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Abstract 

Renewable Energy Certificates (RECs) are instruments that provide incentives for 

producers to invest in clean and renewable sources of energy. On the other hand, market 

exchanges based on Distributed Ledger Technology such as the blockchain network 

protocol have some advantages over traditional exchanges, such as full transparency, low 

transaction costs and universal access. In this article we analyze three autonomous models 

for issuing and selling REC based tokens in the blockchain for the renewable energy 

generator. In all three models, the generator has the option to invest now or in one year 

for the right to issue RECs and offer them through quarterly sales auctions, considering 

the energy generated in one year by a single typical 4MW wind turbine. In Model I, we 

assume that the token price is fixed following a stable coin concept. In Model II, we 

consider that the price follows an inverse demand function subject to stochastic shocks. 

Finally, in Model III, the demand for RECs is uncertain and the purpose is to maximize 

the generator’s profit. Through a numerical application, we verify the validity of the 

models and conclude, considering the parameters adopted, that the generator should 

invest in Model II, since it was the one with the highest NPV (US$ 60,992.70). However, 

if the demand volatility is less than 20%, the optimal model for the generator is Model I. 

The main contribution of this work is to analyze the performance dynamics of digital 

products under uncertainty. 

Keywords: Renewable Energy Certificates; Real options; Analysis under Uncertainty; 

Blockchain. 
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1. Introduction 

The emission of greenhouse gases has been one of the main factors contributing 

to global warming, and the focus of global concern (Lellis, 2007). In order to reduce the 

CO2 emissions generated by electricity production, one of the main sources of greenhouse 

gases, big companies are investing more and more in clean energy sources. However, 

such initiatives require large capital investments in renewable energy sources, which are 

often out of the reach or end-use of some companies. One alternative, in this case, is to 

continue to receive energy from traditional sources and to acquire Renewable Energy 

Certificates (RECs) in a volume equivalent to the company's consumption, thus achieving 

its clean energy balance. 

Renewable Energy Certificates were proposed in 1996 as market-based 

instruments issued when one megawatt-hour (MWh) of electricity is generated from a 

renewable energy source and delivered to the grid (Abragel, 2018). RECs are designed to 

foster renewable energy production by providing an additional source of revenue for these 

generators. These certificates may be transferred, purchased, sold, withdrawn or used by 

the holder to claim that he has used renewable energy. Currently, the certification cycle 

works as follows: a company that wishes to be an issuer of RECs must adhere to a code 

and undergo a documentary audit by the local issuer (Instituto Totum, 2018). With all the 

documents in compliance and the audit completed, the company pays the program fees 

and, from this, can issue and transfer RECs. In this sense, RECs help overcome several 

barriers to the purchase and sale of renewable energy attributes associated with electricity, 

such as access to transmission and pricing policies, intermittence of resources and lack of 

market liquidity (Wingate and Holt, 2004). 

 RECs markets have expanded rapidly and already have significant liquidity 

worldwide and, increasingly, countries are investing in renewable energy sources. 

Despite this, the question still remains: how can this market be further promoted in a way 

that is practical for all its stakeholders? Part of the answer can be found in the use of 

technological innovations, such as Distributed Ledger Technology (DLT), which enables 

tokenization and cheap distribution of RECs around the world. 

The DLT also allows the creation of digital currencies, as well as being a new 

form of payment, as observed by Extance (2015), Maftei (2014), Negurita (2014), Little 

(2014), Bryans (2014), Hurlburt and Bojanova (2014), and Brito and Castillo (2013), can 

promote transaction agility, reduce or eliminate bureaucracy in the means of payment, 

and increase the security and transparency of transactions. In particular, blockchains, 

which are a type of DLT, depend on a distributed public accounting system, divided into 

blocks, where each block is cryptographically connected to the previous block, forming 

a chain of blocks, or a blockchain. The fact that the information in each block is public 

and immutable allows numerous new applications in the industry based on the blockchain 

protocol. Programs, also known as smartcontracts, can be developed to run on 

blockchains, with all the benefits this technology offers, such as transparency and 

security. 

In this study, we propose three distinct models for the development of tokens 

based on RECs, which can be automated and included in a smartcontract to run on the 

blockchain. In the three models proposed, the renewable energy generator, interested in 

offering RECs, has the option to invest now or in one year to have the right to issue RECs 

and sell them later through quarterly sales auctions automatically promoted by the 

protocol itself intelligent. 
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In Model I, we consider that price volatility and the inflation curve are controlled 

by adjustments in the supply of RECs, since the historical series of daily transactions of 

RECs is extremely volatile. In this case, we assume that the selling price of the token is 

fixed in all quarters, following the concept of a stable coin. 

On the other hand, in Model II, we consider that the demand for RECs is 

deterministic and that it has a percentage growth in each quarter. In addition, in this 

protocol, the unit price of the token varies quarterly and is a function of inverse demand 

subject to continuous stochastic shocks. 

Finally, in Model III, the purpose is to maximize the profit of the renewable energy 

generator, by choosing the optimal demand. In this case, the demand for RECs is a 

stochastic variable and the selling price of the token, as in Model II, is a function of 

inverse demand. 

Therefore, the objective of this study is to evaluate, from these proposed models, 

the optimum model from the point of view of the renewable energy generator. For this, 

we used the real options approach, which made it possible to evaluate the option of 

Deferral present in each model and to analyze the decision making under generator 

uncertainty. This study contributes to the expansion of the literature on the applications 

of blockchain technology in the renewables market and is relevant, as it proposes three 

Decentralized Autonomous Organizations (DAOs) issuance and sale of RECs tokens. In 

addition, this research shows that simple pricing real options methods can assist decision 

makers in evaluation investment opportunities under uncertainty and flexibility. 

This article is structured as follows: after this introduction, in section 2, we review 

the related literature. In section 3, we discuss how RECs work and, in section 4, we 

propose the three models for the development of token-based RECs. In section 5, we 

analyze the results and compare the proposed models. Finally, in section 6, we present 

the conclusions of this study and the suggestions for future research. 

  

2. Literature Review 

The theory of real options arose from the need to take into account managerial 

flexibility in project evaluation, which is not contemplated by traditional techniques, such 

as the Discounted Cash Flow (DCF) method (Copeland and Tufano, 2004). This new 

approach adapts the pricing models of financial options developed by Black and Scholes 

(1973) and Merton (1973), allowing the treatment of investment under uncertainty and 

flexibility. 

Myers (1977) is credited as one of the first authors to use real options to determine 

the value of having flexibility and investment capacity in the future. It showed that 

companies that have a high debt risk will miss valuable investment opportunities, while 

companies that have low debt risk will be able to take advantage of future investment 

opportunities. Mcdonald and Siegel (1985), Titman (1985), Majd and Pindyck (1987) and 

Triantis and Hodder (1990) further developed the field, providing solutions for particular 

applications. Some years later, Dixit and Pindyck (1994) and Trigeorgis (1996) 

synthesized the main concepts and possible applications of this methodology. 

Once the electric sector has initiated a process of deregulation, with a high level 

of competitiveness and increased market uncertainty, traditional project evaluation 

techniques have become insufficient to adequately deal with these additional risk and 

uncertainty factors (Fernandes, Cunha and Ferreira, 2011). In this sense, the use of more 
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sophisticated valuation techniques, such as the real options approach, is now necessary to 

evaluate investment projects in the energy sector. 

Although the literature presents several applications of real options in the 

evaluation of technologies and policies of electric power generation, the use of this 

methodology in problems related to renewable energy is recent. From the perspective of 

the real options analysis, Lee (2011) evaluates the investment opportunities in renewable 

energy, showing that this method is effective in quantifying how the uncertainty of 

investment planning influences the development of renewable energy. The results 

reaffirm that the value of renewable energy development increases as the underlying price 

increases, time to maturity, risk free rate and volatility. But, it decreases as the exercise 

price increases. 

Fontoura, Brandão and Gomes (2015) evaluate the feasibility of converting a 

biomass plant project based on elephant grass in a biorefinery, investing in a charcoal 

production unit and/or a second generation ethanol represent the options of this model. 

Through the adoption of a hybrid model of energy commercialization, the authors 

conclude that the values of the options are positive and that the proposed scheme 

represents a viable and interesting opportunity for the sustainable diversification of the 

energy matrix. Detert and Kotani (2013) investigate the optimal decision time for 

investments in alternative energy sources in uncertainty situations using the real options 

approach. To do this, they analyze a case study in Mongolia in which the uncertainty is 

the price of coal and compare the attractiveness of continuing to use coal-based 

infrastructures or switching to renewable energy sources. 

Dias et al. (2011) study the case of an existing sugarcane mill that produces both 

sugar and ethanol, which has both the option of expanding production and the option of 

renovating its old cogeneration plant. This work was developed because of concerns about 

the possible exhaustion of fossil fuel reserves worldwide. The results show that the 

refurbishment of the cogeneration plant adds almost the same value as the flexibility to 

choose the ideal time to invest in the expansion of the plant, which is significant 

considering that cogeneration is not the main business of the sugarcane plant. Kim, Park 

and Kim (2017) propose a real options model that allows evaluating the investment in 

renewable energy in the developing countries. The main concern of the authors is to deal 

with uncertainties such as: the rapid change of technologies and the conditions of the host 

government. To test the validity of the model, the authors analyze the case involving a 

hydroelectric project in Indonesia and conclude that the proposed tool can help host 

countries and investors in the evaluation of renewable energy projects with high volatility 

and risk. Oliveira et al. (2014) analyze the feasibility of investing in a biomass and natural 

gas cogeneration unit in an industrial plant in Brazil that has the flexibility to choose 

between an increase in production or the generation of excess energy for sale in the short-

term market term. From the results found, the authors conclude that the investment is 

feasible and that the option adds significant value to the project, which suggests that 

biomass residues can be a sustainable energy alternative. 

According to Martínez-Ceseña and Mutale (2011), the initial costs and 

uncertainties caused by the variability of the renewable energy source, changes in support 

schemes and other factors can make renewable energy projects unattractive when they 

are subject to traditional financial assessments, as the discounted cash flow method. In 

this way, the authors propose a methodology, based on the real options approach, for the 

planning of renewable energy generation projects. Using a case study of hydropower, the 

authors conclude that projects planned under the proposed methodology can generate 

greater profits. 
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Boomsma, Meade and Fleten (2012) analyze, through the real options 

methodology, the moment of investment and the choice of capacity for renewable energy 

projects from different support schemes, such as feed-in tariffs and certificate negotiation 

of renewable energy. To test the proposed model, the authors apply it in a Nordic case 

study based on wind energy and conclude that feed-in tariffs encourage prior investments, 

but once the investment is made, trade in renewable energy certificates creates incentives 

for projects. According to Fleten et al. (2016) investors of 214 hydroelectric projects in 

Norway are not based on the real options model. In light of this information extracted 

through interviews, the authors investigate how the decisions to invest in renewable 

energy behave. For this, the authors evaluate the implicit subsidies in the decisions of the 

investors, through two models: the one of options kings and the one of liquid present 

value. Based on the sample analyzed, the results show that the real options model 

describes significantly better the behavior of investments in renewable energy. 

Ritzenhofen and Spinler (2016) assess the impact of adjustments to feed-in tariff 

(FIT) schemes, which are widely used as policy instruments to promote investments in 

renewable energy sources, verifying the relationship between the guaranteed value paid 

for the amount of electricity produced and the propensity to invest renewable energy 

sources. In this sense, the authors propose a regime change model to quantify the impact 

of regulatory uncertainty induced by regulators considering changes from an FIT scheme 

to a more market-oriented regulatory regime. 

Kitzing et al. (2017) develop a model of real options for evaluating wind energy 

investments, considering optimal timing and capacity constraints as part of optimization. 

The authors believe that this approach is well suited for the comparison of different 

support schemes, such as: FIT, feed premiums and Tradable Green Certificates (TGCs). 

The results indicate that TGC schemes may require profit margins up to 3% higher than 

FIT schemes, due to the greater variation in profits. On the other hand, FIT schemes can 

consider 15% smaller design sizes. The analysis of this trade-off should be considered so 

that there are better strategic projections of the renewable support, as well as the 

development of bespoke incentive schemes. 

Although there are some applications of real options in renewable energy, studies 

have not been found in the literature that analyze the decision making under uncertainty 

of the renewable energy generator before three distinct and autonomous organizations 

(DAOs) whose rules of emission and sale of RECs are specified in smartcontracts, which 

are executed and validated by blockchain. 

 

3. Renewable Energy Certificates 

In many countries, the structure of generation, transmission and distribution of 

energy makes it impossible to physically trace the source of energy to its point of 

consumption. In such cases, the electricity from a renewable source is simply injected 

into the distribution system, mixing with other electrons from other sources (renewable 

or otherwise), and delivered through the local distributor to companies or homes through 

the poles and wires. Therefore, in this scheme, neither the local distributor of energy can 

inform about the origin of these electrons.  

Renewable Energy Certificates, known worldwide as RECs, have emerged as a 

solution to the traceability problem of environmental energy attributes. The RECs 

originated through a global certification system, the I-REC (International REC Standard), 

which enables, in a practical and reliable way, to verify the origin of the energy consumed 
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as well as the trade of certificates. The I-REC platform allows consumers to choose the 

type of renewable energy they want through RECs generated by wind, biomass and solar 

power plants. By acquiring a REC, which proves that 1 MWh has been injected into the 

system from a renewable energy source, the consumer appropriates that energy that has 

been injected into the system and the platform goes on to ensure that that REC will not 

be used for more nobody. 

In addition, the I-REC platform allows plants to gain the right to transact the 

certificates and become issuers of RECs. To do so, these plants must undergo a 

certification cycle before joining the I-REC code. Initially, the plant must present detailed 

information about its enterprise and undergo a documentary audit by the local issuer, in 

which it is verified if the energy source is renewable, if the energy is legally installed, if 

the energy is interconnected in the system grid and whether there is a dual beneficiary of 

the ECN. With all the documents evaluated and accepted by the audit, the plant may begin 

to issue, sell and transfer RECs to buyers through the I-REC platform, where they will be 

registered as a participant. 

The benefits of RECs are diverse. For certification organizations, the main benefit 

is that registration in the I-REC becomes a way to obtain additional revenue, which is a 

direct incentive for the producer to continue investing in renewable energy generation. 

On the other hand, for those who acquire the RECs, the main benefit is the proof of the 

origin of the electricity consumed and the corresponding reduction of emission of 

greenhouse gases. Currently, there are markets that only accept this type of credit, such 

as the projects that seek Leadership in Energy and Environmental Design (LEED) 

certification, whose purpose is the construction of green buildings. Another advantage of 

obtaining RECs is that they can be used to report indirect emissions through energy 

consumption in the Brazilian GHG Protocol Program, which aims to record and publish 

Greenhouse Gas Emissions Inventories. 

Therefore, RECs bring recognition to clean energy users and supports the 

preservation of natural resources, sustainability and the development of renewable 

energy. In addition, the certificates make it possible to achieve the sustainability goals of 

many organizations and improve indicators for reporting programs such as the Carbon 

Disclosure Program (CDP), the Corporate Sustainability Index (ISE) and the Down Jones 

Sustainability Index (DJSI). 

 

4. Model 

All three models assume an initial investment, which will allow the entry of the 

renewable energy generator in the platform and the creation of new tokens, and quarterly 

sales auctions, in which a number of tokens will be made available to the market, as 

shown in Figure 1: 
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Figure 1 – General Scheme of Sale Auctions 

 

Note that the renewable energy generator investment takes place at date zero and 

that the supply of RECs to the market (St) will occur for eight quarters (or two years). In 

addition, all three models consider that the generator has the flexibility to invest now or 

in a year to enter the platform, considering the energy generated in one year by a single 

typical 4MW wind turbine. So, the generator has a European option to defer for one year 

its investment to have the right to issue and sell RECs, being responsible for evaluating 

the best decision-making in each model. 

 

4.1. Model I 

In Model I, the offer of RECs is organized in a way that its price mimics the 

workings of a stable coin, which is a crypto-currency whose main purpose is to minimize 

price volatility. The motivation for the development of this model originated from the fact 

that the historical series of daily transactions of RECs is extremely volatile. Considering 

this, we assume that the unit price of the token is fixed in all quarters and that the quantity 

of RECs to be offered (St) in the sale auctions is strictly equal to the expected demand for 

RECs for the same period (Dt). 

The quarterly demand for RECs follows the function presented in equation (1). 

This function is based on the seminal paper of Grenadier (1996), which proposes that the 

price of an asset follows an inverse (convex) function of the demand subject to continuous 

stochastic shocks. Since the token price is fixed in our model, we modify the original 

model of Grenadier (1996) by placing the demand for RECs in evidence in this function. 

It is important to note that by making this modification, this becomes a concave function. 

 0max 3 ,0t

t

P
D D

C

  
    

  
  (1) 

where: Dt is the demand in quarter t; P is the fixed unit price of the REC (US$/REC); D0 

is the initial demand; and, Ct represents a multiplicative demand shock, which follows a 

Geometric Brownian Motion (GBM), as shown in equation (2). 

 t t t tdC C dt C dz     (2) 
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where: dCt is the incremental variation of the shock in the time interval dt;  represents 

the drift, that is, the expected growth rate of demand for RECs;  is the volatility of 

demand for RECs; and, 
tdz dt  represents the standard increment of Wiener, where

(0,1)N  . 

After estimating the total demand for RECs, we can calculate the investment that 

the generator must make to enter the platform, defined in equation (3). 

  
8

1

t

t

I E D


    (3) 

where: I is the investment; E[Dt] represents the expected value of demand in quarter t; 

and,  is the marginal unit fixed cost of entry into the platform in US$/REC. 

On the other hand, the generator’s revenue in each quarter (Rt) will depend both 

on the supply of RECs in the same period (St) and on the unit price of the REC (P), as 

shown in equation (4). 

 t tR P S    (4) 

But we have previously defined that the supply of RECs is strictly equal to the 

demand for RECs. Therefore, equation (4) can also be written as equation (5): 

 t tR P D    (5) 

Therefore, the generator’s Net Present Value (NPV) of participating in this 

protocol is defined by equation (6): 

  
1

n
kt

t
t

NPV I E R e dt


      (6) 

where: E[Rt] is the expected value of future revenues; n represents the total number of 

quarters; k is the weighted average cost of capital (WACC). 

Since the traditional DCF method does not capture the uncertainty and managerial 

flexibility present in this case, we adopt the real options approach using the discrete 

binomial tree model proposed by Cox, Ross and Rubinstein (1979) (CRR). The model 

parameters are presented in equation (7): 

 
11

,      e   
fdt

r d
u e d p

u u d


 

  


  (7) 

where:  is the volatility adopted in the stochastic process of uncertainty, which in this 

case is the shock (Ct); and, fr   is the risk-free rate. 

It should be noted that this option pricing model requires the use of the risk-neutral 

measure that can be determined by deducting the risk premium from the asset's rate of 

return and then discounting cash flows at the free rate of risk. Thus, the shock-neutral 

process is defined by equation (8). 

 ( )R R R

t C t t tdC C dt C dz       (8) 
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where: 
C  represents the shock risk premium; is the return rate of the shock; and, R

tdC  

is the incremental variation of the neutral shock to the risk in the time interval dt. 

As discussed by Freitas and Brandão (2009), the market risk premium can be 

observed directly or can be determined through CAPM (Capital Asset Pricing Model), 

where fr    and   M fE R r   . On the other hand, the risk premium of 

incomplete market assets, as is the case of the uncertainty of this first model (Ct), can only 

be calculated through indirect methods. 

In order to evaluate the shock risk premium, we consider that the expected value 

of the gains in the risk-neutral valuation, regardless of possible options, should be strictly 

equal to the expected value of the gains in the traditional static valuation, as shows the 

equation (9): 

     ( )

1 1

C
n n

tt R

t t
t t

f C e dt f C e dt
   

 
    (9) 

where: f (.) represents the generator’s cash flows. 

From this, assuming that the other variables of equation (9) are known, the risk 

premium value can be determined by equivalence.  

Note that we have defined only how uncertainty should be addressed in this model. 

To incorporate the flexibility, we assume some premises: if the generator chooses not to 

delay, it will follow the general auction scheme shown in Figure 1; but, if he chooses to 

postpone, his investment happens in the fourth quarter (IA) and starts to assume the value 

presented in equation (10). 

    
12

4

5

1A t

t

I E D k


 
    
 

   (10) 

In addition, both the uncertainty value and the amount of RECs to be offered will 

correspond to the estimated values for the fifth quarter onwards, as shown in Figure 2. 

 

 
Figure 2 – Deferring the Investment in Model I 

 

4.2. Model II 
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In Model II, we also consider that the quantity of RECs to be offered (St) in sales 

auctions is strictly equal to the expected demand for RECs for the same period (Dt). 

However, in this case, the demand for RECs is deterministic and has a percentage growth 

every quarter, as shown in equation (11). 

  0 1
t

tD D     (11) 

where: Dt is the demand in each quarter t;D0 is the initial demand; and, is the growth 

rate of demand each quarter. 

Although the demand is deterministic, the unit price of the REC changes every 

quarter and is defined as a function of inverse demand subject to continuous stochastic 

shocks, as shown in equation (12). Note that, in this case, we are using exactly the model 

proposed by Grenadier (1996). 

 
0

3 t
t t

D
P C

D

 
   
 

  (12) 

where: Pt is the unit price of the REC in each quarter t; and, Ct represents a multiplicative 

demand shock, which follows a GBM, as well as in Model I. 

From this, we verify that the investment that the renewable energy generator must 

make to enter this platform is defined by equation (13): 

 
8

1

t

t

I D


    (13) 

where: I is the investment and  is the marginal unit fixed cost of entry into the platform 

in US$/REC.  

And, the generator’s revenue (Rt) is determined by equation (14): 

 t t tR P S    (14) 

where: St is the supply of RECs in each quarter t. 

Since the supply of RECs is equal to the demand for RECs, the expression of 

revenue can also be defined by equation (15): 

 t t tR P D    (15) 

Thus, as in Model I, we can determine the generator’s NPV, through equation (6)

; and model the uncertainty (Ct) through the binomial tree CRR model, using the same 

concept of risk neutrality presented previously. 

To capture flexibility, we assume other premises: if the generator chooses not to 

defer, it will follow the standard auctions scheme shown in Figure 1; On the other hand, 

if the generator chooses to delay, his investment happens in the fourth quarter (IA) and 

starts to assume the value defined in equation (16). 
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  
8

4

1

1A t

t

I D k


 
    
 

   (16) 

Since the demand for RECs in the first four quarters is not realized, we believe 

that it will be repeated over the next four quarters, promoting a one-year displacement in 

the model, as shown in Figure 3. However, the uncertainty, which is defined by the 

multiplicative shock of demand (Ct), will continue to follow a GBM since the first quarter. 

 

 
Figure 3 – Deferring Investment in Model II 

 

4.3. Model III 

In Model III, we follow the same logic that the amount of RECs to be offered (St) 

in the sale auctions is strictly equal to the expected demand for RECs for the same period 

(Dt). However, in this case, the demand for RECs is not deterministic, it is a stochastic 

variable that follows a GBM, as shown in equation (17). 

 t t t tdD D dt D dz     (17) 

where: dDt is the incremental variation of demand in the time interval dt;  represents the 

expected growth rate of demand for RECs; is the volatility of demand for RECs; and, 

tdz dt  represents the standard increment of Wiener, where (0,1)N  . 

One of the differences of this model to the previous one is that the uncertainty is 

no longer in the shock (Ct) but in the demand itself (Dt). In this case, we change the 

original idea proposed by Grenadier (1996) so that the unit price of the REC varies every 

quarter, following a function of inverse demand subject to deterministic shocks, as shown 

in equation (18). It should be emphasized that this function, different from that developed 

by Grenadier (1996), is concave, since the uncertainty is no longer in the shock. 

 
0

max 3 ,0t
t t

D
P C

D

  
    

  
  (18) 
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where: Pt is the unit price of REC in quarter t; D0 é the initial demand; e, Ct is the shock 

in quarter t, which is defined by equation (19). 

 
0(1 )t

tC C     (19) 

where: C0 represents the initial shock; is the growth rate of the shock in each quarter. 

From this, we can evaluate the investment that the renewable energy generator 

must make to enter this platform, through equation (3), as in Model I. On the other hand, 

to calculate the generator’s revenue we use equation (15), defined in Model II. 

The other difference, the main one, between the second and third models is that 

the objective of this is to maximize the profit of the generator by choosing the optimal 

demand. In this sense, since the generator’s revenue is a concave function, we can apply 

the First Order Condition, as shown in equation (20). 

 0t

t

R

D





  (20) 

After defining the optimal demand and including it as an absorbing barrier in the 

stochastic process of demand, we calculated the generator’s NPV, through equation (6), 

as well as in the other two models. To model the uncertainty, which in this case is the 

demand for RECs, we also use the binomial tree CRR model. However, as uncertainty 

derives from the demand in this model, we must use the risk-neutral process defined in 

equation (21): 

 ( )R R R

t D t t tdD D dt D dz       (21) 

where: D  represents the demand risk premium; is the rate of return of the demand; 

and, 
R

tdD  is the incremental variation of the risk-neutral demand in the time interval dt. 

As in the other models, we consider the equality between the expected values of 

the traditional and risk-neutral valuation gains to calculate the risk premium. However, 

in this case, the cash flows are demand functions, as shown in equation (22): 

     ( )

1 1

D
n n

tt R

t t
t t

f D e dt f D e dt
   

 
    (22) 

where: f (.) represents the cash flows of the generator. 

Finally, to insert the flexibility into the model, we assume the same premises 

defined in Model I. 

  

5. Numerical Example 

In order to verify the validity of the three models, we first define the common 

parameters to the three models, as shown in Table 1. It is important to note that the initial 

demand for RECs, growth rate, volatility and drift were determined based on the history 

of daily transactions of RECs between 2014 and 2018, provided by Instituto Totum 

(2018). 

 



 

13 
 

Parameters Quarterly Values Annual Values 

Initial Shock (C0) 1.00 1.00 

Initial Demand (D0) 15,000 MWh 15,000 MWh 

Growth Rate () 5.00% 21.55% 

Discount Rate (k) 6.00% 26.25% 

Risk Free Rate (r) 1.30% 5.30% 

Volatility () 30.00% 185.61% 

Drift () 5.00% 21.55% 

Marginal Unit Cost () US$ 1.50/REC US$ 1.50/REC 

Table 1 – Common Parameters to the Three Models 

 

5.1. Model I Results and Analysis 

With the values of initial shock and initial demand determined in Table 1 and 

assuming that the unit sale price of the token is fixed and equal to US$ 2.00 in all quarters, 

we can determine the demand for RECs in each quarter and, consequently, the investment 

that the generator must make at the initial moment, as well as the generator’s revenue in 

the eight quarters.  

For this, we need to model the uncertainty of this first model, which is given by 

the demand shock (Ct). In this sense, we first calculate the risk premium 

( 3.56% a.t. or 15.02% a.a.)C   using numerical methods, considering the mathematical 

equivalence between the PVs (Present Values) of the traditional static valuation and the 

risk-neutral valuation. 

After that, we calculate the upside and downside factors of the binomial tree (u = 

1.35 and d = 0.74). And, from these values, we determine the risk-neutral probabilities of 

the model (p = 44.92% and 1-p = 55.08%). Using DPL software, we model the uncertainty 

for the next eight quarters, incorporating the generator’s revenue as the cash flow of the 

model, as shown in Figure A.1. 

From the modeling of uncertainty, we verify that the expected demand value for 

the next two years is equal to 121,767 MWh and that the generator's investment in this 

platform is equal to US$ 182,650.34. In addition, through this binomial tree, we find that 

the generator’s NPV is equal to US$ 5,224.23. 

However, note that we still do not consider the flexibility in this calculation, which 

is given by the generator's option to postpone its investment. To include it in the model, 

we developed the binomial tree shown in Figure A.2. In this case, the expected demand 

for RECs is equal to 129,539 MWh and, consequently, the generator's investment is IA = 

US$ 245,310.64. In addition, considering the option to postpone the investment for one 

year, we find that the generator’s NPV is equal to US$ 40,044.68. In this sense, the 

Deferral option promoted a growth of approximately 666.52% in the generator’s NPV. 

Note that this option is extremely valuable to the generator due to the high volatility of 

demand for RECs. 

 

5.1.1. Sensitivity Analysis 

According to the Model I results, the volatility of demand for RECs () is 

extremely high and is one of the parameters that makes the generator's option to defer its 

investment valuable. In this sense, although the volatility was calculated based on real 
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data on the transactions of RECs in the market, it is interesting to perform a sensitivity 

analysis to verify, from the variation of this parameter, the impact on the generator’s NPV, 

as shown in Figure 4. 

 

 
Figure 4 – Sensitivity Analysis of Volatility for Model I 

 

For this, we consider that the volatility can assume values between 10.00% and 

50.00% and, as we can see, the generator’s NPV decreases as the volatility increases. This 

result is not expected, since in most cases of real options we analyze convex functions, 

which follow the rule that the greater the uncertainty, the greater the value of the option. 

However, the result of the sensitivity of the volatility is valid, since the NPV function in 

the Model I is concave and behaves contrary to that described above. That is, in this case, 

it is pertinent to state that the greater the uncertainty, the lower the value of the option. 

Another important parameter to perform the sensitivity analysis is the marginal 

unit cost of entry into the platform (). Although it has been estimated based on the 

current market value of the REC, we believe that it is interesting to see how the variation 

of this parameter can impact the generator’s NPV, as shown in Figure 5. 
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Figure 5 – Sensitivity Analysis of the Marginal Unit Cost of Entry for Model I 

 

In this analysis, we consider that the marginal unit cost can assume values between 

US$ 1.00 and US$ 2.00. As this cost directly impacts the value of the generator’s 

investment, the higher this parameter, the lower the generator’s NPV. Note that the 

generator’s NPV increases by 83.71% when the parameter value decreases by 50.00% 

and that the generator’s NPV decreases by 61.12% when the parameter value increases 

by 50.00%. 

 

5.2. Second Model Results Analysis 

From the definition of the initial demand and its growth rate in Table 1, we can 

determine the expected demand values in each quarter for the next two years, as shown 

in Table 2. 

 

t Demand (Dt) 

1 15,750 

2 16,538 

3 17,364 

4 18,233 

5 19,144 

6 20,101 

7 21,107 

8 22,162 

Total (DT) 150,398 MWh 

Table 2 – Projection of Quarterly Demand 

 

As the total demand for RECs for the next two years is equal to 150,398 MWh, 

the generator’s investment will be equal to US$ 225,597.70. From this, we can model the 

multiplicative demand shock (Ct), which represents the uncertainty in this second model 
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and that defines the generator’s revenue. In this sense, we use the upside and downside 

values of the binomial tree (u = 1.35 and d = 0.74); calculate by numerical methods the 

value of the risk premium ( 4,66% a.t. or 19,98% a.a.C  ), considering the 

mathematical equivalence between the PVs; and, consequently, the risk-neutral 

probabilities (p = 43.12% and 1-p = 56.88%). 

Based on this, using the DPL software, we model the uncertainty for the next eight 

quarters, incorporating the generator’s revenue as the cash flow of the model, as shown 

in Figure A.3. Through this binomial tree, we find that the generator’s NPV is equal to 

US$ 23,769.94. In this calculation, we do not consider the generator’s option to defer for 

one year its investment. 

To include this managerial flexibility in the model, we need to redesign the 

binomial tree, as shown in Figure A.4; and, consider that the generator’s investment 

becomes equal to IA = US$ 284,811.89. So, considering the option to postpone the 

investment, we find that the generator’s NPV is equal to US$ 60.992.70. Therefore, the 

option promoted a growth of approximately 156.60% in its NPV. 

 

5.2.1. Sensitivity Analysis 

As in Model I, we perform sensitivity analyzes on two parameters: the volatility 

and the marginal unit cost of entry into the protocol. First, we consider that the volatility 

can assume values between 10.00% and 50.00% and we evaluate the impact of this in the 

generator’s NPV, as shown in Figure 6. 

 

 
Figure 6 – Sensitivity Analysis of Volatility for Model II 

 

We can observe that the generator’s NPV can assume values between US$ 

27,112.68 and US$ 93,007.81. Therefore, the generator’s NPV increases as the volatility 

assumes larger values. This result is expected because the NPV in Model II is a convex 

function. 
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To evaluate the impact on the generator’s NPV from variations in the marginal 

unit cost of entry to the platform, we consider that this parameter can assume values 

between US$ 1.00 and US$ 2.00, as shown in Figure 7. 
 

 

Figure 7 – Sensitivity Analysis of the Marginal Unit Cost of Entry for Model II 

 

Note that the generator’s NPV, in this case, varies between US$ 40,627.18 and 

US$ 104,453.14. In addition, observe that a 50.00% increase in the value of the parameter 

under analysis causes a 66.61% reduction in the generator’s NPV; and, on the other hand, 

a reduction of 50.00% causes an increase of 71.26% in the generator’s NPV. 

 

5.3. Third Model Results Analysis 

With the values of the initial shock (C0) and the growth rate () presented in Table 

1, we can determine the shock value in each quarter for the next three years, as shown in 

Table 3: 
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t Shock (Ct) 

1 1.05 

2 1.10 

3 1.16 

4 1.22 

5 1.28 

6 1.34 

7 1.41 

8 1.48 

9 1.55 

10 1.63 

11 1.71 

12 1.80 

Table 3 – Projection of Quarterly Shock 

 

In this case, the investment in the platform is given by the marginal unit cost of 

input multiplied by the expected demand for the first eight quarters, shown in Table 4. 

 

t Expected Demand E[Dt] 

1 15,750 

2 16,538 

3 17,364 

4 18,233 

5 19,144 

6 20,101 

7 21,107 

8 22,162 

Total  150,398 MWh 

Table 4 – Expected Demand in the Base Case 

 

When we define the total expected demand for RECs for the next two years, we 

find that the value of the generator's investment is equal to US$ 225,597.70. After that, 

we use the upside and downside values of the binomial tree (u = 1.35 and d = 0.74); we 

calculate the risk premium ( 10,16% a.t. or 47,26% a.a.)D   using numerical methods, 

respecting the equivalence between the PVs; and, we determine the risk-neutral 

probabilities (p = 34.09% and 1-p = 65.91%). 

To model the demand for RECs, which is the uncertainty in this model, we use 

the DPL software and incorporate the generator’s revenue as the cash flow of the model, 

as shown in Figure A.5. Through this model, we find that the generator’s NPV in the third 

protocol is negative and equal to - US$ 12,056.97. 

Please note that we do not consider the generator option to delay your investment 

for one year. In order to include flexibility to the model, first, we consider that the 

investment of the generator, in the case of Deferral, increases to IA = US$ 346,190.64, 

since the expected demand starts to assume the values presented in Table 5; and then we 

project the tree shown in Figure A.6. 
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t Expected Demand E[Dt] 

5 19.144 

6 20.101 

7 21.107 

8 22.162 

9 23.270 

10 24.433 

11 25.655 

12 26.938 

Total  182.810 MWh 

Table 5 – Expected Demand in the Deferral Case 

 

When considering the generator's option to defer its investment for one year, its 

NPV will be equal to US$ 5,357.52. In this case, the Deferral option promoted a growth 

of 144.44% in the generator’s NPV. 

 

5.3.1. Sensitivity Analysis 

As in the other two models, we performed sensitivity analyzes on volatility and 

marginal cost of entry into the protocol. Figure 8 shows the first sensitivity analysis: 

 

 
Figure 8 – Sensitivity Analysis of Volatility for Model III 

 

Considering that the volatility can assume values between 10.00% and 50.00%, 

we evaluate the impact of this variation on the generator’s NPV. Note that the generator’s 

NPV increases as we decrease the volatility from 20.00% to 10.00%, as well as from 

50.00% to 30.00%. This is explained by the fact that the NPV, in these intervals, is a 

concave function, as in Model I. 
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It is also important to note that the lack of monotonicity of this curve is explained 

by the fact that we incorporate the optimal demand, calculated from the First Order 

Condition, as an absorbing barrier in the stochastic process of uncertainty. If, considering 

this barrier, the sensitivity curve becomes concave for all the analyzed volatility values. 

Finally, we evaluate the impact on the NPV from variations in the marginal unit 

cost of entering the platform. We assume that this parameter can assume values between 

US$ 1.00 and US$ 2.00, as shown in Figure 9. 

 

 
Figure 9 – Sensitivity Analysis of the Marginal Unit Cost of Entry for Model III 

 

In this last analysis, the generator’s NPV ranges from US$ 0.00 to US$ 63,142.26. 

It is important to note that a reduction of 50.00% in the marginal unit cost generates an 

increase of 1,078.57% in the generator’s NPV. On the other hand, a 50.00% increase in 

the value of this parameter generates a reduction of 100.00% in the generator’s NPV. 

Note that this sensitivity presents the most significant impact on the NPV. 

 

5.4. Comparative Analysis 

After evaluating the generator’s NPV in each model, we can determine in which 

the generator should invest so that its decision making is optimal. When considering the 

parameters defined in Table 1 and comparing the NPVs of each model, we verify that the 

generator should invest in the second, since it is the one that provides the highest NPV 

(US$ 60,922.70). 

In addition, it should be noted that even considering the sensitivity analysis on the 

marginal cost of entry into the platform, Model II remains the optimal model for the 

generator, as shown in Table 6: 
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  NPV (US$) 

Marginal Unit Cost (US$/REC) Model 1 Model 2 Model 3 

1.00 73,566.98 104,453.14 63,142.26 

1.25 53,886.85 82,722.92 25,542.64 

1.50 40,044.68 60,992.70 5,357.52 

1.75 32,259.35 48,786.24 432.53 

2.00 24,474.01 40,627.18 0.00 

Table 6 – Sensitivity of the Marginal Unit Cost in the Choice of the Optimum Model 

 

However, if we consider the sensitivity analysis on volatility, the result may 

change, as shown in Table 7: 

 
 NPV (US$) 

Volatility Model 1 Model 2 Model 3 

10.00% 57,467.75 27,112.68 16,511.96 

20.00% 45,099.20 44,178.82 4,953.17 

30.00% 40,044.68 60,992.70 5,357.52 

40.00% 33,836.54 77,320.10 4,348.03 

50.00% 27,979.34 93,007.81 2,881.28 

Table 7 – Sensitivity of Volatility in the Choice of the Optimum Model 

 

It should be noted that when the volatility is lower than 20.00%, Model I becomes 

the optimal model for the generator. This result is mainly explained by the fact that the 

generator’s NPV is a concave function in Model I and, in contrast, is a convex function 

in Model II. 

 

6. Conclusion 

In this work, we analyze the investment under uncertainty of the renewable energy 

generator, party interested in offering RECs, in three autonomous models of different 

issuance and sale of tokens based on RECs. In all three models, the generator has the 

option to invest now or in one year to have the right to issue RECs and offer them through 

quarterly sales auctions, which are automatically promoted through the intelligent 

protocol developed in blockchain. 

Therefore, the main objective of this work is to evaluate in which of the three 

models proposed is optimal the generator to realize the investment. For this, we used the 

real options approach that allowed calculating the generator’s NPV, considering both the 

uncertainty of each model and the managerial flexibility related to the option of Deferral. 

In Model I, which follows a stable coin concept, the generator’s NPV is equal to 

US$ 40,044.68. In Model II, where the price is a function of inverse demand subject to 

stochastic shocks, the generator’s NPV is US$ 60.992.70. Finally, in the last model, which 

considers that the uncertainty derives from the demand for RECs, the generator’s NPV is 

US$ 5,357.52. 

In this sense, we can conclude that the generator must invest in Model II, since it 

is the one that provides the highest NPV. However, it is important to note that when 
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considering the sensitivity analysis of the volatility of demand for RECs, we find that if 

 <20.00%, the optimal model from the point of view of the generator becomes the first. 

This work contributes to the understanding of the dynamics of the performance of 

digital products under uncertainty, as well as to the expansion of the literature regarding 

applications of blockchain technology in the renewable energy market. In addition, this 

study is relevant and original, as it analyzes under investment uncertainty and flexibility 

the investment of the renewable energy generator in three different DAOs. This research 

also highlights that simple pricing methods of real options can aid in decision making 

when there is uncertainty and flexibility, making investment opportunities better 

evaluated. 

The main limitation of this research is the fact that we have few data on the RECs 

transactions in the market. The history provided by the Instituto Totum has information 

only for the period between 2014 and 2018. In addition, in this study we consider only 

one uncertainty in each model, as well as only the managerial flexibility of Deferral. In 

future work, we suggest adding other uncertainties and analyzing different types of 

options, such as abandoning the platform. 
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Appendix 

 

 

 

 

 

Figure A.1 – Binomial Tree of Model I 
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Figure A.2 – Binomial Tree of the First Model with Deferral Option 
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Figure A.3 – Binomial Tree of Model II 
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Figure A.4 – Binomial Tree of Model II with Deferral Option 
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Figure A.5 – Binomial Tree of Model III 

 

 

 

Figure A.6 – Binomial Tree of Model III with Deferral Option 


