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Abstract

This paper analyzes the effect of a possible withdrawal of a tax credit policy on invest-
ment timing and investment size, and the interaction between investment timing and
investment size. If the policy maker can only withdraw a policy once and not enact
it in the future, we find that increasing the probability of withdrawal of a tax credit
policy, increases the incentive to invest now and decreases the optimal investment size.
Huisman and Kort [2015] show that investing later means that the investor invests at a
larger capacity, which is confirmed in this paper. It is found that a firm that invests at
the timing threshold value invests at larger scale when the policy is not in effect than
when it is in effect. This results from the fact that subsidy speeds up investment and
earlier investment is done at a lower capacity.

Unlike the price premium in Chronopoulos et al. [2016], these conclusions do not
hold only for low withdrawal probabilities, but for all withdrawal probability values, as
the tax credit policy is only relevant at the time of investment. Therefore, increasing
the withdrawal probability to a large value speeds up investment more.

When the investor is a social planner who aims to the maximize social welfare, it is
found that the social planner has the same timing as the profit-maximizing monopolist,
but invests at twice the investment size. The monopolist seems to keep the price up by
producing less.
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1 Introduction

In an ever-changing world, also the economical and political landscape are continuously
changing. These observations can be made just by looking into our newspapers. In
February 2017, the World Bank warned that political developments could harm inter-
national trade as these political developments give rise to protectionism and threats to
unwind trade agreements (Donnan [2017]). Another example is the Brexit later in 2017,
which lead to even more political uncertainty. Mark Carney, the Governor of the Bank
of England, warned that the unpredictable nature of Brexit was weighing on supply and
demand, with some companies already delaying decisions about entering new markets
(Jackson et al. [2017]). Most recently, South Korea proposed a change in regulations
regarding the bitcoin, which caused some unrest among investors and a drop in the price
(Jung-a and Dunkley [2017]).

For firms and investors it is important to be aware of risks in order to recognize and
seize profitable investments. In the past, the Net Present Value criteria has been used,
which says that it is optimal to invest whenever the expected payoff exceeds the invest-
ment costs. However, this criteria does not take into account that investment is usually
irreversible and one can delay investment, i.e. it is not a now-or-never opportunity. As
a typical investment opportunity is similar to a financial option, real options proposes
an analysis of investments using knowledge of financial options. In this paper, a real
options approach is taken to analyze investments (Dixit and Pindyck [1994]).

Apart from a proper analysis by the investors, it is also important that a government
is aware of the economical consequences of their policies. Usually, the government’s poli-
cies aim at a certain change, for example on the green energy market. Finjord et al. [2017]
analyzes green certificate subsidy schemes currently employed on the energy markets in
Norway and Sweden. These subsidies aim to increase the share of green/renewable en-
ergy, which is a target shared by countries worldwide. As the REN21 [2016] states: ”As
of year-end 2015, at least 173 countries had renewable energy targets ... and an estimated
146 countries had renewable energy support policies, at the national or state/provincial
level.” The European Union targets to cover 20% of the energy demand from renewable
sources by 2020 (European Commission [2017]).

However, not only changing policies influences firms and investors, but even just
debating about new policies or ending existing policies can influence the behavior of
firms and investors. An example of this is the aforementioned drop in the price of the
bitcoin as a result of just saying to plan on implementing regulations. Another example,
related to the green energy market, is the delay in investment in wind farms as a result
of uncertainty over government policy to boost investment in the industry (Bloomberg
[2013]). This paper develops a framework to explain how uncertainty in the withdrawal
of a tax credit policy affects invest timing and investment size.

Previous examples already imply there is some relation between policy uncertainty
and investment timing. This paper focuses on the question what consequences policy
uncertainty has on investment timing and investment size. The analyzed policy is a
discount on investment cost, a so-called tax credit policy, which an investor only receives
when the policy is in effect. In other words, it is not possible to invest at another time
and collect the subsidy when investing while the policy is in effect. Therefore, the
investor’s optimal decision when to invest is subject to the policy uncertainty. As the
investment size and timing are decisions that depend on each other (Huisman and Kort
[2015]), also investment size is subject to the policy uncertainty.
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Apart from deriving optimal decisions from the investors perspective, this paper also
analyzes social welfare outcomes. An investor does not take the consumer surplus into
account and solely looks at its own profit (the producer surplus), while a government
aims to - depending on the sector - maximize total surplus or consumer surplus by use of
its policies. In order to do some policy recommendations, we analyze the maximization
problem of the total surplus, which is the problem of the social planner. The focus of this
analysis is on the effect of policy uncertainty on the total surplus and socially optimal
timing and capacity. Furthermore, these socially optimal decisions are compared with
the firm’s optimal timing and size decisions.

In the next section, the relevant literature is discussed. Section 3 discusses the invest-
ment under policy uncertainty model by Dixit and Pindyck [1994] with two extensions.
The first extension is that the government can only intervene once; after policy with-
drawal, there is no policy uncertainty anymore. Secondly, apart from a timing decision,
the investor also has the choice to set investment size. The main conclusions of section
3 are compared with Chronopoulos et al. [2016] in section 4. Chronopoulos et al. [2016]
have done a similar analysis on a different type of subsidy. 5 performs a robustness
analysis on the results; this section is not complete yet, and will be finalized in the fu-
ture. Finally, the main conclusions and recommendations for future research are listed
in section 6.

2 Literature review

First we look into the relevant literature on the topic of investments and policy uncer-
tainty. Dixit and Pindyck [1994] is one of the pioneering works on the topic of analyzing
policy uncertainty using a real options approach. The authors analyze a situation in
which one possible investor can choose the time to invest, and the government can re-
tract/enact a subsidy. The subsidy is a discount on the (one-time) sunk investment
cost, which the investor can receive when he/she invests at a time in which the policy is
active. However, the time when the government changes the policy is uncertain. Uncer-
tainty such as price uncertainty is modeled as a Brownian motion as the price changes
continuously in a beforehand unknown direction. Dixit and Pindyck [1994] note that
policy uncertainty is different, as the effect of implementing/withdrawing a policy is a
sudden jump and not a continuous walk. Therefore, the policy is uncertainty is modeled
as a Poisson jump. Unfortunately, Dixit and Pindyck [1994] are unable to analytically
solve their model and derive their conclusions from a numerical example.

When there is no policy in effect initially, increasing the enactment probability leads
to an increment in the timing threshold. This is the result of the fact that increasing the
implementation parameter makes it more likely that investing in the future is cheaper,
hence it increases the value of waiting. Dixit and Pindyck [1994] mention that this
effect is rather large. While the policy is not in effect, increasing the removal probability
decreases the timing threshold, but this effect is negligible.

While the policy is in effect, an increase in the withdrawal probability leads to a
decrease in the timing threshold, as the risk of losing the tax credit increases and it
gives value to investing now. Dixit and Pindyck [1994] note that the effect of the
withdrawal probability on the timing threshold while the policy is in effect is smaller
in magnitude that the effect of the implementation probability on the timing threshold
while the policy is not in effect. A larger enactment probability increases the timing
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threshold while the policy is active, as it makes it more likely that the tax credit returns
after withdrawal, reducing the incentive to invest as quickly as possible. This effect is
especially relevant for situations in which the withdrawal probability is large.

The numerical example in Dixit and Pindyck [1994] shows that uncertainty in whether
or not the tax credit policy is implemented increases the value of waiting, hence it de-
creases investment. Dixit and Pindyck [1994] conclude that a government aiming to
increase investment can better start with the tax credit policy and swear to remove it
soon with hardly any probability of implementing it again in the future. The authors
note that ”[t]he credibility of such a policy is open to doubt”.

In the model by Dixit and Pindyck [1994], the investor is a monopolist and the
only decision that has to be made is when to invest. However, apart from the timing
of an investment, also the scale can be a crucial factor, especially in markets where
multiple, competitive, firms may enter. This competition element can be captured by
a game-theoretic model, which can be analyzed as done by Huisman and Kort (2015).
Huisman and Kort (2015) analyze a two player game in which there is an incumbent
firm (first investor) and an entrant (second investor). They find that the incumbent
may overinvest in capacity to both delay the investment of the entrant and to reduce the
chosen capacity of the entrant. It is also concluded that more uncertainty encourages the
incumbent to deter entry for the entrant. This paper’s main contribution is combining
the policy uncertainty model by Dixit and Pindyck [1994] and the capacity choice model
by Huisman and Kort [2015].

In reality, there are more types of subsidies than discounts on sunk investment costs.
One can for example consider a fixed price premium that the investor receives on top
of the output price, as done in Chronopoulos et al. [2016]. When it is not likely a new
price premium policy is implemented, increasing the probability of implementing such
policy leads postponement of investment by the firm. This is the result of the fact
that it becomes more attractive for a firm to postpone investment to a time in which
the policy is active. Chronopoulos et al. [2016] note that also the installed capacity
increases, which is a result supported by Huisman and Kort [2015], as the latter con-
cluded later investment leads to a increase in installed capacity. Similarly, when the
policy is in effect and the probability of withdrawing the price subsidy is low, an incre-
ment in the probability of withdrawal leads to earlier investment and a lower installed
capacity. When the probability of changing the current situation is relatively large,
aforementioned conclusions no longer hold. When a price subsidy is (not) in effect and
the probability of withdrawal (implementation) is large, increasing this probability leads
to firms postponing (speeding up) investment and increasing (decreasing) the installed
capacity. In the model of Chronopoulos et al. [2016], if it becomes very likely that the
subsidy is withdrawn, the firm postpones investment to avoid being active on the market
under detrimental conditions and as it invests later, the installed capacity is larger. If
it becomes very likely that a new subsidy is implemented, the firm invests sooner to
take the benefits from the subsidy as soon as the subsidy is implemented and as the
firm invests earlier, the installed capacity is smaller. A more extensive discussion on
the analysis by Chronopoulos et al. [2016] and a comparison of their assumptions and
results with those in this paper is done in section 4.

In the analysis by Chronopoulos et al. [2016], policy recommendations are done on
basis of optimal decisions for the investor. However, one can also take the consumer
surplus into account and analyze the social planner’s maximization problem in order
to give policy recommendations, as done by Wen et al. [2017]. Wen et al. [2017] study
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how the subsidy support, for example price support and reimbursed investment cost
support, affects the investment decision of a monopolist under uncertainty and analyzes
the implications for social welfare. It is found that unconditional support for a subsidy
leads to earlier investment, an outcome also found by Chronopoulos et al. [2016]. Wen
et al. [2017] find that unconditional subsidy regulation cannot align the profit and social
planner’s investment decisions under linear demand structure. In order to align the
firm’s profit and social welfare, a conditional subsidy regulation that aligns the firm’s
investment decision to the social optimal decision can be introduced. Furthermore, for
non-linear iso-elastic demand, it is possible to implement an unconditional subsidy to
align profit maximizing and social optimal investment decisions, depending on the form
of subsidy regulations.

3 Model

The basis from the model comes from Dixit and Pindyck [1994]. Both in this paper’s
model and the model in Dixit and Pindyck [1994], there is an investor who can enter an
empty market by paying sunk cost I. There is no existing production nor any competitor.
At a certain time t, once the investor decides to enter the market, it sells Q products
at price P (t). The production size Q is a decision variable chosen by the investor, and
the investor is unable to change this after investment. The price at time t is dependent
on the chosen capacity as the law of supply and demand suggest1. The following set of
equations is used to model this:

P (t) = X(t)(1− ηQ), (3.1)

dX(t) = µX(t)dt+ σX(t)dW (t). (3.2)

In the above, µ is the trend parameter, σ the uncertainty parameter and W (t) a Wiener
process. Using the above set of equations to model the price implies that certain as-
sumptions are made. Firstly, it gives a positive probability to observing a negative price.
In reality, a negative price will never occur. Secondly, in certain markets it may perhaps
even be the case that the price tends to revert to its mean. In other words, after an
upward (downward) trend, it may be more like to see a decrease (increase) in price due
to external factors, e.g. policies that aim to keep the price at a certain level. As there
are multiple factors that influence the price, the above set of equations may not capture
the way prices on the market behave in reality.

As (more complex) alternatives for modelling the price, Dias and Rocha [1999] and
Cartea and Figueroa [2005] may be used. Dias and Rocha [1999] model changes in oil
prices as a sum of a mean reverting part, Brownian motion and poison jump process
with random jump sizes. The first part of the sum expresses the tendency of prices
to stick to a certain mean, the second part models certain upward/downwards trends
and the final part models external shocks. According to Dias and Rocha [1999], their
model has ”more economic logic than previous models used in real options literature,
considering that normal news causes continuous small mean-reverting adjustment in oil
prices, whereas abnormal news causes abnormal movements in these prices (jumps)”.
Cartea and Figueroa [2005] use a similar model to analyse electricity spot prices, but

1Note that the law of supply and demand is not always active on every market. For example, one
may argue that on the energy market, one individual producer is unable to influence the market price
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also take into account seasonality. The authors mention that the model ”succeeds in
capturing changing convexities, which is a serious flaw in models that fail to incorporate
seasonality or enough factors”.

To capture the effect of policy change and its uncertainty, the government can with-
draw an investment tax credit at rate θ. When the policy is in effect, an investor pays
(1 − θ)I to enter the market, against I when the policy is not in effect. At time zero,
there is a policy active, and it is uncertain when the policy will be withdrawn. Policy
uncertainty is modeled as a Poison jump and assumed to be independent of the output
and price. In (short) time interval dt there is a λ0dt probability that the policy will
become inactive, given the policy is in effect. Once the investment tax credit has been
withdrawn, it will never be re-implemented, and there is no government uncertainty. The
way policy uncertainty is modelled, is similar to Dixit and Pindyck [1994]. Just as in
Dixit and Pindyck [1994], a subscript 0 is associated with no policy in effect/withdrawal
of the policy, and a subscript 1 is associated with the investment tax credit being active.
However, in Dixit and Pindyck [1994] the government is able to implement and withdraw
a subsidy multiple times. If a government only withdraws a tax credit policy or not,
but never re-implements it, the policy uncertainty decreases. In other words, there is
more certainty in the future investment costs, which is beneficial for potential investors.
Two practical examples similar to a setting in which an active subsidy is only withdrawn
once are the green certificate subsidy schemes currently employed on the energy markets
in Norway and Sweden. These subsidy schemes are ended in the near future, and this
situation is analyzed by Finjord et al. [2017].

Despite it is assumed that the policy uncertainty is independent of the produced out-
put and the price, in reality, politicians are not oblivious to the present and past affairs
of the economy. One can argue that politicians are more likely to suggest an investment
tax credit when the market performs poorly. Pawlina and Kort [2005] provide a model
with consistent authority behaviour. As a result, assuming that a government will im-
plement a policy detrimental to firms at high output prices, the investors know that the
policy will not occur as long as the current price remains equal to or below the highest
price observed in the past; the policy will only be implemented when a certain trigger
value is reached. Pawlina and Kort [2005] analyze the model in which the government
may implement a tax which increases the investment cost when the output price is large.
They find that the impact of the trigger value uncertainty on the investment threshold
is non-monotonic. Increasing the uncertainty decreases the investment threshold (i.e. it
is optimal to invest at a lower output price) when uncertainty is low. However, when
uncertainty is high, increasing the uncertainty increases the investment threshold.

Obviously, at a given value X (or given price P ), the situation in which the policy is
in effect is more beneficial to an investor compared to the situation in which the policy
is not in effect. As Dixit and Pindyck [1994] discuss, it is intuitively clear that when
the price is below a threshold X1, the investor will not enter, independently of whether
the policy is active or not. Furthermore, when the price is high enough, i.e. above a
threshold X0, the investor will always enter independently of he/she gets an investment
tax credit. For a price in the interval [X1, X0], the investor will only enter the market
when the policy is in effect, and he/she will not enter when the policy is not in effect.
These decisions can be visualized as done in figure 1.
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0 X1 X0

Never invest

Only invest if
policy in effect Always invest

Figure 1: Optimal investment strategy under fixed capacity at different output prices

The value of the investment option is determined for every output price in order
to determine the values of the thresholds X1 and X0. When the price is sufficiently
high, the investor invests independently of whether the policy is implemented or not.
The value of the investment option can be expressed as in equation (3.3) when the
tax credit policy is not in effect, and as in equation (3.4) when the policy is in effect.
In the equations below, δ is the cost of one unit of production, hence implementing a
production capacity of size Q yields an investment cost of δQ when no policy is in effect,
or (1− θ)δQ when the policy is in effect.

V0(X,Q) =
X(1− ηQ)Q

r − µ
− δQ (3.3)

V1(X,Q) =
X(1− ηQ)Q

r − µ
− (1− θ)δQ (3.4)

Let X1 be the value of the geometric Brownian motion at which the firm is indifferent
between investing and not investing, while the tax credit policy is in effect. Q∗1(X)
is defined as the chosen quantity by the investor at X > X1 while the policy is in
effect. Similarly, X0 is the value of the geometric Brownian motion at which the firm is
indifferent between investing and not investing, while the tax credit policy is not active.
The chosen quantity at X > X0 while the policy is not active is equal to Q∗0(X).

Proposition 1. When it is optimal to invest, the following expressions give the optimal
investment capacities:

Q∗0(X) =
1

2η
(1− δ(r − µ)

X
), (3.5)

Q∗1(X) =
1

2η
(1− (1− θ)δ(r − µ)

X
). (3.6)

Proof. See subsection A.1.

Next the value of the investment opportunity is determined for X(t) being sufficiently
large that it is optimal to invest when the policy is active, but not when the policy is
withdrawn (i.e. X1 < X(t) ≤ X0). In this scenario, the above expressions for V1 and
the optimal Q1 still hold, as it is optimal to invest when the policy is in effect. When
the policy is not in effect, it has been withdrawn and will not return in the future. It
can be shown that the following holds when the policy has been withdrawn:

1

2
σ2X2V ′′0 (X) + µXV ′0(X)− rV0(X) = 0. (3.7)

Solving this ordinary differential equation yields V0(X) = A0X
β01 + B0X

β02 . In this
expression, A0 and B0 are constants. β01 (β02) is the positive (negative) solution to
1
2
σ2β2 + (µ− 1

2
σ2)β − r = 0. Since V0(0) = 0 and β02 < 0, it follows that B0 = 0, hence:

V0(X) = A0X
β01 . (3.8)
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For X(t) < X1, it holds that it is best to wait irrelevant of whether the policy is active
or not. When the policy has been withdrawn, the value of the investment opportunity
is still expressed by (3.8). The investment option while the policy is active satisfies the
following ordinary differential equation:

1

2
σ2X2V ′′1 (X) + µXV ′1(X)− rV1(X) + λ0(V0(X)− V1(X)) = 0. (3.9)

Solving the homogeneous part of the above ordinary differential equation yields solution
V H
1 (X) = A1X

β11 +B1X
β12 . β11 (β12) is the positive (negative) solution to 1

2
σ2β2 +(µ−

1
2
σ2)β − (r + λ0) = 0.

To find a particular solution to the ordinary differential equation in (3.9), one can
try V P

1 (X) = C1X
β01 , as the in-homogeneous part is A0X

β01 . From this it follows
that C1 = A0. Combining the homogeneous and particular solution gives V1(X) =
A1X

β11 +B1X
β12 +A0X

β01 . However, as V1(0) = 0 and β12 < 0, it follows that B1 = 0.
This results in the following expression for V1(X):

V1(X) = A1X
β11 + A0X

β01 . (3.10)

In the above expression, A1 and A0 are constants that needs be determined. As before,
β01 is the positive solution to 1

2
σ2β2 + (µ− 1

2
σ2)β − r = 0.

In conclusion:

V0(X,Q) =

{
X(1−η·Q)Q

r−µ − δQ if X ∈ [X0,∞)

A0X
β01 otherwise

V1(X,Q) =

{
X(1−η·Q)Q

r−µ − (1− θ)δQ if X ∈ [X1,∞)

A1X
β11 + A0X

β01 otherwise

The constants A0 and A1 and thresholds X0 and X1 satisfy the value matching and
smooth pasting conditions. The two value matching equations are (3.11) and (3.12).
Equation (3.11) guarantees that the value for V0(X0, Q

∗
0(X0)) is uniquely defined, while

(3.12) does the same for V1(X1, Q
∗
1(X1)).

A0X
β01
0 =

X0(1− ηQ∗0(X0))Q
∗
0(X0)

r − µ
− δQ∗0(X0) (3.11)

A1X
β11
1 + A0X

β01
1 =

X1(1− ηQ∗1(X1))Q
∗
1(X1)

r − µ
− (1− θ)δQ∗1(X1) (3.12)

Apart from value matching conditions, there are also two smooth pasting conditions.
Equation (3.13) guarantees that V ′0(X0, Q

∗
0(X0)) has a unique value and equation (3.14)

states that the two possible expressions for V ′1(X1, Q
∗
1(X1)) match.

A0β01X
β01−1
0 =

(1− ηQ∗0(X0))Q
∗
0(X0)

r − µ
(3.13)

A1β11X
β11−1
1 + A0β01X

β01−1
1 =

(1− ηQ∗1(X1))Q
∗
1(X1)

r − µ
(3.14)

A0 can be determined by using the value matching condition (3.11) and smooth
pasting condition (3.13) as stated in proposition 2. The result of the proposition and
proof in the appendix can also be found in Huisman and Kort [2015].
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Proposition 2. Using conditions (3.11) and (3.13), it follows that

X0 =
β01 + 1

β01 − 1
· δ(r − µ). (3.15)

Furthermore, the following holds:

A0 =
δ

η(β2
01 − 1)

·
(
β01 + 1

β01 − 1
δ(r − µ)

)−β01
. (3.16)

Proof. See subsection A.2.

Equations (3.11) - (3.14) cannot be solved analytically completely, as it is not possible
to find expressions for constant A1 and threshold X1. Nevertheless, it is possible to derive
some conditions for both, as shown in proposition 3.

Proposition 3. Using conditions (3.12) and (3.14), it can be shown that X1 satisfies
the following equation:

β11 − β01
β11

· A0X
β01
1 − β11 − 1

β11
· X1(1− ηQ∗1(X1))Q

∗
1(X1)

r − µ
+ (1− θ)δQ∗1(X1) = 0. (3.17)

Proof. See subsection A.3.

In order to gain some intuition on the effect of the withdrawal parameter λ0, a
numerical example is used. The parameter values follow from Dixit and Pindyck [1994],
but for the parameters which are not present in their model, the values from Huisman
and Kort [2015] are used. Therefore, µ = 0, σ = 0.1, r = 0.05, η = 0.05, δ = 0.1 and
θ = 0.1. The value of the thresholds X0 and X1 are shown in figure 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

6

6.5

7

7.5

8

8.5

9

X

10
-3 Investment thresholds for different values for 

0

X0

X1

Figure 2: X0 and X1 for different withdrawal parameter values λ0
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From figure 2, it follows that increasing the withdrawal parameter λ0 decreases the
threshold X1. In economic terms, increasing the probability of abandonment of the
policy results in investors speeding up investment. Furthermore, as X0 is the timing
threshold after abandonment of the tax credit policy, it is not subject to policy uncer-
tainty and does not depend on λ0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

Q

Investment quantities for different values for 
0

Q0

Q1

Figure 3: Q0 and Q1 for different withdrawal parameter values λ0

The optimal quantity Q1 for different values of λ0 is shown in figure 3. Huisman
and Kort [2015] note that investing sooner leads to investing at a lower capacity. This
result can also be seen in both figures, since increasing λ0 decreases both X1 and Q1.
Therefore, a government aiming to decrease investment by retracting the tax credit
policy may cause an increase in small investments due to policy uncertainty. The policy
uncertainty has an effect contrary to the policy’s aim. If the government aims to decrease
the number of investments and wants to retract the tax credit policy, it is best to make
firms believe the policy will not be withdrawn and withdraw it so sudden investors
are unable to invest and set up firms/projects while the policy is active. In this case,
investors cannot do the investment quickly before the termination of the policy and as
the investment is more expensive after withdrawal, the incentive to invest now decreases
after termination of the policy. However, this kind of policy making may frustrate firms
and investors as the government needs to hide information from them and as a result,
such kind of decision making may not be realistic for policy makers.

Nevertheless, policy uncertainty can be a (realistic) tool for policy makers to influence
investors. The policy makers or government can speed up investment by promising to
withdraw the tax credit policy in the near future. As the firms want to take advantage
of the still available subsidy, they do investment now. As result of investing sooner, they
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invest on a smaller scale. This can be beneficial for the government if it prefers having
smaller projects on short-term over having large-scale investments in the long run.

Apart from the firm’s optimal timing and capacity decision to maximize the producer
surplus, one can also consider the problem of the social planner. The social planner has
the goal to maximize the total surplus, which consists of the sum of the consumer and
producer surplus. The following discussion on the consumer, producer and total surplus
can also be found in Huisman and Kort [2015].

The instantaneous consumer surplus is calculated by the following integral:∫ X

P (Q)

D(P )dP. (3.18)

As it is assumed that all production is sold, the demand D and installed capacity Q are
the same. Therefore, D(P ) is the inverse function of (3.1):

D(P ) =
1

η
(1− P

X
). (3.19)

Using (3.19) yields the following derivation for the instantaneous consumer surplus:∫ X

P (Q)

D(P )dP =

∫ X

X(1−ηQ)

1

η
(1− P

X
)dP

=
1

η

[
P − P 2

2X

]P=X

P=X(1−ηQ)

=
1

2
XQ2η

Before calculating the total expected consumer surplus (CS), lemma 1 is discussed
as it is used in the derivation of the total expected consumer surplus.

Lemma 1. When dX(t) = µX(t)dt + σX(t)dW with W (t) as a standard Brownian

motion, it can be shown that X(s) = X(t) · e(µ− 1
2
σ2)(s−t)+σ(W (s)−W (t)) for s ≥ t.

Proof. Let dX = µX(t)dt+σX(t)dW as defined in the lemma and let Y (t) = ln(X(t)).
By Itô’s Lemma the following holds:

dY = (µX(t)
dY

dX
+
dY

dt
+

1

2

d2Y

dX2
(σX(t))2)dt+

dY

dX
σX(t)dW

= (µX(t)
1

X(t)
+ 0 +

1

2
· − 1

X2
(σX(t))2)dt+

1

X(t)
σX(t)dW

= (µ− 1

2
σ2)dt+ σdW

This can be rewritten as follows:

Y (s)− Y (t) =

∫ s

t

(µ− 1

2
σ2)du+

∫ s

t

σdW

⇐⇒ Y (s) = Y (t) +

∫ s

t

(µ− 1

2
σ2)du+

∫ s

t

σdW

⇐⇒ ln(X(s)) = ln(X(t)) +

∫ s

t

(µ− 1

2
σ2)du+

∫ s

t

σdW

⇐⇒ X(s) = X(t) + e
∫ s
t (µ−

1
2
σ2)du+

∫ s
t σdW

⇐⇒ X(s) = X(t) + e(µ−
1
2
σ2)(s−t)+σ(W (s)−W (t))
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The total expected consumer surplus is the expectation of the integral over the
discounted instantaneous consumer surplus. Using lemma 1 the following can be derived:

CS = E[

∫ ∞
t=0

1

2
X(t)Q2ηe−rtdt |X(0) = X]

=
1

2
Q2η · E[

∫ ∞
t=0

X(0) · e(µ−
1
2
σ2)t+σW (t)e−rtdt |X(0) = X]

=
XQ2η

2
· E[

∫ ∞
t=0

e(µ−
1
2
σ2−r)t+σW (t)dt |X(0) = X]

=
XQ2η

2
·
∫ ∞
t=0

e(µ−
1
2
σ2−r)t

∫ ∞
−∞

1√
t
√

2π
e−

(W (t))2

2t · eσW (t)dWdt

=
XQ2η

2
·
∫ ∞
t=0

e(µ−
1
2
σ2−r)t

∫ ∞
−∞

1√
t
√

2π
e−

(W (t)−σt))2
2t e

1
2
σ2tdWdt

=
XQ2η

2
·
∫ ∞
t=0

e(µ−r)tdt

=
XQ2η

2(r − µ)

In the derivation above it is used that
∫∞
−∞

1√
t
√
2π
e−

(W (t)−σt)2
2t dW is an integral of the pdf

of R where R ∼ N(σt, t), hence this integral has value one.
The producer surplus when the investor decides to invest when the policy is with-

drawn (PS0) is equal to:

PS0 =
X(1− ηQ)Q

r − µ
− δQ. (3.20)

When the policy is active, the investor gains the following by investing:

PS1 =
X(1− ηQ)Q

r − µ
− (1− θ)δQ. (3.21)

The total surplus when the policy is withdrawn (TS0) is equal to

TS0 = CS + PS1 =
X(2− ηQ)Q

2(r − µ)
− δQ, (3.22)

while in case the policy is still active (TS1), the total surplus is:

TS1 = CS + PS0 =
X(2− ηQ)Q

2(r − µ)
− (1− θ)δQ. (3.23)

Taking the first order condition of TS0 with respect to Q yields QS
0 , the optimal social

welfare quantity after policy withdrawal. Similarly, the optimal social welfare quantity
when the policy is still in effect, QS

1 , follows from taking the first order condition of TS1

with respect to Q. Note that similar steps were taken to derive the optimal quantities
chosen by the producer in proposition 1.

QS
1 (X) =

1

η
(1− (1− θ)δ(r − µ)

X
) (3.24)

QS
0 (X) =

1

η
(1− δ(r − µ)

X
) (3.25)
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Since QS
1 (X) = 2Q1(X) and QS

0 (X) = 2Q0(X), it follows that a profit-maximizing firm
should invest twice as much to achieve the social optimum.

Up to this point, expressions for the total surplus were derived - expressions (3.22)
and (3.23) - given the social planner decides to invest. Given the timing of investment,
also the optimal quantity is derived as shown by (3.24) and (3.25). When the social
planner decides to wait, the same steps can be repeated as in the beginning of this
section to determine expressions for the total surplus, with only TS0 and TS1 instead of
V0 and V1. The total surplus when the social planner decides to wait while the policy
has been withdrawn can be derived by solving (3.7), yielding (3.8). When the policy is
still in effect and the social planner decides to wait, the total surplus is equal to (3.10),
which follows from solving (3.9).

In the remainder of this section XS
0 is used to denote the threshold at which the

social planner is indifferent between investing and not investing after the policy has
been withdrawn, while XS

1 denotes the value for which the social planner is indifferent
while the policy is active. Using this notation and previous derivations, we find the
following expressions for the total surplus:

TS0(X,Q) =

{
X(2−η·Q)Q

2(r−µ) − δQ if X ∈ [XS
0 ,∞)

A0X
β01 otherwise

TS1(X,Q) =

{
X(2−η·Q)Q

2(r−µ) − (1− θ)δQ if X ∈ [XS
1 ,∞)

A1X
β11 + A0X

β01 otherwise

The constants A0 and A1 and thresholds for the social planner XS
0 and XS

1 satisfy the
value matching and smooth pasting conditions. The two value matching equations are:

XS
0 (2− ηQS

0 (XS
0 ))QS

0 (XS
0 )

2(r − µ)
− δQS

0 (XS
0 ) = A0(X

S
0 )β01 , (3.26)

XS
1 (2− ηQS

1 (XS
1 ))QS

1 (XS
1 )

2(r − µ)
− (1− θ)δQS

1 (XS
1 ) = A1(X

S
1 )β11 + A0(X

S
1 )β01 , (3.27)

and the two smooth pasting conditions are:

(2− ηQS
0 (XS

0 ))QS
0 (XS

0 )

2(r − µ)
= A0β01(X

S
0 )β01−1, (3.28)

(2− ηQS
1 (XS

1 ))QS
1 (XS

1 )

2(r − µ)
= A1β11(X

S
1 )β11−1 + A0β01(X

S
1 )β01−1. (3.29)

The interpretation of the value matching and smooth pasting conditions is similar to
the value matching and smooth pasting conditions discussed earlier in this section.

The threshold XS
0 can be derived using the same steps as in the proof of proposition

2 and even yields the same expression for the threshold as derived in (3.15):

XS
0 =

β01 + 1

β01 − 1
δ(r − µ). (3.30)

The optimal timing of the social planner and the optimal timing of the profit-maximizing
firm are the same when the policy has been withdrawn, i.e. XS

0 = X0.
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As discussed in this section, an expression for XS
1 cannot be determined. However,

similar to proposition 3, it can be shown that XS
1 satisfies the following:

β11 − β01
β11

· A0(X
S
1 )β01 − β11 − 1

β11
· X

S
1 (2− ηQ1(X

S
1 ))QS

1 (XS
1 )

2(r − µ)
+ (1− θ)δQS

1 (XS
1 ) = 0.

(3.31)

Despite the above expression may seem different than (3.17) (the expression for X1)
at first sight, the timing thresholds for the social planner and the monopolist are the
same. After substitution of (3.24) into the above, and substitution of (3.6), the firm’s
optimal quantity while the policy is active into (3.17), it follows that both equations
are the same. As both equations are the same, XS

1 = X1 does hold. Therefore, any
differences in the total surplus created by the social planner and the monopolist are the
result of the difference in investment size.
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Figure 4: Total surplus under monopolist and social planner for different λ0

A numerical example is used to compare the total surplus in the situation of a social
planner and in the situation of a monopolist2. The parameter values are the same as
before: µ = 0, σ = 0.1, r = 0.05, η = 0.05, δ = 0.1 and θ = 0.1. It should be noted
that the costs of the tax credit policy are not taken into account, hence the discussion
of the remainder of this section focuses on the effects of the policy, and does not do a
cost-benefit analysis.

In figure 4, the blue solid line is the total surplus obtained by the social planner
when the policy is still in effect and X = X1, but will be withdrawn with probability
λ0dt during time interval dt. Similarly, the dashed blue line is the total surplus under

2It has been pointed out the social welfare analysis in standard literature is done a bit differently.
Therefore, this analysis will be adapted in a future version.
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a monopolistic firm, with the policy still in effect and X = X1. Finally, the solid red
line is the relative difference in the social welfare between the social planner and the
monopolist.

Looking at figure 4, it is immediately clear that the total surplus under the social
planner is larger than the total surplus under the monopolist. This is the result of the
difference in goals of the social planner and monopolist, as the former aims to maximize
total surplus, and the latter aims to only maximize the producer surplus. The difference
in total surplus is completely explained by the difference in installed capacity, as the
outcomes for X1 and XS

1 are the same. Thus, the firm seems to invest too little from a
social welfare perspective to keep the price up and make more profit despite it maintains
a lower capacity/sells fewer products by producing less. This means that 25 percent of
the total surplus is lost as a result of a competitive market. This relative welfare loss
does not change when increasing the policy uncertainty, as can be seen by the straight
red solid line in figure 4. However, the total surplus decreases when increasing the
withdrawal parameter λ0. Intuitively, increasing λ0, increases the policy uncertainty
and thus harms social welfare.

4 Comparison with stepwise green investment un-

der policy uncertainty (Chronopoulos, Hagspiel

and Fleten, 2016)

In this paper the effect of policy uncertainty on invest timing and investment size has
been analyzed. Chronopoulos et al. [2016] performs a similar analysis and analyse (sud-
den) provision and retraction of a subsidy. Despite the main topic of the paper and this
paper are the same, before mentioning and comparing conclusions, several differences in
the models and assumptions should be discussed.

First and foremost, there is a difference in the type of subsidy that is analyzed.
Chronopoulos et al. [2016] analyze a subsidy that provides a fixed premium on top
of the price, while in this paper the subsidy gives a fixed percentage discount of the
sunk investment cost. This means the firm’s decisions are no longer subject to policy
uncertainty after entering the market in this paper’ model. Simply put, the firm does
not care whether or not the policy is active after it has invested. However, in case of
the model by Chronopoulos et al. [2016], the firm’s benefits of the subsidy depend on
the price. Therefore, the firm’s benefits are subject to policy uncertainty even after
investing.

Secondly, there is a difference in the way production costs and prices are modeled.
Both Chronopoulos et al. [2016] and this paper assumes that all produced demand is
sold. This paper assumes the production costs are linear, similar to Huisman and Kort
[2015]. Therefore, the marginal production costs are fixed. However, Chronopoulos
et al. [2016] use strictly convex production costs. The price in this paper is modeled
in such a way that an increase in production leads to a decrease in price. In other
words, the firm has some market power. In Chronopoulos et al. [2016], the price follows
a geometric Brownian motion and is independent of the size of the production. The
firm has no market power and cannot influence the price. This assumption is relaxed
in this paper, as equation (3.1) captures the effect of production on price. This effect
may have large significance in Chronopoulos et al. [2016]’s model, as the larger the
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installed production, the lower the price, the less the firm’s revenue per sold product.
However, as the production increases, it does not mean that the firm’s total revenue
drops. Furthermore, the consumers may profit from the lower price, hence the price
subsidy for the firm may lead to a larger consumer surplus. As the effect of relaxing the
no market power assumption on the producer surplus is unknown beforehand, the effect
of the policy on total welfare is unclear at this point. Therefore, relaxing the no market
power assumption in the setting of Chronopoulos et al. [2016] may give new insights on
the role of price subsidies. Furthermore, the question how the social welfare is influenced
by policy uncertainty in a price subsidy is an interesting question.

This question also shows differences in the scope of Chronopoulos et al. [2016] and
this paper. The question regarding the effects of policy uncertainty on social welfare is
not addressed in Chronopoulos et al. [2016], and policy recommendations seem to follow
from maximizing producer surplus. Of course, for national governments it may be more
important to focus on firms in order to attract investment, but the goal of maximizing
social welfare may not be accomplished by merely maximizing the investments of firms.

Apart from social welfare, there is also a second difference in the focus/scope of the
two analyses. This paper focuses on the investment problem in which the investor
can invest at most once, the so-called single or lumpy investment problem. Apart
from the single investment problem, Chronopoulos et al. [2016] also analyze a multi-
ple stage/stepwise investment problem. This problem is not analyzed in this paper,
hence it is not possible to compare these results. Intuitively, it is expected that if the
firm is able to increase production after investing, the flexibility of the firm will increase,
as the future investment opportunity will not be (entirely) lost after investing. This sug-
gests that the investment threshold will decrease, i.e. investing sooner will become more
attractive, and usually this is combined with installing a smaller capacity. The latter
is also rather intuitive as production can also be scaled upwards if market conditions
become more beneficial later, but not downwards, as it is not possible to sell production
capacity. However, Kort et al. [2010] find that it is not conclusive how uncertainty in
market development influences the decision between choosing a single investment strat-
egy or a multiple-stage investment strategy. They find the counter-intuitive result that
”higher [market] uncertainty makes the single-stage investment more attractive relative
to the more flexible stepwise investment strategy”. Therefore, it is also an interesting
question whether the outcomes of this paper still are the same when the investor can
choose to either do the single investment or implement a stepwise investment strategy.

As the differences between the models and assumptions have been discussed, the
conclusions of Chronopoulos et al. [2016] can be discussed and compared with the results
of this paper. In the situation in which the policy is active and the probability of
withdrawing a price subsidy is low, the authors find an increment in the probability of
withdrawing such policy leads to an decrement in the investment threshold. In other
words, it becomes more attractive for firms to speed up investment as the policy is still
in effect. As shown by Huisman and Kort [2015], earlier investment leads to a decrease
in quantity, which is a conclusion also Chronopoulos et al. [2016] draw. This conclusion
for small λ is also found in this paper.

Before looking into the conclusions where the probability of change is large, a remark
about the analysis by Chronopoulos et al. [2016] should be made. Similarly to this paper,
Chronopoulos et al. [2016] let the probability of change follow from a Poisson process
with parameter λ. However, the authors seem to imply that λ = 1 means that change
will immediately occur with probability 1, but this is not the case. When λ = x, it
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is expected that the next change will occur after 1
x

time intervals, thus for λ = 1,
the (mathematical) expectation is that the next change will occur after the next time
interval. Chronopoulos et al. [2016] mention that - for example - the investment timing
threshold in a situation with the subsidy being in effect, at most one change (similar
setting as section 3 in this paper) and λ = 1, is equal to the investment threshold in
case of no subsidy and no policy uncertainty. With the correct interpretation of λ, it
seems just a coincidence that this result occurs. In fact, what happens for λ = 1, is
expected to happen for λ→∞, as then the probability of change during the next small
time interval converges to one. Apart from the interpretation of the results at λ = 1,
their results do not seem incorrect.

When the probability of changing the current situation is relatively large, aforemen-
tioned conclusions no longer hold. In case of an active price subsidy and the probability
of withdrawal being large, an increment in this probability increases the investment
threshold. As the subsidy discussed in Chronopoulos et al. [2016] influences the price,
the firm’s benefits from the policy also depend on the situation after investing. Therefore,
if it becomes very likely that the subsidy is withdrawn, the firm postpones investment
to avoid getting stuck in a not beneficial situation and as it invests later, the installed
capacity is larger. This ”postponement effect” does not occur in this paper, as the sub-
sidy in this paper influences the investment cost, thus the firm’s benefits after investing
are not dependent on whether or not the policy is in effect. In fact, the larger the prob-
ability that the tax credit policy will be withdrawn soon, the stronger the incentive to
invest now, to take advantage of the discount on the investment costs. As expected, the
early investment is done with a small capacity.

In conclusion, from comparing Chronopoulos et al. [2016] and this paper, it follows
that the two different subsidies have different effects when the probability that the policy
regime changes is high. In case of a price premium subsidy, likely withdrawal leads to
a decrease of the incentive to invest now, while the chosen capacity is increased. On
the other hand, increasing the withdrawal probability of a tax credit policy when it is
relatively high already, increases the incentive to invest now and decreases the chosen
capacity. The mentioned effect for the tax credit policy holds irrelevant of the probability
of withdrawal, or to put it in terms of the used parameters, it holds for both high and
low values of λ0. For low values of λ0, i.e. in situations in which policy change is unlikely,
the effect of policy uncertainty on investment timing and investment size is similar for
the price subsidy and the tax credit.

5 Robustness analysis

In this section, a robustness analysis will be performed. This section will be added in
the future and any input from others is encouraged. So far, this section will discuss the
following topics:

• In this paper, it is assumed that demand is equal to the chosen production. It may
be interesting to see if/how results change is demand is uncertain, e.g. additive
or iso-elastic demand. In section 6 this is also mentioned as a future research
recommendation and Boonman and Hagspiel [2014] and Wen et al. [2017] are
mentioned.

• This paper focuses its analysis on a subsidy on investment cost, similar to Dixit
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and Pindyck [1994]. However, also different types of subsidies can be analyzed,
such as the price premium analyzed in Chronopoulos et al. [2016].

• This paper focuses on the situation in which an active policy can be withdrawn.
However, it may also be relevant to analyze the situation in which no policy is
in effect and possibly a new policy can be introduced. Furthermore, it is possible
to analyze the situation when the government is able to implement and withdraw
a policy infinite times, i.e. the model in Dixit and Pindyck [1994] with capacity
choice. Despite this possibly cannot be solved analytically, a numerical example
can be used to gain some insights.

6 Conclusions and future research

In the final section, the most important conclusions of this paper are summarized and
also policy recommendations are given. This paper concludes with recommendations for
future research.

When a policy maker can retract an existing tax credit policy, increasing the likeli-
hood of policy withdrawal gives the investor an incentive to invest sooner in order still
receive the discount on investment. As shown in section 3, investing earlier is done with
a smaller capacity. At first sight it may be surprising, but the firm’s optimal invest-
ment size under subsidy with the price at the threshold value X1 is smaller than the
firm’s optimal investment size without subsidy with the price at the threshold value X0.
Since investment is done earlier with subsidy than without, i.e. X1 < X0, it results in
Q1(X1) < Q0(X0) and the firm optimally produces less without subsidy. Apart from
the optimal decisions for the firm, this paper also analyzed the social welfare maxi-
mization problem of the social planner. It turns out that the optimal timing of the
profit-maximizing firm and the welfare maximizing social planner are equal. However,
the firm underinvests from a social perspective, as the optimal investment size for the
social planner is twice the optimal investment size for the firm. As a result, welfare is
lost. In the numerical example the relative welfare loss is equal to 25%, independently
of the policy uncertainty (expressed by the withdrawal probability parameter λ0).

The surprising result that the firm’s optimal investment size under subsidy at the
threshold price is smaller than the firm’s optimal investment size without subsidy at the
threshold price implies an important policy recommendations. For example consider a
government aiming to have more green energy projects to reach environmental targets.
Green energy projects usually have long-term goals and high investment costs. If a gov-
ernment prefers to have large-scale investments on the long-run over small investments
on short-term, it is best never to withdraw an existing policy (i.e. λ0 = 0). In the
scenario in which the policy is active and has unconditional support, the firm not given
any incentive to speed up investment, which would be the case if there is some chance
the policy will be withdrawn in the future. If the social planner aims to have more
investments now, but hardly any investments later, it is best to threat to withdraw the
subsidy immediately. As a result of this kind of policy making, firms that want to make
use of the beneficial market conditions need to invest within this small time frame.

One of the objections for the policy maker to withdraw a tax credit policy to de-
lay investment, is that the uncertainty in withdrawal actually speeds up investment.
Therefore, the policy maker has reason to act fast without uncertainty, as in this case,
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investment is not delayed too much as the policy is implemented early. However, in
the political landscape of today, in which decisions and laws take time to be finalized,
this may not be an option. An alternative solution to avoid this delay in investment as
result of policy uncertainty is to use a price premium (like in the model by Chronopoulos
et al. [2016]) instead of a tax credit. As the promise of withdrawal of a price premium
discourages firms to invest now, even before the actual withdrawal of the policy, this
seems to be in accordance with the goals of a government when retracting a policy that
dissuades firms to do certain investments.

Even though this paper gives some insights on the effect of policy uncertainty on
the investment timing and investment size and performs a social welfare analysis, this
work has several interesting extensions for future research. A first example is finding
optimal values for θ and λ0 such that the optimal decisions for firm and social planner
align. In other words, the possible subsidy withdrawal is chosen such that the firm
itself optimizes social welfare by just trying to maximize its profits. This is the actual
approach of a government, as it cannot takeover firms and take decisions for them in
order to maximize social welfare, but it can only influence the profit-maximizing firms’
decisions by implementing a subsidy and in this way encourage decisions that improve
social welfare. However, as mentioned in section 3, the costs of the subsidy should also
be taken into account in order to have the complete analysis of a policy implementation.

Secondly, the (implicit) assumption that there is no competition on the market can
be relaxed. In this paper, the possible investor is a monopolist that does not face
the threat of other entrants. Allowing for competition, by for example implementing a
duopoly setting and doing a game-theoretic analysis, will alter the decisions made by the
firms. As Huisman and Kort [2015] show, the fear of another entrant gives incentive to
invest at a larger scale. The first entrant, or incumbent, can apply an entry deterrence
strategy. By overinvesting, the incumbent delays the investment of the second investor
(entrant) and the entrant will invest in a smaller capacity. Huisman and Kort [2015]
also find that greater uncertainty makes entry deterrence more likely. This implies
that entry deterrence strategies are even more likely to occur in case of situations of
policy uncertainty. This analysis can be extended to a situation in which competitors
are asymmetric. In that case certain policy measures may increase or decrease the
competitive advantage of one firm over the other (Chronopoulos et al. [2016]).

Apart from introducing competition, it may also be interesting to give the investor
the option to choose between a single lumpy investment and multiple stage investment.
Kort et al. [2010] find that lumpy investment has a lower total cost, but stepwise in-
vestment gives more flexibility by letting the firm choose the timing individually for
each stage. However, they also find the counter-intuitive result that the higher market
uncertainty, the more attractive the single-stage investment is compared to the stepwise
investment strategy. As flexibility of the firm is important in cases with policy uncer-
tainty, analyzing the models in this paper with the option for the investor to implement
a multiple stage investment strategy can give new insights. Chronopoulos et al. [2016]
is an example of an analysis of the multiple stage investment strategy under policy un-
certainty and they conclude that it is preferred by the firm over the lumpy investment
strategy, as result of the increased flexibility with the multiple stage investment strategy.

A fourth example of future research consists of relaxing two (implicit) assumptions
made when modeling the demand. In this paper, it is assumed that the demand is equal
to the capacity and that the producer always produces up to capacity to simplify the
analysis. In reality, the producer can keep stock and the consumer’s demand is not
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equal to the production, but follows some function dependent on the price. Boonman
and Hagspiel [2014] find that different inverse demand functions lead to different invest-
ment decisions, hence the assumption on the structural form of the demand function may
change certain outcomes, also in the models discussed in this paper. In fact, Wen et al.
[2017] study how the subsidy support affects the investment decision of a monopolist
under uncertainty and analyzes the implications for social welfare. They also analyze
differences when changing the demand function, and draw different conclusions for dif-
ferent demand functions. They find that the unconditional subsidy regulation cannot
align the profit and social planner’s investment decisions under linear demand structure.
However, for non-linear iso-elastic demand, it is possible to implement an unconditional
subsidy to align profit maximizing and social optimal investment decisions, depending
on the form of subsidy regulations.

Fifthly, the assumptions regarding the modeling of the price can be relaxed. In this
paper, the price follows a geometric Brownian motion, which means that the price can
take negative values with a positive probability. Furthermore, the output price in reality
is not necessarily a geometric Brownian motion and may depend on other information we
have, such as prices of substitutes, or the price of relevant resources. Possibly, the price
may be a different stochastic function such as a mean-reverting process or arithmetic
Brownian motion as Chronopoulos et al. [2016] suggest. Dias and Rocha [1999] and
Cartea and Figueroa [2005] have alternative approaches to model the price to take into
account certain economic logic. Dias and Rocha [1999] model changes in oil prices as a
sum of a mean reverting part (prices tend to stick to a certain mean), Brownian motion
(upward/downward trend in the price) and poison jump process with random jump sizes
(external shocks). Cartea and Figueroa [2005] use a similar model to analyse electricity
spot prices, but also take into account seasonality.

Apart from taking other effects that (may) change the price into account, one can
also change the demand uncertainty parameter σ as suggested by Huisman and Kort
[2015] or change the way the the policy uncertainty is modelled. In case of the latter
suggestion, it seems realistic that the policy uncertainty decreases over time as certain
regulations are rejected or supported by certain politicians or political parties. As a
result, the λ0 converges to either zero or infinity over time. Therefore, over time, the
situation is either identical to the situation without policy uncertainty, or the firms know
for certain that a change will occur very soon. The firm will invest immediately if the
government is planning to withdraw a subsidy in the very near future.

The final recommendation for future research is related to the fact that the lifetime of
a firm after investment is assumed to be infinite in this paper. Gryglewicz et al. [2008]
relax this assumption as in nowadays fast-changing environment, investment projects
are more likely to have a finite lifetime. The authors find that investments may be
accelerated when uncertainty increases if the project has a finite lifetime. Gryglewicz
et al. [2008] show that this particularly happens at low levels of uncertainty and when
project life is short. The conclusion of Gryglewicz et al. [2008] that the investment-
uncertainty relationship is positive at low levels of uncertainty and negative at high
levels, is surprising compared to other research. Also in this paper, as the lifespan of
the project is assumed to be infinite, uncertainty delays investment and thus it is an
interesting question whether the conclusions of this paper still hold for projects with a
finite lifespan.
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A Proofs of theorems and propositions

A.1 Proof of proposition 1

Proof of proposition (1). This proof shows that the expression for Q∗1(X) (expression
(3.6)) holds for X > X1. The proof that equation (3.5) is correct for X > X0 follows
the same steps.

The optimal quantity Q∗1 maximizes V1(Q1, X) for X > X1. Since d2V1
dQ2 = −2ηX

r−µ < 0

for X > 0, it holds that V1(Q1, X) is concave in Q1 as X > X1 > 0. Therefore the first
order condition, dV1

dQ
= 0, can be applied here.

dV1
dQ

= 0⇔ X(1− 2ηQ)

r − µ
− (1− θ)δ = 0

⇔ Q∗1(X) =
1

2η
(1− (1− θ)δ(r − µ)

X
).

A.2 Proof of proposition 2

Proof of proposition (2). Substituting (3.11) into (3.13) yields:

β01
X0

(
X0(1− ηQ∗0(X0))Q

∗
0(X0)

r − µ
− δQ∗0(X0)

)
=

(1− ηQ∗0(X0))Q
∗
0(X0)

r − µ

⇔ (β01 − 1) · (1− ηQ∗0(X0))Q
∗
0(X0)

r − µ
=
β01
X0

δQ∗0(X0)

⇔ β01 − 1

β01
· 1− ηQ∗0(X0)

δ(r − µ)
=

1

X0

⇔ X0 =
β01

β01 − 1
· δ(r − µ)

1− ηQ∗0(X0)
.

Using equation (3.5) for Q∗0(X0) in the above expression yields:

X0 =
β01

β01 − 1
· δ(r − µ)

1− ηQ∗0(X0)
⇔ X0 =

β01
β01 − 1

· δ(r − µ)

1− 1
2
(1− δ(r−µ)

X0
)

⇔ X0 =
β01

β01 − 1
· δ(r − µ)

2X0

X0 + δ(r − µ))

⇔ 1

2
(X0 + δ(r − µ)) =

β01
β01 − 1

· δ(r − µ)

⇔ X0 =
2β01
β01 − 1

· δ(r − µ)− δ(r − µ)

⇔ X0 =
β01 + 1

β01 − 1
· δ(r − µ).
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Substituting the latter expression for X0 into (3.5) yields an expression for the optimal
capacity when the policy is not in effect.

Q∗0(X0) =
1

2η
(1− δ(r − µ)

β01+1
β01−1 · δ(r − µ)

)

=
1

2η
(1− β01 − 1

β01 + 1
)

= [η(β01 + 1)]−1.

Rewriting equation (3.13) and subsequently substituting the derived expressions for X0

and Q0(X0) gives:

A0 =
X1−β01

0

β01
· (1− ηQ∗0(X0))Q

∗
0(X0)

r − µ

=
1

β01
(
β01 + 1

β01 − 1
· δ(r − µ))1−β01 · 1

r − µ
(1− (β01 + 1)−1) · [η(β01 + 1)]−1)

=
1

β01
(
β01 + 1

β01 − 1
· δ(r − µ))−β01(

β01 + 1

β01 − 1
· δ(r − µ)) · 1

r − µ
· β01
β01 + 1

· 1

η(β01 + 1)
)

= (
β01 + 1

β01 − 1
· δ(r − µ))−β01

δ

β01 − 1
· 1

η(β01 + 1)
)

=
δ

η(β2
01 − 1)

·
(
β01 + 1

β01 − 1
δ(r − µ)

)−β01
.

A.3 Proof of proposition 3

Proof of proposition (3). Subtracting X1

β11
times equation (3.12) from (3.14) yields:

β11 − β01
β11

· A0X
β01
1 =

β11 − 1

β11
· X1(1− ηQ∗1(X1))Q

∗
1(X1)

r − µ
− (1− θ)δQ∗1(X1).

Rearranging terms in the above leads to:

β11 − β01
β11

· A0X
β01
1 − β11 − 1

β11
· X1(1− ηQ∗1(X1))Q

∗
1(X1)

r − µ
+ (1− θ)δQ∗1(X1) = 0.
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