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noring capital providers’ flexibility to inject fresh money. The former one leans towards overestimation

as it neglects agency conflicts between equity investors and debt holders while implying infinitely “deep
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accordance with empirical findings.
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1. Introduction

Since the famous No Magic in Leverage Theorem (Proposition 1) by Modigliani and Miller (1958)

the "capital structure puzzle" Myers (1984) has bothered researchers in corporate finance. While theo-

ries like the tradeoff framework or the pecking order framework continue to compete in various research

approaches, there is no dispute about the economic relevance of capital structure choices, i.e. the em-

ployment of debt, in general. Empirically estimated net benefits of debt range from approx. 5% to 10%

of total firm value but are always proved to be significant.1

Without a doubt, the risk of financial distress or bankruptcy constitutes a major pillar in the optimal

choice of capital structures. The valuations of either benefits of debt or costs of debt depend upon this

risk. Tax shields generated by the tax-deductability of interests, i.e. the benefits of debt, persist as long as

a company is a going concern, while direct and indirect costs, i.e. the costs of debt, are created in states

of financial distress. Important for distinguishing different states and respective payoffs are well-defined

triggering events (triggers), for instance based on bankruptcy legislations, debt covenants or economic

rationales.

Stochastic models comparing a random variable with explicit triggers have gained wide popularity in

the optimal capital structure literature over the last 25 years. Leland (1994) first provides closed-form

analytical solutions to determine optimal capital structures for either an endogenously chosen bankruptcy

trigger maximizing the equity value or an exogenously set bankruptcy trigger (e.g. cash flow falls below

a predefined threshold) protecting the debt holders. Throughout our paper we call the first trigger over-

indebtedness because in this case the debt burden becomes so high that equity investors have no incentive

to inject additional equity as the net present value of the injection is negative. The latter of the two triggers

will be called illiquidity, as it usually refers to a condition where an earnings or cash flow figure is not

sufficient to service a debt obligation. While Leland’s work offers a pioneering analytical framework and,

thus, allows for the derivation of general conclusions, the model’s empirical power explaining capital

structure choices in reality is weak. On the one hand, a pure illiquidity trigger overestimates bankruptcy

risk significantly as the inability to make payments is often overcome by capital infusions, and the breach

of covenants is either tolerated by debt holders or can be solved by restructuring the debt. Only a minority

of illiquid firms file for bankruptcy. On the other hand, ignoring illiquidity and triggering bankruptcy if

and only if the firm is over-indebted seems too weak for two reasons: First, it is unlikely that equity

investors are always able to make additional payments, i.e., as Strebulaev and Whited (2011) write they

require deep pockets. Second, there is certainly a cost of triggering illiquidity which in turn increases the

risk of over-indebtedness (see Ertan and Karolyi (2016) for an empirical analysis).

Many other authors followed Leland (1994) solving important issues in the field and by such gradually

1 To provide some well-known examples: Korteweg (2010) finds an average net benefit of debt amounting to 5.5% of firm value
while earlier an earlier study by Graham (2000) identifies average net benefits of 9.7% of firm value.
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shed light into the rationale behind observed financing decisions. Leland and Toft (1996) include the

maturity of debt into the standard Leland model. Goldstein et al. (2001) extend the model further by

basing it on a stochastic EBIT-process and allowing for an option to increase debt (dynamic capital

structure). Hackbarth et al. (2007) dive deeper into the debt structure explaining the relation of bank loans

and market debt. Morellec et al. (2012) examine the impact of manager-shareholder conflicts in capital

structure choices. Danis et al. (2014) show that profitability and leverage are positively correlated close to

capital debt re-balancing times, thereby rebutting the puzzle of negative correlation between leverage and

profitability measures in general. However, as all of these models consider only one single bankruptcy

trigger the risk of bankruptcy is either over- or underestimated. Consequently, the optimal leverage, the

relation between market value of debt and levered firm value, is overestimated in models solely based on

an over-indebtedness trigger, and it is underestimated in models only relying on an illiquidity trigger.

Two papers differ from the usual approach. Strebulaev (2007) models a liquidity crisis where firms not

able to meet their debt obligations on a cash flow basis engage in an asset sale and continue operations

thereafter. Such a sale occurs with a discount, because sellers are time constrained and detach their

workforce from the assets as well as because buyers may be financially constrained and less experienced

in handling the assets. Titman and Tsyplakov (2007) include a similar flow based financial distress

trigger and attach direct costs of equity issuance and indirect costs of reduced cash flows from issues with

customers, suppliers, and employees to it. Beyond that, both models contain a second endogenous trigger

where equity investors stop injecting equity because of over-indebtedness. While both papers reflect

illiquidity and over-indebtedness, their numerical approaches preclude general closed-form solutions for

the market value of debt and the corresponding optimal capital structure.

This article considers both triggers, illiquidity and over-indebtedness, simultaneously in an integrated

model. We are first to derive closed-form solutions for all value components of a levered firm, the market

values of corporate debt and equity as well as for the optimal capital structure in a double barrier option

framework. Beyond that, we get to the bottom of the discrepancy between theoretical forecasts and

empirical observations in context of capital structure theory as we combine both trigger boundaries into

one single model. The upper boundary represents the illiquidity barrier and catches, e.g. the distinguished

approaches of Couch et al. (2012) and Kim et al. (1993). Once illiquidity is triggered the firm turns into a

restructuring mode as long as the illiquidity state persists. It may be able to return to a regular mode when

operations improve, or it may touch the second lower barrier. This barrier represents over-indebtedness,

thus includes the pioneering work of Leland (1994), and triggers the termination of the stochastic process,

i.e., the liquidation of the firm. The novel combination of both triggers generates results in-between the

particular single constraints. By empirically testing our model for firms publicly listed in the US, we gain

evidence that incorporating both triggers explains observable capital structures significantly better than

existing models do.

By extending the optimal capital structure problem towards the reflection of two boundaries at the
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same time, we transit from a single barrier to a double barrier option framework. The syndetic path-

dependency of this class of options owe a modus operandi that is less straightforward than dealing only

with a single barrier. Valuing a double barrier option and thereby a firm that faces changing payouts when-

ever the underlying process hits either of two well-defined boundaries illiquidity and over-indebtedness

requires extensive results of the mathematical stochastic calculus. To arrive at closed-form solutions we

adopt pricing formulas published by Pelsser (2000).

Reviewing bankruptcy legislation for the world’s biggest economies supports the argument. The U.S.

and Germany may serve as illustrative examples. The U.S. Bankruptcy Code knows two major types

of bankruptcy, Chapter 7 and Chapter 11. The latter of the two allows firms filing it to continue their

operations while gaining time to restructure their debt. Filing Chapter 7 is usually equivalent to stopping

all operations and liquidating the firm’s assets. Moreover, firms can attempt to restructure informally by

direct negotiations with debt holders. This process is called ’work-out’ and often results in a forbear-

ance agreement. Chapter 11 and work-outs are comparable to entering the illiquidity state of our model

while Chapter 7 is equivalent to over-indebtedness. The German Insolvency Act also contains two trig-

gers: (impending) illiquidity (Sections 17 and 18) and over-indebtedness (Section 19). Once insolvency

proceedings are opened the firm may continue its operations under own management or governed by an

insolvency administrator. An insolvency court decides on whether a continuation is preferable and who

should steer the firm. If insolvency proceedings prove that the companies obligations outnumber the value

of its future prospects, operations will be terminated and all assets will be liquidated.

We frame our analysis as follows: section 2 introduces the model’s basic framework and depicts

an intuitive access. Moreover, we develop specific requirements of the triggers illiquidity and over-

indebtedness and derive contingent present value factors for the different states of the framework. The

section ends with determining all equity and debt value specific components including tax benefits,

bankruptcy costs, and illiquidity expenses. Section 3 deals with the analytic application of the model

and provides guidance for deriving optimal over-indebtedness triggers and optimal coupon payments, i.e.

optimal leverage. References and comparisons to the single barrier models are made and possible exten-

sions of our model are highlighted. The section ends with an empirical test of our model results versus

the observed leverage ratios of firms of all NAICS sectors publicly listed in the US. Section 4 concludes

the article.

2. The Capital Structure Model reflecting Illiquidity and Over-indebtedness (IO-Model)

2.1. Basic Framework

The assumptions we make about the nature of uncertainty are standard and we try to state them as

general as possible. There exists a probability space (Ω, F , P, (Ft)t≥0) supporting a standard Brownian

motion Wt, where Ω is the sample space, F the σ-algebra and P the corresponding probability measure.

We denote the available information at time t, with t ∈ [0,∞), by the filtration Ft ⊂ Fs with 0 ≤ t < s
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where Ft describes the augmented σ-algebra generated by Wt. The market is free of arbitrage oppor-

tunities, and for each subjective probability measure P there exists an equivalent measure Q called the

risk-neutral probability measure.

We consider a firm whose instantaneous revenues (Rt)t∈[0,∞) follow a geometric Brownian motion

under the risk-neutral pricing measure, i.e.

dRt = µRtdt + σRtdWQt , (2.1)

where µ is the revenue’s growth rate, σ is the corresponding volatility, and Wt is a standard Brownian

motion under the risk-neutral measure. The initial value of revenue is R0 > 0.

The firm faces variable costs captured by a deterministic ratio of revenues γ and deterministic fixed

costs F independent of revenues. Thus, earnings before interest and taxes at time t, EBITt, are defined by

EBITt = Rt(1 − γ) − F ∀t ∈ [0,∞). (2.2)

The risk free rate is captured by r and we assume a flat corporate tax rate τ. Similar to other dynamic

models (e.g., Hackbarth et al., 2007), we presuppose the unlevered cash flow to be

(1 − τ) EBITt for all t ∈ [0,∞) (2.3)

and ignore other cash-relevant items (e.g. depreciations, capital expenditures or changes in net working

capital) for simplicity.2

The unlevered firm value with the information given at time t can be expressed with the help of the

conditional expected value E[Vt | Ft] and is given by3

E[Vt | Ft] =

∫ ∞

t
e−r(s−t) (Rs(1 − γ) − F) (1 − τ) ds (2.4)

=
Rt(1 − γ)(1 − τ)

r − µ
−

F(1 − τ)
r

. (2.5)

Please note that we will suppress the conditional expected value notation E[· | Ft] due to readability.

Whenever we will consider an expected value we deal with a conditional expected value. The corre-

sponding σ-algebra is given by the context and indicated by Rt
4. Thus equation 2.5 reduces to

Vt =
Rt(1 − γ)(1 − τ)

r − µ
−

F(1 − τ)
r

. (2.6)

We need to split the variable part (Rt(1 − γ)(1 − τ)) and the fixed part (F(1 − τ)) of the cash flow in (2.6)

2 We do so without a loss of generality. The inclusion of these items in our model is simple but inflates the cash flow equation
without adding further insights to our underlying research questions.

3 Throughout the whole paper we make the convenient assumptions that r > µ.
4 It should be remembered here that E[V0 | F0] = E[V0]
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as the fixed part is not expected to grow with µ over time but to remain constant.

In our setting, the levered firm value VL(Vt) at time t is defined as the sum of the unlevered firm value

Vt and the net benefits of debt NB(Vt), where NB(Vt) consists of the tax benefits of debt T B(Vt), less

bankruptcy costs of debt BC(Vt) and illiquidity expenses of debt IE(Vt). While we detail rationale and

calculation of these components in section 2.4, we already provide the basic equation for the expected

conditional value of the levered firm under suppressed notation,

VL(Vt) = Vt + NB(Vt) (2.7)

with

NB(Vt) = T B(Vt) − BC(Vt) − IE(Vt). (2.8)

Moreover, we denote the market value of debt at time t as D(Vt) and follow the classic assumption

of debt being issued as a console bond with constant coupon payment C to infinity (cf. Leland (1994),

Goldstein, Ju, and Leland (2001), Strebulaev (2007) et al.). Thus, we obtain for the expected conditional

market value value of equity at time t,

E(Vt) = VL(Vt) − D(Vt). (2.9)

Conditionalities and payout structures underlying the value components introduced above are detailed

in the subsequent sections. We present closed-form analytic solutions for all of them in section 2.4.

2.2. Default Triggers

Existing dynamic models in corporate finance involve only one lower boundary for the underlying

stochastic process. In Leland (1994) bankruptcy is triggered if the discounted conditional expected asset

value Vt falls to a certain level VB which is endogenously derived by the investors in order to maximize

their equity value (endogenous default trigger). The second type of default trigger is exogenously deter-

mined by a covenant within the debt contract or by liquidity constraints. In such a setup the firm defaults

either because it violates a certain debt covenant or because firm and equity investors have no spare cash

to pay their current cash obligations (i.e., redemption payments and/or interest payments).

The exogenous trigger is less often applied in literature (see e.g., Kim et al., 1993; Couch et al., 2012).

Usually it is argued that it causes firms to cease their operations although the equity value is still positive.

However, rationale equity investors would be ready to fund the firm as long as the market value of their

investment exceeds the debt obligation. Only if the described condition is not fulfilled, equity investors

will file for bankruptcy (Leland, 2006).5 Thus, the vast majority of existing dynamic models relies on

5 A crucial assumption for this policy is that equity investors can access external funds whenever the firm is threatened by
illiquidity, i.e., they have “deep pocket”. This assumption opens the field for arguments preferring the exogenous trigger (no
external funds available or if it may be costly or difficult due to timing constraints or covenants in the debt contract).
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the endogenous trigger and ignores the exogenous one (see e.g., Leland and Toft, 1996; Goldstein et al.,

2001; Hackbarth et al., 2007).

However, in reality we frequently observe that debtholders protect their claims with well-defined fi-

nancial covenants allowing them to cancel the debt (and request a full redemption) whenever the covenant

is triggered. While the option to cancel the debt is usually not exercised, the triggering event provides the

opportunity to adjust (or to renegotiate if not pre-specified) the promised yield of debt and to influence

strategic decisions regarding the firm (Achleitner et al., 2012). Moreover, entering this state, which we

call illiquidity state , generates additional direct costs (e.g., lawyer or advisory expenses, discounts when

selling assets) and indirect costs (e.g. loss of clients, disproportionate dilution by additionally raised

equity) to the firm.

As additional covenant restrictions and liquidity constraints are ignored by traditional dynamic trade-

off models it is not surprising that these models imply excessively high optimal leverage ratios compared

to reality. Strebulaev (2007) emphasizes this fact and proposes the so far only known model combining

both boundaries. He does not attempt to solve the model analytically and to derive general theoretical

proofs but to calibrate the model for simulating firms’ capital structure paths. His results are of particular

importance for empirical tests of dynamic capital structure models.

We are able to model both, the exogenous covenant (BIS as the illiquidity boundary and BLS as the

liquidity boundary) and the endogenous over-indebtedness boundary (BOS from above), and to derive

a closed-form analytic solution allowing us to draw general theorems regarding the choice of optimal

capital structures. To the best of the authors knowledge this is the first attempt to model the optimal

capital structure in a double barrier option framework6. We state our first model-specific assumption:

Assumption 2.1. The stochastic revenue process of our firm (Rt)t∈[0,∞) starts in liquidity state LS at
R0 above the illiquidity state boundary BIS . When Rt hits BIS for some t ∈ [0,∞) the firm switches
into illiquidity state IS , and Rs continues facing the liquidity state boundary BLS as well as the over-
indebtedness state boundary BOS for some t < s. The firm reenters LS if and only if Rs hits BLS before it
hits BOS for t < s. The number of switching events between LS and IS is not restricted. Given the firm
stays in IS , the over-indebtedness state is triggered if and only if Rs hits BOS before it hits BLS for t < s.
At the time where Rs = BOS for t < s the stochastic process Rs stops, i.e. Rs is not defined for t > s.

The following figure 1 illustrates the assumption. Without loss of generality we can assume that the

starting point of the process R0 is greater than BIS
7.

6 In the following we will discuss that the exogenous boundaries can be regarded as knock-in barrier options and the endogenous
as a knock-out option

7 If R0 < BIS the equity holders would invest a certain amount such that R0 < BIS holds.
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Figure 1: Introduction to the General Model
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This figure depicts a stochastic process that starts in the liquidity state (LS). The process runs into illiquidity state (IS) at
the very moment θIS 0 when the illiquidity barrier BIS is hit. Continuing in IS, the process reenters LS in θLS 0 by hitting
the boundary BLS . In θIS 1 the process touches BIS again and falls back into IS. Finally, the process is killed in θOS , i.e.
the process runs into over-indebtedness state (OS) and hits thus the barrier BOS .

The instant of time where the process enters another state are mathematically known as stopping

times8. Obviously, there is no need to subscript the hitting time θOS due to the simple fact that the process

is killed at the precise moment when it hits BOS . On the other hand, there is an obligation to subscript

θIS i and θLS i with i ∈ N0, respectively because BIS and BLS could be hit countably infinite times almost

surely without hitting BOS . In our framework the barriers BIS , BLS and BOS are constant in time. Please

notice that there are only two possibilities: Either BIS is an valid barrier, i.e. BIS is on and this implies

that BLS and BOS are both switched off or vice versa (cf. figure 1).

Another important prerequisite in this setting is the relation BOS ≤ BIS < BLS which we prove in

Lemma 2.6 after having derived explicit expressions of the boundaries.

Lemma 2.2. The firm will enter illiquidity state (IS) if EBIT (1−τ) ≤ δC, which corresponds to Rt ≤ BIS

where BIS = (δC + F(1 − τ)) / ((1 − γ)(1 − τ)).

The starting point of the revenue process (Rt)t∈[0,∞] in illiquidity state (IS ) is RθIS which can be sub-

stituted by BIS , i.e. RθIS = BIS . We capture the consequences for a firm entering (IS) in our second

model-specific assumption.

Assumption 2.3. When the firm enters illiquidity state (IS ), certain default expenses occur, e.g. due to
customers that stop buying the firms’ products, which we assume to be a proportion ε of E[VθIS i

| FθIS i
].

Moreover, as long as the firm remains in IS (i.e. BOS < Rt < BLS with t ≥ θIS i ) the debtholders
demand penalty interest Cil with Cil > C. Consequently, the covenant boundary BLS for the revenue
process coming from below is greater than the covenant boundary BIS for the revenue process coming

8 In the following named as hitting times. For a formal definition cf. Definition 2.8.
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from above, i.e. BIS < BLS . If the firm returns from IS to liquidity state LS , the penalty interest payments
will stop and the regular coupon payment C will be enforced.

Assumption 2.3 allows us to derive BLS explicitly in our setting:

Lemma 2.4. The firm will reenter liquidity state LS if EBIT (1−τ) = δCil with t ≥ θIS i , which corresponds
to Rt = BLS where BLS = (δCil + F(1 − τ)) / ((1 − γ)(1 − τ)) with t ≥ θIS i .

Note that for δ = 1−τ the boundaries BIS and BLS do not only represent covenant triggers but, indeed,

illiquidity triggers, i.e., the firm is not able to pay its cash obligations.

The last possibility to be detailed is when the firm runs from IS to over-indebtedness state (OS ). In

triggering over-indebtedness we follow the classic assumption of Leland (1994) which is used in many

more models (e.g., Leland and Toft, 1996; Goldstein et al., 2001; Hackbarth et al., 2007; Danis et al.,

2014): If the expected asset value E[Vt] falls to a certain level VB where liquidating the firm is optimal,

i.e., value maximizing for the equity investors, the firm will file for bankruptcy. VB is endogenously cho-

sen by maximizing the equity value. In section 3 we demonstrate how to derive VB. For now we consider

it a constant parameter. The difference of our setting compared to existing models is that our underly-

ing stochastic process regards the revenue and, thus, we need to transfer the classic over-indebtedness

condition E[Vt] = VB to the condition Rt = BOS . Lemma 2.5 presents the transformation.

Lemma 2.5. The firm will file for bankruptcy if E[Vt] = VB with t ≥ θIS i , which corresponds to Rt = BOS

where BOS =
((

VB +
F(1−τ)

r

)
(r − µ)

)
/ ((1 − γ)(1 − τ)) with t ≥ θIS i .

Finally, we prove the necessary relationship of our triggers in Lemma 2.6.

Lemma 2.6. Under the assumption δ
1−τ > 1 − µ

r the liquidity boundary BLS is strictly greater than the
illiquidity boundary BIS . Moreover, BIS is greater than or equal to the over-indebtedness boundary BOS .
Thus, we have BOS < BIS < BLS .

Remark 2.7. This implies that we allow for a negative growth rate µ. So the assumption in lemma 2.6
provides a lower boundary for δ.

Without loss of generality let the fixed costs F be equal to zero. By assumption, whenever the firm

enters illiquidity state IS from above the value of the revenues needs to equal the discounted debt obliga-

tions, i.e.

BIS (1 − γ)(1 − τ)
r − µ

≥
(1 − τ)C

r
. (2.10)

Some simple rearrangements and the value of BIS given in lemma 2.2 show the necessary assumption

made in lemma 2.6. The the right inequality given in lemma 2.6 holds since we have Cil > C by assump-

tion 2.3. For the left inequality BOS < BIS the upper limit for considering over-indebtedness VB on the

part of the equity holders is simply δC
r−µ . They have to subtract C on their cash flow and add in case of tax

advantages τC to their cash flow in a continuous setting. This equals δC
r−µ in t = 0. So δ covers the tax

advantage. Its lower limit is given by 1−τ just simply owing that no more tax benefits can be generated in
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our model. For δ > (1− τ) the tax effect is strengthened. The same holds for the fixed term F(1−τ)
r−µ −

F(1−τ)
r

which has the function of an additive term.

As aforementioned, LS and IS can alternate infinite times but the process will stop immediately as

soon as the over-indebtedness trigger BOS is hit. While the starting point of Rt in the first LS is special

(R0), the starting points of Rt for the subsequent IS and LS are repetitive (RθIS and RθLS , respectively).

This is an important feature for valuing the levered firm in section 2.4.

2.3. Contingent Present Value Factors

Before we can adapt the aforementioned framework to an optimal capital structure model, we need

to derive the contingent present value factors of our defined states. Contingent present value factors, a

term also applied by Couch et al. (2012)9, reflect the present value of an asset that pays $1 contingent

on stochastic process reaching one of our specific states. In other words, contingent present value factors

represent the probability of entering a certain state discounted back to today. Figure 2 illustrates our

methodology.

9 There is no consistent terminology throughout literature. Exemplarily, Goldstein et al. (2001) choose a longer description,
i.e. “the present value of a claim that pays $1 contingent on firm value reaching VB”, while Hackbarth et al. (2007) call it a
“Hitting Claim Value”.
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Figure 2: Contingent Present Value Factors p0, p1, p2, and p3
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R0 is the starting point of the stochastic process. BLS and BIS are the well known barriers and can be regarded as knock-
in barrier option. The over-indebtedness barrier BOS represents a knock-out barrier option. The field on a lighter grey
background LS represents the LS . In contrast the field on a darker grey background IS symbolizes IS . θIS i represents an
arbitrary point in time at which the firm runs into illiquidity state (IS) coming from liquidity state (LS). θLS i represents
an arbitrary point in time at which the firm runs into LS coming from IS. θOS is the exact point in time at which the
process is killed and the over-indebtedness state is reached. The parallel dashed lines indicate that the given figure is
only an excerpt of the underlying process.

The first graph sketches a firm that runs from LS into IS . This is abbreviated by p0. The second

shows the path of a firm that runs from IS into LS , denoted by p1. The third picture represents the path

of a firm that goes bankrupt entering BS , labeled with the contingent present value factor p2
10. Finally,

p3 is represented in the last figure that shows again a firm running from LS to IS. The difference to the

first picture is that the last represents the behavior of one path in the middle of a firm’s life, while the first

illustrates only a possible path development at the beginning of a firm’s life. Without loss of generality the

following figure comprises all possible development opportunities of a firm in our model. The following

definitions provide proper mathematical techniques, starting with stopping times.

Definition 2.8 (Hitting Times). Given three boundary constraints BOS , BIS , BLS with BOS ≤ BIS < BLS ,

10 Again note that having been in IS is a crucial prerequisite for running into BS . Obviously, the firm is bankrupt at the very
moment when the stochastic process Rt equals BOS for an arbitrary t ∈ [0,∞) (this happens if and only if t = θOS (cf. Def.
2.8).
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the corresponding hitting times are defined as follows for i ∈ N:

θOS : = inf{t ≥ 0 |Rt = BOS }

θIS 0 : = inf{t ≥ 0 |Rt = BIS }

θLS 0 : = inf{t ≥ θIS 0 |Rt = BLS ∧ Rs > BOS for all s ∈ [θIS 0 , t]}

θIS i : = inf{t ≥ θLS i−1 |Rt = BIS ∧ Rs > BOS for all s ∈ [θLS i−1 , t]}

θLS i : = inf{t ≥ θIS i |Rt = BLS ∧ Rs > BOS for all s ∈ [θIS i , t]}.

Remark 2.9. Technically speaking, for the definition of θIS i we can omit the constraint Rs >
BOS for all s ∈ [θLS i−1 , t]. So the following remains

θIS i : = inf{t ≥ θLS i−1 |Rt ≤ BIS }. (2.11)

Owing to readability we do not suppress this constraint, since we want to make sure that the above given
nonempty stopping times θIS i and θLS i for i ∈ N0 exclude over-indebtedness.

Remark 2.10. If θIS i ≤ θOS ≤ θ
LS i , then θIS i+1 = θLS i = ∅.

Based on the aforementioned insights, we define the contingent present value factors p0, p1, p2, p3 as

follows:

Definition 2.11 (Contingent Present Value Factors p0, ..., p3).
p0 is the price of a knock out barrier option that pays 1 $ in θIS 0 starting in t = 0 (with the correspond-
ing ordinate value R0) when the stochastic process (Rt)t∈[0,∞) hits the lower-upper barrier BIS , i.e. p0
represents the discounted probability of hitting BIS in θIS 0 .

Analogously, p1 is the price of 1 $ in θLS i starting in θIS i for all i ∈ N0 (with the corresponding
ordinate value BIS ) when the stochastic process (Rt)t∈[0,∞) hits the upper-upper barrier BLS without hitting
the lower barrier BOS .

p2 is the price of 1 $ in θOS starting in θIS i for alle i ∈ N0 (with the corresponding ordinate value BIS )
when the stochastic process (Rt)t∈[0,∞) hits the lower barrier BOS without hitting the upper-upper barrier
BLS .

Finally, p3 is the price of a knock out barrier option that pays 1 $ in θIS i+1 starting in θLS i for all i ∈ N0
(with the corresponding ordinate value BLS ) when the stochastic process (Rt)t∈[0,∞) hits the lower-upper
barrier BIS .

As a reminder, p0 and p3 can be seen as assets, or more specifically as perpetual, down-and-in, cash-

at-hit-or-nothing, single-barrier options which pay $1 when the stochastic process Rt hits the barrier BIS

which is below the initial value of the stochastic process. p0 and p3 only differ with respect to its initial

values which are R0 and RθLS = BLS , respectively. The pricing formula for such an option type is well

known11 and, thus, can be applied to

p0 =

(
BIS

R0

)y

(2.12)

11 Rubinstein and Reiner (1991) provide a very intuitive access to valuing such options. Moreover, in their compendium of
exotic options (Rubinstein and Reiner, 1992) they investigate the pricing of many more option types.
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and analogously to

p3 =

(
BIS

BLS

)y

, (2.13)

where

a := µ −
1
2
σ2, b :=

√
a2 + 2σ2 · r, y :=

a + b
σ2 . (2.14)

Explicitly pricing p1 and p2 is less trivial as we deal with perpetual, cash-at-hit-or-nothing, double

barrier options. The lower barrier is the over-indebtedness boundary BOS and the upper barrier is the

covenant boundary BLS . p1 and p2 differ with respect to its payout structure as the latter pays $1 when

the lower barrier is hit before the upper barrier has been hit and vice versa. Pelsser (2000) provides a

pricing formulas for both structures in finite time which can be easily extended to a perpetual setting and

applied to our specific problem. Thus, we have

p1 = exp
{

a(l − x)
σ2

} sinh( b
σ2 x)

sinh( b
σ2 l)

(2.15)

and analogously

p2 = exp
{
−ax
σ2

} sinh( b
σ2 (l − x))

sinh( b
σ2 l)

, (2.16)

where

x := log
(

BIS

BOS

)
:= log

 δC + F(1 − τ)

VB +
F(1−τ)

r (r − µ)

 , (2.17)

l := log
(

BLS

BOS

)
:= log

 δCil + F(1 − τ)

VB +
F(1−τ)

r (r − µ)

 , (2.18)

and a as well as b are as defined in (2.14). Please note that x and l are functions of VB.

2.4. Levered Firm Value and its Components

As introduced in section 2.1 the levered firm value VL(V) is the sum of the unlevered firm value V

and the net benefits of debt NB(V). Those net benefits are claims with deterministic payouts contingent

on the states of the world discussed above. In this section we develop a systematic payout structure, form

expected values of these payouts and finally value the contingent claims generated by debt financing.

The terms A j, with j = 1, ..., 5, denote all payouts in our framework subject to the relationship of the

revenue process (Rt)t∈[0,∞) and the barriers BIS , BLS and BOS . A1 comprises a continuous payout in LS,

i.e. Rt > BIS with t ∈ [0, θIS 0 ]∪ [θLS i , θIS i+1 ] and i ∈ N0. A2 represents the continuous payout in IS that is

realized if and only if the revenue process lies in the middle of the barriers BOS and BLS until the process

hits one of them, i.e. A2 is given if and only if BOS < Rt < BLS with t ∈ [θIS i , θ
LS i ] ∪ [θIS j , θOS ] and
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i < j ∈ N. In contrast to A1 and A2 the payouts A3 to A5 are point payouts, i.e. they are generated if and

only if one of the barriers is hit by the revenue process. The payout A3 occurs in the moment when the

firm switches from IS to OS under the condition that Rt = BOS with t = θOS for an arbitrary t ∈ [0,∞).

Analogously A4 is generated if and only if Rt = BIS for all t ∈ [0,∞), i.e. t = θIS i with i ∈ N0. Finally,

the payout A5 is realized if and only if t = θLS i with i ∈ N0.

Without loss of generality Figure 3 shows all possible states of a firm that has not hit BOS yet and the

five possible payoffs.

Figure 3: General Payout Structure of a Stochastic Process

θIS 0 θLS i θIS j

BOS

BIS

BLS

R0

A4

A3

A5

A4 A4

A1 A1 A1

A2

The figure depicts a general payout structure generated in a double barrier framework with liquidity state
(LS) , illiquidity state (IS) and over-indebtedness state (OS). If the underlying process is in LS, the payout
will equal A1. In case of IS the generated payout is A2.lower-upper barrier BIS the payout accords with
A2. Hitting the lower boundary BOS the payout accords with A3. The same holds for the lower-upper
barrier BIS and the payout A4 and the upper-upper barrier BLS with the payout A5, respectively.

comprises an arbitrary payout of Rt with t ∈ [0, θIS 0 ] ∪ [θLS i , θIS i+1 ] with i ∈ N0. This is the payout

in LS . A2 represents the payout in IS that is realized if and only if the stochastic process lies in the

middle of the barriers BOS and BLS until the process hits one of them, i.e. A2 is given if and only if

t ∈ [θIS i , θ
LS i ] ∪ [θIS j , θOS ] with i < j ∈ N. Note that there is no need that BOS equals A3 and BLS equals

A5, respectively. The payout A3 is given if and only if t = θOS . This is equivalent to the condition that

Rt = BOS for an arbitrary t ∈ [0,∞). Analogously A4 is generated if and only if Rt = BIS for all t ∈ [0,∞),

i.e. t = θIS i with i ∈ N0. Finally, the payout A5 is realized if and only if t = θLS i with i ∈ N0. that this

is the most general model that is considerable in a double barrier option framework. Next we derive the

expected present values of the payouts A j considering each single term from today to infinity probability-

weighted and discounted by connecting the contingent value factors (CVFs) p0 to p3 for an infinite time

horizon. Lemma 2.12 summarizes our results:

Lemma 2.12. The expected present values of the payouts E[A j], with j = 1, ..., 5, in t = 0 are products of
the deterministic payout A j and the corresponding contingent present value factor denoted by pr0

A j
. The
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terms pr0
A j

are combinations of the contingent present value factors of the different states, p0 to p3. It
follows that

E[A1] = A1 pr0
A1

,with pr0
A1

:=[(1 − p0) +
p0 p1(1 − p3)

1 − p1 p3
], (2.19)

E[A2] = A2 pr0
A2

,with pr0
A2

:=[
p0(1 − p1 − p2)

1 − p1 p3
], (2.20)

E[A3] = A3 pr0
A3

,with pr0
A3

:=[
p0 p2

1 − p1 p3
], (2.21)

E[A4] = A4 pr0
A4

,with pr0
A4

:=[
p0

1 − p1 p3
], (2.22)

E[A5] = A5 pr0
A5

,with pr0
A5

:=[
p0 p1

1 − p1 p3
]. (2.23)

By converting the one dimensional setup into vectorial calculus, we suppress notation to a minimum

and improve readability. Therefore, let ~PO denote the general payout structure and ~pr0 the according

contingent present value factors starting in t = 0. The first row represents the payout A1 and the contingent

present value factor pr0
A1

, respectively. In conclusion, we have

~PO :=



A1

A2

A3

A4

A5


~pr0 :=



pr0
A1

pr0
A2

pr0
A3

pr0
A4

pr0
A5


=



(1 − p0) +
p0 p1(1−p3)

1−p1 p3
p0(1−p1−p2)

1−p1 p3
p0 p2

1−p1 p3
p0

1−p1 p3
p0 p1

1−p1 p3


. (2.24)

Based on Lemma 2.12 and Equation (2.24) we obtain the value components of the levered firm value

from Equation (2.7) and the equity value from Equation (2.9).

We start with the value of debt defined by D(V,C,Cil). Due to readability we suppress coupon pay-

ments C and penalty coupon payments Cil, and simply write D(V). In our setting debt promises a perpet-

ual coupon payment C whose level remains constant unless the firm enters IS , i.e. the stochastic process

Rt hits the covenant barrier BIS . Thus, in LS the debt value equals C
r (c.f. A1). As long as the firm remains

in IS it needs to pay a permanent penalty coupon Cil unless the firm reenters LS or declares bankruptcy,

i.e. enters OS . The debt value in IS is equal to Cil
r (c.f. A2). Let VB denote the level of the asset value

at which the firm runs into bankruptcy. If bankruptcy occurs, a fraction 0 ≤ α ≤ 1 of value will be lost

to bankruptcy costs, including direct and indirect costs. This leaves the debtholders with value (1 − α)VB

(c.f. A3) and the equity investors with nothing. Note that we will not take any taxes in cases of bankruptcy

into consideration, such as taxes on cancellation of debt. In the very moment the firm hits the barrier BIS

or BLS the value of the debt does not change (c.f. A4 = A5 = 0). Summarizing, we have the following

payout structure ~D for the debt value:
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~Dᵀ =
(

C
r Cil (1 − α)VB 0 0

)
. (2.25)

To obtain the conditional expected debt value D(V) we need to multiply the payout vector ~D with the

vector of the contingent present value factors ~pr0 from Equation (2.24), i.e.

D(V) = ~Dᵀ ~pr0. (2.26)

default is higher than in case of liquidity. So the debt holder will raise a penalty owing to circum-

stances arising from their higher number of writing-offs they are forced to make. This penalty payment

equals a portion ρ of the covenant C. Thus, we have the following payout structure

Now we consider the value of tax benefits associated with the debt financing. These benefits resemble

a security that pays a constant coupon equal to the tax-sheltering value of interest payments τC as long as

the firm is in LS , τCil in case of IS and nothing in OS . In the very moment the stochastic process hits a

barrier BLS , BIS or BOS no tax benefits are generated. As we are concerned with a continuous framework

A4 and A5 equal zero. Thus, we have the following payout structure ~T B:

~T B
ᵀ

=
(
τC
r

τCil
r 0 0 0

)
. (2.27)

Suppressing the expected value notation and the coupon payment, C, as well as multiplying with ~pr0 from

Equation (2.24) yields the following value of tax benefits T B(V):

T B(V) = ~T B
ᵀ
~pr0. (2.28)

Bankruptcy costs BC(V) occur if and only if the firm is over-indebted and files for bankruptcy. This

implies that the stochastic process Rt equals BOS . Thus, the unlevered firm value at θOS is represented by

VB =
BOS (1 − γ)(1 − τ)

r − µ
−

F(1 − τ)
r

(2.29)

while αVB reflects the bankruptcy costs if is triggered (A3). In no other states bankruptcy costs occur

leaving us with a bankruptcy cost payout structure as follows

~BC
ᵀ

=
(
0 0 αVB 0 0

)
. (2.30)

In vectorial writing, we represent the value of bankruptcy costs BC(V) as

BC(V) = ~BC
ᵀ
~pr0. (2.31)

Finally, illiquidity expenses IE may occur whenever the firm enters IS . This can ultimately be as-

16



cribed to two key causes: on the one hand, direct costs of lawyers, banking fees and so on and on the

other hand, indirect costs such as loss of investors’ or customers’ confidence. This will be priced with a

fee in portion ε to the then prevailing unlevered firm value E[VθIS i
]. Thus, we have the following payout

structure for IE:

~IE
ᵀ

=
(
0 0 0 ε · E[VθIS i

] 0
)
. (2.32)

Again, multiplication with ~pr0 from Equation (2.24) yields the value of the illiquidity expenses IE(V)

IE(V) = ~IE
ᵀ
~pr0. (2.33)

Based on Equation (2.8) we obtain the payout structure of the net benefits of debt,

~NB
ᵀ

= ~T B − ~IE − ~BC (2.34)

=



τC
r
τCil

r

0

0

0


−



0

0

0

ε · E[VθIS i
]

0


−



0

0

αVB

0

0


(2.35)

=

(
τC
r

τCil

r
− αVB − ε · E[VθIS i

] 0
)ᵀ
, (2.36)

and the corresponding conditional expected value as

NB(V) = ~NB
ᵀ
~pr0. (2.37)

By adding the unlevered firm value according to Equation (2.7) we arrive at

VL(V) = V + NB(V), (2.38)

the levered firm value. Finally, we determine the value of equity as the difference of the levered firm value

from Equation (2.38) and the market value of debt from Equation (2.26):

E(V) = VL(V) − D(V). (2.39)

The contingent claims of our IO-model developed in this section provide safe grounds for exploring

solutions to the optimal capital structure problem in the next section.
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3. Analysis of the Optimal Capital Structure in the IO-Model

In general, we are concerned with maximizing the levered firm value with respect to the coupon

payments C subject to certain constraints. The classic constraint introduced by Leland (1994) is that

equity investors choose VB, the asset value where the firm files for bankruptcy, i.e. it is over-indebted, in

order to maximize the equity value. We denote this optimal level of bankruptcy asset value with V∗B which

is not exogenously determined but endogenously obtained by setting the first derivative of the equity value

with respect to VB equal to zero. An additional constraint in our setting is that Cil needs to reflect a certain

risk spread ϕ above the risk free rate r. Thus, our optimization problem can be formally stated as follows:

VL(V,C,Cil)→ max (3.1)

s.t.
∂E(V,C,Cil)

∂VB
= 0

Cil − ϕrD(V,C,Cil) = 0.

All other parameters in our model are exogenously set and can be either observed in reality or empir-

ically estimated. Table 1 summarizes these parameters, suggests how to determine them, and provides an

idea with respect to reasonable value assumptions.

In the subsequent subsection we develop a solution to our general optimization problem outlined in

Eq. (3.1) and compare the results of our IO-model to the results of pure illiquidity and over-indebtedness

models. Thereafter, we discuss a possible extension to our optimization framework by endogenizing the

covenant ratio δ. This allows us to investigate not only the influence of δ on the optimal solution but also

whether optimal δ values may exist. Finally, we apply the IO-model to publicly listed companies in the

US in order to judge whether our model may explain observed leverage ratios.

3.1. Identification of the Optimal Bankruptcy Trigger V∗B

This subsection investigates the optimal bankruptcy trigger V∗B via maximizing the equity value, i.e.

E(V)→ max (3.2)

⇔
∂E(V)
∂VB

= 0. (3.3)

Technically, we calculate the first derivative of the the equity value with respect to VB. As we face a

long complex value function we present the result based on the modular principle. We benefit from

this technique since the differentiation is linear. Additionally, beyond reducing complexity, this method

allows for investigating some boundary constraints, e.g. fixed costs equal to zero F = 0. Our proceeding

is related to the equity value function E(V) (cf. Eq. (2.39)) consisting of vectors ~NB and ~D, the unlevered

firm value V , as well as the vector of contingent present value factors ~pr0 consisting of the single factors

p0 to p3 derived in section 2.3. The place holders a, b and y of p0 to p3 are constants. However, the place
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Table 1: Exogenous Parameters of the IO-Model

Exemplary
Para- reasonable
meter Description Rationale values

r risk free rate Average of 10-year Treasury rate (1/1989-7/2016) 0.05
Approach similar to Leland (2004), Huang and Huang (2012)

τ corporate tax rate Federal corporate income tax rate in the US for bigger companies 0.35
Approach similar to similar to Leland and Toft (1996), Strebulaev (2007)

R0 initial value of Firm individual observable parameter $25 bn
the revenue process

µ risk-neutral drift of Firm individual empirical estimation of the real drift µP and 0.02
the revenue process risk-neutral adjustment by µ = µP − (rA − r)

Adjustment similar to Goldstein et al. (2001), Couch et al. (2012)

σ volatility of Firm individual empirical estimation of the revenue’s volatility 0.25
the revenue process

γ variable cost ratio Firm individual empirical estimation of the costs of goods sold ratio 0.70

F fixed costs Firm individual empirical estimation of selling, general and 0.00
administrative expenses

δ interest coverage Firm or debt tranche individual covenant defined in the debt contract. 1 − τ
ratio Natural lower boundary: 1 − τ as this reflects illiquidity.

ϕ spread factor for Estimation based on average spread between the promised 2.50
illiquid firms vs. r yield of Caa-rated firms (highly vulnerable to nonpayment) and

the risk free rate with 10 years maturity (source: Moody’s)

α bankruptcy cost Firm or industry-specific estimation based on empirical models e.g. 0.39 (Food)
ratio We use findings of Glover (2016) 0.49 (machinery)

ε illiquidity cost Firm or industry-specific estimation based on emprical models 0.04
ratio with respect to technical defaults

We use findings of Ertan and Karolyi (2016)

This table contains all exogenously set parameters of the IO-model. It also provides suggestions how to observe or estimate the parameters and gives
indications with respect to reasonable values.
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holders x and l of p0 to p3 are functions of VB (cf. Eq. (2.17)-(2.18)). We start with their first derivatives.

The following holds:

∂x
∂VB

=
−1

VB + F(1 − τ)r−1 (3.4)

∂l
∂VB

=
−1

VB + F(1 − τ)r−1 (3.5)

∂(l − x)
∂VB

= 0. (3.6)

Please note that the first derivative x′ of x with respect to VB equals the first derivative l′ of l with

respect to VB. In the next step we want to calculate the derivatives of the contingent present value factors

p0 to p3. Since p0 is independent of VB we obtain:

∂p0

∂VB
= 0.

The same holds for p3. Thus, we have

∂p3

∂VB
= 0.

Consequently, it remains to calculate the derivatives of p1 and p2 which we do by applying ∂ sinh(x)
∂x =

cosh(x):

p′1 =
∂p1

∂VB
=0 + e

a
σ2 (l−x)

b
σ2 x′ sinh′( b

σ2 x) sinh( b
σ2 l) − b

σ2 l′ sinh( b
σ2 x) sinh′( b

σ2 l)

sinh2( b
σ2 l)

=e
a
σ2 (l−x) b

σ2 x′
cosh( b

σ2 x) sinh( b
σ2 l) − sinh( b

σ2 x) cosh( b
σ2 l)

sinh2( b
σ2 l)

=e
a
σ2 (l−x) b

σ2 x′
sinh( b

σ2 (x − l))

sinh2( b
σ2 l)

=
−e

a
σ2 (l−x) b

σ2

VB + F(1 − τ)r−1 ·
sinh( b

σ2 (x − l))

sinh2( b
σ2 l)

.

For the derivative of the contingent present value factor p2 we receive the following:

p′2 =
∂p2

∂VB
=
−a
σ2 x′e

−a
σ2 (l−x)

+ e
−a
σ2 (l−x)

b
σ2 (l − x)′ sinh′( b

σ2 (l − x)) sinh( b
σ2 l) − b

σ2 l′ sinh( b
σ2 (l − x)) sinh′( b

σ2 l)

sinh2( b
σ2 l)

=
−a
σ2 x′e

−a
σ2 (l−x)

+ e
−a
σ2 (l−x)−

b
σ2 l′ sinh( b

σ2 (l − x)) cosh( b
σ2 l)

sinh2( b
σ2 l)

=x′e
−a
σ2 (l−x)[

−a
σ2 −

b
σ2 ]

sinh( b
σ2 (l − x)) cosh( b

σ2 l)

sinh2( b
σ2 l)

=
e
−a
σ2 (l−x)

σ2[VB + F(1 − τ)r−1]
[a + b]

sinh( b
σ2 (l − x)) cosh( b

σ2 l)

sinh2( b
σ2 l)

.
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Hence, we obtain the first derivative of the vector of contingent present value factors ~pr0 with respect

to VB by using the product and quotient rule, i.e.

∂ ~pr0

∂VB
=



1 +
p0 p1(1−p3)
(1−p1 p3)2

−p0(1−p1−p2)
(1−p1 p3)2

−p0 p2
(1−p1 p3)2

−p0
(1−p1 p3)2

−p0 p1
(1−p1 p3)2


. (3.7)

For the derivative of the net benefit vector ~NB and the debt vector ~D we have

∂ ~NB
∂VB

=



0

0

−α

0

0


,

∂ ~D
∂VB

=



0

0

1 − α

0

0


. (3.8)

In summary, we have to solve the following equation with the help of the product rule and linearity

∂E(V)
∂VB

=
∂

∂VB
[V + (~(NB) −~(D)) ~pr0]. (3.9)

Thus, we arrive at

0 !
= 1 +

p0 p2

1 − p1 p3
+ ( ~NB − ~D) ~pr0

′. (3.10)

This implicit equation can be solved with the help of mathematical software such as Matlab and using

some known methods, e.g. Newton’s method.

Before we can compare the optimal bankruptcy trigger V∗BIO
from the IO-model with the optimal

bankruptcy trigger in a single barrier world, such as the model of Leland (1994) (over-indebtedness) or

Couch et al. (2012) (illiquidity), we need to match the assumptions. As mentioned in section 2.1 we

refer to a revenue process. Thus, we have to transfer the firm’s asset approach in a single barrier world

into a revenue’s approach in a single barrier world12. Furthermore, two famous bankruptcy triggers are

known in literature. On the one hand bankruptcy is triggered when the firm is over-indebted. Leland

(1994) investigates the implications to the optimal capital structure given this constraint. On the other

hand bankruptcy can be declared when the firm is illiquid or breaks a covenant. Couch et al. (2012) base

their investigations of valuing tax shields on this barrier. Adjusting the Leland model (over-indebtedness)

12 The firm’s asset approach is given by the diffusion process dV
V = µdt + σdW, where V represents the value of the firm’s

activities, µ the constant growth rate, σ the constant volatility, and W a standard Brownian motion. V is usually known as the
asset value of the firm.

21



to the revenue process yields the following optimal bankruptcy trigger V∗Bover
:

V∗Bover
=

y
1 + y

C(1 − τ)
r

− (1 −
y

1 + y
)
F(1 − τ)

r
. (3.11)

When the fixed costs F equal zero we generate the standard Leland solution. The appropriate optimal

bankruptcy trigger V∗Billiquid
given illiquidity as the bankruptcy criterion with fixed costs F equal to zero

resemble the standard solution given inCouch et al. (2012).

3.2. Identification of the Optimal Coupon Payment C

With the help of section 3.1 we are able to maximize our total firm value VL given the optimal

bankruptcy trigger V∗BIO
. This is done by endogenizing the coupon payments C. Thus, the coupon payment

is no longer fixed and considered as a constant. Rather, we compute the first derivative of the total firm

value VL subject to C. Finally, we set the first derivative of the total firm value equal to zero, i.e.

∂VL(V)
∂C

= 0. (3.12)

Solving this equation for the optimal coupon C∗IO maximizes the total firm value. We will now com-

pare the firm’s maximizing coupon payment C∗IO in a double barrier world with the firm maximizing

coupon payment C∗over and C∗illiquid that are generated when either over-indebtedness or illiquidity are the

bankruptcy triggers. The following figure illustrates the findings graphically.
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Figure 4: Optimal Capital Structure under the IO-Model, pure Illiquidity Model and pure Over-indebtedness Model

0 1 2 3 4 5 6 7 8 9 10 11 12
100

120

140

160

180

200

220

C∗illiquid C∗IO

Initial
Illiquidity

C∗over

Coupon C

V
L

(V
,C
,C

il
)

Figure 5: This figure analyzes the firm value (VL(V))-maximizing choice of coupon payments C for the IO-model in comparison to the classic
models of illiquidity and over-indebtedness. The blue, dashed line represents VL(V) for different C with over-indebtedness as a bankruptcy trigger.
The violet, solid line represents the IO-model and the black, dashed-dotted line depicts the case of illiquidity. The chosen model parameters are as
follows: r = 0.05, τ = 0.35, R0 = 25, µ = 0.02, σ = 0.20, γ = 0.70, F = 0, δ = 1 − τ, ε = 0.00, and ϕ = 2.5.

The figure shows the coupon level C subject to the total firm value VL. Each of the three parables

represent a different bankruptcy trigger. The curve on top is the function that arises if and only if over-

indebtedness is the only bankruptcy trigger. Analogously, the curve on bottom is generated if and only

if illiquidity creates bankruptcy. The curve in the middle combines both approaches and represents the

total firm value function with respect to C of the IO-model. The figure depicts four main aspects. (i)

We can observe that all three curves are concave, i.e. there exists a global maximum. (ii) In case of

over-indebtedness the total firm value with respect to C is greater than in case of illiquidity. Taking both

barriers into consideration provides a curve that lies in-between. (iii) The same holds true for the optimal

coupon payments, i.e. C∗illiquid < C∗IO < C∗over. Finally, (iv) if there is only over-indebtedness as the

bankruptcy trigger, the optimal coupon payment C∗over is in the area of illiquidity. Thus, optimizing the

total firm value with over-indebtedness as the bankruptcy criterion provokes directly illiquidity.

As the figure shows, the double barrier approach provides solution that are in-between the rough

constraints of over-indebtedness and illiquidity. This is in accordance with the intuition. Moreover, the

optimal coupon payment C∗IO of the IO-model is in the area of liquidity.
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3.3. Extensions to the Optimization Framework - Endogenizing Debt Contract Parameters

The IO-model provides insights beyond the discussed framework where the optimal capital structure

is derived with an endogenously obtained V∗B but otherwise given parameters. For instance, it allows for

analyzing some standard debt contract parameters like the covenant ratio δ. We are able to determine its

impact on the optimal capital structure choice and to investigate whether an optimal δ exists. Figure 6

depicts the analysis results when C and δ can be freely chosen.

Figure 6: Levered Firm Value VL(V) in dependence of Covenant Ratio δ and Coupon Payment C
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The graph depicts how changing δ and C impacts VL(V). For lower delta values the maximum levered firm value VL,∗(V) is achieved with higher
choices of C∗ and vice versa. The global optimum is at the minimum δ of 1 − τ. The chosen model parameters are as follows: r = 0.05, τ = 0.35,
R0 = 25, µ = 0.02, σ = 0.20, γ = 0.70, F = 0, ε = 0.00, and ϕ = 2.5.

As Figure 6 reveals, a higher δ causes lower optimal choices of C∗ and also reduces the optimal

levered firm value VL,∗(V). The results may surprise as we usually observe δ values between 1 and 2 in

corporate debt contracts. Two reasons for the discrepancy are identified:

(i) Debtholders in our setting are risk-neutral, i.e. they are only interested in an expected net present

value of zero and do not discount riskier payoff structures. We demonstrate the effect of higher δ values

on the contingent present value factor, i.e. discounted probability, of the OS in Table 2. Clearly, the

contingent present value factor pr0
(1−α)VB

decreases with increasing δ. Risk-averse debtholders value this

fact while risk-neutral debtholders are indifferent. Thus, we may have found an indication for risk-

aversion of debtholders.
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Table 2: Bankruptcy State Prices pr0
(1−α)VB

in dependence of the covenant ratio δ

δ C∗ VL,∗ L∗ = D(V)/VL,∗ pr0
(1−α)VB

0.65 3.40 177.79 0.37 0.21
0.75 3.00 176.56 0.35 0.20
0.85 2.70 175.59 0.32 0.20
0.95 2.40 174.80 0.30 0.18
1.05 2.20 174.15 0.29 0.18
1.15 2.00 173.59 0.27 0.17

The table illustrates how increasing δ values lead to a lower bankruptcy risk (represented by a lower contingent present value factor for the over-
indebtedness state). This shows that debt holders which are not risk-neutral may actually insist on a δ greater than 1 − τ depending on their risk
appetite.

(ii) Information are symmetrically distributed in our setting, i.e. debtholders know the true VB where

equity investors file for bankruptcy. However, in reality this information is most likely only known to

the equity investors themselves. Pretending a higher VB may result in better debt contracts. Debtholders

shield themselves against such behavior with increased covenant ratios. Please note that the analysis of

(ii) will be detailed in the next version of the working paper.

3.4. Empirical Application of the IO-Model

Finally, we test our model for firms publicly listed in the US. Our dataset, retrieved from Thomson-

Reuters EIKON, is based on the logic of the Center for Research in Security Prices (CRSP). We consider

all firms that have been listed on the NYSE, NASDAQ, NYSE MKT and NYSE ARCA between 1981

and 2016 including all leavers and joiners of this period. We exclude firms from finance and insurance

(NAICS sector code 52) as well as firms with inconsistent data (e.g. constantly negative revenues) or not

sufficient time series (less than 10 firm years). After these exclusions, our sample contains 4,845 firms

and 97,001 firm-year observations with non-missing values for revenues, costs of goods sold (COGS),

selling, general and administrative expenses (SGA), debt, total assets, and market capitalization.

In a first step we estimate the parameters of the stochastic revenue process, drift rate µ and standard

deviation σ. Moreover, we test whether the observed revenue paths could follow a geometric Brownian

motion (gBm) by applying the Jarque-Bera (JB) test for normal distribution. In total, at the 5% interval

we cannot reject the null hypothesis of the JB-test postulating that the considered process is not following

a gBm for 47.5% of the firms. Thus, our basic model requirement is valid for almost half of the publicly

listed firms in the US. Table 3 summarizes the test results for all NAICS sectors.

We only proceed with estimating the other parameters and calculate the average observed leverage L =

D(V)/VL(V) for firms where revenues follow a gBm. Please note that our model generates equivalently

robust results on the full sample. It is solely for mathematical exactness that we exclude firms where the
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Table 3: Normal-Distribution Test of the log-changes of Rt

Jarque-Bera Test

N, Norm.-Dist. in %, Norm.-Dist.

NAICS Sector No. Of Firms (N) α = 0.05 α = 0.10 α = 0.05 α = 0.10 µ σ

Accommodation and Food Services 96 44 36 0.4583 0.3750 0.0264 0.1030
Administrative, Support, Waste, Remediation 105 42 31 0.4000 0.2952 0.0253 0.2175
Construction 77 33 29 0.4286 0.3766 0.0110 0.2190
Health Care and Social Assistance 103 31 27 0.3010 0.2621 0.0074 0.1824
Information 529 256 216 0.4839 0.4083 0.0199 0.1776
Manufacturing 1988 948 785 0.4769 0.3949 0.00026 0.1526
Mining, Quarrying, and Oil and Gas Extraction 264 157 126 0.5947 0.4773 0.0117 0.2622
Professional, Scientific, and Technical Services 408 221 181 0.5417 0.4436 0.0014 0.1454
Real Estate and Rental and Leasing 204 77 66 0.3775 0.3235 0.0392 0.1912
Retail Trade 242 122 107 0.5041 0.4421 0.0438 0.1270
Transportation and Warehousing 143 56 46 0.3916 0.3217 0.0188 0.1607
Utilities 103 41 33 0.3981 0.3204 0.00054 0.1780
Wholesale Trade 147 69 55 0.4694 0.3741 0.0269 0.2304
Others 110 48 41 0.4364 0.3727 0.0274 0.2014

The table depicts the results of the Jarque-Bera test for normal distribution which we apply to examine the log-changes of the stochastic process Rt .
The null hypothesis of the test is that the underlying process is normally distributed. Thus, choosing a higher significance level α leads to a higher
number of firms for which normal distribution is ruled out. The last two columns provide our estimations of the risk-neutral drift of the revenue process
µ and its standard deviation σ.

null hypothesis of JB-test was rejected.13

While we can retrieve the estimates for the variable cost ratio γ and the fixed costs F from our

dataset, we have to rely on other studies for the other missing parameters. We follow Glover (2016) in

his industry-specific estimates of the expected bankruptcy costs α. For the illiquidity expenses ε and the

average covenant ratio δ industry-specific estimates are not yet available. Thus, we apply the general

estimates of Ertan and Karolyi (2016) to all industries. Please note that we have indexed the initial level

of the stochastic process R0 to 100 in order to make all firms comparable. Table 4 summarizes our input

choices.

To conclude, we obtain the optimal leverage based on the IO-model as well as for the pure illiquidity

and pure over-indebtedness model. These results are compared to the observed leverage ratios. The

results are shown in Table 5.

The leverage ratios estimated by the IO-model show the lowest absolute deviation (Abs. Dev.)

from the observed leverage except for the sector “Real Estate and Rental and Leasing” where the over-

indebtedness model performs slightly better. The IO-estimates lie within the one standard error range for

3 of the sectors and within a two standard error range for another 3 sectors. The pure illiquidity model

underestimates optimal leverage consistently in all sectors while the pure over-indebtedness model leads

consistently to overestimation. None of the two models achieves results within one or two standard errors

from the observed leverage. The results prove that the IO-model is a major step in explaining observed

13 Within the literature strand of optimal capital structure it is not common to perform tests to validate the underlying gBm
assumption or at least it is not common to publish them. Usually, gBm is implicitly assumed throughout all empirical analyses.
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Table 4: Input Parameters of the IO-Model and Observed Leverage

NAICS Sector α ε δ γ F R0 L = D(V)/VL(V)

Accommodation and Food Services 0.3890 0.04 1.00 0.6195 14.00 100 0.4594
Administrative, Support, Waste, Remediation 0.4740 0.04 1.00 0.5110 23.04 100 0.1994
Construction 0.3740 0.04 1.00 0.7220 18.83 100 0.4405
Health Care and Social Assistance 0.4740 0.04 1.00 0.2483 51.35 100 0.5497
Information 0.4740 0.04 1.00 0.3941 25.37 100 0.2927
Manufacturing 0.3970 0.04 1.00 0.6915 15.85 100 0.3071
Mining, Quarrying, and Oil and Gas Extraction 0.4630 0.04 1.00 0.5165 11.42 100 0.2535
Professional, Scientific, and Technical Services 0.4740 0.04 1.00 0.5131 33.90 100 0.2225
Real Estate and Rental and Leasing 0.4740 0.04 1.00 0.4066 14.27 100 0.5412
Retail Trade 0.4420 0.04 1.00 0.7026 19.19 100 0.2714
Transportation and Warehousing 0.4130 0.04 1.00 0.4513 27.16 100 0.4286
Utilities 0.4740 0.04 1.00 0.3518 33.02 100 0.4531
Wholesale Trade 0.4420 0.04 1.00 0.7382 23.74 100 0.2923
Others 0.4598 0.04 1.00 0.5824 23.69 100 0.2683

The table provides an overview of the chosen input parameters for each NAICS sector. For the bankruptcy costs α we follow the estimates of Glover
(2016). Regarding the illiquidity expenses ε and the average covenant ratio δ industry-specific estimates are not yet available. Thus, we apply the
general estimates of Ertan and Karolyi (2016) to all industries. The starting point of the stochastic revenue process R0 is indexed to 100. The estimates
for the variable cost ratio γ and the fixed costs F are based on all normally distributed firms of our sample from NASDAQ, NYSE, NYSE ARCA, and
NYSE MKT. F has been related to the index of R0. The leverage ratio L = D(V)/VL(V) is based on the sample as well.

Table 5: Optimal Capital Structure Estimates versus Observed Leverage for NAICS Sectors

Observed Illiquidity IO-Model Overindebtedness

NAICS Sector L 1 Std. Err. L∗ Abs. Dev. L∗ Abs. Dev. L∗ Abs. Dev.
Accommodation and Food Services 0.4594 0.0752 0.1861 0.2734 0.3096∗∗ 0.1498 0.7942 0.3348
Administrative, Support, Waste, Remediation 0.1994 0.0380 0.1599 0.0394 0.2985∗ 0.0991 0.8064 0.6071
Construction 0.4405 0.0376 0.1442 0.2962 0.3658∗∗ 0.0747 0.6620 0.2215
Health Care and Social Assistance 0.5497 0.0440 0.0662 0.4835 0.4627∗∗ 0.0871 0.6554 0.1057
Information 0.2927 0.0160 0.0316 0.2611 0.2236 0.0691 0.8629 0.5703
Manufacturing 0.3071 0.0096 0.0472 0.2599 0.3252∗∗ 0.0181 0.6746 0.3675
Mining, Quarrying, and Oil and Gas Extraction 0.2535 0.0142 0.0125 0.2410 0.2450∗∗∗ 0.0085 0.6359 0.3824
Professional, Scientific, and Technical Services 0.2225 0.0127 0.0974 0.1251 0.2227∗∗∗ 0.0003 0.6897 0.4672
Real Estate and Rental and Leasing 0.5412 0.0268 0.0149 0.5263 0.1584 0.3828 0.7198 0.1786
Retail Trade 0.2714 0.0170 0.0412 0.2302 0.3017∗∗ 0.0303 0.6859 0.4145
Transportation and Warehousing 0.4286 0.0252 0.0452 0.3834 0.2446 0.1840 0.7138 0.2852
Utilities 0.4531 0.0259 0.0104 0.4427 0.4583∗∗∗ 0.0051 0.6323 0.1791
Wholesale Trade 0.2923 0.0337 0.0459 0.2464 0.1329 0.1594 0.6626 0.3703
Others 0.2683 0.0242 0.0936 0.1747 0.1689 0.0994 0.6880 0.4197

This table summarizes the optimal leverage ratios L∗ = D(V)/VL,∗(V) generated by the IO-model, and for a pure illiquidity or over-indebtedness
trigger. The results are compared to the observed average leverage L for all NAICS sectors. The absolute deviation towards the observed leverage is
depicted for each of the three models (Abs. Dev.). ∗ ∗ ∗ = Within 1 standard error; ∗∗ = Within 2 standard errors; ∗ = Within 3 standard errors
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leverage ratios and delivers a new unique contribution to the capital structure literature.

4. Conclusion

This article establishes the first dynamic capital structure model in closed-form solutions which in-

corporates an illiquidity trigger and an over-indebtedness trigger in a double barrier option framework.

We start by introducing a corporate valuation framework including all relevant benefits and costs of

debt which is based on a stochastic revenue process that follows a gBm. Subsequently, we explicitly

define default triggers for illiquidity as well as over-indebtedness, and integrate those in our framework.

From here, we carefully develop towards definitions of contingent present value factors, describing prob-

abilities and discount factors of potential states of the world, as well as payout structures for the different

corporate value components. Based on these analyses we provide closed-form valuation equations for all

components of debt and equity. Moreover, we obtain solutions for the optimal capital structure choice in

such a double barrier option framework. Finally, we compare our solution to the two classic cases of only

considering one of the two triggers. The results we generate lie in-between and explain observed capital

structure choices much better than the existing models as we demonstrate by an empirical study of the

US market.

The model also provides a good base for further extensions. For instance, it is sometimes observed

in reality that the stochastic process jumps whenever the illiquidity boundary is hit which is easily im-

plementable into the existing framework. Additionally, adjustments in the payout structure can be simply

executed as we provide a general framework (A1 to A5) for all kinds of payout. In a further effort, the

idea of dynamic capital structures, where additional debt is borrowed whenever an upside trigger, i.e. the

firm value increased, is hit, could be implemented via the double barrier option framework. Beyond that,

further empirical studies in the field of corporate finance (e.g. regarding costs of capital or probabilities

of default) can be based upon the model.
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Appendices
Lemma (2.2). The firm will enter illiquidity state (IS) if EBIT (1−τ) ≤ δC, which corresponds to Rt ≤ BIS

where BIS = (δC + F(1 − τ)) / ((1 − γ)(1 − τ)).

Proof. We substitute Equation (2.2) into the covenant definition from above and rearrange for Rt:

EBIT (1 − τ) = δC
(Rt(1 − γ) − F) (1 − τ) = δC

Rt =
δC + F(1 − τ)
(1 − γ)(1 − τ)

.

Since the covenant definition (1 − τ)EBITt = δC corresponds to Rt = BIS , we have:

BIS :=
δC + F(1 − τ)
(1 − γ)(1 − τ)

�

Lemma (2.4). The firm will reenter liquidity state LS if EBIT (1 − τ) = δCil with t ≥ θIS i , which
corresponds to Rt = BLS where BLS = (δCil + F(1 − τ)) / ((1 − γ)(1 − τ)) with t ≥ θIS i .

Proof. We substitute Equation (2.2) into the adjusted covenant definition from above and rearrange for
Rt:

EBIT (1 − τ) = δCil

(Rt(1 − γ) − F) (1 − τ) = δCil

Rt =
δCil + F(1 − τ)
(1 − γ)(1 − τ)

.

Since the covenant definition EBIT (1 − τ) = δCil corresponds to Rt = BLS , we have:

BLS :=
δCil + F(1 − τ)
(1 − γ)(1 − τ)

. �

Lemma (2.5). The firm will file for bankruptcy if E[Vt] = VB with t ≥ θIS i , which corresponds to Rt = BOS

where BOS =
((

VB +
F(1−τ)

r

)
(r − µ)

)
/ ((1 − γ)(1 − τ)) with t ≥ θIS i .

Proof. We substitute equation (2.6) into the bankruptcy trigger definition from above and rearrange for
Rt:

E[Vt | Ft] = VB

Rt(1 − γ)(1 − τ)
r − µ

−
F(1 − τ)

r
= VB.

Since the bankruptcy definition E[Vt] = VB corresponds to Rt = BOS , we have by simple rearrangements:

BOS :=

(
VB +

F(1−τ)
r

)
(r − µ)

(1 − γ)(1 − τ)
�

Lemma (2.6). The covenant boundary BLS , upper-upper boundary to the revenue process Rt if the firm
stays in illiquidity state (IS ), is strictly greater than the covenant boundary BIS , lower-upper boundary
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to Rt if the firm stays in liquidity state (LS ). Moreover, BIS is greater than or equal to the bankruptcy
boundary BOS , lower boundary to Rt if the firm stays in IS . Thus, we have BOS < BIS < BLS .

Proof.

BLS > BIS (.1)
δCil + F(1 − τ)
(1 − γ)(1 − τ)

>
δC + F(1 − τ)
(1 − γ)(1 − τ)

(.2)

Cil > C. �

This holds since Cil > C by definition.

BIS > BOS (.3)

δC + F(1 − τ)
(1 − γ)(1 − τ)

>

(
VB +

F(1−τ)
r

)
(r − µ)

(1 − γ)(1 − τ)
(.4)

δC + F(1 − τ) >
(
VB +

F(1 − τ)
r

)
(r − µ) (.5)

VB <
δC + F(1 − τ)

r − µ
−

F(1 − τ)
r

. (.6)

Remark (2.10). If θIS i ≤ θOS ≤ θ
LS i , then θIS i+1 = θLS i = ∅.

Proof. Assume that θIS i ≤ θOS ≤ θ
LS i . This yields that θLS i = ∅. Simply applying the definition for θIS i+1

we have

θIS i+1 = inf{t ≥ θLS i |Rt = BIS ∧ Rs > BOS ∀s ∈ [θLS i , t]}

= inf{t ≥ θLS i |Rt = BIS }

= ∅.

The last equality holds due to the simple fact that Rt for all t ≥ θOS and θLS i ≥ θOS owing to the above
mentioned assumption. �

Lemma (2.12). The expected present values of the payouts E[A j], with j = 1, ..., 5, in t = 0 are products
of the deterministic payout A j and the corresponding contingent present value factor denoted by pr0

A j
.

The terms pr0
A j

are combinations of the contingent present value factors of the different states, p0 to p3.
It follows that

E[A1] = A1 pr0
A1

,with pr0
A1

:=[(1 − p0) +
p0 p1(1 − p3)

1 − p1 p3
], (.7)

E[A2] = A2 pr0
A2

,with pr0
A2

:=[
p0(1 − p1 − p2)

1 − p1 p3
], (.8)

E[A3] = A3 pr0
A3

,with pr0
A3

:=[
p0 p2

1 − p1 p3
], (.9)

E[A4] = A4 pr0
A4

,with pr0
A4

:=[
p0

1 − p1 p3
], (.10)

E[A5] = A5 pr0
A5

,with pr0
A5

:=[
p0 p1

1 − p1 p3
]. (.11)
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Proof. First, we develop the payout series for A1 where

E[A1] = A1[(1 − p0)+ , value until the first liquidity crisis θIS 0

p0 p1(1 − p3)+ , value after leaving first IS θLS 0 and until θIS 1

p0 p1 p3 p1(1 − p3)+ , value after θLS 1 and until θIS 2

...]

= A1[(1 − p0) + p0 p1(1 − p3)
∞∑

i=0

pi
1 pi

3]

= A1[(1 − p0) +
p0 p1(1 − p3)

1 − p1 p3
].

From now on we say pr0
A1

:= (1 − p0) +
p0 p1(1−p3)

1−p3 p1
is the contingent present value factor of the payout A1

starting in t = 0. Analogously, we calculate the expected value for the payout A2.

E[A2] = A2[p0(1 − p1 − p2)+ , value after θIS 0 until θLS 0

p0 p1 p3(1 − p1 − p2)+ , value after θIS 1 until θLS 1

...]

= A2[p0(1 − p1 − p2)
∞∑

i=0

pi
1 pi

3]

= A2[
p0(1 − p1 − p2)

1 − p1 p3
].

So the contingent present value factor of the payout A2 starting in t = 0 is given by pr0
A2

:= p0(1−p1−p2)
1−p1 p3

.
Analogously, we calculate the expected value for the payout A3.

E[A3] = A3[p0 p2+ , going bankrupt in [θIS 0 , θ
LS 0 ]

p0 p1 p3 p2+ , going bankrupt in [θIS 1 , θ
LS 1 ]

...]

= A3[p0 p2

∞∑
i=0

pi
1 pi

3]

= A3[
p0 p2

1 − p1 p3
].

From now on we say pr0
A3

:= p0 p2
1−p1 p3

is the contingent present value factor of the payout A3 starting in
t = 0. Calculating the expected value for the payout A4 yields

E[A4] = A4[p0+ , touching BIS in θIS 0

p0 p1 p3+ , touching BIS in θIS 1

...]

= A4[p0

∞∑
i=0

pi
1 pi

3]

= A4[
p0

1 − p1 p3
]
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where pr0
A4

:= p0
1−p1 p3

is the contingent present value factor of the payout A4 starting in t = 0. Finally, we
calculate the expected value for the payout A5.

E[A5] = A5[p0 p1+ , touching BLS in θLS 0

p0 p1 p3 p1+ , touching BLS in θLS 1

...]

= A5[p0 p1

∞∑
i=0

pi
1 pi

3]

= A5[
p0 p1

1 − p1 p3
].

From now on we say pr0
A5

:= p0 p1
1−p1 p3

is the contingent present value factor of the payout A5 starting in
t = 0. adapt the initial probability that means to divide the original probability by p0. For the first case we
have to subtract (1− p0) initially. This is simply due to the fact that we start in θIS 0 . Thus, the probability
of t ∈ [0, θIS 0 ] equals 0. �
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