rate under the staged development. The probability of the high case must
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be at least 35.5%9. for the staged development to be the preferred option. This means that if the engineers

expect that the information being gathered during Stage 1 would ensure an expected total recoverable volume

of at least 51.4 mln bbl, then choosing the staged development is optimal. If not, the value lost due to waiting

for the information revelation, is not compensated by the production increase at Stage 2 nor by the ability to

partly hedge against the downside risk by not drilling optional wells.

Figure 12: Project value under the staged and standard development depending on the probability of the high

case for the Stage 2 wells

Furthermore, our methodology allows to derive the investment boundaries, at which it is optimal to exercise

the expansion option. These investment boundaries are given as functions of the sum of initial production

rates per well, which was indicated by the data collected during Stage 1, and the observed oil price in the

market when the decision is made. The threshold boundaries result from hyperbolic fitting for the boundary

combinations of the production rates/oil price (dots in Figure 13) that result in the decision to exercise the

option in the LSM algorithm. Figure 13 illustrates the derived investment boundaries for each year when the

expansion is possible. If the combination of the current oil price and the sum of initial production rates lay

to the upper right of the respective investment boundary, it is optimal to exercise the expansion option in

this year. If the combination of the two parameters lays to the lower left, it is optimal to wait and revisit the

decision one year later. The continuation region becomes wider as the investment boundary moves each year

to the upper right, while the decision maker defers the decision to expand. Higher oil prices are then needed

to justify an expansion later in time.

5.1 Downside risk mitigation

One of the main advantages of the staged development strategy is the possibility to leave the expansion option

unexercised if the reservoir information indicates too low potential production inflow due to drilling more

wells and/or the oil prices are at a level, which does not trigger the investment. Therefore, this strategy allows

to partly hedge against the downside risk in unfavourable reservoir/oil price scenario. We, however, should

also note that for the case of real options, unlike financial options, a perfect hedge is almost never possible.

9total expected recoverable volume under optimized staged development in this case is 51.1 mln bbl

27



0 50 100 150

Oil price when decision to expand is made, $/bbl

0

5

10

15

20

25

In
it
ia

l 
ra

te
, 

M
M

 b
b

l/
y
e

a
r

Exercise threshold at each decision point

Continuation region

Stopping region

All exer. Y7

All exer. Y8

All exer. Y9

Threshold Year 7

Threshold Year 8

Threshold Year 9

Figure 13: Results of the expansion timing optimization by the LSM algorithm. Threshold boundaries

This is due to multiple sources of uncertainty that have to be considered, and decisions that have long-lasting

impacts. The optimization algorithm proposes an optimal decision given then-current knowledge, while the

project remains exposed to some risks in the future that are not hedged. We, therefore, acknowledge that the

staged development can provide only a partial hedge.

Figure 14: Project value distribution under staged and standard development in the low reservoir/price scenarios

In the standard development case, all the wells are drilled at the early stage of the project, ignoring the effect

of new information received during the course of the project. The staged development, however, allows to

save the cost of drilling optional wells and, therewith, decrease the downside risk. In a low reservoir/oil price

scenario the project value is at risk, making the decision maker more likely to turn away from the investment,

when there is no opportunity to react on this outcome of the uncertainty. Figure 14 shows the project value

distribution in the low reservoir/price scenario under the staged and standard development, respectively.

It represents only those simulated cases, where the sum of initial production rates per well for the staged

development was less than 7 MM bbl and the oil price was less than 40 USD/bbl in Year 7 (the decision not
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to drill Stage 2 wells was optimal in all these cases). The staged development strategy in these cases tends to

decrease the project value losses compared to the standard development case.

Performing a simulation with 30,000 samples allows us to capture a wide range of probable combinations

of production and cost profiles, oil price paths and scenarios of information revelation after Stage 1. Figure

15 illustrates the probability that the project value under the standard development (the right axis) is below a

certain level (see the horizontal axis). The yellow line in Figure 15 illustrates the average project value increase

that would be added if the staged development is used instead of the standard development for the same

simulation cases (given the same initial production rates for the Stage 1 wells, oil prices, etc.) (see the left axis).

The average increase of the project value due to the staged development if the project value under the stan-

dard development is below -500 MM USD is 82 MM USD. Overall, our results show that in 81% of the simu-

lated cases where standard development results in a negative value, using the staged development increases

the project value. In those simulated cases, where the expected project value under the standard development

is high (due to a large reservoir or high oil prices), the effectiveness of the sequential drilling decreases. How-

ever, for the range of simulated project values below 3000 MM USD, the staged development still adds value

in 59% of the cases.

Figure 15: Project value increase due to the staged strategy standard development

It is also interesting to compare the results from the optimization using the LSM algorithm with a simple

approach based on a now or never decision. Assume that managers decide to drill Wells 5 and 6 in Year 7

only if the information indicates that their compound initial rate would exceed 0.7 mln bbl/year. By following

this rule, the decision maker disregards the market uncertainty and the value of waiting, focusing only on

the technical part of the problem. The red dashed line in Figure 15 (the left axis) illustrates the average NPV

added by such a strategy within staged development. Although such an optimization approach also allows

to hedge some part of the downside reservoir risk, only 55% of the simulated cases with the negative project

value under the standard development are improved due to this strategy (compared to 81% when using the

LSM algorithm). In the worst cases (when project value is below -500 MM USD) this flexibility adds on average

31 MM USD. For the range of project simulated values below 3000 MM USD the average increase of the value

is about 3 MM USD.¨

These findings are confirmed in Fedorov et al. (2020), where we used a benchmark reservoir model sim-

ulation to identify the value of the staged development in the presence of prominent reservoir uncertainty.

However, as we mentioned in Introduction, whether the staged development creates additional value de-
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pends strongly on the problem at hand. With this paper we aim to introduce a methodology that could be

easily used for other project cases in order to assess whether the staged approach would be beneficial.

5.2 Sensitivity analysis

In this section we study the sensitivity of the results to key factors. Specifically, we focus on the effect of

changes in the production decline rate, oil price volatility and drilling costs.

In our case study we assumed that production profiles follow an exponential decline curve with a constant

nominal decline rate of 22.5% based on the input from the field engineers. It is, however, important to see how

our results would change if the reservoir depletes with another pace. Note that in order to keep recoverable

reserves in line with the reference case (about 53 mmbbl) we also have to adjust the initial production rate of

wells When reducing/increasing the nominal decline rate.

Figure 16: Sensitivity of project value to changes in the exponential decline rate (with adjusted initial production

rates)

Figure 16 illustrates that the lower production decline is, the more beneficial is the staged development as

mid- and late life decisions play a more significant role in the project value. We can argue that we were quite

conservative in our analysis as the added value by the staged development in our reference case was 4%, when

using 22.5% nominal decline rate, while when using 8% decline rate, the staged development can add 14% of

the value compared to the standard development.

Although the calibration based on the historical market data provides good knowledge on how future oil

prices might evolve based on the information we have so far, it is not a perfect estimate. In other words,

historical data is based on past expectations in the market and, thus, is backward looking in nature. Because of

that, it cannot fully reflect the possible changes in the future and parameters that are used to build a stochastic

price process might change as time passes. A sensitivity analysis is then needed to illustrate how probable

changes in underlying uncertain parameters might affect the investment decisions and project value.

The sensitivity analysis reveals that the project value depends on variations in both the short- σχ and long-

term σξ factors we use in the oil price modelling. However, the sensitivity to σχ is rather small. This is a result

of the long build-up phase of the project (4 years), which decreases the effect of the short-term price variations

on the project. The long-term factor, however, is more important due to the fact that the field production spans

over a time horizon that starts in 5 years and ends in 12-18 years from the investment decision (depending
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Figure 17: Sensitivity of project value to changes in the long-term oil price volatility factor, σξ

Figure 18: Shift in optimal expansion timing due to changes in the long-term oil price volatility factor, σξ

on the optimal shut-down time). With these results about the sensitivity of the petroleum production invest-

ment (in a small oil field as well) to the long-term volatility, we support findings in Jafarizadeh & Bratvold

(2015). Jafarizadeh & Bratvold (2015) argue that the uncertainty in the long-term price equilibrium makes the

Schwartz-Smith oil price model particularly suitable for valuing long-term investments affected by commodity

prices.

As illustrated in Figure 17, the project value increases with σξ , as does the difference between the value of

the flexible and non-flexible projects. This is a result of a shift in expansion timing optimization (see Figure

18). The yellow line in Figure 18 illustrates that the higher long-term volatility is, the more the decision maker

is willing to postpone the production expansion decision awaiting for higher oil prices.

Another parameter that strongly affects both project values and the expansion policy, is the drilling cost of

the production well. We used a fixed value of 48 MM USD for our case study. This gave the decision maker

some incentive to wait for the information revelation before committing to drill all the production wells. Figure

19 shows that the values of the flexible and non-flexible projects diverge as the drilling cost of the production

well grows. This is due to the increasing amount of simulation cases where the optimal decision is to stay with

Stage 1 wells and do not expand in order to prevent extensive spending on drilling. The flexibility to leave the
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Figure 19: Sensitivity of project value to changes in the the production well drilling cost

Figure 20: Shift in optimal expansion timing due to changes in the production well drilling cost

expansion option unexercised allows to hedge against this risk.

However, if these expenditures are rather low, the added value of the staged development strategy de-

creases, as the decision maker tends to drill optional wells even in the low-case scenario. However, increasing

drilling expenditures make the decision maker more hesitant to invest in Stage 2 wells. As shown in Figure 20,

the larger the well cost, the higher the likelihood that the expansion is not optimal.

5.3 Robustness check

In this section we present some additional analysis on our modelling approach by including more flexibility in

the drilling strategy (see Section 5.3.1), accounting for additional uncertainty in production rates (see Section

5.3.2) and by testing different assumptions on how future oil price is modelled (see Section ??).

5.3.1 Altering the number of optional wells at Stage 2

One of the assumptions we made in our modelling approach is the fact that the operator chooses whether to

drill two optional wells at Stage 2 or to drill none of them. In reality, the operator might not be limited to a

fixed number of wells that must be drilled after the initial stage of the project. The staged development allows
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for more flexibility due to the ability to react on the information generated at Stage 1. Therefore, it would be

interesting to perform a robustness check of the model and investigate whether altering the number of wells

for Stage 2 has a significant effect on the expected value.

Additional data generated during Stage 1 might indicate that some of the optional wells have little potential

to create additional value if drilled. For the robustness check, we first introduce an opportunity to choose

only one optional well of the two to be drilled at Stage 2. Accounting for this flexibility requires us to increase

the number of simulation sets as now the operator can choose between three alternative policies each year

instead of two: to drill only one optional well with the highest expected recovery now, to drill two wells now,

or postpone the drilling decision until next year. The LSM algorithm, however, allows to straight forwardly

incorporate this feature into the analysis. Our results show that in only 1.6% of the simulated cases the optimal

decision is to drill only one of the optional wells. The data in Table 7 illustrates the results of the project

valuation accounting for additional flexibility. It shows that incorporating the possibility to choose one best or

drill both optional wells into the valuation procedure leads to only a minor increase of the expected value of

the project by 0.02%. For our case, both optional wells have enough production potential to ensure positive

additional cash flow if drilled, in most of the simulated cases.

Table 7: Impact on the project value due to adding more flexibilities

Expected value Change vs. reference Change vs. reference

(MM USD) case (MM USD) case (%)

Staged development, reference case (two

optional wells without an opportunity to

decrease/increase the number)

885.14 - -

Possibility to choose one best or drill both

optional wells
885.29 0.15 +0.02

Possibility to add a third well and choose

optimal number of wells (one/two/three)
892.06 6.92 +0.78

The updated knowledge on the subsurface after Stage 1 might also indicate that the operator has potential to

drill more than two optional wells due to a higher than expected reservoir performance. As mentioned before,

we assume for our case study that the expected recovery under the staged and standard drilling strategies are

equal in order to be able to make a fair comparison. In order to perform another robustness check we now,

however, assume that in 20% of the simulated cases that resulted in a realization of the ”high case” for Stage

2, the operator is able to drill three additional wells instead of two. The initial production rate of the third

optional well is modelled in the same manner as done for the second well by using Eq.3. Given that 60% of

all simulated cases were a realization of a ”high case”, this means that the decision maker can decide to drill

three wells in 12% of total number of cases. By including this flexibility in our model, we allow to optimize the

number of optional wells drilled (i.e. only the best one, the two best or all three10). The results in Table 7 show

that accounting for this flexibility increases the expected value of the project under the staged development

by 0.8% (6.9 MM USD). This increase, however, is caused to a large extent by the additional expected recovery

(+0.6%), that is provided by the third optional well, which is optimal to be drilled in 9.1% of all simulated

cases.

Figure 21 illustrates the optimal expansion policy accounting for an opportunity to choose the number of

optional wells as percentage of all simulated cases. Comparing Figure 11 for the reference case of the staged
10remember that drilling the third well is available only in 12% of the total simulated cases
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Figure 21: Optimal expansion timing accounting for the flexibility to optimize the number of optional wells

development with Figure 21, one can notice that accounting for the flexibility to change the number of optional

wells leads to rather small changes. Overall, the percentage of simulated cases where optional wells remain

undrilled decreases due to the fact that the decision maker now can choose to drill only one of optional wells

that creates the highest value, rather than having to drill both. Our results also show that it is optimal to drill

three wells in 78.1% of cases when the operator is able to add a third well, whereas in 6.3% of the cases it is

optimal to drill the two best wells out of the three available. In 0.7% of the cases only one well is drilled, while

in 15.0% of the cases the optimal decision is not to drill optional wells at all (most likely due to low oil prices

in these simulated cases).

As we have shown, our proposed methodology can straight forwardly be used to account for the flexibility

to choose an optimal amount of optional wells. For our case study none of the additional flexibilities in terms

of the choice of optional wells, added a significant value directly. For other case studies, however, such flexi-

bilities might create substantial additional value in case of higher uncertainty about the expected production

rate of the optional wells and/or due to a higher number of wells.

5.3.2 Adding uncertainty to the production profiles

Another assumption made in our methodology was that production profiles follow an exponential decline

curve with a constant nominal decline rate. Therewith, the operator could build a production forecast until

the field shut-down once the initial rate of each well is sampled with the Monte Carlo simulation. In Section

4.1 we used an exponential decline equation to model the production rates of each well. This approximation

suited the expected drainage from the reservoir case we model. We assumed the nominal decline rate to be

fixed at 22.5% based on the input from the field engineers. However, there exist several alternative ways to

represent mathematically the future production rate. A general discussion on decline curve analysis methods

can be found in Höök et al. (2009). Duong et al. (2011) present a novel approach to estimate the performance

of wells producing from tight or shale reservoirs in which fracture flow is dominant. Chang & Lin (1999) show

that conventional decline curve analysis does not take into account the uncertainties. Probabilistic or stochastic

analysis must then be used to reflect the uncertainty of the production. In this section, we will test alternative
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approaches to model the field production rate in order to see how our results might be affected by accounting

for the uncertainty and how our conclusions depend on the choice of the type of the production decline curve.

Figure 22: Production profile simulation examples (expected nominal decline rate = 22.5%)

There exist three variations of (Arps et al. 1945)’s decline curve: hyperbolic, harmonic and exponential. The

latter two are a special case of hyperbolic decline equation. Höök et al. (2009) argue that ”the disadvantage of

the exponential decline curve is that it sometimes tends to underestimate production far out in the tail part of

the production curve, as decline often flattens out towards a more harmonic and hyperbolic behaviour in that

region”. As seen in Figure 23 the difference between exponential and hyperbolic fitting for an example oil field

historical production from Höök et al. (2009) appears after 15 years of production. Therefore, the difference

between these approaches would be very marginal in our case of a marginal field, whose production lifetime

is limited to 12 years on average.

Figure 23: Hyperbolic and exponential decline curves applied an oil field historical production (from Höök et al.

(2009))

It is, however, interesting to know how adding uncertainty in our production forecast can affect our results.

A straight-forward way to add uncertainty to the exponential decline model, is to assume that the nominal

decline rate in Eq. 5 might deviate from the expected mean. The decline rate might either be the same for

all wells, or modelled for each individual well. For the purpose of this robustness check, we will use normal

distribution with the same mean of 0.225 and the standard deviation of 0.1, to sample the nominal decline rate
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for each year, for each simulation case. It would generalize the whole field’s production rate decline, making

all the wells deplete proportionally. Figure 22 shows examples of simulated production profiles using (1) fixed

exponential decline, (2) exponential decline with uncertainty and (3) GBM model, which is discussed below.

When including uncertainty in production decline, the project’s expected value under the standard devel-

opment remains the same (851 MM USD) as we kept the expected mean of the nominal decline unchanged.

Under the staged development, however, the operator can proactively exploit the flexibility to optimize the

expansion policy when additional uncertainty is accounted for. As variability of the technical uncertainty in-

creases and the operator is not certain anymore about future production level once the initial production level

is known, the project value under the staged development increases from 885 MM USD to 901 MM USD. The

decision maker, therefore, can benefit more from the learning effect while waiting for the expansion, when

uncertainty in production rates is accounted for. The additional value created by the staged development will

further increase with the amount of the uncertainty in decline rate (if standard deviation is greater than 0.1).

A classic approach to address the uncertainty in production rates in real options literature is to assume that it

follows a stochastic process such as geometric Brownian motion (GBM) (Smith & McCardle 1998), Jafarizadeh

et al. (2009)). The GBM allows to account for probable deviations from the expected decline rate, adding

uncertainty in the production profile modelling. With GBM process, the current production will depend on

the previous year’s rate and a probabilistic element representing variability, as given by

qtn = qt−1n e(−µ−0.5σ)∆t+σN(0,1)
√

∆t, (21)

where µ is the expected decline rate and σ is the volatility.

Figure 24: Added value by the staged development depending on the field’s expected production decline rate

In GBM model we also assume an expected decline rate (µ) of 22.5%, while the volatility (σ) is set to 0.25 to

ensure that confidence bands of recoverable reserves remain the same as in the base case in order to perform

a fair comparison with the reference case results. The project value under the standard development again

results in 851 MM USD, while the value of the staged development increases to 910 MM USD due to slightly

higher variability of production rates, that further increases the real option value due to opportunity to react

on the outcome of more uncertain conditions.

We also performed a sensitivity analysis using three models presented in order to illustrate how added value

created by the staged development evolves when changing the nominal decline rate (the initial production rate
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of all wells is then also changed to keep the recoverable volume the same (about 53 mmbbl)). As Figure 24

shows, a steeper production decline, with higher recovery at early stages of the project, reduces the value

added by the staged development. With lower expected decline rate, when late life decisions are crucial for

the project economy, the staged development creates more value due to the field development strategy opti-

mization. Accounting for the uncertainty in the decline curve adds on average 1% of the project value, with

additional 1% when using the GBM process to model the production rate.

6 CONCLUSIONS

In this paper we present a novel methodology to evaluate investment in a small offshore oil field under tech-

nical and price uncertainty, addressing the managerial flexibility to phase the drilling strategy into two stages.

By investing sequentially, the operator is able to gather additional information on the reservoir uncertainty

during the initial stage of the project. We implement the least-squares Monte Carlo (LSM) algorithm for real

options valuation, modelling oil price as a two-factor oil price process and accounting for production rate un-

certainty, in order to optimize the production expansion decision. Applying the methodology on a synthetic

project case, we show that accounting for such flexibility as staged development is crucial for the valuation of

an investment in a marginal discovery.

Being flexible enough to be applied to another case studies, the presented methodology also produces re-

sults that can be easily communicated with oil E&P companies’ managers. The main output of modelling are

the recommendations for the companies’ managers which could possibly facilitate the decision making. The

operator’s investment policy can be optimized based on the developed algorithm and threshold boundaries.

We identify key features that may affect the choice between the standard and staged field development strat-

egy and calculate associated project values. We perform a sensitivity analysis, which reveals the influence of

drilling costs and oil price process parameters on the optimal decision and values of the project. By performing

a robustness check of the modelling approach, we also prove that our assumptions on the oil price process are

realistic and the methodology can potentially account for more flexibilities in terms of drilling strategy.

Some of the limitations that we face in this paper, i.e. the simplistic reservoir modelling, may be avoided

by introducing a realistic reservoir simulation that allows to track geological dependencies between possible

production wells locations and to assess the effect of Stage 1 production data on the reservoir model based

on history-matching and Bayesian updating. We leave this for the further research in cooperation with our

industry partner in order to account for even more flexibilities, e.g. possibility for optimize the number of

wells drilled at Stage 2.

Among possible extensions to this work might be further analysis of various approaches to include man-

agerial flexibility in the development strategy of a small offshore field. This flexibility may stem from using

a floating production storage and offloading (FPSO) vessel (whose cost is typically higher than one of a plat-

form) that can be re-positioned given the production experience during the initial stage of a project or used

for another discovery in case of a failure with the existing field. Among other potential measures that can

create additional value during the course of a project could be including possibility of IOR solution, additional

capacity for a probable tie-in, etc. Incorporating the concept of imperfect information regarding the technical

data generated throughout Stage 1, might also be regarded as a potential direction for our future research.
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