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Abstract 

 

 

Even though commodity-pricing models have been successful in fitting the term structure of futures prices 

and its dynamics, they do not generate accurate true distributions of spot prices.  This paper develops a new 

approach to calibrate these models using not only observations of oil futures prices, but also analysts´ 

forecasts of oil spot prices.  

We conclude that to obtain reasonable expected spot curves, analysts´ forecasts should be used, either alone 

or jointly with futures data. The use of both futures and forecasts, instead of using only forecasts, generates 

expected spot curves that do not differ considerably in the short/medium term, but long term estimations 

are significantly different. The inclusion of analysts´ forecasts, in addition to futures, instead of only futures 

prices, does not alter significantly the short/medium part of the futures curve, but does have a significant 

effect on long-term futures estimations.  
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1. Introduction  

 

Over the last decades, commodity-pricing models have been very successful in fitting the term structure of 

futures prices and its dynamics.  These models make a wide variety of assumptions about the number of 

underlying risk factors, and the drift and volatility of these factors. [Gibson, R. & Schwartz, E.S. (1990); 

Schwartz, E.S. (1997); Schwartz, E.S. & Smith, J. (2000); Cortazar, G. & Schwartz, E.S. (2003); Cortazar, 

G. & Naranjo, L. (2006); Cassasus, J. & Collin-Dufresne, P. (2005); Cortazar, G., & Eterovic, F. (2010); 

Heston, S. L. (1993); Duffie, D., J. Pan, & K. Singleton (2000); Trolle, A. B. & Schwartz, E. S. (2009); 

Chiang, I., Ethan, H., Hughen, W. K., & Sagi, J. S. (2015).] 

The performance of commodity pricing models is commonly assessed by how well these models fit 

derivative prices. It is well known that derivative prices are obtained from the risk neutral or risk adjusted 

probability distribution (e.g. futures prices are the expected spot prices under the risk neutral probability 

distribution).  These models also provide the true or physical distribution of spot prices, but this has not 

been stressed in the literature because they have mainly been used to price derivatives.  However, as 

Cortazar, Kovacevic & Schwartz, (2015) point out, the latter is also valuable and is used by practitioners 

for risk management, NPV valuations, and other purposes1. 

Despite the diversity of commodity-pricing models found in the literature, they all share the characteristic 

of relying only on market prices (e.g. futures and options) to calibrate all parameters.  In most of these 

models the risk premium parameters are measured with large errors and typically are not statistically 

significant, making estimations of expected prices (which differ from futures prices on the risk premiums) 

inaccurate.  One exception is Hamilton & Wu (2014) who are able to get significant estimates through the 

use of a term structure of commodity futures prices model derived from the expected rational behavior of 

hedgers and speculators in commodity markets. Baumeister & Kilian (2016) show that this model is able 

to outperform any linear regression in its ability to predict future spot prices in a time horizon up to 1 year. 

Although their model appears to be the best alternative to forecast oil prices, the model only uses the three 

closest to maturity futures contracts as data input, which raises questions on how reliable can such a model 

be for longer maturities if it does not use any information of longer horizon prices. 

In contrast to Hamilton & Wu (2014) we propose a term structure model which is capable of combining all 

available information in futures prices and survey price expectations obtaining statistically significant risk 

                                                        
1 For instance, when mining and oil companies use Real Options to value their mines and oil deposits they 

need a model that has a good fit to the futures term structure.  But these operations can last well beyond 

the time frame of existing futures contracts (20 and 30 years ahead) 
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premium parameters and credible short-, medium- and long-term risk premia and therefore reliable expected 

spot price forecasts. Even though our model’s predictive power relies on the accuracy of the survey´s mean 

forecasts, we argue that they are the only market source available of future spot prices. If only futures prices 

are used in the estimation, no explicit information on the current risk premiums is incorporated into the 

model, not allowing it to obtain consistent risk premium estimates. 

To solve this problem Cortazar et al. (2015) propose using an equilibrium asset pricing model (e.g. CAPM) 

to estimate the expected returns on futures contracts from which the risk premium parameters can be 

obtained, which results in more accurate expected prices.  However, these prices depend on the particular 

asset pricing model chosen2. 

This paper develops an alternative way to estimate risk-adjusted and true distributions that does not rely on 

any particular equilibrium asset pricing model. The idea is to use forecasts of future spot prices provided 

by analysts and institutions who periodically forecast these prices, such as those available from Bloomberg 

and other sources.   Thus, by calibrating the commodity pricing model with both futures prices and analysts’ 

forecasts, two different data sets are jointly used to calibrate the model. 

The use of survey forecasts as input for a no-arbitrage term structure model is not standard among 

researchers but seems to be promising. Even though there is no consensus on the amount of new information 

not captured already in market prices, their key feature is that, if accurate, they would be the most 

straightforward way of getting real time market's expectations.  

It is well documented that surveys have been successful in predicting short-term macroeconomic variables, 

such as GDP, inflation and yields (Altavilla, Giacomini, & Ragusa (2016), Stark (2010), and Chun (2011)). 

Survey forecasts have also been used for predicting yield curves with promising results (Altavilla, 

Giacomini & Constantini (2014)), Chun (2011), Chernov & Mueller (2012), Dijk, Koopman, & Wel (2012), 

and Kim & Orphanides (2012)).  

The use of survey forecasts in the oil market is somewhat more unusual (Alquist, Kilian, & Vigfusson 

(2013), Baumeister, Kilian, & Lee (2014), Sanders, Manfredo, & Boris (2009)). There are, however, several 

reputed sources of market's expectations' data available such as the Bloomberg's oil survey forecasts, the 

Energy Information Administration's (EIA), International Monetary Fund's (IMF) and World Bank's (WB), 

all of which we propose using in this study.  

                                                        
2 Another approach is to link the risk premia with macroeconomic variables (Baker & Routledge (2011), 

Ready (2016)). 
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The Bloomberg's oil survey forecasts summarize a set of predictions made by different professional analysts 

who are specialized in commodity markets and hence have deep knowledge on the behavior of prices. This 

reduces potential biases, and addresses quality homogeneity issues and limited information processing 

(Bianchi & Piana (2016), Cutler, Poterba, & Summers (1990), Greenwood & Shleifer (2014), and Koijen, 

Schmeling, & Vrugt (2015)). Furthermore, the analysts incomes are generally directly related to the 

accuracy of their predictions, which also limits the incentive for hiding information for personal benefits 

(Bianchi & Piana (2016)). Although Bloomberg releases forecasts frequently (daily), the longest predicted 

price is for only 5 years ahead.  

The U.S. Energy Information Administration (EIA) forecasts are generated using a model (NEMS) that 

captures various interactions that shape energy supply, demand and prices. It generates long-term 

estimations (over 25 years ahead) of the future states of several indicators of  critical importance to the 

financial markets, such as WTI oil price forecasts, given a set of assumptions over the driving forces of 

these variables in different scenarios.  Among these scenarios, the reference case scenario reflects the 

current central opinion of the leading economic forecasters and modelers.  The reference case is widely 

used by practitioners and market players as a “best estimate” for market expectations, as explained by 

Bollinger et al. (2006) in the case of natural gas price forecasts3. These authors argue that, although these 

estimates may be subject to large errors, a significant and important set of market players, such as the 

natural gas utilities, rely on them to construct their resource planning models. Baumeister & Kilian (2014) 

reinforce this idea explaining that, even though they are not easy to replicate and justify given their long-

term nature, they are widely used by practitioners and thus may be used as a good proxy for market´s 

expectations of long-term forecasts.  Moreover, Auffhammer (2007) describes the EIA as the most 

important energy data source for the US, and that policymakers, industry and modelers extensively use 

them. Using similar arguments several other authors (Haugom et al (2016), Bianchi & Piana (2016), Berber 

& Piana (2006), Lee & Huh (2017)) have used these forecasts in their analyses. 

The EIA source of information is unique, due to the very-long-term maturity of its forecasts.  Since the 

forecasts are estimated for years in which there is not enough historic data to contrast to, it is difficult to 

verify their precision with high confidence. However, Bernard et al. (2015) show that EIA's forecasts are 

indeed accurate, especially for long-term predictions and, that combining EIA's forecasts with other 

forecasts improves the accuracy of them, for almost every forecast horizon. 

                                                        
3 Natural gas price forecasts are generated using the same model (NEMS) as the WTI price forecasts 

submitted by the EIA. 



6 
 

Finally, the International Monetary Fund (IMF) and World Band (WB) price forecasts are made for up to 

10 years ahead. These predictions rely on different macroeconomic models, datasets and approaches to 

market behavior.  

Survey data, taken individually, may exhibit high prediction errors. By using data form different sources, 

some error diversification should occur. Our proposed model could be used with any set of forecasts, so as 

new research is able to confirm or reject the reliability of any given data source, the model could be updated 

easily to adjust to the new information. 

In this paper, by proposing to use both market data (futures prices) and analysts’ forecasts (proxy for 

expected spot prices) to calibrate a commodity-pricing model, several related objectives are pursued.  The 

first one is to formulate a procedure using the Kalman filter methodology which includes both sets of data.  

Acknowledging that analysts’ price forecasts are very volatile, both because at any point in time there is 

great disagreement between them, and also because their opinions change greatly over time, our second 

objective is to build an analysts’ consensus curve that optimally aggregates and updates all their opinions. 

Our third objective is to improve estimations for long-term futures prices. This is motivated by current 

practice, which consists in calibrating commodity-pricing models using futures with maturities only up to 

a few years and then is silent about whether the model will behave well for longer maturities. However, 

there is evidence that extrapolating a model calibrated only with short/medium term prices to estimate long 

term ones is unreliable [Cortazar, Milla, & Severino (2008)].  In this paper, long-term futures price 

estimations will be obtained by using also information from long-term analysts’ forecasts.  

Finally, the fourth objective is to estimate the term structure of the commodity risk premiums. This can be 

done by comparing the term structure of expected spot and futures prices.  

The paper is organized as follows. To motivate the proposed approach, Section 2 provides empirical 

illustrations of some of the weaknesses of current approaches.  Section 3 describes the model and parameter 

estimation technique used, while Section 4 describes the data set.  The main results of the paper are 

presented in Section 5. Section 6 concludes. 

2. The Issues 

In what follows, some of the issues that will be addressed in this paper are described.  The first issue, already 

pointed out in Cortazar et al. (2015), is that expected prices under the true distribution are unreliable when 

calibrating a commodity-pricing model using only futures contract prices. As an illustration, Figure 1 

shows the futures and expected oil prices for 02-05-2014 using the Schwartz and Smith (2000) two-factor 

model. It can be seen that while the 4.5 year maturity futures price is 77.9 US$/bbl., the model’s expected 
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price, for the same maturity, is 365.8 US$/bbl.  To justify that this expected price is unreasonable, the 

Bloomberg’s Analysts´ Median Composite Forecast for 2018, which amounts to only 96.5 US$/bbl., is also 

plotted. While the model fits extremely well the term structure of futures prices, the expected spot prices it 

generates are clearly unreasonable. 

Figure 2 shows the model expected spot prices, futures prices and analysts’ forecasts for a contract 

maturing around 07-01-2018 during the year 2014.  It can be seen that the model expected spot prices are 

for the whole year around three times higher than the futures prices and analysts’ forecasts.  

Given that we will make use of a diverse set of analysts’ forecasts, a second issue is how to optimally 

generate and update an analysts’ consensus curve, as new information arrives.  Figure 2 illustrates how the 

mean price forecasts for 2018 changes every week as new analysts provide their forecasts during 2014.  It 

also shows that these forecasts are close to the corresponding futures prices, but the expected prices from 

the two-factor commodity model, when estimated using only futures, are much higher. Some efforts to 

provide an analysts’ consensus curve have already been made (the Bloomberg Median Composite, also 

plotted in Figure 2), but in general they are computed using only simple moving averages of previous 

forecasts. 

 

Fig. 1: Oil futures and expected spot curves under the Schwartz and Smith (2000) two-factor model, oil 

futures prices and Bloomberg’s Median Composite for oil price forecasts, for 02-05-2014.  The model is 

calibrated using weekly futures prices (01/2014 to 12/2014). 
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Fig. 2: Analysts’ 2018 Oil Price Forecasts, Bloomberg Median Composite Forecast for 2018, Oil futures 

prices of contracts maturing close to 07-01-2018, and the Schwartz and Smith (2000) two-factor model 

expected spot at a 07-01-2018 maturity.  The model is calibrated using weekly futures prices (01/2014 to 

12/2014). 

 
Another and related issue is how to obtain credible estimations of commodity risk premiums. When 

expected spot prices are unreliable, risk premiums are also unreliable.   

The final issue that will be addressed is how to obtain long-term futures price estimations that exceed the 

longest maturity contract traded in the market, using the information contained in long-term analysts´ 

forecasts.  Cortazar et al. (2008) already showed that extrapolations are unreliable: even if commodity-

pricing models fit well existing data, contracts with longer maturities are estimated with large errors.   

To illustrate the point discussed above, the Schwartz and Smith (2000) two-factor model is calibrated using 

three alternative data panels of oil futures: all futures including maturities up to 9 years, futures only up to 

4.5 years, and futures only up to 2.25 years. For each data panel pricing errors for the longest observed 

futures price (around 9 years) are computed, finding that the longer the extrapolation, the higher the errors4. 

                                                        
4 Mean Absolute Errors were 0.9, 2.1 and 18.5$/bbl., respectively. Differences are significant at the 99% 

confidence level. 
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3. The Model 

3.1. The N-Factor Gaussian Model 

The Cortazar and Naranjo (2006) N-factor model5 is used to illustrate the benefits of including analysts’ 

forecasts, in addition to futures prices. This model nests several well-known commodity-pricing models 

(e.g. Brennan and Schwartz (1985), Gibson and Schwartz (1990), Schwartz (1997), Schwartz and Smith 

(2000), Cortazar and Schwartz (2003)). In the following sections the model will be implemented and results 

will be reported only for the 3-factor specification, though this model can be implemented for any number 

of factors.  

Following Cortazar and Naranjo (2006), the stochastic process of the (log) spot price (𝑆௧) of a commodity 

is assumed to be given by: 

 log 𝑆௧ = 𝟏ᇱ𝒙𝒕 + 𝜇𝑡 (1) 

where 𝒙𝒕 is the (1 𝑥 𝑛) vector of state variables and 𝜇 is the log-term price growth rate, assumed constant.  

The vector of state variables is assumed to follow the stochastic process: 

 𝑑𝒙𝒕 = −𝑲𝒙𝒕𝑑𝑡 + 𝚺𝑑𝒘𝒕 (2) 

where 𝑲 and 𝚺 are (𝑛 𝑥 𝑛) diagonal matrices containing positive constants (with the first element of 𝑲, 

𝜅ଵ = 0), and 𝑑𝒘𝒕  is a set of correlated Brownian motions such that (𝑑𝒘𝒕)ᇱ(𝑑𝒘𝒕) = 𝛀𝑑𝑡 , with each 

element of 𝛀 being 𝜌௜௝ ∈ [−1,1].  The risk adjusted process followed by the state variables is: 

 𝑑𝒙𝒕 = −(𝝀 + 𝑲𝒙𝒕)𝑑𝑡 + 𝚺𝑑𝒘𝒕
ொ (3) 

where 𝝀 is a (1 𝑥 𝑛) vector containing the risk premium parameters corresponding to each risk factor, all 

assumed to be constants. 

Under the N-Factor model, the futures price at time 𝑡, of a contract maturing at 𝑇, can be obtained by 

computing the conditional expected value of the spot price, under the risk-adjusted measure: 

 𝐹(𝒙𝒕, 𝑡, 𝑇) = 𝐸௧
ொ

(𝑆(𝒙𝒕, 𝑇)) (4) 

As shown in Cortazar and Naranjo (2006), this boils down to: 

 𝐹(𝒙𝒕, 𝑡, 𝑇) = exp (𝒖(𝑡, 𝑇)ᇱ𝒙𝒕 + 𝑣ி(𝑡, 𝑇)) (5) 

                                                        
5 As shown in Cortazar and Naranjo (2006) the two-factor specification of this model is equivalent to the 

Schwartz and Smith (2000) model, but may easily be extended to N-factors. 
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where,  

 𝑢௜(𝑡, 𝑇) = 𝑒ି఑೔(்ି௧) (6) 

 

𝑣ி(𝑡, 𝑇) =  𝜇𝑡 + ൬𝜇 − 𝜆ଵ +
1

2
𝜎ଵ

ଶ൰ (𝑇 − 𝑡) −  ෍ ቆ
1 − 𝑒ି఑೔(்ି௧)

𝜅௜
𝜆௜ቇ

௡

௜ୀଶ

+
1

2
෍ ቆ𝜎௜𝜎௝𝜌௜௝

1 − 𝑒ି(఑೔ା఑ೕ)(்ି௧)

𝜅௜ + 𝜅௝
ቇ

௡

௜∙௝ஷଵ

 

(7) 

Similarly, it can be shown that the expected spot price for time 𝑇 at time 𝑡, is given by: 

 𝐸௧(𝑆(𝒙𝒕, 𝑇)) = exp (𝒖(𝑡, 𝑇)ᇱ𝒙𝒕 + 𝒗𝑬(𝑡, 𝑇)) (8) 

where,  

 𝑣ா(𝑡, 𝑇) = 𝜇𝑇 +
1

2
𝜎ଵ

ଶ(𝑇 − 𝑡) +
1

2
෍ ቆ𝜎௜𝜎௝𝜌௜௝

1 − 𝑒ି(఑೔ା఑ೕ)(்ି௧)

𝜅௜ + 𝜅௝
ቇ

௡

௜∙௝ஷଵ

 (9) 

Note that the only differences between the futures and expected spot dynamics are the risk premium 

parameters. In addition, if these parameters were zero, the futures and expected spot prices would be equal.  

Define: 

 𝐸௧(𝑆(𝒙𝒕, 𝑇)) = 𝐹(𝒙𝒕, 𝑡, 𝑇) ∗ 𝑒గಷ (்ି௧) (10) 

 

where 𝜋ி is the futures’ risk premium, given by: 

 

 𝜋ி = 𝜆ଵ + ෍ ቆ
1 − 𝑒ି఑೔(்ି௧)

𝜅௜ (𝑇 − 𝑡)
𝜆௜ቇ

௡

௜ୀଶ

 (11) 

Finally, the model implied volatility (assumed constant in the time-series) is given by: 

 

 𝜎ி
ଶ(𝜏) = ෍ ෍ 𝜎௜𝜎௝𝜌௜௝𝑒ି൫఑೔ା఑ೕ൯ఛ

௡

௝ୀଵ

௡

௜ୀଵ

 (12) 

 

As mentioned earlier, in this paper analysts’ forecasts are assumed to be noisy proxies for expected future 

spot prices. 
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3.2. Parameter Estimation 

A Kalman filter that incorporates both futures prices and analysts’ forecasts into the process of estimating 

all parameters is implemented.  The Kalman Filter has been successfully used with incomplete data panels 

in commodities (Cortazar and Naranjo (2006)) and bond yields (Cortazar et al. (2007)), among others.  Let’s 

define 𝑚௧ as the time-variant number of observations available at time 𝑡. 

The application of the Kalman Filter requires two equations to be defined: 

o The transition equation, which describes the true evolution of the 𝑛 𝑥 1 vector of state variables 

(𝒙𝒕) over each time step (∆𝑡): 

 
𝒙𝒕 = 𝑨𝒕𝒙𝒕ି𝟏 + 𝒄𝒕 + 𝜺𝒕 

𝜺𝒕 ~ 𝑁(𝟎, 𝑸𝒕) 
(13) 

where 𝑨𝒕 is a 𝑛 𝑥 𝑛 matrix, 𝒄𝒕 is a 𝑛 𝑥 1 vector and 𝜺𝒕 is an 𝑛 𝑥 1 vector of disturbances with mean 0 and 

covariance matrix 𝑸𝒕.   

o The measurement equation, which relates the state variables to the log of observed futures prices 

and analysts’ forecasts: 

 
𝒛𝒕 = 𝑯𝒕𝒙𝒕 + 𝒅𝒕 + 𝒗𝒕 

𝒗𝒕 ~ 𝑁(𝟎, 𝑹𝒕) 
(14) 

 

where 𝒛𝒕  is a 𝑚௧ 𝑥 1  vector, 𝑯𝒕  is a 𝑚௧  𝑥 𝑛  matrix, 𝒅𝒕  is a 𝑚௧ 𝑥 1  vector and 𝒗𝒕  is a 𝑚௧ 𝑥 1  vector of 

disturbances with mean 0 and covariance matrix 𝑹𝒕. 

An additional complication is that analysts provide their price forecasts as an annual average, instead of a 

price for every maturity, as is the case for futures. Thus, Equations (5) and (8) become  

 log 𝐹(𝒙𝒕, 𝑡, 𝑇) = 𝒖(𝑡, 𝑇)ᇱ𝒙𝒕 + 𝑣ி(𝑡, 𝑇) (15) 

 

 log 𝐸௧(𝑆(𝒙𝒕, 𝑇)) = log ቌ
1

𝑁௉
෍ exp (𝒖(𝑡, 𝑇)ᇱ𝒙𝒕 + 𝑣ா(𝑡, 𝑇))

ேು

௜ୀଵ

ቍ (16) 

Notice that in order to measure the analysts’ forecast observations we numerically approximate the mean 

annual price as the mean of 𝑁௉ observations evenly spaced over the same year of the estimation.  As can 

be observed, unlike futures prices, price forecasts are not a linear function of the state variables.  
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In order for expected spot prices to be normally distributed, under the N-Factor model, the log 𝐸(𝑆) must 

be represented by a linear combination of the state variables. This can be achieved by linearizing the 

measured log 𝐸௧(𝑆(𝒙𝒕, 𝑇)) when computing each measurement step of the Kalman Filter6.   

If 𝑚௧
ி and 𝑚௧

ா  are the number of observations of futures prices and analysts’ forecasts at time 𝑡, the matrices 

corresponding to the measurement equation are: 

 𝐳𝐭 = ቆ
𝐳𝐭

𝑭

𝐳𝐭
𝑬ቇ (17) 

where 𝐳𝐭
𝑭 is a 𝑚௧

ி × 1 vector containing the futures observations and 𝐳𝐭
𝑬 is a 𝑚௧

ா × 1 vector containing the 

price forecasts observations. 

Let 

 𝐇𝐭 = ቆ
𝐇𝐭

𝑭

𝐇𝐭
𝑬ቇ (18) 

and 

 𝐝𝐭 = ቆ
𝐝𝐭

𝑭

𝐝𝐭
𝑬ቇ (19) 

where 𝐇𝐭
𝑭 is a 𝑚௧

ி × 𝑛 matrix and 𝐝𝐭
𝑭is a 𝑚௧

ி × 1  vector containing the measurement equations for the 

futures data and 𝐇𝐭
𝑬 is a 𝑚௧

ா × 𝑛  matrix and 𝐝𝐭
𝑬 is a 𝑚௧

ா × 1 vector containing the linearized measurement 

equations for the price forecasts data.    

Finally, 

 𝐑𝐭 = ቆ
𝑹𝒕

𝑭 𝟎

𝟎 𝑹𝒕
𝑬ቇ (20) 

 

where 𝑹𝒕
𝑭 = 𝑑𝑖𝑎𝑔௠೟

ಷ(𝜉ி) and 𝑹𝒕
𝑬 = 𝑑𝑖𝑎𝑔௠೟

ಶ(𝜉ா) are the diagonal covariance matrices of measurement 

errors of futures and price forecasts observations.   

                                                        
6 More information on this methodology can be found in Cortazar, Schwartz & Naranjo (2007). 
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4. The Data 

4.1. Analysts’ Price Forecasts Data 

As mentioned in the introduction analysts´ price forecasts are obtained from four sources: Bloomberg, 

World Bank (WB), International Monetary Fund (IMF) and the U.S. Energy Information Administration 

(EIA). 

The first source is the Bloomberg Commodity Price Forecasts.  This data base provides information on the 

mean price of each following year, up to 5 years ahead, made by individual analysts from a wide range of 

private financial institutions.   Even though the data has not been analyzed extensively in the literature, it 

has been recently recognized as a rich and unexplored source of information [Berber and Piana (2016), 

Bianchi and Piana (2016)]. 

The next three sources (WB7, IMF8, and EIA9), provide periodic (monthly, quarterly or annually) reports 

with long-term, annual mean price estimations up to 28 years ahead.  Most historical data is available since 

2010. Among these three sources, the last one has received more attention in the literature. In particular, 

Berber & Piana (2016) and Bianchi & Piana (2016) use it for oil inventory forecasts, while Bolinger et al. 

(2006), Auffhammer (2007), Baumeister & Kilian (2015) and Haugom et al. (2016) focus on price 

forecasts10. Finally, Auffhammer (2007) and Baumeister & Kilian (2015) claim this source is widely used 

by policymakers, industry and modelers. 

Figure 3 shows the analysts’ price forecasts from all four sources, between 2010 and 2015.  It can be seen 

that short-term forecasts are more frequent, in contrast to long-term forecasts, which are issued in a less 

recurring, but periodical, basis. 

 

                                                        
7 Issued in the Commodity Markets Outlook. 
8 Issued in the Medium Term Commodity Price Baseline. 
9 Issued in the Annual Energy Outlook. 
10 It must be noted that some of the forecast analysis is only in-sample. 
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Fig. 3: Oil analysts’ price forecasts from 2010 to 2015 provided by Bloomberg’s Commodity Price 

Forecasts, World Bank (WB), International Monetary Fund (IMF) and U.S. Energy Information 

Administration (EIA). 

 

We use analysts’ price forecasts that are made for the average of each year without including the current 

one. Forecasts for the same year (like quarterly forecasts, for example), which include past information, are 

discarded as in Bianchi & Piana (2016). Thus, for each forecast its maturity is computed as the difference 

(in years) between the issue date and the middle of the year of the estimation (July, 1st of each year).  Price 

forecasts are grouped into weeks ending on the following Wednesday, and then averaged11.  Table 1 

summarizes the data.   

 

4.2. Oil Futures Data 

Oil futures price data is obtained from the New York Mercantile Exchange (NYMEX).  Weekly futures 

(Wednesday closing), with maturities for every 6 months, are used.  There are from 17 to 19 contracts per 

week.  Futures data is much more frequent than analysts’ forecasts, as can be seen by comparing Figures 

3 and 4. Table 2 summarizes the futures data by maturity buckets with similar number of observations. 

                                                        
11 This is similar to what Berber and Piana (2016) or Bianchi and Piana (2016) do when averaging 

forecasts corresponding to the same period of estimation. 
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Table 1: Oil analysts’ price forecasts from 2010 to 2015 grouped by maturity bucket.  Forecasts are 

aggregated by week ending in the next Wednesday and averaged to obtain the mean price estimate for each 

following year in the same week.   

Maturity 

Bucket 

(years) 

Mean 

Price 

($/bbl.) 

Price  

S.D. 

Mean 

Maturity 

(years) 

Min. Price 

($/bbl.) 

Max. Price 

($/bbl.) 

N° of 

Observations 

0-1 88.4 17.5 0.8 47.2 117.5 149 

1-2 93.9 16.6 1.5 52.3 135.0 284 

2-3 96.8 19.2 2.5 50.9 189.0 236 

3-4 95.5 20.1 3.5 51.5 154.0 190 

4-5 93.0 19.7 4.5 52.0 140.0 141 

5-10 99.1 18.2 6.7 61.2 153.0 122 

10-28 165.9 40.6 16.9 80.0 265.2 110 

Total 100.9 29.6 4.1 47.2 265.2 1232 

 

 
Fig. 4: Oil futures prices from 2010 to 2015 provided by NYMEX. 
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Table 2: Oil futures prices from 2010 to 2015 grouped by maturity bucket. 

Maturity 

Bucket 

(years) 

Mean 

Price 

($/bbl.) 

Price  

S.D. 

Mean 

Maturity 

(years) 

Min. Price 

($/bbl.) 

Max. Price 

($/bbl.) 

N° of 

Observations 

0-1 85.4 17.7 0.4 36.6 113.7 786 

1-2 85.0 14.5 1.5 45.4 110.7 621 

2-3 84.0 12.7 2.5 48.5 107.9 625 

3-4 83.5 11.6 3.5 50.9 106.2 627 

4-5 83.4 11.0 4.5 52.5 105.6 631 

5-6 83.5 10.8 5.5 53.5 105.6 622 

6-7 83.8 10.9 6.5 54.2 105.9 625 

7-8 84.1 11.1 7.5 54.6 106.3 626 

8-9 84.6 11.6 8.4 54.9 107.0 461 

Total 84.2 12.8 4.2 36.6 113.7 5624 

 

 

4.3. Risk Premiums Implied from the Data 

As explained in Section 3.1, empirical risk premiums can be derived directly form the data by comparing 

analysts’ forecasts with futures prices of similar maturity12. Since oil futures contracts longest maturity does 

not exceed 9 years, it is not possible to calculate the data risk premiums exceeding this term. Then, if 𝐸௧
෢(𝑆்) 

is a price forecast at time 𝑡, for maturity 𝑇, and 𝐹௧, ෠்  is its closest futures (in maturity) for the same date, 

following Equation 10 the data risk premium corresponding to that time is computed as: 

 

 
𝜋௧,் =

log ൬
𝐸௧
෢(𝑆்)

𝐹௧, ෠்
൰

𝑇
 

(21) 

 

The mean data risk premiums for each maturity bucket is presented in Table 3. Notice that the annual data 

risk premium is decreasing with maturity. 

                                                        
12 Forecasts with more than one year of difference with the nearest future contract are not used to calculate 

data risk premiums. 
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Table 3: Mean Annual Data Risk Premium from 2010 to 2015 by maturity bucket.  

 

Maturity Buckets 

 (years) 

Mean Data Risk Premium 

(%) 

0.5 – 1.5 7.6% 

1.5 – 2.5 6.7% 

2.5 – 3.5 5.2% 

3.5 – 4.5 3.3% 

4.5 – 5.5 2.9% 

5.5 – 6.5 3.2% 

6.5 – 7.5 3.2% 

7.5 – 8.5 3.1% 

8.5 – 9.5 3.0% 

 

 

5. Results 

This section presents the results from calibrating the Cortazar and Naranjo (2006) N-factor model, described 

in Section 3, using a 3-factor13 specification and different calibration data.  In terms of the calibration data, 

two sets are available: futures prices (F) and analysts’ forecasts (A).  Results using jointly both data sets 

(FA-Model), only-analysts’ data (A-Model), and the traditional only-futures data (F-Model), are presented. 

The behavior of the futures curve, the expected spot price curve and the risk premiums are analyzed. 

5.1. Joint Model Estimation (FA-Model) 

The Joint Model estimation, FA-Model, uses both the analysts’ price forecasts and futures data to calibrate 

the 3-Factor Model.  To motivate the discussion, Figures 5 and 6 illustrate the results for the futures and 

expected spot curves, under different calibrations, for two specific dates, when futures are in contango (04-

14-2010) and when futures are in backwardation (07-09-2014).  Notice that in all cases the curves fit 

reasonably well the futures prices and analysts’ forecasts observations when using the FA-Model. On the 

contrary, when using the traditional F-Model, the expected price curves are well below the analysts’ 

forecasts. 

                                                        
13 Results for a 2-factor specification are qualitatively similar to those for the 3-factor model, but are not 

reported.  
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Fig. 5: Futures, expected spot curves and observations for 04-14-2010. Curves include FA- and F- Models. 

Parameter estimation from 2010 to 2014. 

 

Fig. 6: Futures, expected spot curves and observations for 07-09-2014. Curves include FA- and F- Models. 

Parameter estimation from 2010 to 2014. 
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As discussed previously, the F- and FA-Models estimate both the true and the risk-adjusted distributions, 

from which futures prices and expected spot prices can be obtained. Analysts’ forecasts and Futures pricing 

errors for both models are computed and presented in Tables 4 and 5. Parameter values obtained using the 

Kalman filter and using weekly data from 2010 to 2014 are reported in the Appendix. It is worth reporting 

that by using this new FA approach most risk premium parameters become now statistically significant. 

Notice that since the parameters of the model are estimated with data from 2010 to 2014, the results for 

2015 are out of sample. 

 

Table 4: Price forecasts Mean Absolute Errors for the F- and FA-Models for each maturity bucket and time 

window, between 2010 and 2015.  Errors are calculated as percentage of price forecasts. Parameter 

estimation from 2010 to 2014. 

 

Buckets  

(years) 

N° of  

Observations 

In Sample 

 (2010-2014) 

Out of Sample 

 (2015) 

 Total 

 (2010-2015) 

F-Model FA-Model 
 

F-Model FA-Model 
 

F-Model FA-Model 

0-1 149 11,7% 3,8%  15,6% 4,3%  12,3% 3,9% 

1-2 284 22,0% 4,8%  22,3% 5,0%  22,1% 4,9% 

2-3 236 33,9% 7,1%  31,0% 6,7%  33,3% 7,1% 

3-4 190 41,1% 9,4%  39,3% 7,5%  40,7% 8,9% 

4-5 141 47,5% 10,8%  46,4% 7,9%  47,2% 10,0% 

5-10 122 61,6% 7,7%  59,6% 4,5%  61,1% 6,9% 

10-28 110 90,2% 5,4%  65,7% 4,4%  86,2% 5,2% 

Total 1232 38,6% 6,8%  37,6% 6,0%  38,4% 6,6% 

 

Table 4 shows the mean absolute errors between analysts’ forecasts and model expected spot prices 

generated by the FA-Model versus the F-Model. It is clear that the FA-Model has a significantly better fit 

for all time windows and buckets. 

Furthermore, Table 5 shows the mean absolute errors between observed futures prices and model futures 

prices. As expected, the benefit of obtaining a better fit in the expected spot prices, by including analysts’ 

forecasts, comes at the expense of increasing the mean absolute error on the futures prices.  Nevertheless, 

the error increase is only 1%.   
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Table 5: Futures Mean Absolute Errors for the F- and FA-Models for each maturity bucket and time 

window, between 2010 and 2015.  Errors are calculated as percentage of futures prices. Parameter 

estimation from 2010 to 2014. 

 

Buckets  

(years) 

N° of  

Observations 

In Sample 

 (2010-2014) 

Out of Sample 

 (2015) 

 Total 

 (2010-2015) 

F-Model FA-Model 
 

F-Model FA-Model 
 

F-Model FA-Model 

0-1 786 0,5% 1,8%  0,8% 2,4%  0.6% 1.9% 

1-2 621 0,4% 1,7%  1,1% 1,8%  0.5% 1.7% 

2-3 625 0,2% 1,6%  0,4% 1,4%  0.3% 1.6% 

3-4 627 0,3% 1,5%  0,7% 1,5%  0.4% 1.5% 

4-5 631 0,4% 1,3%  1,0% 1,8%  0.5% 1.3% 

5-6 622 0,3% 1,1%  1,0% 1,9%  0.4% 1.2% 

6-7 625 0,2% 1,0%  0,4% 1,3%  0.2% 1.1% 

7-8 626 0,2% 1,0%  0,7% 1,3%  0.3% 1.1% 

8-9 461 0,4% 1,2%  1,7% 2,6%  0.6% 1.4% 

Total 5624 0,3% 1,4%  0,8% 1,8%  0.4% 1.4% 

 

In summary, the FA-Model has the advantage of generating a more reliable expected spot curve, with only 

a moderate effect for the goodness of fit for the futures.  

5.2. Analysts’ Consensus Curve using only Analysts’ Forecasts (A-Model) 

In the previous section, futures and expected spot curves for the FA-Model, calibrated using both futures 

and analysts’ forecasts, were presented.  In that setting each curve is affected by both sets of data. In this 

section we calibrate the model using only analysts’ forecasts, modeling only the dynamics of the spot price. 

Thus, the expected spot curve represents an analysts’ consensus curve that optimally considers all previous 

forecasts. The A-Model parameter values are presented in the Appendix. Given that futures data is not used, 

no futures curve or risk premium parameters are obtained.   

Table 6 compares the mean absolute errors of the analysts’ consensus curve in both models. As expected, 

the A-Model that only uses analysts’ forecast data fits better this data than the FA-Model that includes also 

futures prices. This holds for every time window and maturity bucket. 
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Table 6: Price forecasts Mean Absolute Errors for the A- and FA-Models for each maturity bucket and 

time window, between 2010 and 2015.  Errors are calculated as percentage of price forecasts. Parameter 

estimation from 2010 to 2014. 

Buckets  

(years) 

N° of  

Observations 

In Sample 

 (2010-2014) 

Out of Sample 

 (2015) 

 Total 

 (2010-2015) 

FA-Model A-Model 
 

FA-Model A-Model 
 

FA-Model A-Model 

0-1 149 3,8% 2,1%  4,3% 2,7%  3,9% 2,2% 

1-2 284 4,8% 2,3%  5,0% 3,2%  4,9% 2,5% 

2-3 236 7,1% 2,6%  6,7% 2,5%  7,1% 2,5% 

3-4 190 9,4% 2,9%  7,5% 3,0%  8,9% 2,9% 

4-5 141 10,8% 2,5%  7,9% 2,5%  10,0% 2,5% 

5-10 122 7,7% 1,5%  4,5% 2,9%  6,9% 1,9% 

10-28 110 5,4% 1,3%  4,4% 3,6%  5,2% 1,7% 

Total 1232 6,8% 2,3%  6,0% 2,9%  6,6% 2,4% 

 

 

 

Table 7: Expected Spot Mean Price and Annual Volatility of the FA- and A-Models, for each equal size 

maturity bucket between 2010 and 2015.  Volatility of the curve at maturities in the middle of each bucket 

are presented. Parameter estimation from 2010 to 2014. 

 

 Mean Price ($/bbl.) 
 

Annual Volatility (%) 

Maturity Buckets  

(years) 
FA-Model  A-Model   FA-Model  A-Model  

0-5 95.1 95.4  18.3% 95.3% 

5-10 103.2 104.8  22.1% 170.9% 

10-15 118.9 115.1  26.8% 193.5% 

15-20 144.9 133.0  29.2% 200.9% 

20-25 182.2 158.6  30.3% 203.2% 

Total 129.0 121.5  25.4% 170.8% 
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Table 7 reports the expected spot mean price and annual volatility for the FA- and A-Models, for each 

maturity bucket between 2010 and 2015.  The first two columns show that the mean expected spot prices 

for the FA- and A- models are similar for short-term maturity buckets14. The last two columns report the 

volatility of expected prices obtained for the two models. Since the analysts´ forecasts are very noisy, the 

A-Model generates an analysts’ consensus curve that is between 5 and 8 times more volatile than the one 

from the FA-Model.   

In summary, the analysts’ consensus curve can be obtained from the FA or the A-Models. The former has 

the advantage of generating a less volatile curve, while the latter generates a better fit. The difference 

between the means of both curves increases with maturity. 

5.3. Long-Term Futures Price Estimation using also Analysts’ Price Forecasts (FA-Model) 

As has been argued earlier, estimation of long-term futures prices by extrapolation is subject to estimation 

errors. In addition, oil futures’ longest maturity is around 9 years, while there are oil price forecasts for 

maturities of over 25 years. In this section, the impact on long-term futures prices of using analysts’ price 

forecasts, in addition to futures, is explored.  

To motivate this section Figure 7 shows futures curves from for the FA- and F-Models on 04-14-2010 and 

compares them to the analysts’ forecasts for the same date.  It can be seen that both futures curves for long 

maturities are very different. On the other hand, both curves are very similar for short and medium term 

maturities, for which there is futures data.  Given that there are no long-term futures data to validate any of 

the curves, we present the FA-Model futures curve as a valuable alternative that considers analysts’ 

opinions.   

Table 8 shows the mean price and annual volatility of the futures curves (FA- and F-Models) for every 

maturity.  As can be seen, the inclusion of expectations data, when using the FA-Model, significantly affects 

the mean futures curve in the long-term, without considerably changing it in the short-term.  Again, as was 

the case for the expected spot curves in the previous section, the longer the maturity the greater the 

difference between both curves15. Given the fact that analysts’ forecasts are very volatile, the effect of using 

them almost doubles the volatility of the futures curves when using the FA-Model. 

                                                        
14 In fact, differences in mean prices are significant at the 99% level for maturity buckets over 10 years. 
15 Differences in mean curves are significant at the 99% level for maturity buckets from 10 to 25 years.  
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Fig. 7: Futures under the FA-, and F-Models, Expected spot curve under the FA-Model, forecasts and 

futures observations, for 04-14-2010. Parameter estimation from 2010 to 2014. 

Table 8: Futures Mean Price and Annual Volatility of the FA- and F-Models, for each maturity bucket 

between 2010 and 2015.  Volatility of the curve at maturities in the middle of each bucket are presented. 

Parameter estimation from 2010 to 2014. 

 Mean Price ($/bbl.) Annual Volatility (%) 

Maturity Buckets  

(years) 
F-Model  FA-Model F-Model  FA-Model 

0-5 84.3 84.3 17.2% 18.3% 

5-10 84.2 84.4 15.4% 22.1% 

10-15 88.5 92.8 16.5% 26.8% 

15-20 95.0 108.8 17.1% 29.2% 

20-25 103.0 131.7 17.3% 30.3% 

Total 91.0 100.5 17.9% 25.4% 

 

5.4. Data Risk Premium Curves 

Having reliable expected spot and the futures curves allows for the estimation of the term structure of risk 

premiums implied by their difference.  As stated earlier the calibration of the F-Model provides most of the 
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time statistically insignificant risk premium parameters, thus expected spot curves are unreliable. On the 

contrary, adding analysts´ forecast data addresses this issue. 

Figure 8 shows the model term structure of risk premiums implicit in the difference of the expected spot 

and futures curves for the FA- and F- Models. In our model, changes in futures prices and analysts forecasts 

(i.e. expected spot prices) are driven by the three stochastic factors.  More appropriately, the time series of 

the three factors and all the parameters of the model are jointly estimated using the Kalman Filter to fit the 

futures prices and analyst forecast data. Thus, futures prices (and also their slope) are a function of these 

three factors. One implication of this model is that the risk premium depends only on maturity and not on 

the state variables, so there is a constant risk premium curve16 for each model over the whole sample period. 

The figure also shows the data risk premiums, obtained directly from the difference between price forecasts 

and their closest future price observation, averaged for each maturity over the whole sample period 2010 

and 2015. 

Several insights can be gained from Figure 8. First, the FA-model risk premiums are very close to the mean 

data risk premiums. Second, the term structure seems to be downward sloping, with annual risk premiums 

in the range of 2% to 10%. Finally, as expected, the F-Model is not able to obtain a credible estimation of 

risk premiums. 

 

 

Fig. 8: Annual model risk premium term-structure for the FA- and F-Models, and annual mean data risk 

premiums.  The data risk premiums are implicit from the difference between price forecasts and their closest 

future price observation, for every date between 2010 and 2015.  Parameter estimation from 2010 to 2014. 

                                                        
16 In a separate work some of the authors of this paper are considering a model with stochastic risk 

premium to better explain volatility 
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6. Conclusion 

Even though commodity-pricing models have been successful in fitting futures prices, they do not generate 

accurate true distributions of spot prices.  This paper proposes to calibrate these models using not only 

observations of futures prices, but also analysts´ forecasts of spot prices. 

The Cortazar and Naranjo (2006) N-factor model is implemented for three factors, and estimated using the 

Kalman Filter. The model is calibrated using the traditional only-futures data (F-Model), an alternative 

only-analysts’ data (A-Model), and a joint calibration using both sets of data (FA-Model).  Futures data is 

from NYMEX contracts, and analysts´ forecasts from Bloomberg, IMF, World Bank, and EIA.  Weekly oil 

data from 2010 to 2015 is used.  

There are several interesting conclusions that can be derived from the results presented. The first is that in 

order to obtain reasonable expected spot curves, analysts´ forecasts should be used, either alone (A-Model), 

or jointly with futures data (FA-Model). Second, using both futures and forecasts (FA-Model), instead of 

using only forecasts (A-Model), generates expected spot curves that do not differ considerably in the 

short/medium term, but long term estimations are significantly different and the volatility of the curve is 

substantially reduced. Third, the inclusion of analysts´ forecasts, in addition to futures, in the FA-Model, 

instead of only futures prices (F-Model) does not alter significantly the short/medium part of the futures 

curve, but does have a significant effect on long-term futures estimations, and increases the volatility of the 

curve. Finally, that in order to obtain a statistically significant risk premium term structure, both data sets 

must be used jointly. 

The information provided by experts in commodity markets, reflected in analysts’ and institutional 

forecasts, is a valuable source that should be taken into account in the estimation of commodity pricing 

models. This paper is a first attempt in this direction.   
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Appendix 

 

Three-factor F-Model, FA- and A-Model parameters, standard deviation (S.D.) and t-Test estimated from 

oil futures prices and price forecasts. Parameter estimation from 2010 to 2014. 

 

Parameter 
F-Model FA-Model             A-Model 

Estimate S.D. t-Test Estimate S.D. t-Test Estimate S.D. t-Test 

κ2 1.015 0.011 92.490 0.940 0.023 40.877 0.316 0.030 10.494 

κ3 0.200 0.003 74.208 0.170 0.004 47.314 0.259 0.021 12.508 

σ1 0.175 0.003 52.173 0.311 0.003 102.803 2.044 0.126 16.278 

σ2 0.531 0.006 91.077 0.241 0.004 56.060 9.566 4.759 2.010 

σ3 0.251 0.004 58.302 0.455 0.008 58.918 9.989 4.649 2.149 

ρ12 -0.162 0.003 -59.458 0.492 0.010 48.032 0.128 0.030 4.245 

ρ13 -0.497 0.007 -66.317 -0.809 0.015 -52.635 -0.355 0.097 -3.661 

ρ23 0.254 0.004 58.151 -0.693 0.012 -55.800 -0.972 0.029 -33.917 

μ -0.123 0.068 -1.818 0.002 0.000 44.564 -2.052 0.257 -7.990 

λ1 -0.125 0.068 -1.844 0.007 0.003 2.605    

λ2 0.046 0.189 0.246 0.101 0.009 11.151  

λ3 0.000 0.001 0.029 0.010 0.007 1.429  

ξ 0.005 0.000 102.346 0.044 0.000 108.762 0.042 0.001 29.975 

 

 

 


